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Chapter �

Safe Testing

Abstract
We develop the theory of hypothesis testing based on the �-value, a notion of evidence that, un-
like the �-value, allows for e�ortlessly combining results from several tests. Even in the common
scenario of optional continuation, where the decision to perform a new test depends on previous
test outcomes, ‘safe’ tests based on �-values generally preserve Type-I error guarantees. Our
main result shows that �-values exist for completely general testing problems with composite
null and alternatives. �eir prime interpretation is in terms of gambling or investing, each
�-value corresponding to a particular investment. Surprisingly, optimal “GROW” �-variables,
which lead to fastest capital growth, are fully characterized by the joint information projection
(JIPr) between the set of all Bayes marginal distributions onH� andH�.�us, optimal �-values
also have an interpretation as Bayes factors, with priors given by the JIPr.We illustrate the theory
using several ‘classic’ examples including a one-sample safe t-test and the � × � contingency
table. Sharing Fisherian, Neymanian and Je�reys-Bayesian interpretations, �-values and safe
tests may provide a methodology acceptable to adherents of all three schools.

�.� Introduction and Overview
We wish to test the veracity of a null hypothesis H�, o�en in contrast with some alternative
hypothesis H�, where both H� and H� represent sets of distributions on some given sample
space. Our theory is based on �-test statistics.�ese are simply nonnegative random variables
that satisfy the inequality:

for all P ∈H�: EP[E] ≤ �. (�.�)

We refer to �-test statistics as �-variables, and to the value they take on a given sample as the
�-value, emphasizing that they are to be viewed as an alternative to, and in many cases an
improvement of, the classical �-value. Note that large �-values correspond to evidence against
the null: for given �-variable E and � ≤ α ≤ �, we de�ne the threshold test corresponding to E
with signi�cance level α, as the test that rejects H� i� E ≥ ��α. We will see, in a sense to be
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de�ned, that this test is safe under optional continuation, which for brevity we will simply call
“safe”.

Motivation �-values and standard null hypothesis testing have come under intense scrutiny
in recent years (Wasserstein, Lazar et al., ����; Benjamin et al., ����). �-variables and safe
tests o�er several advantages. Most importantly, in contrast to �-values, �-variables behave
excellently under optional continuation, the highly common practice in which the decision
to perform additional tests partly depends on the outcome of previous tests; they thus seem
particularly promising when used in meta-analysis, avoiding the issue of ‘accumulation bias’
(Ter Schure and Grünwald, ����). A second reason is their enhanced interpretability, and a
third is their �exibility: �-variables based on Fisherian, Neyman-Pearsonian and Bayes-Je�reys’
testing philosophies all can be accommodated for. �ese three types of �-variables can be
freely combined, while preserving Type I error guarantees; at the same time, they keep a clear
(monetary) interpretation even if one dismisses ‘signi�cance’ altogether, as recently advocated
by Amrhein, Greenland and McShane, ����.

Contribution Our aim is to lay out the full theory of testing based on �-variables, both
methodologically and mathematically. Methodologically, we explain the advantages that �-
variables and safe tests o�er over traditional tests, �-values and (some) Bayes factors; we
introduce the GROW criterion de�ning optimal �-variables and provide speci�c (‘simple δ-
GROW’) �-variables that are well-behaved in terms of GROW and power, and easy to use
in practice. Mathematically, we show (�eorem �.�) that, for arbitrary composite, nonconvex
H� and H�, we can construct nontrivial �-variables. In many cases, (�eorem �.� and �.�)
we can even construct �-variables that are optimal in the strong GROW sense. �-variables
have been invented independently by (at least) Levin (����) and Zhang, Glancy and Knill
(����) and have been analyzed before by Shafer et al. (����) and Shafer and Vovk (����) and
Vovk and Wang (����), who emphasize that they can also be much more easilymerged than �-
values.�ey are close cousins of test martingales (Shafer et al., ����) which themselves underlie
AV (anytime-valid) �-values (Johari, Pekelis and Walsh, ����), AV tests and AV con�dence
sequences (Balsubramani and Ramdas, ����; Howard et al., ����b; Howard et al., ����a). As
such, our methodological insights are mostly variations of existing ideas; yet, they have never
before been worked out in full.�e mathematical results�eorem �.� and�eorem �.� are new,
although a special case of�eorem �.� was shown earlier by (Zhang, Glancy and Knill, ����);
see Section �.� for more on the novelty and related work.

Contents In this introductory section, we give an overview of the main ideas: Section �.�.�
provides three interpretations of �-variables and the idea of optional continuation. In Sec-
tion �.�.�, we discuss the GROW optimality theorem, and the use of our�eorem �.� to �nd
‘good’ Bayesian and/or GROW �-variables. Section �.�.� gives a �rst, extended example.�e
remainder of the paper is structured as follows. Section �.� explains how some �-value based
tests are not merely safe under optional continuation, but also under the more well-known
optional stopping, and explains the close relation between test martingales and �-variables.
Section �.� gives our �rst main result, �eorem �.�. Section �.� gives several examples, and
Section �.� reports some preliminary experiments.�e paper ends with a section providing
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more historical context and an overview of related work in Section �.�— including a discussion
that clari�es how testing based on �-values could provide a uni�cation of Fisher’s, Neyman’s
and Je�reys’ ideas. All longer proofs are delegated to the appendices, which start with Ap-
pendix �.A providing details about (standard but tacit) assumptions and notations from the
main text.

�.�.� �e three main interpretations of �-variables
�. First Interpretation: Gambling �e �rst and foremost interpretation of �-variables is in
terms ofmoney, or, more precisely, Kelly (����) gambling. Imagine a ticket (contract, gamble,
investment) that one can buy for ��, and that, a�er realization of the data, pays E �; one may buy
several and positive fractional amounts of tickets. (�.�) says that, if the null hypothesis is true,
then one expects not to gain any money by buying such tickets: for any r ∈ R+, upon buying r
tickets one expects to end up with rE[E] ≤ r �.�erefore, if the observed value of E is large, say
��, one would have gained a lot of money a�er all, indicating that something might be wrong
about the null.

�. Second Interpretation: Conservative �-Value, Type I Error Probability Recall that a
strict �-value is a random variable P such that for all � ≤ α ≤ �, all P� ∈H�,

P�(P ≤ α) = α. (�.�)

A conservative �-value is a random variable for which (�.�) holds with ‘=’ replaced by ‘≤’.�ere
is a close connection between (small) �- and (large) �-values:

Proposition �. For any given �-variable E, de�ne �[�] ∶= ��E.�en �[�] is a conservative �-value.
As a consequence, for every �-variable E, any � ≤ α ≤ �, the corresponding threshold-based test
has Type-I error guarantee α, i.e. for all P ∈H�,

P(E ≥ ��α) ≤ α. (�.�)

Proof. (of Proposition �)Markov’s inequality gives P(E ≥ α−�) ≤ αEP[E] ≤ α.

While �-variables are thus conservative �-values, standard �-values satisfying (�.�) are by no
means �-variables; if E is an �-variable and P is a standard �-value, and they are calculated
on the same data, then we will usually observe P � ��E so E gives less evidence against the
null; Section �.�.� and Section �.� will give some idea of the ratio between ��E and P in various
practical settings.

Combining �. and �.: Optional Continuation, GROW Propositions �, � below show that
multiplying �-variables E(�) , E(�) , . . . for tests based on respective samples Y(�), Y(�) , . . . (with
eachY( j) being the vector of outcomes for the j-th test), gives rise to new �-variables, even if the
decision whether or not to perform the test resulting in E( j) was based on the value of earlier
test outcomes E( j−�) , E( j−�) , . . .. As a result (Prop. �), the Type I-Error Guarantee (�.�) remains
valid even under this ‘optional continuation’ of testing. An informal ‘proof ’ is immediate from
our gambling interpretation: if we start by investing �� in E(�) and, a�er observing E(�), reinvest
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all our new capital �E(�) into E(�), then a�er observing E(�) our new capital will obviously
be �E(�) ⋅ E(�), and so on. If, under the null, we do not expect to gain any money for any of
the individual gambles E( j), then, intuitively, we should not expect to gain any money under
whichever strategy we employ for deciding whether or not to reinvest (just as you would not
expect to gain any money in a casino irrespective of your rule for re-investing and/or stopping
and going home).

�.�ird Interpretation: Bayes Factors For convenience, from now on we write the models
H� andH� as

H� = {Pθ ∶ θ ∈ Θ�} ; H� = {Pθ ∶ θ ∈ Θ�},
where for θ ∈ Θ� ∪ Θ�, the Pθ are all probability distributions on the same sample, all have
probability densities or mass functions, denoted as pθ , and we assume the parameterization is
�-to-� (see Appendix �.A for more details).Y = (Y� , . . . ,YN), a vector of N outcomes, represents
our data. N may be a �xed sample size n but can also be a random stopping time. In the Bayes
factor approach to testing, one associates bothH j with a prior Wj , which is simply a probability
distribution on Θ j , and a Bayes marginal probability distribution PWj , with density (or mass)
function given by

pWj(Y) ∶= �Θ j
pθ(Y)dWj(θ). (�.�)

�e Bayes factor is then given as:

BF ∶=
pW�(Y)
pW�(Y)

. (�.�)

WheneverH� = {P�} is simple, i.e., a singleton, then the Bayes factor is also an �-variable, since
in that case, we must have thatW� is degenerate, putting all mass on �, and pW� = p�, and then
for all P ∈H�, i.e. for P�, we have

EP[BF] ∶= � p�(y) ⋅
pW�(y)
p�(y)

dy = �. (�.�)

For such �-variables that are really simple-H�-based Bayes factors, Proposition � reduces to the
well-known universal bound for likelihood ratios (Royall, ����). WhenH� is itself composite,
most Bayes factors BF = pW��pW� will not be �-variables any more, since for BF to be an �-
variable we require (�.�) to hold for all Pθ , θ ∈ Θ�, whereas in general it only holds for P = PW� .
Nevertheless, our�eorem �.� implies that there always exist many special combinations ofW�
andW�, for which BF = pW��pW� is an �-variable a�er all, and that optimal �-values invariably
take on a Bayesian form (though sometimes with unusual priors).

