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Chapter �

Safe-Bayesian generalized linear
regression

Abstract
We study generalized Bayesian inference under misspeci�cation, i.e. when the model is ‘wrong
but useful’. Generalized Bayes equips the likelihood with a learning rate η. We show that for
generalized linear models (GLMs), η-generalized Bayes concentrates around the best approx-
imation of the truth within the model for speci�c η ≠ �, even under severely misspeci�ed noise,
as long as the tails of the true distribution are exponential. We derive MCMC samplers for
generalized Bayesian lasso and logistic regression and give examples of both simulated and
real-world data in which generalized Bayes substantially outperforms standard Bayes.

�.� Introduction
Over the last ten years it has become abundantly clear that Bayesian inference can behave quite
badly under misspeci�cation, i.e., if the model F under consideration is ‘wrong but useful’
(Grünwald and Langford, ����; Erven, Grünwald and Rooij, ����; Müller, ����; Syring and
Martin, ����; Yao et al., ����; Holmes and Walker, ����; Grünwald and Van Ommen, ����). For
example, Grünwald and Langford (����) exhibit a simple nonparametric classi�cation setting
in which, even though the prior puts positive mass on the unique distribution in F that is
closest in KL divergence to the data generating distribution P, the posterior never concentrates
around this distribution. Grünwald and Van Ommen (����) give a simple misspeci�ed setting
in which standard Bayesian ridge regression, model selection and model averaging severely
over�t small-sample data.

Grünwald and Van Ommen (����) also propose a remedy for this problem: equip the likelihood
with an exponent or learning rate η (see (�.�) below). Such a generalized Bayesian (also known
as fractional or tempered Bayesian) approach was considered earlier by e.g. Barron and Cover,

���



��� Chapter �. Safe-Bayesian generalized linear regression

����; Walker and Hjort, ����; Zhang, ����b. In practice, η will usually (but not always — see
Section �.�.� below) be chosen smaller than one, making the prior have a stronger regularizing
in�uence. Grünwald and VanOmmen (����) show that for Bayesian ridge regression andmodel
selection/averaging, this results in excellent performance, being competitive with standard
Bayes if the model is correct and very signi�cantly outperforming standard Bayes if it is not.
Extending Zhang’s (����a; ����b) earlier work, Grünwald and Mehta (����) (GM from now
on) show that, under what was earlier called the η-central condition (De�nition �.� below),
generalized Bayes with a speci�c �nite learning rate η (usually ≠ �) will indeed concentrate in
the neighborhood of the ‘best’ f ∈ F with high probability. Here, the ‘best’ f means the one
closest in KL divergence to P.

Yet, three important parts of the story are missing in this existing work: (�) Can Grünwald-Van
Ommen-type examples, showing failure of standard Bayes (η = �) and empirical success of
generalized Bayes with the right η, be given more generally, for di�erent priors π (say of lasso-
type (π( f ) ∝ exp(−λ� f ��)) rather than ridge-type π( f ) ∝ exp(−λ� f ���)), and for di�erent
models, say for generalized linear models (GLMs)? (�) Can we �nd examples of generalized
Bayes outperforming standard Bayes with real-world data rather than with toy problems such
as those considered by Grünwald and Van Ommen? (�) Does the central condition — which
allows for good theoretical behavior of generalized Bayes — hold for GLMs, under reasonable
further conditions?

We answer all three questions in the a�rmative: in Section �.�.� below, we give (a) a toy
example on which the Bayesian lasso and the Horseshoe estimator fail; later in the chapter, in
Section �.� we also (b) give a toy example on which standard Bayes logistic regression fails,
and (c) two real-world data sets on which Bayesian lasso and Horseshoe regression fail; in all
cases, (d) generalized Bayes with the right η shows much better performance. In Section �.�,
we show (e) that for GLMs, even if the noise is severely misspeci�ed, as long as the distribution
of the predictor variable Y has exponentially small tails (which is automatically the case in
classi�cation, where the domain of Y is �nite), the central condition holds for some η > �. In
combination with (e), GM’s existing theoretical results suggest that generalized Bayes with this
η should lead to good results — this is corroborated by our experimental results in Section �.�.
�ese �ndings are not obvious: one might for example think that the sparsity-inducing prior
used by Bayesian lasso regression circumvents the need for the additional regularization induced
by taking an η < �, especially since in the original setting of Grünwald and Van Ommen,
the standard Bayesian lasso (η = �) succeeds. Yet, Example �.� below shows that under a
modi�cation of their example, it fails a�er all. In order to demonstrate the failure of standard
Bayes and the success of generalized Bayes, we devise (in Section �.�) MCMC algorithms (f)
for generalized Bayes posterior sampling for Bayesian lasso and logistic regression. (a)-(f) are
all novel contributions.

In Section �.� we �rst de�ne our setting more precisely. Section �.�.�) gives a �rst example
of bad standard-Bayesian behavior and Section �.�.�) recalls a theorem from GM indicating
that under the η-central condition, generalized Bayes for η < η should perform well. We
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present our new theoretical results in Section �.�. We next (Section �.�), present our algorithms
for generalized Bayesian posterior sampling, and we continue (Section �.�) to empirically
demonstrate how generalized Bayes outperforms standard Bayes under misspeci�cation. All
proofs are in Appendix �.A.

�.� �e setting
A learning problem can be characterized by a tuple (P, `,F), whereF is a set of predictors, also
referred to as amodel, P is a distribution on sample spaceZ , and ` ∶ F ×Z → R∪{∞} is a loss
function.We denote by ` f (z) ∶= `( f , z) the loss of predictor f ∈ F under outcome z ∈ Z . If Z ∼
P, we abbreviate ` f (Z) to ` f . In all our examples,Z = X ×Y . We obtain e.g. standard (random-
design) regression with squared loss by taking Y = R and F to be some subset of the class of all
functions f ∶ X → R and, for z = (x , y), ` f (x , y) = (y − f (x))�; logistic regression is obtained
by taking F as before, Y = {−�, �} and ` f (x , y) = log(� + exp(−y f (x)). We get conditional
density estimation by taking {p f (Y � X) ∶ f ∈ F} to be a family of conditional probability
mass or density functions (de�ned relative to some measure µ), extended to n outcomes by the
i.i.d. assumption, and taking conditional log-loss ` f (x , y) ∶= − log p f (y � x).

We are given an i.i.d. sample Zn ∶= Z� , Z� , . . . , Zn ∼ P where each Zi takes values in Z , and
we consider, as our learning algorithm, the generalized Bayesian posterior, also known as the
Gibbs posterior, Πn on F , de�ned by its density

πn( f ) ∶=
exp �−η∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−η∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

, (�.�)

where η > � is the learning rate, and π� is the density of some prior distributionΠ� onF relative
to an underlying measure ρ. Note that, in the conditional log-loss setting, we get that

πn( f )∝
n
�
i=�
(p f (yi � xi))ηπ�( f ), (�.�)

which, if η = �, reduces to standardBayesian inference.WhileGM’s result (quoted as�eorem �.�
below) works for arbitrary loss functions, �eorem �.� and our empirical simulations (this
chapter’s new results) revolve around (generalized) linear models. For these models, (�.�) can
be equivalently interpreted either in terms of the original loss functions ` f or in terms of
the conditional likelihood p f . For example, consider regression with ` f (x , y) = (y − f (x))�
and �xed η. �en (�.�) induces the same posterior distribution πn( f ) over F as does (�.�)
with the conditional distributions p f (y�x) ∝ exp(−(y − f (x))�, which is again the same as
(�.�) with ` f replaced by the conditional log-loss `′f (x , y) ∶= − log p f (y�x), giving a likelihood
corresponding to Gaussian errors with a particular �xed variance; an analogous statement holds
for logistic regression.�us, all our examples can be interpreted in terms of (�.�) for a model
that is misspeci�ed, i.e., the density of P(Y �X) is not equal to p f for any f ∈ F . As is customary
(see e.g. Bartlett, Bousquet and Mendelson (����)), we assume throughout that there exists an
optimal f ∗ ∈ F that achieves the smallest risk (expected loss) E[` f ∗(Z)] = inf f ∈F E[` f (Z)].
If F is a GLM, the risk minimizer again has additional interpretations: �rst, f ∗ minimizes,
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among all f ∈ F , the conditional KL divergence E(X ,Y)∼P[log �p(Y �X)�p f (Y �X)�] to the true
distribution P. Second, if there is an f ∈ F with EX ,Y∼P[Y � X] = f (X) (i.e.F contains the true
regression function, or equivalently, true conditional mean), then the risk minimizer satis�es
f ∗ = f .