�.�.� How to �nd Good �-Values
�. (Semi-) Bayesian Approach Suppose we take a Bayesian stance regardingH� and, condi-
tioned onH�, are prepared to represent our uncertainty by prior distributionW� on Θ�.

Suppose that the set of all probability distributionsW(Θ�) that one can de�ne on Θ�, contains
a prior W○

� that minimizes the KL divergence D(PW��PW○
�
) = minW�∈W(Θ�) D(PW��PW�) to

PW� . Following Barron and Li, ����, we call P○W�
the Reverse Information Projection (RIPr) of
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PW� onP(Θ�) = {PW� ∶W� ∈W(Θ�)}. Parts � and � of our main result�eorem �.� essentially
state the following:

Corollary of �eorem �.� Let W� be any prior on Θ� and let PW○
�
be the RIPr of PW� on

P(Θ�).�en the Bayes factor �∗W�
∶= pW�(Y)�pW○

�
(Y) is an �-variable.

�e RIPr idea can be extended to the case that the minimum minW�∈W(Θ�) D(PW��PW�) is
not achieved, and the theorem provides a W�-based �-variable for that case as well. We can
thus be fully Bayesian about H�, but any prior W� on H� that we wish to adopt forces us to
adopt a corresponding prior W○

� ∈ H�. In general this may feel ‘un-Bayesian’, but one may
perhaps consider it a small price to pay for creating a Bayes factor that should be acceptable
to frequentists as well — for the test corresponding to E∗W�

will preserve Type-I error bounds
under optional continuation under all P� ∈H�, no matter the priorW� one chose. Moreover,
in the standard case that the models are nested andH� is a sub-model ofH�, it is generally
recognized that the priors onH� andH� should somehow be ‘matched’ with each other (Berger,
Pericchi and Varshavsky, ����); we may view the RIPr construction as providing just such a
matching.

�. Frequentist (GROW) Approach We return to the monetary interpretation of �-values.
�e de�nition of �-variable ensures that we expect them to stay under � (one does not gain
money) under any P ∈H�. Analogously, one would like them to be constructed such that they
can be expected to grow large as fast as possible (one gets rich, gets evidence againstH�) under
all P ∈H�. Informally, �-variables with this property are called GROW. In its simplest form, for
H� andH� that are strictly separated, the GROW (growth-rate optimal in worst-case) criterion
tells us to pick, among all �-variables relative toH�, the one that maximizes expected capital
growth rate underH� in the worst case, i.e. the �-variable E∗ that achieves

max
E∶E is an �-variable

min
P∈H�

EP [log E] (�.�)

We give �ve reasons for using the logarithm rather than any other increasing function (such
as the identity) in Section �.�.�. Brie�y, when we keep using �-variables with additional data
batches as explained in Section �.� below, then optimizing for log E ensures that our capital
grows at the fastest rate. Optimality in terms of GROWmay be viewed as an analogue of the
classical frequentist concept of power.

Part � of�eorem �.� expresses that, under regularity conditions, the GROW �-variable is once
again a Bayes factor; remarkably, it is the Bayes factor between the Bayes marginals (P∗W�

, P∗W�
)

that form the joint information projection (JIPr), i.e. that are, among all Bayesmarginals indexed
by W(Θ�) and W ′� , the closest in KL divergence (Figure �.�). By joint convexity of the KL
divergence (Van Erven andHarremoës, ����), �nding the JIPr pair is thus a convex optimization
problem, tending to be computationally feasible.

�. δ-GROW �-values In Section �.�.� we consider the case thatH� andH� are neither sep-
arated nor do we have prior(s) on H� available. We can o�en parameterize the models as
Θ� = {(�, γ) ∶ γ ∈ Γ} and Θ� = {(δ, γ) ∶ δ ∈ ∆, γ ∈ Γ} where δ is a single scalar parameter of
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interest. We can then de�ne δ-GROW �-variables that are GROW relative to some suitable
H′� = {P(δ ,γ) ∶ γ ∈ Γ, δ ∈ ∆, �δ� ≥ δ}.�e development is analogous to the classical development
of tests that have either maximal power under a minimal relevant e�ect size, or that have
a uniformly most powerful property; and the resulting δ-GROW �-variables will also have
reasonable properties in terms of power. δ-GROW �-variables are again Bayes factors. O�en
the δ-GROW �-variable is simple in that it sets W∗

� to be a degenerate prior, putting all its
marginal mass on ∆ on a single δ (for a one-sided test) or on {−δ, δ} (two-sided). IfH� is a
one-dimensional exponential family, then δ-GROW �-values can be connected to the uniformly
most powerful Bayes factors of Johnson, ����b.

We work out simple δ-GROW �-variables for several standard settings: �-dimensional expo-
nential families, nonparametric tests such as Mann-Whitney, � × � contingency tables and
the setting of the �-sample t-test, each time applying�eorem �.� to show that the resulting
�-variable is GROW.We also provide ‘quick and dirty’ (non-GROW) �-variables for general
multivariate exponential familyH�. Bayesian t-tests with a standard (nondegenerate) prior
W[δ] on δ, while providing a GROW �-variable, are not δ-based in our sense. We present
a δ-GROW version of the Bayesian t-test that has signi�cantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with δ-GROW �-variables, if data comes fromH� rather thanH�, one needs less data to
�nd out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the t-test setting the e�ective amount of data needed is about the same as
with the standard frequentist t-test because one is allowed to do optional stopping.

�. Robust Bayesian view of�eorem �.� Wemay think of the previous Bayesian RIPr result
as a special case of the JIPr result: ifH� is composite, we can ‘collapse’ it into a single distribution
by adopting a priorW� on Θ� of our choice and re-de�ningH� to be the singletonH′� = {PW�}.
We are then in the setting of Figure �.� but withH� a singleton, and the JIPr becomes the RIPr.
�e �-variable E∗W○

�
= pW��pW○

�
can thus be thought of as the GROW �-variable relative to

H′�.

More generally, we may only be able to specify a prior distribution on some, but not all of
the parameters. For example, in Bayesian testing with nuisance parameters satisfying a group
invariance as proposed by Berger, Pericchi and Varshavsky, ���� one would like to specify
a prior W[δ] on the e�ect size (non-nuisance) parameter δ but make no assumptions at all
about the nuisance parameter vector γ (a special case is the Bayesian t-test, with γ representing
variance). �is is an instance of a ‘robust Bayesian’ approach (Grünwald and Dawid, ����)
in which prior knowledge is encoded as a set of priors (in this instance, it would be the set of
all priors on (δ, γ) whose marginal on δ coincides withW[δ]). Our�eorem �.� continues
to apply in this setting. Rather than a full modelH� as under �. above, or a single priorW� as
under �. above, we may replace the minimum over P ∈H� in (�.�) by a minimum overW ∈W ′�
over any convex set of priorsW ′� on Θ�, minP∈H� EP[. . .] becoming minW∈W ′

�
EPW [. . .]. For

essentially any suchW ′� , our�eorem �.� still holds.�is high level of generality is needed,
for example, in our treatment of the �-sample t-test. For this we formally show (in our second
main result,�eorem �.�, which enables us to use�eorem �.�) that the Bayes factor based
on the improper right Haar prior, advocated by Berger, Pericchi and Varshavsky, ����, has a
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PW∗�

P∗W�

P(Θ�)
P(Θ(δ))P(Θ�)

Figure �.�: �e Joint Information Projection (JIPr), with notation from Section �.�. Θ� ⊂ Θ� represent two nested
models, Θ(δ) is a restricted subset of Θ� that does not overlap with Θ� . P(Θ) = {PW ∶ W ∈W(Θ)}, andW(Θ)
is the set of all priors over Θ, so P(Θ) is the set of all Bayes marginals with priors on Θ.�eorem �.� says that the
GROW �-variable E∗Θ�(δ) between Θ� and Θ�(δ) is given by E∗Θ�(δ) = PW∗� �PW∗� , the Bayes factor between the two
Bayes marginals that minimize KL divergence D(PW��PW�)}.

GROW property.

�. Examples and Experiments Wework out simple δ-GROW �-variables for several standard
settings: �-dimensional exponential families, nonparametric tests such as Mann-Whitney, � × �
contingency tables and the setting of the �-sample t-test, each time applying�eorem �.� to
show that the resulting �-variable is GROW. We also provide ‘quick and dirty’ (non-GROW)
�-variables for the case that H� is a general multivariate exponential family. Speci�cally we
show that Bayes factors equipped with the right Haar prior on nuisance parameters provide �-
variables, despite the prior being improper.�e Bayesian t-test with a standard (nondegenerate)
prior W[δ] on δ thus gives an S-variable, but it is not δ-GROW in our sense. We present a
δ-GROW version of the Bayesian t-test that has signi�cantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with δ-GROW �-variables, if data comes fromH� rather thanH�, one needs less data to
�nd out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the t-test setting the e�ective amount of data needed is about the same
as with the standard frequentist t-test because, in this setting, one is allowed to do optional
stopping.

�.�.� A First Example: the Gaussian Location Family
LetH� express that the Yi are i.i.d. ∼ N(�, �). According toH�, the Yi are i.i.d. ∼ N(µ, �) for
some µ ∈ Θ� = R. We perform a �rst test on initial sample Y ∶= Yn ∶= (Y� , . . . ,Yn). We consider
a standard Bayes factor test for this scenario, equiping Θ� with a priorW that for simplicity
we take to be normal with variance �, so thatW has density w(µ)∝ exp(−µ���).�e Bayes
factor is given by

E(�) ∶=
pW(Y)
p�(Y)

=
∫µ∈R pµ(Y)w(µ)dµ

p�(Y)
, (�.�)
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where pµ(Y) = pµ(Y� , . . . ,Yn) ∝ exp(−∑n
i=�(Yi − µ)���); by (�.�) we know that E(�) is an

�-value. By straightforward calculation:

log E = − �
�
log(n + �) + �

�
(n + �) ⋅ µ̆�n ,

where µ̆n = (∑i=� Yi)�(n + �) is the Bayes MAP estimator, which only di�ers from the ML
estimator by O(��n�): µ̆n − µ̂n = µ̂n�(n(n + �)). If we were to reject Θ� when E ≥ �� (giving,
by Proposition � a Type-I error guarantee of �.��), we would thus reject if

�µ̆n � ≥
�

�.�� + log(n + �)
n + �

, i.e. �µ̂n � �
�
(log n)�n,

where we used � log �� ≈ �.��. Contrast this with the standard Neyman-Pearson (NP) test,
which would reject (α ≤ �.��) if �µ̂n � ≥ �.���

√
n.�e δ-GROW �-variables for this problem

that we describe in Section �.�.� can be chosen so as to guarantee E∗ ≥ �� if �µ̂n � ≥ µ̃n with µ̃n =
cn�
√
n where cn > � is increasing and converges exponentially fast to

�
� log�� ≈ �.��.�us,

while the NP test itself de�nes an �-variable that scores in�nitely bad on our GROW optimality
criterion (Example �.�), we can choose a GROW E∗ that is qualitatively more similar to a
standard NP test than a standard Bayes factor approach. For general �-dimensional exponential
families, this δ-GROW E∗ coincides with a �-sided version of Johnson’s (����b; ����a) uni-
formly most powerful Bayes test, which uses a discrete prior W within H�: for the normal
location family,W({µ̃n}) =W({−µ̃n}) = ��� with µ̃n as above. Since the prior depends on
n, some statisticians would perhaps not really view this as ‘Bayesian’; and we also think of
such δ-GROW �-variables, despite their formally Bayesian form, as having �rstly a frequentist
motivation.

Optional Continuation: Compatibility with Bayesian Updating For arbitrary priorW on
Θ�, de�ne en ,W = pW(Yn)�p�(Yn) to be the Bayes factor with priorW for Θ� applied to data
Yn .�e Bayesian �-variable (�.�) can then be written as E(�) = eN(�) ,W(�)(Y(�)), with N(�) = n,
Y(�) = Y = Yn . Suppose we have adopted some inital priorW(�) (say a normal with variance �),
and initial observed data Y(�) = Yn , leading to a �rst �-value E(�) = ��—promising enough for
us to invest our resources into a subsequent trial. We decide to gather N(�) data points leading
to data Y(�) = (YN(�)+� , . . . ,YN(�)). We decide to use the following �-variable for this second
data batch:

E(�) ∶= eN(�) ,W(�) �Y
(�)� ∶=

pW(�) �Y(�)�
p� �Y(�)�

,

for a new prior W(�). Crucially, we are allowed to choose both N(�) and W(�) as a function
of past data Y(�). To see that E(�) gives an �-variable, note that, no matter how we choose
W(�), EY(�)∼P�[E(�)] = �, by a calculation analogous to (�.�). If we want to stick to the Bayesian
paradigm, we can chooseW(�) ∶=W(�)(⋅ � Y(�)), i.e.W(�) is the Bayes posterior for µ based on
data Y(�) and priorW(�). A simple calculation using Bayes’ theorem shows that multiplying
E(�) ∶= E(�) ⋅ E(�) (which gives a new �-variable by Proposition �), satis�es

E(�) = E(�) ⋅ E(�) =
pW(�)(Y(�)) ⋅ pW(�)(⋅�Y(�))(Y(�))

p�(Y(�))
=
pW(�)(Y� , . . . ,YN(�))
p�(Y� , . . . ,YN(�))

, (�.�)
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which is exactly what one would get by Bayesian updating.�is illustrates that, for simpleH�,
combining �-variables by multiplication can be done consistently with Bayesian updating if
the �-variables are based on Bayes factors with prior onH� given by the posterior based on
past data. To be precise, if, in Proposition � below, one takes as function g(Y) ∶=W(�) � Y, then
the resulting products E(k) =∏k

j=� E( j), k = �, �, . . . precisely correspond to the Bayes factors
based on priorW(�) a�er observing data Y� , . . . ,Y(k).

Optional Continuation: Beyond BayesianUpdating However, it might also be the case that
it is not us who get the additional funding to obtain extra data, but rather some research group
at a di�erent location. If the question is, say, whether a medication works, the null hypothesis
would still be that µ = � but, if it works, its e�ectiveness might be slightly di�erent due to
slight di�erences in population. In that case, the research group might decide to use a di�erent
test statistic E′

(�) which is again a Bayes factor, but now with an alternative priorW on µ (for
example, the original priorW(�) might be re-used rather than replaced byW(�)(⋅ � Y(�)). Even
though this would not be standard Bayesian, E(�) ⋅ E′(�) would still be a valid �-variable, and
Type-I error guarantees would still be preserved — and the same would hold even if the new
research group would use an entirely di�erent prior on Θ�. It is also conceivable that the group
performing the �rst trial was happy to adopt a Bayesian stance, adopting the normal priorW(�),
whereas the second group was frequentist, adopting a δ-GROW �-variable satisfying E∗

(�) ≥ ��
if �µ̂(Y(�)� � �.���

√
n, with µ̂(Y(�) the MLE based on the second sample. Still, basing decisions

on the product E∗
(�) ⋅ E

∗

(�) preserves Type-I error probability bounds. And, a�er the second
batch of data Y(�), one might consider obtaining a third sample, or even more samples, each
time using a di�erentW(k), that is always allowed to depend on the past. In the next section
we show how multiplying �-variables against such an arbitrarily long sequence of trials always
preserves Type-I error bounds.

Beyond the Normal Location Family Full compatibility of our approach with Bayesian
updating remains possible for all testing problems with simpleH�. IfH� becomes composite, it
cannot always be ensured: while we may still choose priorW(�) on Θ� to be the Bayes posterior
based on Y(�), the corresponding prior on Θ� to be used in the second batch of data may in
general not be equal to the posterior on Θ� based on Y(�).

�.� Optional Continuation
Suppose we have available a collection E = �n≥� En , with En = {en ,W ∶W ∈W}, where for each
n andW ∈Wn , en ,W de�nes a nonnegative test statistic for data Yn = (Y� , . . . ,Yn) of length n:
it is a function from Y n to R+� . We are mostly interested in the case that E really represents a
collection of �-variables, so that for all n,W ∈W , E ∶= en ,W(Yn) is an �-variable. For example,
we could take en ,w to be the �-variable in the example of Section �.�.�, which depends on the
prior W , each di�erent prior leading to a di�erent valid de�nition of E = en ,W(Y). More
generally though, the en ,W may not always have a direct Bayesian interpretation.

We observe a �rst sample (e.g., data of a �rst clinical trial), Y(�) = YN(�) = (Y� , . . . ,YN(�)),
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and measure our �rst test statistic E(�) based on Y(�).�at is, E(�) = EN(�) ,W(�)(Y(�)) for some
function EN(�) ,W(�) ∈ EN(�) .�en, if either the value of E(�) or, more generally of the underlying
dataY(�) is such that we (or some other research group) would like to continue testing, a second
data sample Y(�) = (YN(�)+� , . . . ,Yτ(�)) is obtained (e.g. a second clinical trial is done), and a
test statistic E(�) based on data Y(�) is measured. Here τ(�) ∶= N(�) + N(�), where N(�) is the
size of the second sample. We may choose E(�) to be any member from the set E , and N(�) to
be any sample size. As illustrated by the example in Section �.�.�, the particular choice we make
may itself depend on Y(�).�is means that N(�) and E(�) are determined via two functions
g ∶ �n≥� Y n →W ∪ {����} and h ∶ �n≥� Y n → N where, for any data Y(�), g determinesW(�),
and h determines N(�), so that together they determine the next �-variable to be used. A�er
observing Y(�), depending again on the value of Y(�), a decision is made either to continue
to a third test, or to stop testing for the phenomenon under consideration. In this way we
go on until either we decide to stop or until some maximum number kmax tests have been
performed.

�e decision whether to stop a�er k tests or to continue, and if so, what test statistic to use at
the k + �-st test, is conveniently encoded into g.�us, g(Y(k)) = ����means that the k-th test
was the �nal one to be performed. N(k), the size of the k-th batch of data, and τ(k) ∶= ∑k

j=� N( j),
the total sample size a�er k batches are determined as follows: we set N(k) ∶= h(Y(k−�)), where
Y(k) ∶= (Y(�) , . . . ,Y(k)), and Y(k) ∶= (Yτ(k−�)+� , . . . ,Yτ(k)), where we set τ(�) ∶= �. With this
notation, Y � = Y(�) is an ‘empty sample’ and N(�) ∶= h(Y �) is a data-independent sample size
for the �rst data batch; for convenience we also set E(�) ∶= �. E(k), the k-th test statistic to be
used is similarly determined via W(k) ∶= g(Y(k−�)) and then E(k) ∶= eN(k) ,W(k)(Y(k)). With
Y� ,Y� , . . . arriving sequentially, we can recursively use g to �rst determine N(�) and E(�); we can
then use g(Y(�)) to determine N(�) , τ(�) and E(�); we then use g(Y(�)) to determine N(�) , τ(�)
and E(�), and so on, until g(Y(k)) = ����.