�.�.� Bad Behavior of Standard Bayes
Example �.�. We consider a Bayesian lasso regression setting (Park and Casella, ����) with
random design, with a Fourier basis. We sample data Zi = (Xi ,Yi) i.i.d. ∼ P, where P is de�ned
as follows: we �rst sample preliminary (X′i ,Y ′i ) with X′i

i . i .d .∼ Uniform([−�, �]); the dependent
variable Y ′i is set to Y ′i = � + ε i , with ε i ∼N(�, σ �) for some �xed value of σ , independently of
X′i . In other words: the true distribution for (X′i ,Y ′i ) is ‘zero with Gaussian noise’. Now we toss
a fair coin for each i. If the coin lands heads, we set the actual (Xi ,Yi) ∶= (X′i ,Y ′i ), i.e. we keep
the (X′i ,Y ′i ) as they are, and if the coin lands tails, we put the pair to zero: (Xi ,Yi) ∶= (�, �).

We model the relationship between X and Y with a pth order Fourier basis.�us, F = { fβ ∶
β ∈ R�p+�}, with fβ(x) given by

�β, �
π
⋅ ��−��� , cos(x), sin(x), cos(�x), . . . , sin(px)�� ,

and the η-posterior is de�ned by (�.�) with ` fβ(x , y) = (y − fβ(x))�; the prior is the Bayesian
lasso prior whose de�nition we recall in Section �.�.�. Since our ‘true’ regression function
E[Yi � Xi] is �, in an actual sample around ��% of points will be noiseless, easy points, lying on
the true regression function. Since the actual sample of (Xi ,Yi) has less noise then the original
sample (X′i ,Y ′i ), we would expect Bayesian lasso regression to learn the correct regression
function, but as we see in the blue line in Figure �.�, it over�ts and learns the noise instead
(later on (Figure �.� in Section �.�.�) we shall see that, not surprisingly, this results in terrible
predictive behavior). By removing the noise in half the data points, we misspeci�ed the model:
we made the noise heteroscedastic, whereas the model assumes homoscedastic noise.�us, in
this experiment the model is wrong. Still, the distribution in F closest to the true P, both in
KL divergence and in terms of minimizing the squared error risk, is given by the conditional
distribution corresponding to Yi = � + ε i , where ε i is i.i.d. ∼N(�, σ �). While this element of
F is in fact favored by the prior (the lasso prior prefers β with small �β��), nevertheless, for
small samples, the standard Bayesian posterior puts most if its mass at f with many nonzero
coe�cients. In contrast, the generalized posterior (�.�) with η = �.�� gives excellent results
here. To learn this η from the data, we can use the Safe-Bayesian algorithm of Grünwald (����).
�e result is depicted as the red line in Figure �.�. Implementation details are in Section �.�.�
and Appendix �.D; the details of the �gure are in Appendix �.E.

�e example is similar to that of Grünwald and Van Ommen (����), who use multidimensional
X and a ridge (normal) prior on �β�; in their example, standard Bayes succeeds when equipped
with a lasso prior; by using a trigonometric basis we can make it ‘fail’ a�er all. Grünwald and
Van Ommen (����) relate the potential for the over�tting-type of behavior of standard Bayes, as
well as the potential for full inconsistency (i.e. even holding as n →∞) as noted by Grünwald
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Figure �.�: Predictions of standard Bayes (blue) and SafeBayes (red), n = ��, p = ���.

and Langford (����) to properties of the Bayesian predictive distribution

p(Yn+� � Xn+� , Zn) ∶= �
F

p f (Yn+� � Xn+�)πn( f � Zn)dρ( f ).

Being a mixture of f ∈ F , p(Yn+� � Xn+�), is a member of the convex hull of densities F but
not necessarily of F itself. As explained by Grünwald and Van Ommen, severe over�tting may
take place if p(Yn+� � Xn+� , Zn) is ‘far’ from any of the distributions in F . It turns out that
this is exactly what happens in the lasso example above, as we see from Figure �.� (details in
Appendix �.E).�is �gure plots the data points as (Xi , �) to indicate their location; we see that
the predictive variance of standard Bayes �uctuates, being small around the data points and
large elsewhere. However, it is obvious that for every density p f in our model F , the variance
is �xed independently of X, and thus p(Yn+� � Xn+� , Zn) is indeed very far from any particular
p f with f ∈ F . In contrast, for the generalized Bayesian lasso with η = �.��, the corresponding
predictive variance is almost constant; thus, at the level η = �.�� the predictive distribution
is almost ‘in-model’ (in machine learning terminology, we may say that p is ‘proper’ (Shalev-
Shwartz and Ben-David, ����), and the over�tting behavior then does not occur anymore.

�.�.� When Generalized Bayes Concentrates
Having just seen bad behavior for η = �, we now recall some results from GM. Under some
conditions, GM show that generalized Bayes, for appropriately chosen η, does concentrate at
fast rates even under misspeci�cation. We �rst recall (a very special case of) the asymptotic
behavior under misspeci�cation theorem of GM. GM bound (a) themisspeci�cation metric dη
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Figure �.�: Variance of Predictive Distribution p(Yn+� � Xn+� , Zn
) for a single run with n = ��.

in terms of (b) the information complexity.�e bound (c) holds under a simple condition on
the learning problem that was termed the central condition by Van Erven et al. (����). Before
presenting the theorem we explain (a)–(c). As to (a), we de�ne themisspeci�cation metric dη
in terms of its square by

d�
η( f , f

′) ∶= �
η
�� − �

�
p f ,η(z)p f ′ ,η(z)dµ(z)�

which is the (��η-scaled) squared Hellinger distance between p f ,η and p f ′ ,η . Here, a density
p f ,η is de�ned as

p f ,η(z) ∶= p(z)
exp(−ηL f (z))

E[exp(−ηL f (Z))]
,

where L f = ` f − ` f ∗ is the excess loss of f . GM show that dη de�nes a metric for all η > �. If
η = �, ` is log-loss, and the model is well-speci�ed, then it is straightforward to verify that
p f ,η = p f , and so (���) ⋅ dη becomes the standard squared Hellinger distance.

As to (b), we denote by ICn ,η(Π�) the information complexity, de�ned as:

ICn ,η(Π�) ∶= E f∼Πn �
�
n

n
�
i=�

L f (Zi)� +
KL(Πn �Π�)

η ⋅ n
=

− �
ηn

log�
F

π�( f )e−η∑
n
i=� ` f (Zi)dρ( f ) −

n
�
i=�

` f ∗(Zi), (�.�)

where f denotes the predictor sampled from the posterior Πn and KL denotes KL divergence;
we suppress dependency of IC on f ∗ in the notation.�e fact that both lines above are equal
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(noticed by, among others, Zhang (����b); GM give an explicit proof) allows us to write the
information complexity in terms of a generalized Bayesian predictive density which is also
known as extended stochastic complexity (Yamanishi, ����). It also plays a central role in the
�eld of prediction with expert advice as themix-loss (Van Erven et al., ����; Cesa-Bianchi and
Lugosi, ����) and coincides with the minus log of the standard Bayesian predictive density if
η = � and ` is log-loss. It can be thought of as a complexity measure analogous to VC dimension
and Rademacher complexity.

As to (c), GM’s result holds under the central condition ((Li, ����); name due to Van Erven et al.,
����) which expresses that, for some �xed η > �, for all �xed f , the probability that the loss of f
exceeds that of the optimal f ∗ by a�η is exponentially small in a:

De�nition �.� (Central Condition, Def. � of GM). Let η > �. We say that (P, `,F) satis�es the
η-strong central condition if, for all f ∈ F : E �e−ηL f � ≤ �.

As straightforward rewriting shows, this condition holds automatically, for any η ≤ � in the
density estimation setting, if the model is correct; Van Erven et al. (����) provide some other
cases in which it holds, and show that many other conditions on ` and P that allow fast rate
convergence that have been considered before in the statistical and on-line learning literature,
such as exp-concavity (Cesa-Bianchi and Lugosi, ����), the Tsybakov and Bernstein conditions
(Bartlett, Bousquet and Mendelson, ����; Tsybakov, ����) and several others, can be viewed as
special cases of the central condition; yet they don’t discuss GLMs. Here is GM’s result:

�eorem �.� (�eorem �� from GM). Suppose that the η-strong central condition holds.�en
for any � < η < η, the metric dη satis�es

EZn∼PE f∼Πn �d
�
η( f

∗ , f )� ≤ Cη ⋅ EZn∼P �ICn ,η(Π�)�

with Cη = η�(η − η). In particular, Cη <∞ for � < η < η, and Cη = � for η = η��.