Before presenting de�nitions and results, we generalize the setting to allow us to deal with
optional continuation rules that may be restricted (as needed for e.g. the Bayesian t-test (Sec-
tion �.�.�) and with data Y� ,Y� , . . . that are not i.i.d. according to all Pθ . For simple i.i.d testing
problems, one may simply set Vn = Yn everywhere for all n below, and skip directly to De�ni-
tion �.� and Proposition �, ignoring the word ‘conditional’ in all that follows.

For the general case, we �x a sequence of random variables V� ,V� , . . . such that for each n,
Vn takes values in a set Vn , and there is a function vn such that Vn = vn(Yn). We call each
Vn a coarsening of Yn and, borrowing terminology from measure theory, we call the process
V� ,V� , . . . a �ltration of Y � ,Y � , . . .. We now let E�(Vi)� = �n>�,m≥� En�m with En�m = {en�m ,W}
where en�m ,W are functions of Vn+m , parameterized not just by the sample size n of samples
to which they are to be applied but also by the sample size m of the past sample, a�er which
they are applied. We call such a conditional test statistic E ∶= en�m ,W(Vn+m) an �-variable
conditional on Vm relative to �ltration (Vi)i∈N if

for all P ∈H�: EP[E � Vm] ≤ �. (�.��)

We change the de�nition of the function g above by replacing all occurrences of the letter Y
with the corresponding instance of the letter V , and with now E(k) ∶= eN(k)�τ(k−�) ,W(k)(Y(k)).
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De�nition �.�. Let K���� ≥ � to be the smallest k for which g �V(k)� = ����, and K���� = kmax
if no such k exists. Let E�(Vi)� be a collection of nonnegative conditional test statistics as
above, de�ned relative to some �ltration (Vi)i∈N of (Yi)i∈N. We say that the threshold test based
on S is safe under optional continuation (for Type-I error probability, under multiplication) for
continuation rules based on (Vi), if for every g as above, with E(k) ∶=∏k

j=� E( j), for all P� ∈H�,
for every � ≤ α ≤ �,

P� �E(K����) ≥ α−�� ≤ α, (�.��)

i.e. the α-Type-I error probability bound is preserved under any optional continuation rule.

Henceforth we simply omit ‘for Type-I error, under multiplication’ from our descriptions. If for
all n, Vn = Yn , then we simply write ‘safe under optional continuation’.

A threshold test being safe under optional continuation implies that (�.��) even holds for the
most aggressive continuation rule h which continues until the �rst K is reached such that either
∏K

k=� E(k) ≥ α−� or K = kmax.�us, safety under optional continuation implies that under all
P� ∈ H�, the probability that there is any k ≤ kmax such that E(k) ≥ ��α is bounded by α. We
can now present our optional continuation result in its most basic form:

Proposition �. Take any (Vi)i∈N as above. If all elements of E are conditional �-variables as in
(�.��), then E(K����) is an �-variable, so that by Proposition �, the threshold test based on E(K����)

is safe under optional continuation for all continuation rules based on (Vi).

�e proposition gives the prime motivation for the use of �-variables and veri�es the claim
made in the introduction: the product of �-variables remains an �-variable, even if the decision
to observe additional data and record a new �-variable depends on previous outcomes. As a
consequence, Type-I error guarantees still hold for the combined (multiplied) test outcome.�e
de�nition of safety requires Type-I error probabilities to be preserved under arbitrary functions
g, yet a threshold test based on E(K����) can be applied without knowing the “o�-sample” details
of the actual function g that was used: we only need to know, for each k, once we are at the
end of the k-th trial, the value of g(Y(k)).�us, crucially, we can apply such tests, and have
Type-I error guarantees without knowing any other detail of the functions that have actually
been (implicitly, or unconsciously) used. For example, suppose that we continued to a second
sample Y(�) because the data looked promising, say we observed a �-value based on Y(�) equal
to �.��. We may not really know whether we would also have continued to gather a second
sample if we had observed � = �.��— but it does not matter, because irrespective of whether
a function g was used that continues if �(Y(�)) ∈ [�.��, �.��] or a function that continues if
�(Y(�)) ∈ [�.���, �.��], or any other g (e.g. based on E(�) instead of a �-value), safety under
optional continuation guarantees that our Type-I error guarantee is preserved — even without
us knowing such details concerning g.

A heuristic proof of Proposition � has already been given in the beginning of this paper: the
statement is essentially equivalent to ‘no matter what your role is for stopping and going home,
you cannot expect to win in a real casino’. We give an explicit elementary proof in Appendix �.B.
�ere we also generalize Proposition � in various ways: we include the conditional case where
each Pθ de�nes a conditional distribution for Yn given covariate information Xn and we allow
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the sample size of the j-th sample Y( j) to be not �xed in advance but itself determined by some
stopping rule. Finally, we also allow the decision whether or not to perform a new test to depend
on (nonstochastic) side-information such as ‘there is su�cient money to perform an additional
trial with �� subjects’.

�.�.� �-values vs.TestMartingales;OptionalContinuationvs. Stopping
�e purpose of this section is two-fold: this paper is about ‘safe testing’—not just under optional
continuation, but also under optional stopping, which we therefore must discuss. Second, the
prime tools for testing under optional stopping are test martingales, and these can be used to
‘generate’ useful �-variables, hence are important for us as well.

Optional Stopping We just formalized the idea of continuing from one trial (batch of data)
to the next, and potentially stopping at the end of each trial. Now we consider the closely related
‘dual’ question: we are sequentially observing data within a single trial, but we want to be able
to stop in the midst of it, without specifying at the beginning of the trial under what conditions
we should stop. For example, we originally planned for a sample size of n but our boss might
have peeked at interim results at n′ < n and concluded that these were so promising (or futile)
that she insists on stopping the experiment, without us having anticipated this in advance. We
cannot formalize this directly with �-values, because these are themselves de�ned for batches
of data Y = Yn of length n which may in fact come in without any particular order. Even if data
does come in a particular order, the number n (or a data-dependent, a priori speci�ed stopping
time N as in Appendix �.B) has to be speci�ed in advance to make an �-value well-de�ned, so
it will not always be clear what evidential value we should assign to the data if we want to stop
at n′ < n. To deal with optional stopping, we should thus not work with test statistics but rather
with test processes, each process SW de�ning an evidential value for each sample size.

Formally, a nonnegative test process S = (Si)i∈N relative to a �ltration (Vi)i∈N, is de�ned as a
sequence of nonnegative random variables S� , S� , . . . such that each Si = si(V i) can be written
as a function of V i for some function si . We de�ne a stopping rule g relative to (Vi) to be any
function g ∶ �n≥� Vn → {����, ��������} so that there exists an (arbitrarily large but �nite)
nmax such that g(vn) = ���� for all n ≥ nmax, all vn ∈ Vn . We let G��� be the set of all such
functions g.

De�nition �.�. Let (Si)i∈N be a nonnegative test process and let G ⊂ G��� be a set of stopping
rules. We say that the threshold test based on (Si) is safe under all stopping rules in G if for every
g ∈ G as de�ned above, all P� ∈H�, for every � ≤ α ≤ �:

P� �SN���� ≥ α−�� ≤ α, (�.��)

where the stopping time N���� is the smallest n at which g(vn) = ����.

As is well-known, test martingales lead to Type I error guarantees that are preserved under
optional stopping. Formally, a test martingale relative to �ltration (Vi) is a test statistic process
S� , S� , . . . where each Sn ∶= ∏n

i=� Si for another process S��� , S��� , S��� , . . . such that S��i is a
function of V i and satis�es, for all P� ∈H�, i ≥ �,

EP�[S��i−� � V i−�] ≤ �. (�.��)
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We call (S��i−�)i∈N a test martingale building block process. In the proposition below, for P ∈
H� ∪H�, P[Vn] denotes the marginal distribution of Vn under P, and we denote its density by
p′(Vn).�e following results are well-known:

Proposition �. Take any �ltration (Vi) as above.

�. Suppose that H� is a simple null for data coarsened to (Vi), i.e. for all P,Q ∈ H�, all
n, P[Vn] = Q[Vn].�en for every prior W onH�, the Bayes factor p′W�p′� de�nes a test
martingale, i.e. (p′W(V i)�p′�(V i))i∈N is a test martingale relative to (Vi)i∈N.

�. Now, take any test martingale (Si)i∈N relative to �ltration (Vi)i∈N.�en for all g ∈ G���,
SN���� is an �-variable, so that by Proposition �, the threshold test based on SN���� is safe
under optional stopping for all stopping rules that can be de�ned relative to (Vi).

Proof. �e �rst part follows by applying the cancellation trick as in (�.�) to the conditional
likelihood ratio p′W(Vi � V i−�)�p′�(Vi � V i−�); the second part is immediate by Doob’s optional
stopping theorem.

Test Martingales vs. �-Variables Part � of Proposition � shows that test martingales lead to
tests that are safe under optional stopping. Just as important for us, it shows that we can use any
given martingale and any stopping rule g to de�ne an �-variable. In recent work, A. Ramdas
and collaborators (Howard et al., ����b; Howard et al., ����a) have developed a large number of
practically most useful test martingales (some of these can be thought of as Bayes factors, and
some cannot; see Section �.� for many more references and history). All these test martingales
can thus be used to ‘generate’ useful �-variables (and in fact Part � of Proposition � can easily
be extended to also generate �-variables conditional on Vm for any desired m).

Conversely, wemay ask ourselves whether �-variables can also be used to de�ne test martingales
(and hence to allow for tests that are safe under optional stopping).�e answer is subtle, as we
now illustrate. For simplicity, we only consider unconditional �-variables to be used with data
that are i.i.d. under all P ∈H�. In the sections to come, we provide constructions of �-variables
for manyH�; all of these can be applied to data of arbitrary �xed sample sizes n. For any given
H�, they thus ‘automatically’ provide a test statistic process (Ei)i∈N with Ei = ei(V i).

�. A �rst idea is, for any givenH� and corresponding �-variables (ei(V i)), to de�ne the
process (Si)i∈N where S��i−� = e�(Vi), using only the ‘�rst’ �-variable. From (�.��) we
immediately see that (S��i−�)i∈N is now amartingale building block process and (Si)with
Si =∏n

i=� e�(Vi) is a test martingale. Since in this way, we can convert all �-variables into
martingales, allowing us to do optional stopping, it may seem we have made the concept
of �-variable super�uous. But this is not the case: for many of theH� we consider below,
this method leads to the useless test martingale with Si = S��i−� ≡ �, for all i, independent
of the data. For example, this is the case for the � × �-contingency tables (Section �.�.�),
for multivariate exponential families (Section �.�.�) and for the nonparametric test of
Example �.� — so that the above construction would lead to useless martingales that
almost surely remain � forever.

�. In some cases, the test statistic process (Ei)i∈N does turn out to give a test martingale.
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Examples are GROW �-variables for the case thatH� is simple (as in the one-parameter
exponential family case, Section �.�.�), or for the case that the GROW �-variable forH�
can be written as a function of (Vi) such thatH� is simple when data are coarsened to
(Vi) (as in the Bayesian t-test, Section �.�.�).�is can be used to modify, if so desired,
Ei to another �-variable EN���� based on some stopping rule g; see Section �.�.� where
this idea is used to improve statistical power of Ei .

�. Yet in other cases,H� is composite, and there is no natural coarsening/�ltration (Vi)
under which it becomes simple.�en, at least in general, the process (ei(V i)) is not a test
martingale. Counterexamples again include the �-values for the �× �-contingency tables,
multivariate exponential families and for the nonparametric test of Example �.�. We do
not see an easy way to obtain test martingales, and hence tests that are safe under ‘full’
optional stopping, for these settings. Still, sometimes tests based on the non-martingale
process (Ei)i∈N do allow for optional stopping under some non-trivial subset G ⊂ G���.
For example, it is easy to show that the �-values for multivariate exponential families that
we consider in Section �.�.� satisfy EP�[e(YN����) � xN����] ≤ � for all P� ∈H� as long as,
for each n, the stopping rule g(Yn) can be written as a �xed function of the su�cient
statistic θ̂�(Yn) forH�; the tests based on these �-values are thus safe under optional
stopping relative to (Vi)i∈N ∶= (Yi)i∈N under all such g.

�.� Main Result
From here onward we letW(Θ) be the set of all probability distributions (i.e., ‘proper priors’)
on Θ, for any Θ ⊂ Θ� ∪Θ�. Notably, this includes, for each θ ∈ Θ, the degenerate distribution
W which puts all mass on θ.

�.�.� What is a good �-Value?�e GROWCriterion
�e (semi-) Bayesian approach to �nding �-variables has already been treated in some detail
in Section �.�.�.�us, we focus on a frequentist perspective here, getting back to the Bayesian
approach later. We start with an example that tells us how not to design �-variables.

Example �.�. [Strict Neyman-Pearson �-Values: valid but useless] In strict Neyman-Pearson
testing (Berger, ����), one rejects the null hypothesis if the �-value P satis�es P ≤ α for the a
priori chosen signi�cance level α, but then one only reports “reject” rather than the �-value itself.
�is can be seen as a safe test based on a special �-variable E��: when P is a �-value determined
by data Y, we de�ne E�� = � if P > α and E�� = ��α otherwise. For any P� ∈H� we then have
EY∼P�[E��] = P�(P ≤ α)α−� ≤ �, so that E�� is an �-variable, and the ‘safe’ test that rejects if
E�� ≥ ��α obviously is identical to the test that rejects if P ≤ α. However, with this �-variable,
there is a positive probability α of losing all one’s capital. �e �-variable E�� leading to the
Neyman-Pearson test, i.e. the maximum power test, now thus corresponds to an irresponsible
gamble that has a positive probability of losing all one’s power for future experiments.�is also
illustrates that the �-variable property (�.�) is a minimal requirement for being useful under
optional continuation; in practice, one also wants guarantees that one cannot completely lose
one’s capital.
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In the Neyman-Pearson paradigm, one measures the quality of a test at a given signi�cance level
α by its power in the worst-case over all Pθ , θ ∈ Θ�. If Θ� is nested in Θ�, one �rst restricts Θ�
to a subset Θ′� ⊂ Θ� with Θ� ∩Θ′� = � of ‘relevant’ or ‘su�ciently di�erent from Θ�’ hypotheses.
For example, one takes the largest Θ′� for which at the given sample size a speci�c power can
be obtained. We develop analogous versions of this idea below; for now let us assume that we
have identi�ed such a Θ′� that is separated from Θ�.�e standard NP test would now pick, for
a given level α, the test which maximizes power over Θ′�.�e example above shows that this
corresponds to an �-variable with disastrous behavior under optional continuation. However,
we now show how to develop a notion of ‘good’ �-variable analogous to Neyman-Pearson
optimality by replacing ‘power’ (probability of correct decision under Θ′�) with expected capital
growth rate under Θ′�, which then can be linked to Bayesian approaches as well.

Taking, like NP, a worst-case approach, we aim for an �-variable with large EY∼Pθ [ f (E)] under
any θ ∈ Θ′�. Here f ∶ R+ → R is some increasing function. At �rst sight it may seem best to pick
f the identity, but this can lead to adoption of an �-variable such that Pθ(E = �) > � for some
θ ∈ Θ′�; we have seen in the example above that that is a very bad idea. A similar objection applies
to any polynomial f , but it does not apply to the logarithm, which is the single natural choice for
f : by the law of large numbers, a sequence of �-variables E� , E� , . . . based on i.i.d. Y(�) ,Y(�) , . . .
with, for all j, EY( j)∼P[log E j] ≥ L, will a.s. satisfy E�m� ∶= ∏m

j=� E j = exp(mL + o(m)), i.e. E
will grow exponentially, and L(log� e) lower bounds the doubling rate (Cover and �omas,
����). Such exponential growth rates can only be given for the logarithm, which is a second
reason for choosing it. A third reason is that it automatically gives �-variables an interpretation
within the MDL framework (Section �.�.�); a fourth is that such growth-rate optimal E can be
linked to power calculations a�er all, with an especially strong link in the one-dimensional
case (Section �.�.�), and a ��h reason is that some existing Bayesian procedures can also be
reinterpreted in terms of growth rate.

We thus seek to �nd �-variables E∗ that achieve, for some Θ′� ⊂ Θ� �Θ�:

inf
θ∈Θ′�

EY∼Pθ [log E
∗] = sup

E∈E(Θ�)

inf
θ∈Θ′�

EY∼Pθ [log E] =∶ ��(Θ
′

�), (�.��)

where E(Θ�) is the set of all �-variables that can be de�ned on Y for Θ�. We call this special
E∗, if it exists and is essentially unique, the GROW (Growth-Rate-Optimal-in-Worst-case) �-
variable relative to Θ′�, and denote it by E∗Θ′� (see Appendix �.C for the meaning of ‘essentially
unique’).

If we feel Bayesian about H�, we may be willing to adopt a prior W� on Θ�, and instead of
restricting to Θ′�, we may instead want to consider the growth rate under the priorW�. More
generally, as robust Bayesians or imprecise probabilists (Berger, ����; Grünwald and Dawid,
����; Walley, ����) we may consider a whole ‘credal set’ of priorsW ′� ⊂ W(Θ�) and again
consider what happens in the worst-case over this set. We are then interested in the GROW
�-variable E∗ that achieves

inf
W∈W ′

�

EY∼PW [log E∗] = sup
E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E]. (�.��)
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Again, if an �-variable achieving (�.��) exists and is essentially unique, then we denote it by E∗
W ′

�
.

IfW ′� = {W�} is a single prior, we denote the �-variable by E∗W�
. (�.��) then reduces to

EY∼PW�
[log E∗W�

] = sup
E∈E(Θ�)

EY∼PW�
[log E],

and �eorem �.�, Part � below implies that, under regularity conditions, in this case E∗W�
=

pW�(Y)�pW○
�
(Y) for some priorW○ on Θ�: the GROW E∗-variable relative to PW� is always a

Bayes factor with PW� in the denominator.

IfW ′� =W({θ�}) is a single prior that puts all mass on a singleton θ�, then we write E∗
W ′

�
as E∗θ � .

Linearity of expectation further implies that (�.��) and (�.��) coincide ifW ′� =W(Θ′�); thus
(�.��) generalizes (�.��).