�us, we expect the posterior to concentrate at a rate dictated by E[ICn ,η] in neighborhoods
of the best (risk-minimizing, KL optimal, or even true regression function) f ∗.�e misspe-
ci�cation metric d�

η on the le� hand side is a weak metric, however, in Appendix �.B we show
that we can replace it by stronger notions such as KL-divergence, squared error or logistic
loss.�eorem �.� generalizes previous results (e.g. Zhang (����a) and Zhang (����b)) to the
misspeci�ed setting. In the well-speci�ed case, Zhang, as well as several other authors (Walker
and Hjort, ����; Martin, Mess and Walker, ����), state a result that holds for any η < � but not
η = �.�is suggests that there is an advantage to taking η slightly smaller than one even when
the model is well-speci�ed (for more details see Zhang (����a)).

To make the theorem work for GLMs under misspeci�cation, we must verify (a) that the
central condition still holds (which is in general not guaranteed) and that (b) the information
complexity is su�ciently small. As to (a), in the following section we show that the central con-
dition holds (with η usually ≠ �) for �-dimensional exponential families and high-dimensional
generalized linear models (GLMs) if the noise is misspeci�ed, as long as P has exponentially
small tails; in particular, we relate η to the variance of P. As to (b), if the model is correct (the
conditional distribution P(Y � X) has density f equal to p f with f ∈ F), where F represents
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a d-dimensional GLM, then it is known (see e.g. Zhang (����b)) that, for any prior Π� with
continuous, strictly positive density on F , the information complexity satis�es

EZn∼P �ICn ,η(Π�)� = O �
d
n
⋅ log n� , (�.�)

which leads to bounds within a log-factor of the minimax optimal rate (among all possible
estimators, Bayesian or not), which is O(d�n). While such results were only known for the
well-speci�ed case, in Proposition � below we show that, for GLMs, they continue to hold for
the misspeci�ed case.

�.� Generalized GLM Bayes
Below we �rst show that the central condition holds for natural univariate exponential families;
we then extend this result to the GLM case, and establish bounds in information complexity of
GLMs. Let the classF = {pθ ∶ θ ∈ Θ} be a univariate natural exponential family of distributions
on Z = Y , represented by their densities, indexed by natural parameter θ ∈ Θ ⊂ R (Barndor�-
Nielsen, ����).�e elements of this restricted family have probability density functions

pθ(y) ∶= exp(θy − F(θ) + r(y)), (�.�)

for log-normalizer F and carrier measure r. We denote the corresponding distribution as Pθ .
In the �rst part of the theorem below we assume that Θ is restricted to an arbitrary closed
interval [θ , θ] with θ < θ that resides in the interior of the natural parameter space Θ =
{θ ∶ F(θ) <∞}. Such Θ allow for a simpli�ed analysis because within Θ the log-normalizer
F as well as all its derivatives are uniformly bounded from above and below; see (�.�) in
Appendix �.B. As is well-known (see e.g. Barndor�-Nielsen (����)), exponential families can
equivalently be parameterized in terms of the mean-value parameterization: there exists a �-to-�
strictly increasing function µ ∶ Θ → R such that EY∼Pθ [Y] = µ(θ). As is also well-known,
the density p f ∗ ≡ pθ∗ within F minimizing KL divergence to the true distribution P satis�es
µ(θ∗) = EY∼P[Y], whenever the latter quantity is contained in µ(Θ) (Grünwald, ����). In
words, the best approximation to P in F in terms of KL divergence has the same mean of Y as
P.

�eorem �.�. Consider a learning problem (P, `,F) with `θ(y) = − log pθ(y) the log loss and
F = {pθ ∶ θ ∈ Θ} a univariate exponential family as above.
(�). Suppose thatΘ = [θ , θ] is compact as above and that θ∗ = argminθ∈Θ D(P�Pθ) lies inΘ. Let
σ � > � be the true variance EY∼P(Y −E[Y])� and let (σ∗)� be the variance EY∼Pθ∗ (Y −E[Y])�
according to θ∗.�en

(i) for all η > (σ∗)��σ �, the η-central condition does not hold.

(ii) Suppose there exists η○ > � such that C ∶= EP[exp(η○�Y �)] <∞.�en there exists η > �,
depending only on η○, C , θ and θ such that the η-central condition holds. Moreover,

(iii), for all δ > �, there is an ε > � such that, for all η ≤ (σ∗)��σ �−δ, the η-central condition
holds relative to the restricted model Fε = {pθ ∶ θ ∈ [θ∗ − ε, θ∗ + ε]}.
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(�). Suppose that P is Gaussian with variance σ � > � and thatF indexes a full Gaussian location
family.�en the η-central condition holds i� η ≤ (σ∗)��σ �.

We provide (iii) just to give insight — ‘locally’, i.e. in restricted models that are small neighbor-
hoods around the best-approximating θ∗, the smallest η for which the central condition holds
is determined by a ratio of variances. �e �nal part shows that for the Gaussian family, the
same holds not just locally but globally (note that we do not make the compactness assumption
on Θ there); we warn the reader though that the standard posterior (η = �) based on a model
with �xed variance σ∗ is quite di�erent from the generalized posterior with η = (σ∗)��σ � and
a model with variance σ � (Grünwald and Van Ommen, ����). Finally, while in practical cases
we o�en �nd η < � (suggesting that Bayes may only succeed if we learn ‘slower’ than with the
standard η = �, i.e. the prior becomes more important), the result shows that we can also very
well have η > �; we give a practical example at the end of Section �.�. �eorem �.� is new and
supplements Van Erven et al.’s (����) various examples ofF which satisfy the central condition.
In the theorem we require that both tails of Y have exponentially small probability.

Central Condition: GLMs Let F be the generalized linear model (McCullagh and Nelder,
����) (GLM) indexed by parameter β ∈ B ⊂ Rd with link function g ∶ R→ R. By de�nition this
means that there exists a set X ⊂ Rd and a univariate exponential familyQ = {pθ ∶ θ ∈ Θ} on
Y of the form (�.�) such that the conditional distribution of Y given X = x is, for all possible
values of x ∈ X , a member of the familyQ, with mean-value parameter g−�(�β, x�).�en the
class F can be written as F = {pβ ∶ β ∈ B}, a set of conditional probability density functions
such that

pβ(y � x) ∶= exp�θx(β)y − F(θx(β)) + r(y)�, (�.�)

where θx(β) ∶= µ−�(g−�(�β, x�)), and µ−�, the inverse of µ de�ned above, sends mean para-
meters to natural parameters. We then have EPβ [Y � X] = g−�(�β, X�), as required.

Proposition �. Under the following three assumptions, the learning problem (P, `,F) with F
as above satis�es the η-central condition for some η > � depending only on the parameters of the
problem:

�. (Conditions on g): the inverse link function g−� has bounded derivative on the domain
B ×X , and the image of the inverse link on the same domain is a bounded interval in the
interior of the mean-value parameter space {µ ∈ R ∶ µ = EY∼q[Y] ∶ q ∈ Q} (for all
standard link functions, this can be enforced by restrictingB andX to an (arbitrarily large
but still) compact domain).

�. (Condition on ‘true’ P): for some η > � we have
supx∈XEY∼P[exp(η�Y �) � X = x] <∞.

�. (Well-speci�cation of conditionalmean): there exists β○ ∈ B such thatE[Y � X] = g−�(�β○ , X�).

A simple argument (di�erentiation with respect to β) shows that under the third condition, it
must be the case that β○ = β∗, where β∗ ∈ B is the index corresponding to the density p f ∗ ≡ pβ∗
within F that minimizes KL divergence to the true distribution P.�us, our conditions imply
that F contains a β∗ which correctly captures the conditional mean (and this will then be the
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risk minimizer); thus, as is indeed the case in Example �.�, the regression function must be
well-speci�ed but the noise can be severely misspeci�ed.

We stress that the three conditions have very di�erent statuses. �e �rst is mathematically
convenient; it can be enforced by truncating parameters and data, which is awkward but may
not lead to substantial deterioration in practice. Whether it is even really needed or not is not
clear (and may in fact depend on the chosen exponential family). �e second condition is
really necessary — as can immediately be seen from De�nition �.�, the strong central condition
cannot hold if Y has polynomial tails and for some f and x, ` f (x ,Y) increases polynomially in
Y (in Section � of their paper, GM consider weakenings of the central condition that still work
in such situations). For the third condition, however, we suspect that there are many cases in
which it does not hold yet still the strong central condition holds; so then the GM convergence
result would still be applicable under ‘full misspeci�cation’; investigating this will be the subject
of future work.