All �-variables in the examples below, except for the ‘quick and dirty’ ones of Section �.�.�, are
of this ‘maximin’ form.�ey will be de�ned relative to setsW ′� with in one case (Section �.�.�)
W ′ representing a set of prior distributions on Θ�, and in other cases (Section �.�.�–�.�.�)
W ′� =W(Θ′�) for a ‘default’ choice of a subset of Θ�.

�.�.� �e JIPr is GROW
We now present our main result, illustrated in Figure �.�. We use D(P�Q) to denote the relative
entropy orKullback-Leibler (KL) Divergence between distributions P andQ (Cover and�omas,
����). We call an �-variable trivial if it is always ≤ �, irrespective of the data, i.e. no evidence
against H� can be obtained. �e �rst part of the theorem below implies that nontrivial �-
variables essentially always exist as long as Θ� ≠ Θ�.�e second part — really implied by the
third but stated separately for convenience — characterizes when such �-variables take the
form of a likelihood ratio/Bayes factor.�e third says that GROW �-variables for a whole set of
distributions Θ′� can be found by a joint KL minimization problem.

Part � of the theorem refers to a coarsening of Y. �is is any random variable V that can be
written as a function of Y, i.e. V = f (Y) for some function f ; in particular, the result holds
with f the identity and V = Y. For general coarsenings V, the distributions Pθ for Y induce
marginal distributions for V, which we denote by P[V]θ .

�eorem �.�. �. Let W� ∈W(Θ�) such that infW�∈W(Θ�) D(PW��PW�) <∞ and such that
for all θ ∈ Θ�, Pθ is absolutely continuous relative to PW� .�en the GROW �-variable E∗W�

exists, is essentially unique, and satis�es

EY∼PW�
[log E∗W�

] = sup
E∈E(Θ�)

EY∼PW�
[log E] = inf

W�∈W(Θ�)
D(PW��PW�)

�. Let W� be as above and suppose further that the inf/min is achieved by some W○

� , i.e.
infW�∈W(Θ�) D(PW��PW�) = D(PW��PW○

�
). �en the minimum is achieved uniquely by

this W○

� and the GROW �-variable takes a simple form: E∗W�
= pW�(Y)�pW○

�
(Y).

�. Now letΘ′� ⊂ Θ� and letW ′� be a subset ofW(Θ′�) such that for some coarseningV ofY (we
may have Y = V) the following holds: for all θ ∈ Θ�, all W� ∈W ′� , P

[V]
θ is absolutely con-
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tinuous relative to P[V]W�
, and the set {P[V]W�

∶W� ∈W ′�} is convex (this holds automatically
ifW ′� is convex). Suppose that

inf
W�∈W

′
�

inf
W�∈W�

D(PW��PW�) = min
W�∈W

′
�

min
W�∈W�

D(P[V]W�
�P[V]W�

) = D(P[V]W∗
�
�P[V]W∗

�
) <∞, (�.��)

the minimum being achieved by some (W∗

� ,W∗

� ) such that D(PW��PW∗
�
) < ∞ for all

W� ∈W ′� . If the minimum is achieved uniquely by (W∗

� ,W∗

� ), then the GROW �-variable
E∗
W ′

�
relative toW ′� exists, is essentially unique, and is given by

E∗
W ′

�
=
p′W∗

�
(V)

p′W∗
�
(V)

, (�.��)

where p′W is the density on V corresponding to P[V]W . Also, E∗
W ′

�
satis�es

inf
W∈W ′

�

EY∼PW [log E∗W ′
�
] = sup

E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E] = D(P[V]W∗
�
�P[V]W∗

�
). (�.��)

IfW ′� =W(Θ′�), then by linearity of expectation we further have E∗
W ′

�
= E∗Θ′� .

�e requirements that, for θ ∈ Θ�, the Pθ are absolutely continuous relative to the PW� , and,
in Part �, that D(PW��PW∗

�
) < ∞ for all W� ∈ W ′� are quite mild — in any case they hold in

all speci�c examples considered below, speci�cally if Θ� ⊂ Θ� represent general multivariate
exponential families, see Section �.�.�.

Since the KL divergence is strictly convex in both arguments if the other argument is held �xed,
and non-strictly jointly convex, we have that if (�.��) holds, then for each (W ′

� ,W ′

�) achieving
the minimum, eitherW ′

� =W∗

� ,W ′

� =W∗

� or bothW ′

� ≠W∗� andW ′

� ≠W∗

� . In the latter case,
all mixtures (� − α)(W ′

� ,W ′

�) + α(W� ,W�) also achieve the minimum.

Following Li, ����, we call PW○ as in Part � of the theorem, the Reverse Information Projection
(RIPr) of PW� on {PW ∶ W ∈ W(Θ�)}. Extending this terminology we call (PW∗

�
, PW∗

�
) the

joint information projection (JIPr) of {PW ∶ W ∈ W ′�} and {PW ∶ W ∈ W(Θ�)} onto each
other.

�e requirement for the full JIPr characterization (�.��), that the minima are both achieved is
strong in general, but it holds in the examples of Section �.�.� (�-dimensional) and �.�.� (� × �
tables) with V = Y. By allowing V to be a coarsening of Y, we make the condition considerably
weaker: it then also holds in the t-test example of Section �.�.�— that example will also illustrate
that {P[V]W�

∶W� ∈W ′�}may be convex even ifW ′� is not, and that in cases where the minimum
in (�.��) over PW� on Y does not exist, still its in�mum over PW� on Y may be equal to the
minimum over PW� de�ned on V, which does exist.

Proof Sketch of Parts � and � We give short proofs of parts � and � under the (weak) addi-
tional condition that we can exchange expectation and di�erentiation and the (strong) con-
dition that V is taken equal to Y. To prove parts � and � without these conditions, we need a
nonstandard minimax theorem; and to prove part � (which does not rely on minima being
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achieved) we need a deep result from Barron and Li (Li, ����); these extended proofs are in
Appendix �.C.

For Part �, consider anyW ′

� ∈W(Θ�) withW ′

� ≠W○

� , withW○

� as in the theorem statement.
Straightforward di�erentiation shows that the derivative (d�dα)D(PW��P(�−α)W○

� +αW
′
�
) at α = �

is given by f (α) ∶= � − EY∼PW′� [pW�(Y)�pW○
�
(Y)]. Since (� − α)W○

� + αW ′

� ∈ W(Θ�) for all
� ≤ α ≤ �, the fact that W○

� achieves the minimum over W(Θ�) implies that f (�) ≥ �,
but this implies that EY∼PW′� [pW�(Y)�pW○

�
(Y)] ≤ �. Since this reasoning holds for all W ′

� ∈
W(Θ�), we get that pW�(Y)�pW○

�
(Y) is an �-variable. To see that it is GROW, note that, for

every �-variable E = e(Y) relative to E(Θ�), we must have, with q(y) ∶= e(y)pW○
�
(y), that

∫ q(y)dy = EY∼PW○� [E] ≤ �, so q is a sub-probability density, and by the information inequality
of information theory (Cover and�omas, ����), we have

EPW�
[log E] = EPW�

�log q(Y)
pW○

�
(Y)
� ≤ EPW�

�log pW�(Y)
pW○

�
(Y)
� = EPW�

�log E∗W�
� ,

implying that E∗W�
is GROW.

For Part �, consider any W ′

� ∈ W ′� with W ′

� ≠ W∗

� , W∗

� ,W∗

� as in the theorem statement.
Straightforward di�erentiation and reasoning analogously to Part � above shows that the
derivative (d�dα)D(P(�−α)W∗

� +αW
′
�
�PW∗

�
) at α = � is nonnegative i� there is no α > � such

that EP(�−α)W∗� +αW′� [log pW
∗
�
(Y)�pW∗

�
(Y)] ≤ EPW∗� [log pW

∗
�
(Y)�pW∗

�
(Y)]. Since this holds for all

W ′

� ∈ W ′� , and since D(PW∗
�
�PW∗

�
) = infW∈W ′

�
D(PW�PW∗

�
), it follows that

infW∈W ′
�
EPW [log E∗W ′

�
] = D(PW∗

�
�PW∗

�
), which is already part of (�.��).Note thatwe also have

inf
W∈W ′

�

EY∼PW [log E∗W ′
�
] ≤ sup

E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E]

≤ inf
W∈W ′

�

sup
E∈E(Θ�)

EY∼PW [log E]

= inf
W∈W ′

�

sup
E∈E(W(Θ�))

EY∼PW [log E]

≤ inf
W∈W ′

�

sup
E∈E({W∗

� })

EY∼PW [log E]

≤ sup
E∈E({W∗

� })

EY∼PW∗� [log E].

where the �rst two and �nal inequalities are trivial, the third one follows from de�nition of
�-variable and linearity of expectation, and the fourth one follows because, as is immediate
from the de�nition of �-variable, for any setW� of priors on Θ�, the set of �-variables relative
to any setW ′ ⊂W� must be a superset of the set of �-variables relative toW�.

It thus su�ces if we can show that supE∈E({W∗
� })

EY∼PW∗� [log E] ≤ D(PW∗
�
�PW∗

�
). For this,

consider �-variables E = e(Y) ∈ E({W∗

� }) de�ned relative to the singleton hypothesis {W∗

� }.
Since EY∼PW∗� [e(Y)] ≤ � we can write e(Y) = q(Y)�pW∗

�
(Y) for some sub-probability density



�.�. Main Result ���

q, and

sup
E∈E({PW∗� })

EPW∗� [log E] = supq
EY∼PW∗� �log

q(Y)
pW∗

�

� (�.��)

= D(PW∗
�
�PW∗

�
),

where the supremum is over all sub-probability densities on Y and the �nal equality is the
information (in)equality again (Cover and�omas, ����).�e result follows.