GLM Information Complexity To apply�eorem �.� to get convergence bounds for expo-
nential families and GLMs, we need to verify that the central condition holds (which we just
did) and we need to bound the information complexity, which we proceed to do now. It turns
out that the bound on ICn ,η of O((d�n) log n) of (�.�) continues to hold unchanged under
misspeci�cation, as is an immediate corollary of applying the following proposition to the
de�nition of ICn ,η given above (�.�):

Proposition �. Let (P, `,F) be a learning problem with F a GLM satisfying Conditions �–�
above.�en for all f ∈ F , EX ,Y∼P[L f ] = EX ,Y∼Pf∗ [L f ].

�is result follows almost immediately from the ‘robustness property of exponential families’
(Chapter �� of Grünwald (����)); for convenience we provide a proof in Appendix �.B.�e
result implies that any bound in ICn ,η(Π�) for a particular prior in the well-speci�ed GLM case,
in particular (�.�), immediately transfers to the same bound for the misspeci�ed case, as long
as our regularity conditions hold, allowing us to apply�eorem �.� to obtain the parametric
rate for GLMs under misspeci�cation.

�.� MCMC Sampling
Below we devise MCMC algorithms for obtaining samples from the η-generalized posterior dis-
tribution for two problems: regression and classi�cation. In the regression context we consider
one of the most commonly used sparse parameter estimation techniques, the lasso. For classi-
�cation we use the logistic regression model. In our experiments in Section �.�, we compare
the performance of generalized Bayesian lasso with Horseshoe regression (Carvalho, Polson
and Scott, ����).�e derivations of samplers are given in Appendix �.D.

�.�.� Bayesian lasso regression
Consider the regression model Y = Xβ + ε, where β ∈ Rp is the vector of parameters of
interest, Y ∈ Rn , X ∈ Rn×p , and ε ∼N(�, σ �In) is a noise vector.�e Least Absolute Shrinkage
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and Selection Operator (LASSO) of Tibshirani (����) is a regularization method used in
regression problems for shrinkage and selection of features.�e lasso estimator is de�ned as
β̂lasso ∶= argminβ �Y−Xβ���+λ�β�� , where �⋅�� , �⋅�� are l� and l� norms correspondingly. It can
be interpreted as a Bayesian posterior mode (MAP) estimate when the priors on β are given by
independent Laplace distributions. As discovered by Park andCasella (����), the same posterior
on β is also obtained by the following Gibbs sampling scheme: set η = � and denote Dτ ∶=
diag(τ� , . . . , τn). Also, let a ∶= η

� (n−�)+
p
� +α and bτ ∶= η

� (Y − Xβ)
T(Y − Xβ)+ �

� β
TDτ

−�β+γ,
where α, γ > � are hyperparameters.�en the Gibbs sampler is constructed as follows.

β ∼N �ηMτXTY , σ �Mτ� ,
σ � ∼ Inv-Gamma (a, bτ) ,

τ−�j ∼ IG�
�

λ�σ ��β�j , λ
�� ,

where IG is the inverse Gaussian distribution andMτ ∶= (ηXTX +Dτ
−�)−�. Following Park and

Casella (����), we put a Gamma prior on the shrinkage parameter λ. Now, in their paper Park
and Casella only give the scheme for η = �, but, as is straightforward to derive from their paper,
the scheme above actually gives the η-generalized posterior corresponding to the lasso prior for
general η (more details in Appendix �.D). We will use the Safe-Bayesian algorithm for choosing
the optimal η developed by Grünwald and Van Ommen (����) (see Appendix �.D.�).�e code
for Generalized- and Safe-Bayesian lasso regression can be found in the CRAN R-package
‘SafeBayes’ (De Heide, ����).

Horseshoe estimator �e Horseshoe prior is the state-of-the-art global-local shrinkage prior
for tackling high-dimensional regularization, introduced by Carvalho, Polson and Scott (����).
Unlike the Bayesian lasso, it has �at Cauchy-like tails, which allow strong signals to remain
unshrunk a posteriori. For completeness we include the horseshoe in our regression comparison,
using the implementation of Van der Pas et al. (����).

�.�.� Bayesian logistic regression

Consider the standard logistic regression model { fβ ∶ β ∈ Rp}, the data Y� , . . . ,Yn ∈ {�, �}
are independent binary random variables observed at the points X ∶= (X� , . . . , Xn) ∈ Rn×p

with

Pfβ(Yi = � � Xi) ∶= p fβ(� � Xi) ∶=
eX

T
i β

� + eXT
i β

.

�e standard Bayesian approach involves putting a Gaussian prior on the parameter β ∼
N(b, B) with mean b ∈ Rp and the covariance matrix B ∈ Rp×p . To sample from the η-
generalized posterior we modify a Pólya–Gamma latent variable scheme described in Polson,
Scott and Windle (����). We �rst introduce latent variables ω� , . . . ,ωn ∈ R, which will be
sampled from Pòlya-Gamma distribution (constructed to yield a simple Gibbs sampler for
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Bayesian logistic regression, for more details see Polson, Scott and Windle (����)). Let

Ω ∶= diag{ω� , . . . ,ωn},
κ ∶= (Y� − ���, . . . ,Yn − ���)T ,

Vω ∶= (XTΩX + B−�)−� , and
mω ∶= Vω(ηXTκ + B−�b).

�en the Gibbs sampler for η-generalized posterior is given by

ω i ∼ PG(η, XT
i β), β ∼N(mω ,Vω),

where PG is the Pòlya-Gamma distribution.

�.� Experiments
Below we present the results of experiments that compare the performance of the derived Gibbs
samplerswith their standard counterparts.More details/experiments are inAppendix �.E.

�.�.� Simulated data
Regression In our experiments we focus on prediction, and we run simulations to determine
the square-risk (expected squared error loss) of our estimate relative to the underlying distri-
bution P: E(X ,Y)∼P(Y − Xβ)�, where Xβ would be the conditional expectation, and thus the
square-risk minimizer, if β would be the true parameter (vector).

Consider the data generated as described in Example �.�. We study the performance of the
η-generalized Bayesian lasso with η chosen by the Safe-Bayesian algorithm (we call it the
Safe-Bayesian lasso) in comparison with two popular estimation procedures for this context:
the Bayesian lasso (which corresponds to η=�), and the Horseshoe method. In Figure �.� the
simulated square-risk is plotted as a function of the sample size for all threemethods.We average
over enough samples so that the graph appears to be smooth (�� iterations for SafeBayes, ����
for the two standard Bayesian methods). It shows that both the standard Bayesian lasso and the
Horseshoe perform signi�cantly worse than the Safe-Bayesian lasso. Moreover we see that the
risks for the standard methods initially grows with the sample size (additional experiments not
reported here suggest that Bayes will ‘recover’ at very large n).

Classi�cation We focus on �nding coe�cients β for prediction, and our error measure
is the expected logarithmic loss, which we call log-risk: E(X ,Y)∼P �− log Liβ(Y �X)�, where
Liβ(Y �X) ∶= eYXT β�(� + eX

T β). We start with an example that is very similar to the previous
one. We generate a n× pmatrix of independent standard normal random variables with p = ��.
For every feature vector Xi we sample a corresponding Zi ∼ N(�, σ �), as before, and we
misspecify the model by putting approximately half of the Zi and the corresponding Xi ,� to
zero. Next, we sample the labels Yi ∼ Binom(exp(Zi)�(� + exp(Zi)). We compare standard
Bayesian logistic regression (η = �) to a generalized version (η = �.���). In Figure �.� we plot



�.�. Experiments ���

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sample Size

R
is

k

Horseshoe
Bayesian Lasso
Safe−Bayesian Lasso

Figure �.�: Simulated squared error risk (test error) with respect to P as function of sample size for the wrong-model
experiments of Section �.�.� using the posterior predictive distribution of the standard Bayesian lasso (green, solid), the
Safe-Bayesian lasso (red, dotted), both with standard improper priors, and the Horseshoe (blue, dashed); and ��� Fourier
basis functions.

the log-risk as a function of the sample size. As in the regression case, the risk for standard
Bayesian logistic regression (η = �) is substantially worse than the one for generalized Bayes
(η = �.���). Even for generalized Bayes, the risk initially goes up a little bit, the reason being
that the prior is too good: it is strongly concentrated around the risk-optimal β∗ = �. �us,
the �rst prediction made by the Bayesian predictive distribution coincides with the optimal
(β = �) prediction, and in the beginning, due to noise in the data, predictions will �rst get
slightly worse.�is is a phenomenon that also applies to standard Bayes with well-speci�ed
models; see for example Grünwald and Halpern, ����, Example �.�.

Even for the well-speci�ed case it can be bene�cial to use η ≠ �. It is easy to see that the max-
imum a posteriori estimate for generalized logistic regression corresponds to the ridge logistic
regressionmethod (which penalizes large �β��) with the shrinkage parameter λ = η−�. However,
when the the prior mean is zero but the risk minimizer β∗ is far from zero, penalizing large
norms of β is ine�cient, and we �nd that the best performance is achieved with η > �.

�.�.� Real World Data
We present two examples with real world data to demonstrate that bad behavior under mis-
speci�cation also occurs in practice. For these data sets, we compare the performance of
Safe-Bayesian lasso and standard Bayesian lasso. As the �rst example we consider the data of
the daily maximum temperatures at Seattle Airport as a function of the time and date (source:
R-package weatherData, also available at www.wunderground.com). A second example is
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Figure �.�: Simulated logistic risk as function of sample size for wrong-model experiments of Section �.�.� using posterior
predictive distribution of standard Bayesian logistic regression (green, solid), and generalized Bayes (η = �.���, red, dotted)
with �� noise dimensions.

Horse-shoe Bayesian lasso SafeBayes lasso
MSE ((○C)�) �.�� �.�� �.��
MSE ((ppm)�) ���� ���� ����

Table �.�: Mean square errors for predictions on the Seattle and London data sets of Section �.�.�.

London air pollution data (source: R-package Openair, for more details see Carslaw and Rop-
kins (����) and Carslaw (����)). Here the quantity of interest is the concentration of nitrogen
dioxide (NO�), again as a function of time and date. In both settings we divide the data into
a training set and a test set and focus on the prediction error. In both examples, SafeBayes
picks an η̂ strictly smaller than one. Also, for both data sets the Safe-Bayesian lasso clearly
outperforms the standard Bayesian lasso and the Horseshoe in terms of mean square prediction
error, as seen from Table �.� (details in Appendix �.E).

�.� Future work
We provided both theoretical and empirical evidence that η-generalized Bayes can signi�cantly
outperform standard Bayes for GLMs. However, the empirical examples are only given for
Bayesian lasso linear regression and logistic regression. In future work we would like to devise
generalized posterior samplers for other GLMs and speed up the sampler for generalized
Bayesian logistic regression, since our current implementation is slow and (unlike our linear
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regression implementation) cannot deal with high-dimensional (and thus, real-world) data
yet. Furthermore, the Safe-Bayesian algorithm of Grünwald, ����, used to learn η, enjoys good
theoretical performance but is computationally very slow. Since learning η for which the central
condition holds (preferably the largest possible value, since small values of η mean slower
learning) is essential for using generalized Bayes in practice, there is a necessity for speeding
up SafeBayes or �nding an alternative. A potential solution might be using cross-validation
to learn η, but its theoretical properties (e.g. satisfying the central condition) are yet to be
established.
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�.A Proofs

�.A.� Proof of�eorem �.�
�e second part of the theorem about the Gaussian location family is a straightforward calcula-
tion, which we omit. As to the �rst part (Part (i)—(iii)), we will repeatedly use the following fact:
for every Θ that is a nonempty compact subset of the interior of Θ, in particular for Θ = [θ , θ]
with θ < θ both in the interior of Θ, we have:

−∞ < inf
θ∈Θ

F(θ) < sup
θ∈Θ

F(θ) <∞

−∞ < inf
θ∈Θ

F′(θ) < sup
θ∈Θ

F′(θ) <∞

� < inf
θ∈Θ

F′′(θ) < sup
θ∈Θ

F′′(θ) <∞.

(�.�)

Now, let θ , θ∗ ∈ Θ. We can write

E �e−η(`θ−`θ∗)� = EY∼P ��
pθ(Y)
pθ∗(Y)

�
η

� = exp (−G(η(θ − θ∗)) + ηF(θ∗) − ηF(θ)) . (�.�)

where G(λ) = − logEY∼P [exp(λY)]. If this quantity is −∞ for all η > �, then (i) holds trivially.
If not, then (i) is implied by the following statement:

lim sup
ε→�

�η ∶ for all θ ∈ [θ∗ − ε, θ∗ + ε], E[exp(ηLpθ )] ≤ �� =
(σ∗)�

σ � . (�.�)

Clearly, this statement also implies (iii). To prove (i), (ii) and (iii), it is thus su�cient to prove
(ii) and (�.�). We prove both by a second-order Taylor expansion (around θ∗) of the right-hand
side of (�.�).

Preliminary Facts. By our assumption there is a η○ > � such that E[exp(η○�Y �)] = C <∞. Since
θ∗ ∈ Θ = [θ , θ] we must have for every � < η < η○�(��θ − θ�), every θ ∈ Θ,

E[exp(�η(θ − θ∗) ⋅ Y)] ≤ E[exp(�η�θ − θ∗� ⋅ �Y �)]
≤ E[exp(η○(�θ − θ∗���θ − θ�) ⋅ �Y �)]
≤ C
<∞. (�.��)

�e �rst derivative of the right of (�.�) is:

ηE �(Y − F′(θ)) exp�η�(θ − θ∗)Y + F(θ∗) − F(θ)��� . (�.��)

�e second derivative is:

E ��−ηF′′(θ) + η�(Y − F′(θ))�� ⋅ exp�η�(θ − θ∗)Y + F(θ∗) − F(θ)��� . (�.��)
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We will also use the standard result (Grünwald, ����; Barndor�-Nielsen, ����) that, since we
assume θ∗ ∈ Θ,

E[Y] = EY∼Pθ∗ [Y] = µ(θ
∗); for all θ ∈ Θ: F′(θ) = µ(θ); F′′(θ) = EY∼Pθ (Y − E(Y))

� ,
(�.��)

the latter two following because F is the cumulant generating function.

Part (ii).We use an exact second-order Taylor expansion via the Lagrange form of the remainder.
We already showed there exist η′ > � such that, for all � < η ≤ η′, all θ ∈ Θ, E[exp(�η(θ −
θ∗)Y)] <∞. Fix any such η. For some θ′ ∈ {(� − α)θ + αθ∗∶ α ∈ [�, �]}, the (exact) expansion
is:

E �e−η(`θ−`θ∗)� = � + η(θ − θ∗)E [Y − F′(θ∗)] − η
�
(θ − θ∗)�F′′(θ′) . . .

. . . ⋅ E �exp�η�(θ′ − θ∗)Y + F(θ∗) − F(θ′)��� . . .

. . . + η�

�
(θ − θ∗)�E �(Y − F′(θ′))� ⋅ exp�η�(θ′ − θ∗)Y + F(θ∗) − F(θ′)��� .

De�ning ∆ = θ′ − θ, and since F′(θ∗) = E[Y] (see (�.��)), we see that the central condition is
equivalent to the inequality:

ηE �(Y − F′(θ′))�eη∆Y� ≤ F′′(θ′)E �eη∆Y� .

From Cauchy-Schwarz, to show that the η-central condition holds it is su�cient to show
that

η �(Y − F′(θ′))��L�(P)
�eη∆Y�L�(P)

≤ F′′(θ′)E �eη∆Y� ,

which is equivalent to

η ≤
F′′(θ′)E �eη∆Y�

�
E [(Y − F′(θ′))�]E [e�η∆Y]

. (�.��)

We proceed to lower bound the RHS by lower bounding each of the terms in the numerator and
upper bounding each of the terms in the denominator. We begin with the numerator. F′(θ) is
bounded by (�.�). Next, by Jensen’s inequality,

E [exp(η∆Y)] ≥ exp(E[η∆ ⋅ Y]) ≥ exp(−η○�θ − θ��µ(θ∗)�)

is lower bounded by a positive constant. It remains to upper bound the denominator. Note that
the second factor is upper bounded by the constant C in (�.��).�e �rst factor is bounded by
a �xed multiple of E�Y �� + E[F′(θ)�].�e second term is bounded by (�.�), so it remains to
bound the �rst term. By assumption E[exp(η○�Y �)] ≤ C and this implies that E�Y �� ≤ a� + C
for any a ≥ e such that a� ≤ exp(η○a); such an a clearly exists and only depends on η○.

We have thus shown that the RHS of (�.��) is upper bounded by a quantity that only depends
on C , η○ and the values of the extrema in (�.�), which is what we had to show.