�.�.� δ-GROW and simple δ-GROW �-Values
To apply�eorem �.� to design �-variables with good frequentist properties in the case that
Θ� � Θ�, we must choose a subsetΘ′� withΘ′�∩Θ� = �. Usually, we �rst carve upΘ� into nested
subsetsΘ(ε). A convenient manner to do this is to pick a divergence measure d ∶ Θ�×Θ� → R+�
with d(θ��θ�) = �⇔ θ� = θ�, and, de�ning d(θ) ∶= inf θ�∈Θ� d(θ , θ�) (examples below) so
that

Θ(ε) ∶= {θ ∈ Θ� ∶ d(θ) ≥ ε}. (�.��)

In the examples below we are interested in GROW �-variables E∗Θ(ε) for a given measure d for
some particular value of ε.�is is in full analogy to classical frequentist testing, where we look
for tests with worst-case optimal power with alternatives restricted to sets Θ(ε); we merely
replace ‘power’ by ‘growth rate’.

In some cases such �-variables E∗Θ(ε) take on a particularly simple form, as Bayes factors with
all mass in Θ� concentrated on the boundary ��(Θ(ε)) = {θ ∈ Θ� ∶ d(θ) = ε}.

To develop these ideas further, for simplicity we restrict attention to the common case with
just a single scalar parameter of interest δ ∈ ∆ ⊆ R so that H� ,H� can be parameterized as
Θ� = {(δ, γ) ∶ δ ∈ ∆, γ ∈ Γ} and Θ� = {(�, γ) ∶ γ ∈ Γ}, with Γ representing all distributions in
H�.We can then simply take d((δ, γ)) = �δ� so thatΘ(δ) = {(δ, γ) ∶ δ ∈ ∆, �δ� ≥ δ, γ ∈ Γ}.�en
the �-variable E∗Θ(δ) with δ > � will be referred to as the δ-GROW �-variable for short.

Further de�ning E∗δ ∶= E∗{(δ ,γ)∶�δ�=δ ,γ∈Γ}, we call E
∗

Θ(δ) simple if

E∗Θ(δ) = E
∗

δ (�.��)

In all examples below, the δ-GROW � is also simple, making it particularly easy to deal
with.

To illustrate, consider �rst the one-sided case with ∆ ⊆ R+� . �en, applying �eorem �.�,
Part � with Θ = {(δ, γ) ∶ γ ∈ Γ} and assuming the KL-in�mum is achieved, we must have
E∗δ = pδ ,W∗

� [γ](Y)�p�,W∗
� [Γ](Y) for some priorsW∗

� [γ],W∗

� [γ] on γ. We see that (�.��) holds
i�

sup
E∈E({�})

inf
θ∈Θ(δ)

EY∼Pθ [log E] = inf
θ∈Θ(δ)

EY∼PθE[log E
∗

δ ] (�.��)

= D(Pδ ,W∗
� [γ]�P�,W∗

� [γ]). (�.��)
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In Appendix �.D, Proposition � we provide some su�cient conditions for (�.��) to hold.

Now consider the two-sided case with scalar parameter space∆′ an interval containing � in its in-
terior. Since, by linearity of expectation,mixtures of �-variables are obviously �-variables,

E○δ ∶=
�
�
E∗δ +

�
�
E∗
−δ (�.��)

is a simple �-variable. While E○δ will be seen to be δ-GROW in the two-sided Gaussian location
and t-test setting, in general, we have no guarantee that it is δ-GROW. Still, in Appendix �.D
we show that if its constituents are one-sided GROW, i.e. (�.��) holds for the �-sided case with ∆
set to ∆+ and with ∆ set to −∆−, then the worst-case growth rate achieved by E○δ is guaranteed
to be close (within log �) of the two-sided δ-based GROW �-variable E∗Θ(δ). In such cases we
may think of E○δ as a simple δ-almost-GROW �-variable. E○δ may be much easier to compute
than the actual two-sided GROW �-variable E∗Θ(δ).

�.� Examples

�.�.� Point null vs. one-parameter exponential family
Let {Pθ � θ ∈ Θ} with Θ ⊂ R represent a �-parameter exponential family for sample space Y ,
given in its mean-value parameterization, such that � ∈ Θ, and take Θ� to be some interval
(t′ , t) for some −∞ ≤ t′ ≤ � < t ≤ ∞, such that t′ , � and t are contained in the interior of
Θ. Let Θ� = {�}. Both H� = {P�} and H� = {Pθ ∶ θ ∈ Θ�} are extended to outcomes in
Y = (Y� , . . . ,Yn) by the i.i.d. assumption. For notational simplicity we set

D(θ��) ∶= D(Pθ(Y)�P�(Y)) = nD(Pθ(Y�)�P�(Y�)). (�.��)

We consider the δ-GROW �-variables E∗Θ(δ) relative to sets Θ(δ) as in (�.��). Since H� is
simple, we can simply take θ to be the parameter of interest, hence ∆ = Θ� and Γ plays no role,
so that Θ(δ) = {θ ∈ Θ� ∶ �θ� ≥ δ}.

One-Sided Test: simple GROW �-Variable Here we set t′ = � so that Θ(δ) = {θ ∈ Θ� ∶ θ ≥
δ}. We show in Appendix �.D that this is a case in which (�.��) holds: the δ-GROW �-variable
is simple, and can be calculated as a likelihood ratio E∗Θ(δ) = pδ(Y)�p�(Y) between two point
hypotheses, even though Θ(δ) is composite.

GROW �-Variables andUMPBayes tests We now show that, for this �-sided testing case, for
a speci�c value of δ, E∗Θ(δ) coincides with the uniformly most powerful Bayes tests of Johnson,
����b, giving further motivation for their use and an indication of how to choose δ if no a priori
knowledge is available. Note �rst that, since Θ� = {�} is a singleton, by�eorem �.�, Part �, we
have that E∗W = pW(Y)�p�(Y), i.e. for allW ∈W(Θ�), the GROW �-variable relative to {W}
is given by the Bayes factor pW�p�.�e following result is a direct consequence of Johnson,
����b, Lemma �.
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�eorem �.� (Uniformly Most Powerful Bayes Test (Johnson, ����b)). Consider the setting
above. Fix any � < α < � and assume that there is δ ∈ Θ� with D(δ��) = − log α. �en among
the class of all threshold-based tests based on local Bayes factors, i.e. all tests of the form “reject
i� pW(Y)�p�(Y) ≥ ��α” for some W ∈W(Θ�), the Type-II error is uniformly minimized over
Θ� by setting W to a degenerate distribution putting all mass on δ:

for all θ ∈ Θ� ∶ min
W∈W(Θ�)

Pθ �
pW(Y)
p�(Y)

≥ �
α
� = Pθ �

pδ(Y)
p�(Y)

≥ �
α
� ,

and with the test that rejects i� pδ(Y)�p�(Y) ≥ ��α,H� will be rejected i� the ML estimator θ̂
satis�es θ̂ ≥ δ.

�eorem �.� shows that, in the context of �-sided testing with �-parameter exponential families,
if a GROW �-variable is to be used in a safe test with given signi�cance level α and one is
further interested in maximizing power among all GROW �-variables (i.e. with respect to any
setW ′� of priors onΘ�), then one should use the simple �-variable E∗δ withD(Pδ(Y�)�P�(Y�)) =
(− log α)�n since this will lead to the uniformly most powerful GROW test.

Example �.�. [Normal Location, �- and �-sided] Consider the normal location setting of
Section �.�.� withΘ� = {�} as before, and µ ∈ Θ�, the mean, the parameter of interest. First take
Θ� = R+, i.e. a one-sided test. �en E∗Θ(µ) = pµ(Y)�p�(Y) and has ��(Θ(µ)) = D(µ��) =
(n��)�µ��. We now see that the uniformly most powerful δ-GROW �-variable at sample size n
is given by the µ̃n with D(µ̃n��) = − log α, so that µ̃n =

�
�(− log α)�n.�us (unsurprisingly),

this GROW �-variable is a likelihood ratio test between � and µ̃n at distance to � of order ��
√
n,

and we expect to gain (at least) − log α in capital growth if data are sampled from µ ≥ µ̃n .

In the two-sided case, with Θ� = R, we can pick the almost-δ-GROW simple �-value (�.��), i.e.
E○µ = �(���)pµ(Y) + (���)p−µ(Y)� �p�(Y). Using the distributions’ symmetry around �, we
can show (Appendix �.D) that in this case, E○µ = E∗µ , i.e. E○µ is in fact GROW for Θ(µ) = {Pµ ∶
�µ� ≥ µ}. Even though in this �-sided case we have no proof that it results in a uniformly most
powerful δ-GROW �-variable, we can still, when aiming for a high-power test, take our cue
from the �-sided cases and pick E○µ̃n

for the µ̃n such that ��(Θ(µ̃n)) = − log α.�is leads to
the test we described in Section �.�.� with threshold

�
cn�n → �.���

√
n.