Proof of (iii). We now use the asymptotic form of Taylor’s theorem. Fix any η > �, and pick any
θ close enough to θ∗ so that (�.�) is �nite for all θ′ in between θ and θ∗; such a θ ≠ θ∗ must
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exist since for any δ > �, if �θ − θ∗� ≤ δ, then by assumption (�.�) must be �nite for all η ≤ η○�δ.
Evaluating the �rst and second derivative (�.��) and (�.��) at θ = θ∗ gives:

E �e−η(`θ−`θ∗)� = � + η(θ − θ∗)E [Y − F′(θ∗)] . . .

. . . − �η
�
(θ − θ∗)�F′′(θ∗) − η�

�
(θ − θ∗)� ⋅ E �(Y − F′(θ∗))��� + h(θ)(θ − θ∗)�

= � − η
�
(θ − θ∗)�F′′(θ∗) + η�

�
(θ − θ∗)�E �(Y − F′(θ∗))�� + h(θ)(θ − θ∗)� ,

where h(θ) is a function satisfying limθ→θ∗ h(θ) = �, where we again used (�.��), i.e. that
F′(θ∗) = E [Y]. Using further that σ � = E �(Y − F′(θ∗))�� and F′′(θ∗) = (σ∗)�, we �nd that
E �e−η(`θ−`θ∗)� ≤ � i�

−η
�
(θ − θ∗)�(σ∗)� + η�

�
(θ − θ∗)�σ � + h(θ)(θ − θ∗)� ≤ �.

It follows that for all δ > �, there is an ε > � such that for all θ ∈ [θ∗− ε, θ∗+ ε], all η > �,
η�

�
σ � ≤ η

�
(σ∗)� − δ⇒ E �e−η(`θ−`θ∗)� ≤ � (�.��)

η�

�
σ � ≥ η

�
(σ∗)� + δ⇒ E �e−η(`θ−`θ∗)� ≥ � (�.��)

�e condition in (�.��) is implied if:

� < η ≤ (σ
∗)�

σ � − �δ
ησ � .

Setting C = �σ ��(σ∗)� and ηδ = (� − Cδ)(σ∗)��σ � we �nd that for any δ < (σ∗)��(�σ �),
we have � − Cδ ≥ ��� and thus ηδ > � so that in particular the premise in (�.��) is satis�ed
for ηδ . �us, for all small enough δ, both the premise and the conclusion in (�.��) hold for
ηδ > �; since limδ↓� ηδ = (σ∗)��σ �, it follows that there is an increasing sequence η(�) , η(�) , . . .
converging to (σ∗)��σ � such that for each η( j), there is ε( j) > � such that for all θ ∈ [θ∗ −
ε( j) , θ∗ + ε( j)], E �e−η( j)(`θ−`θ∗)� ≤ �. It follows that the lim sup in (�.�) is at least (σ∗)��σ �. A
similar argument (details omitted) using (�.��) shows that the lim sup is at most this value; the
result follows.

�.A.� Proof of Proposition �
For arbitrary conditional densities p′(y � x) with corresponding distribution P′ � X for
which

EP′[Y �X] = g−�(�β, X), (�.��)
and densities p f ∗ = pβ∗ and pβ with β∗ , β ∈ B, we can write:

EX∼PEY∼P′�X �log
pβ∗(Y � X)
pβ(Y �X)

� = EE �(θX(β∗) − θX(β))Y − log
F(θX(β∗))
F(θX(β))

� X�

= EX∼P �(θX(β∗) − θX(β))g−�(�β, X�d� . . .
. . . − log F(θX(β∗)) + log F(θX(β)) � X] ,
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where the latter equation follows by (�.��).�e result now follows because (�.��) both holds for
the ‘true’ P and for Pf ∗ .

�.A.� Proof of Proposition �
�e fact that under the three imposed conditions the η-central condition holds for some η > �
is a simple consequence of �eorem �.�: Condition � implies that there is some compact Θ
such that for all x ∈ X , β ∈ B, θx(β) ∈ Θ. Condition � then ensures that θx(β) lies in the
interior of this Θ. And Condition � implies that η in�eorem �.� can be chosen uniformly for
all x ∈ X .

�.B Excess risk and KL divergence instead of generalized
Hellinger distance

�e misspeci�cation metric/generalized Hellinger distance dη appearing in �eorem �.� is
rather weak (it is ‘easy’ for two distributions to be close) and lacks a clear interpretation for
general, non-logarithmic loss functions. Motivated by these facts, GM study in depth under
what additional conditions the (square of this) metric can be replaced by a stronger and more
readily interpretable divergencemeasure.�ey come upwith a new, surprisingly weak condition,
the witness condition, under which dη can be replaced by the excess risk EP[L f ], which is the
additional risk incurred by f as compared to the optimal f ∗. For example, with the squared
error loss, this is the additional mean square error of f compared to f ∗; and with (conditional)
log-loss, it is the well-known generalized KL divergence EX ,Y∼P[log

p f∗(Y �X)
p f (Y �X)

], coinciding with
standard KL divergence if themodel is correctly speci�ed. Bounding the excess risk is a standard
goal in statistical learning theory; see for example (Bartlett, Bousquet and Mendelson, ����;
Van Erven et al., ����).

�e following de�nition appears (with substantial explanation including the reason for its
name) as De�nition �� in GM:

De�nition �.� (Empirical Witness of Badness). We say that (P, `,F) satis�es the (u, c)-
empirical witness of badness condition (or witness condition) for constants u > � and c ∈ (�, �]
if for all f ∈ F

E �(` f − ` f ∗) ⋅ {⋅}` f − ` f ∗ ≤ u� ≥ cE[` f − ` f ∗].

More generally, for a function τ ∶ R+ → [�,∞) and constant c ∈ (�, �) we say that (P, `,F)
satis�es the (τ, c)-witness condition if for all f ∈ F , E[` f − ` f ∗] <∞ and

E �(` f − ` f ∗) ⋅ {⋅}` f − ` f ∗ ≤ τ(E[` f − ` f ∗])� ≥ cE[` f − ` f ∗].

It turns out that the (τ, c)-witness condition holds in many practical situations, including our
GLM-under-misspeci�cation setting. Before elaborating on this, let us review (a special case
of) �eorem �� of GM, which is the analogue of �eorem �.� but with the misspeci�cation
metric replaced by the excess risk.
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First, let, for arbitrary � < η < η, cu ∶= �
c
ηu+�
�− η

η
. Note that for large u, cu is approximately linear in

u�c.

�eorem �.�. [Specialization of�eorem �� of GM] Consider a learning problem (P, `,F).
Suppose that the η-strong central condition holds. If the (u, c)-witness condition holds, then for
any η ∈ (�, η),

EZn∼PE f∼Πn �E[L f ]� ≤ cu ⋅ EZn∼P �ICn ,η (Π�)� , (�.��)

with cu as above. If instead the (τ, c)-witness condition holds for some nonincreasing function τ
as above, then for any λ > �,

EZn∼PE f∼Πn �E[L f ]� ≤ λ + cτ(λ) ⋅ EZn∼P �ICn ,η (Π�)� .

�e actual theorem given by GM generalizes this to an in-probability statement for general
(not just generalized Bayesian) learning methods. If the (u, c)-witness condition holds, then,
as is obvious from (�.��) and�eorem �.�, the same rates can be obtained for the excess risk
as for the squared misspeci�cation metric. For the (τ, c)-witness condition things are a bit
more complicated; the following lemma (Lemma �� of GM) says that, under an exponential tail
condition, (τ, c)-witness holds for a su�ciently ‘nice’ function τ, for which we loose at most a
logarithmic factor:

Lemma �. De�ne Mκ ∶= sup f ∈F E �eκL f � and assume that the excess loss L f has a uniformly
exponential upper tail, i.e. Mκ <∞.�en, for themap τ ∶ x � �∨ κ−�log �Mκ

κx = O(�∨ log(��x)),
the (τ, c)-witness condition holds with c = ���.

As an immediate consequence of this lemma, GM’s theorem above gives that for any η ∈ (�, η),
(using λ = ��n), there is Cη <∞ such that

EZn∼PE f∼Πn �E[L f ]� ≤
�
n
+ Cη ⋅ (log n) ⋅ EZn∼P �ICη ,n � f ∗ �Π��� , (�.��)

so our excess risk bound is only a log factor worse than the bound that can be obtained for the
squared misspeci�cation metric in�eorem �.�. We now apply this to the misspeci�ed GLM
setting:

Generalized Linear Models andWitness Recall that the central condition holds for general-
ized linear models under the three assumptions made in Proposition �. Let `β ∶= `β(X ,Y) =
− log pβ(Y � X) be the loss of action β ∈ B on random outcome (X ,Y) ∼ P, and let β∗ denote
the risk minimizer over B.�e �rst two assumptions taken together imply, via (�.�), that there
is a κ > � such that

sup
β∈B

EX ,Y∼P �eκ(`β−`β∗)� ≤ sup
β∈B ,x∈X

EY∼P�X=x �eκ(`β−`β∗)�

= sup
β∈B ,x∈X

�
Fθx(β)

Fθx(β∗)
�
κ

⋅ EY∼P�X=x �eκ�Y �� <∞.
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�e conditions of Lemma � are thus satis�ed, and so the (τ, c)-witness condition holds for the
τ and c in that lemma. From (�.��) we now see that we get an O((log n)��n) bound on the
expected excess risk, which is equal to the parametric (minimax) rate up to a (log n)� factor.
�us, fast learning rates in terms of excess risks and KL divergence under misspeci�cation with
GLMs are possible under the conditions of Proposition �.

�.C Learning rate > � for misspeci�ed models
In what follows we give an example of a misspeci�ed setting, where the best performance is
achieved with the learning rate η > �. Consider a model {Pβ , β ∈ [�.�, �.�]}, where Pβ is a
Bernoulli distribution with Pβ(Y = �) = β. Let the data Y� , . . . ,Yn be sampled i.i.d. from P�, i.e.
Yi = � for all i = �, . . . , n. In this case the log-likelihood function is given by

log p(Y� , . . . ,Yn � β) = n log(� − β).

Observe that in this setting β� = �.�. Now assume that the model is correct and data Y ′� , . . . ,Y ′n
is sampled i.i.d. from Pβ with β = �.�.�en the log-likelihood is

log p(Y ′� , . . . ,Y ′n � β = �.�) ≈ �.�n log �.�+�.�n log �.�� n log �.� = log p(Y� , . . . ,Yn � β = �.�).

�us, the data are more informative about the best distribution than they would be if the model
were correct.�erefore, we can a�ord to learn ‘faster’: let the data be more important and the
(regularizing) prior be less important.�is is realized by taking η >> �

�.D MCMC sampling

�.D.� �e η-generalized Bayesian lasso
Here, following Park and Casella (����) we consider a slightly more general version of the
regression problem:

Y = µ + Xβ + ε,
where µ ∈ Rn is the overall mean, β ∈ Rp is the vector of parameters of interest, y ∈ Rn , X ∈ Rn×p ,
and ε ∼ N(�, σ �In) is a noise vector. For a given shrinkage parameter λ > � the Bayesian lasso
of Park and Casella (����) can be represented as follows.

Y �µ, X , β, σ � ∼ N(µ + Xβ, σ �In) , (�.��)
β�τ�� , . . . , τ�p , σ � ∼ N(�, σ �Dτ), Dτ = diag(τ�� , . . . , τ�p) ,

τ�� , . . . , τ
�
p ∼

p

�
j=�

λ�

�
e−λ

�τ�j ��dτ�j , τ�� , . . . , τ
�
p > � ,

σ � ∼ π(σ �) dσ � .

In this model formulation the µ on which the outcome variables Y depend, is the overall mean,
from which Xβ are deviations. �e parameter µ can be given a �at prior and subsequently
integrated out, as we do in the coming sections.
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We will use the typical inverse gamma prior distribution on σ �, i.e. for σ � > �

π(σ �) = γα

Γ(α)
σ−�α−�e−γ�σ

�
,

where α, γ > � are hyperparameters. With the hierarchy of (�.��) the joint density for the
posterior with the likelihood to the power η becomes

( f (Y �µ, β, σ �))η π(σ �) π(µ)
p

�
j=�

π(β j �τ�j , σ �) π(τ�j )

= � �
(�πσ �)n��

e
�

�σ�
(Y−µ�n−Xβ)T(Y−µ�n−Xβ)�

η

. . .

. . .
γα

Γ(α)
σ−�α−�e−

γ
σ�

p

�
j=�

�
(�σ �τ�j )���

e
−

�
�σ� τ�j

β�
j λ�

�
e−λ

�τ�j �� . (�.��)

Let Ỹ be Y − Y . If we integrate out µ, the joint density marginal over µ is proportional to

σ−η(n−�) e−
η

�σ�
(Ỹ−Xβ)T(Ỹ−Xβ) σ−�α−� e−

γ
σ�

p

�
j=�

�
(σ �τ�j )���

e
−

�
�σ� τ�j

β�
j
e−λ

�τ�j �� . (�.��)

First, observe that the full conditional for β is multivariate normal: the exponent terms involving
β in (�.��) are

− η
�σ � (Ỹ − Xβ)

T(Ỹ − Xβ) − �
�σ � β

TDτ
−�β

= − �
�σ � �(β

T(ηXTX + Dτ
−�)β − �ηỸXβ + ηỸ T Ỹ)� . (�.��)

If we now write Mτ = (ηXTX + Dτ
−�)−� and complete the square, we arrive at

− �
�σ � �(β − ηMτXTỸ)TM−�τ (β − ηMτXTỸ) + Ỹ T(ηIn − η�X−�MτXT)Ỹ� .

Accordingly we can see that β is conditionally multivariate normal with mean ηMτXTỸ and
variance σ �Mτ .

�e terms in (�.��) that involve σ � are:
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(σ �){−η(n−�)��−p��−α−�} exp� − η
�σ � (Ỹ − Xβ)

T(Ỹ − Xβ) − �
�σ � β

TDτ
−�β − γ

σ � �.

We can conclude that σ � is conditionally inverse gamma with shape parameter

η
n − �
�
+ p
�
+ α and scale parameter

η
�
(Ỹ − Xβ)T(Ỹ − Xβ) + βTDτ

−�β�� + γ.

Since τ�j is not involved in the likelihood, we need not modify the implementation of it and
follow Park and Casella (����):

�
τ�j
∼ IG�

�
λ�σ ��β�j , λ

�� .

Summarizing, we can implement a Gibbs sampler with the following distributions:

β ∼ N �η(ηXTX + Dτ
−�)−�XTỸ , σ �(ηXTX + Dτ

−�)−�� , (�.��)

σ � ∼ Inv-Gamma�η
�
(n − �) + p�� + α, η

�
(Ỹ − Xβ)T(Ỹ − Xβ) + βTDτ

−�β�� + γ� , (�.��)

�
τ�j
∼ IG�

�
λ�σ ��β�j , λ

�� . (�.��)

�ere are several ways to deal with the shrinkage parameter λ. We follow the hierarchical
Bayesian approach and place a hyperprior on the parameter. In our implementation we provide
three ways to do so: a point mass (resulting in a �xed λ), a gamma prior on λ� following Park
and Casella (����) and a beta prior following De los Campos et al. (����), details about the
implementation of the latter two priors can be found in those papers respectively.

�.D.� �e η-generalized Bayesian logistic regression
We follow the construction of the Pólya–Gamma latent variable scheme for constructing a
Bayesian estimator in the logistic regression context described in Polson, Scott and Windle,
����.

First, for b > � consider the density function of a Pólya-Gamma randomvariable PG(b, �)

p(x � b, �) = �b−�

Γ(b)

∞

�
n=�
(−�)n Γ(n + b)

Γ(n + �)
(�n + b)√

�πx�
e−

(�n+b)�
�x .

�e general class PG(b, c) (b, c > �) is de�ned through an exponential tilting of the PG(b, �)
and has the density function

p(x � b, c) = e− c� x
� p(x�b, �)

E [e]−
c�ω
�

,

where ω ∼ PG(b, �).
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To derive our Gibbs sampler we use the following result from Polson, Scott and Windle,
����.

�eorem �.D.�. Let pb ,�(ω) denote the density of PG(b, �).�en for all a ∈ R

(eψ)a

(� + eψ)b
= �−b eκψ �

∞

�
e−ωψ

�
��pb ,�(ω)dω,

where κ = a − b��.

According to�eorem �.D.� the likelihood contribution of the observation i taken to the power
η can be written as

Li ,η(β) =
�����
(eX

T
i β)

yi

� + eXT
i β

�����

η

∝ eηκ i X
T
i β �

∞

�
e−ω i

(XTi β)�
� p(ω i � η, �),

where κ i ∶= yi − ��� and p(ω i � η, �) is the density function of PG(η, �).

Let

X ∶= (X� , . . . , Xn)T , Y ∶= (Y� , . . . ,Yn)T , κ ∶= (κ� , . . . , κn)T ,
ω ∶= (ω� , . . . ,ωn)T , Ω ∶= diag(ω� , . . . ,ωn).

Also, denote the density of the prior on β by π(β).�en the conditional posterior of β given ω
is

p(β �ω,Y)∝ π(β)
n
�
i=�

Li ,η(β �ω i) = π(β)
n
�
i=�

eηκ i X
T
i β−ω i

(XTi β)�
� ∝ π(β)e−

�
� (z−Xβ)TΩ(z−Xβ) ,

where z ∶= η( κ�ω�
, . . . , κn

ωn
). Observe that the likelihood part is conditionally Gaussian in β.

Since the prior on β is Gaussian, a simple linear-model calculation leads to the following
Gibbs sampler. To sample from the the η-generalized posterior one has to iterate these two
steps

ω i � β ∼PG(η, XT
i β), (�.��)

β �Y ,ω ∼N(mω ,Vω), (�.��)

where

Vω ∶=(XTΩX + B−�)−� ,
mω ∶=Vω(ηXTκ + B−�b).

To sample from the Pólya-Gamma distribution PG(b, c) we adopt a method from (Windle,
Polson and Scott, ����), which is based on the following representation result. According
to Polson, Scott and Windle, ���� a random variable ω ∼ PG(b, c) admits the following
representation

ω d=
∞

�
n=�

gn
dn

,
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where gn ∼ Ga(b, �) are independent Gamma distributed random variables, and

dn ∶= �π�(n + �
�
)� + �c� .

�erefore, we approximate the PG random variable by a truncated sum of weighted Gamma
random variables. (Windle, Polson and Scott, ����) shows that the approximation method per-
forms well with the truncation level N = ���. Furthermore, we performed our own comparison
of the sampler with the STAN implementation for Bayesian logistic regression, which showed
no di�erence between the methods (for η = �).

�.D.� �e Safe-Bayesian Algorithms
�e version of the Safe-Bayesian algorithm we are using for the experiments is called R-log-
SafeBayes, more details and other versions can be found in Grünwald and Van Ommen (����).
�e η̂ is chosen from a grid of learning rates η that minimizes the cumulative Posterior-Expected
Posterior-Randomized log-loss:

n
�
i=�

Eβ ,σ �∼Π�z i−� ,η �− log f (Yi �Xi , β, σ �)� .

Minimizing this comes down to minimizing

n−�
�
i=�

��
�����
�
�
log �πσ �

i ,η +
�
�
(Yi+� − Xi+�β i ,η)�

σ �
i ,η

�����
.

�e loss between the brackets is averaged over many draws of (β i ,η , σ �
i ,η) from the posterior,

where β i ,η (or σ �
i ,η) denotes one random draw from the conditional η-generalized posterior

based on data points zi . For the sake of completeness we present the algorithm below.

Algorithm ��e R-Safe-Bayesian algorithm
�: Input: data z� , . . . zn , modelM = { f (⋅�θ)�θ ∈ Θ}, prior Π on Θ, step-size K���� , max. exponent K��� , loss

function `θ(z)
�: Sn ∶= {�, �−KSTEP , �−�KSTEP , �−�KSTEP , . . . , �−KMAX , }
�: for all η ∈ Sn do
�: sη ∶= �
�: for i = � . . . n do
�: Determine generalized posterior Π(⋅�zi−� , η) of Bayes with learning rate η.
�: Calculate posterior-expected posterior-randomized loss of predicting actual next outcome:

r ∶= `Π�z i−� ,η(zi) = Eθ∼Π�z i−� ,η [`θ(zi)] (�.��)

�: sη ∶= sη + r
�: end for
��: end for
��: Ouput: Learning rate η̂
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Figure �.�: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, η = �.�) with n = ���, p = ���.

�.E Details for the experiments and �gures
Below we present the results of additional simulation experiments for Section �.�.�
(Appendix �.E.�) and the description of experiments with real-world data (Appendix �.E.�).
We also give details for Figure �.� in Appendix �.E.�.

�.E.� Additional Figures for Section �.�.�
Consider the regression context described in Section �.�.�. Here, we explore di�erent choices of
the number of Fourier basis functions, showing that regardless of the choice Safe-Baysian lasso
outperforms its standard counterpart. In Figures �.� and �.� we see conditional expectations
E [Y � X] according to the posteriors of the standard Bayesian lasso (blue) and the Safe-Bayesian
lasso (red, η̂ = �.�) for the wrong-model experiment described in Section �.�.�, with ��� data
points. We take ��� and �� Fourier basis functions respectively.

Nowwe consider logistic regression setting and show that even for somewell-speci�ed problems
it is bene�cial to choose η ≠ �. In Figure �.� we see a comparison of the log-risk for η = � and
η = � in the well-speci�ed logistic regression case (described in Section �.�.�). Here p = � and
β = �.

�.E.� Real-world data
Seattle Weather Data �e R-package weatherData (Narasimhan, ����) loads weather data
available online from www.wunderground.com. Besides data from many thousands of per-
sonal weather stations and government agencies, the website provides access to data from
Automated Surface Observation Systems (ASOS) stations located at airports in the US, owned
and maintained by the Federal Aviation Administration. Among them is a weather station at
Seattle Tacoma International Airport, Washington (WMO ID �����). From this station we
collected the data for this experiment.
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Figure �.�: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, η = �.�) with n = ���, p = ��.
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Figure �.�: Simulated logistic risk as a function of the sample size for the correct-model experiments described in Section
�.�.� according to the posterior predictive distribution of standard Bayesian logistic regression (η = �), and generalized
Bayes (η = �).
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�e training data are the maximum temperatures for each day of the year ���� at Seattle
airport. We divided the data randomly in a training set (��� measurements) and a test set
(��measurements). First, we sampled the posterior of the standard Bayesian lasso with a ���-
dimensional Fourier basis and standard improper priors on the training set, and we did the
same for the Horseshoe. Next, we sampled the generalized posterior with the learning rate η̂
learned by the Safe-Bayesian algorithm, with the same model and priors on the same training
set. �e grid of η’s we used was �, �.�, �.�, �.�, �.�, �.�. We compare the performance of the
standard Bayesian lasso and Horseshoe and the Safe-Bayesian versions of the lasso (SB) in terms
of mean square error. In all experiments performed with di�erent partitions, priors and number
of iterations, SafeBayes never picked η̂ = �. We averaged over �� runs. Moreover, whichever
learning rate was chosen by SafeBayes, it always outperformed standard Bayes (with η = �) in
an unchanged set-up. Experiments with di�erent priors for λ yielded similar results.

London Air Pollution Data As training set we use the following data. We start with the �rst
four weeks of the year ����, starting at Monday January � at midnight. We have a measurement
for (almost) every hour until Sunday February �rd, ��.��. We also have data for the �rst four
weeks of ����, starting at Monday January � at midnight, until Sunday February �nd, ��.��.
For each hour in the four weeks we randomly pick a data point from either ���� or ����. We
remove the missing values. We predict for the same time of year in ����: starting at Monday
January � at midnight, until Sunday February �st at ��.��. We do this with a (Safe-)Bayesian
lasso and Horseshoe with a ���-dimensional Fourier basis and standard improper priors.�e
grid of η’s we used for the Safe-Bayesian algorithm was again �, �.�, �.�, �.�, �.�, �.�. We look
at the mean square prediction errors, and average the errors over �� runs of the generalized
Bayesian lasso with the η learned by SafeBayes, and the standard Bayesian lasso and Horseshoe.
Again we �nd that SafeBayes clearly performs better than standard Bayes.

�.E.� Details for Figure �.�
Here we sampled the posteriors of the standard and generalized Bayesian lasso (η = �.��) on ��
model-wrong data points (approximately half easy points) with ��� Fourier basis functions, and
estimated the predictive variance on a grid of new data points Xnew = {−�.��,−�.��, . . . , �.��}
with the Monte Carlo estimate:

����(Ynew � Xnew, Zold) = Eθ �Zold [���(Ynew � θ)] +���� [E(Ynew � θ)] , (�.��)

where

Eθ �Zold [���(Ynew � θ)] =
�
m

m
�
k=�

σ �[k] = σ � ,

���� [E(Ynew � θ)] =���� [Xnewβ] =
�
m

m
�
k=�
�Xnewβ[k]�

�
− �Xnewβ�

�
.

Here β is the posterior mean of the parameter for the coe�cients and σ � is the posterior mean
of the variance.