�.�.� Nonparametric �-Variables
Some of the most well-known classical nonparametric tests are based on identifying a statistic
U = f (Y) that has the same distribution P�[U] under all θ ∈ Θ�. �is U is then the test
statistic on which a �-value is based. At the same time, it is common to report an (empirical)
e�ect size δ̂(U) for such a test, giving an indication of the found deviation from the null; the
precise de�nition of δ̂ varies from case to case. For any distribution P for Y and any given
de�nition of δ̂ we will write δ(P) ∶= EU∼P[δ̂(U)] for the population e�ect size. For simplicity
we restrict ourselves to cases in which δ̂ is a monotonically increasing function of U and
δ(P�) = �. Assuming we have chosen a test statistic U and a de�nition for δ̂, we can extend
the previous de�nitions to δ-GROW �-variables based on U or equivalently, δ̂. �e idea is
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thatH� andH� are so large that a GROW (or uniformly-most-powerful) �-variable among
all �-variables forH� andH� does not exist or is too hard to �nd; instead we make life easier
by searching for the �-variable that is GROW among all �-variables that can be written as a
function of U, which is a strict subset of those that can be written as a function of Y .�is is
easier since U has the same distribution P�[U] under all P� ∈H�. To this end, assume P�[U]
has density p� against some background measure µ. We de�ne Pλ as the distribution with
density pλ(u)∝ exp(λδ̂(u))p�(u). Let Λ be the set of λ for which Pλ is well-de�ned, i.e. for
which ∫ p�(u) exp(λδ̂(u))dµ(u) <∞.�en P ∶= {Pλ ∶ λ ∈ Λ} is an exponential family given
in its natural parameterization, and by a standard property of exponential families, EPλ [δ̂(U)]
is monotonically increasing in λ. Rephrasing in the mean-value parameterization we can thus
write P[δ] ∶= Pλδ where λδ is the λ such that EPλ [δ̂(U)] = δ.

Consider a one-sided test withH� representing δ(P) > �. Since we have reduced the problem to
the �-sided �-dimensional exponential family case of Section �.�.�, we can once again conclude
(�.��).�at is, for δ > � such that P[δ][U] is well-de�ned, we have that E∗ = p[δ](U)�p[�](U) is
a simple �-variable that is GROWrelative to the set {P ∈H� ∶ δ(P) ≥ δ}, for data coarsened toU.
We can then de�ne a simple two-sided �-variable analogously to Example �.�. Also,�eorem �.�
for �-dimensional exponential families above tells us that, for δ chosen so that

D �P[δ][U]�P[�][U]� = − log α, (�.��)

the uniformly-most-powerful GROW safe test is the test that rejects i� E∗ ≥ ��α, under the
assumption that U ∼ Pδ for δ ≠ �. While by construction we can assume that U ∼ P� under the
null, we cannot assume that U ∼ Pδ for some δ under the alternative; our constructed model
may be misspeci�ed. Whether E∗ still has a UMP property is thus an interesting question for
future research.

Example �.�. In theMann-WhitneyU test, we are given n = na+nb outcomes, with na outcomes
in group a and nb in group b. �is can be represented as n pairs (Xi ,Yi) with Xi ∈ {a, b},
Yi ∈ R, Xi indicating the group of the ith outcome, and n j = ∑n

i=� �Xi= j , for j ∈ {a, b}. Under
H�, all outcomes in group a are i.i.d., all outcomes in group b are i.i.d., but the two distributions
are not the same; underH�, all outcomes are i.i.d. with the same distribution.

�e Mann-Whitney U test is based on the Mann-Whitney U statistic (see any text book for
a de�nition). For every �xed na and nb , under all P ∈ H�, i.e all distributions such that
Y = (Y� , . . . ,Yna+nb) is i.i.d. with Yi ⊥ Xi , U has the same discrete distribution P[�][U] with
mass function p[�](u) with some �nite support U . U is normally used to calculate a �-value.
Instead, we use it to calculate an �-value in the manner indicated above: a standard e�ect size
for the Mann-Whitney test is U�(nanb). Instead for convenience we take δ̂ = U�(nanb) − ���,
so that EP�[δ̂] = �. De�ne

pλ(u) ∶=
p�(u) ⋅ eλδ̂(u)

∑u′∈U p�(u′)eλδ̂(u′)

Since U has a �nite range, pλ is well-de�ned for λ ∈ R and it is the probability mass function
of the Pλ de�ned earlier.�en P[δ](U) = Pλ(U) for the λ with EPλ [U] = δ, and the GROW
�-variables relative to {P ∈H� ∶ δ(P) ≥ δ} are simple: they are likelihood ratios for coarsened
data U of the form p[δ](U)�p[�](U).
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�.�.� �e Bayesian t-test and the simple δ-GROW t-test
Je�reys, ���� proposed a Bayesian version of the t-test; see also (Rouder et al., ����). We
start with the modelsH� andH� for data Y = (Y� , . . . ,Yn) given asH� = {P�,σ(Y) � σ ∈ Γ};
H� = {Pδ ,σ(Y) � (δ, σ) ∈ Θ�}, where ∆ = R, Γ = R+, Θ� ∶= ∆ × Γ and Θ� = {(�, σ) ∶ σ ∈ Γ},
and Pδ ,σ has density

pδ ,σ(y) =
exp�− n

� ��
y
σ − δ�

�
+ �

�
n ∑

n
i=�(yi−y)�
σ � ���

(�πσ �)n��
,

with y = �
n ∑

n
i=� yi .

Je�reys proposed to equip H� with a Cauchy prior W�[δ] on the e�ect size δ, and both H�
and H� with the scale-invariant prior measure with density wH(σ) ∝ ��σ on the variance.
Below we �rst show that, even though this prior is improper (whereas the priors appearing in
�eorem �.� are invariably proper), the resulting Bayes factor is an �-variable. We then show
that, for priorsW[δ]with more than �moments, it is in fact even the GROW �-variable relative
to all distributions inH� compatible withW[δ].�us, GROW optimality holds for most priors
W[δ] one might want to use, including standard choices (such as a standard normal) and
nonstandard choices (such as the two-point prior we will suggest further below) but ironically
not to the moment-less Cauchy proposed by Je�reys.

Almost Bayesian Case: prior on δ available For any proper prior distribution W[δ] on δ
and any proper prior distributionW[σ] on σ , we de�ne

pW[δ],W[σ](y) = �
δ∈∆
�
σ∈Γ

pδ ,σ(y)dW[δ]dW[σ],

as the Bayes marginal density under the product priorW[δ] ×W[σ]. In case thatW[σ] puts
all its mass on a single σ , this reduces to:

pW[δ],σ(y) = �
δ∈∆

pδ ,σ(y)dW[δ]. (�.��)

For convenience later on we set the sample space to be Y n = (R � {�}) × Rn−�, assuming
beforehand that the �rst outcome will not be �— an outcome that has measure � under all
distributions in H� and H� anyway. Now we de�ne V ∶= (V� , . . . ,Vn) with Vi = Yi��Y��. We
have that Y determines V, and (V,Y�) determines Y = (Y� ,Y� , . . . ,Yn).�e distributions in
H� ∪H� can thus alternatively be thought of as distributions on the pair (V,Y�). V is “Y with
the scale divided out”: it is well-known (and easy to check, see Appendix �.E) that under all
P ∈ H�, i.e. all P�,σ with σ > �, V has the same distribution P�[V] with density p′�. Similarly,
one shows that under all PW[δ],σ with σ > �, V has the same pdf p′W[δ] (which therefore does
not depend on the prior on σ). We now get that, for all σ > �,

E∗W[δ]�V� ∶=
p′W[δ](V)
p′�(V)

(�.��)
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satis�es EV∼P[E∗W[δ]�V�] = � for all P ∈H�, hence it is an �-variable. Here we introduced the
notation E∗W[δ]�V� for �-variables that are GROW relative toW for data ‘at level’ V, i.e among
all �-variables that can be written as functions of V (see Appendix �.A for further explanation).
Remarkably, this ‘scale-free’ �-variable coincides with the Bayes factor one gets if one uses, for
σ , the prior wH(σ) = ��σ suggested by Je�reys, and treats σ and δ as independent.�at is, as
shown in Appendix �.E, we have

∫σ pW[δ],σ(Y)wH(σ)dσ

∫σ p�,σ(Y)wH(σ)dσ
=
p′W[δ](V)
p′�(V)

= E∗W[δ]�V�. (�.��)

Despite its improperness, wH induces a valid �-variable when used in the Bayes factor.�e
equivalence of this Bayes factor to E∗W[δ]�V� simply means that it manages to ignore the
‘nuisance’ part of the model and models the likelihood of the scale-free V instead.�e reason
this is possible is that wH coincides with the right-Haar prior for this problem (Eaton, ����;
Berger, Pericchi and Varshavsky, ����), about which we will say more below. Amazingly, it turns
out that the �-variable (�.��) is GROW (among all �-variables for data Y, not just the coarsened
V!) under the weak condition that the priorW[δ] has a (� + ε)th moment.�is follows from
Part � of our secondmain result,�eorem �.� below. Its proof is by nomeans straightforward (at
least, we did not �nd a simple proof). Let, for priorsW[δ],W[σ], P[V]W[δ],W[σ] be the marginal
distribution on V, i.e. the distribution with density p′W[δ],W[σ].

�eorem �.�. Let W[δ] be a distribution on δ such that for some ε > �, Eδ∼W[δ][�δ��+ε] < ∞
for some ε > � (in particular this includes all degenerate priors with mass � on a single δ). Let
W[Γ] be the set of all distributions W[σ] on the variance σ . We have:

inf
W′[σ],W[σ]∈W(Γ)

D(PW[δ],W′[σ]�P�,W[σ]) = inf
W[σ]∈W(Γ)

D(PW[δ],W[σ]�P�,W[σ])

= D(P[V]W[δ]�P
[V]
� ). (�.��)

More generally, �x a convex set of distributions W[δ] on δ such that, for some ε > �, each
W[δ] ∈ W[δ] satis�es Eδ∼W[δ][�δ��+ε] < ∞. Let W ′� be a set of probability distributions on
δ × σ such that, for each W[δ] ∈W[δ] and each distribution W[σ] ∈W(Γ) on σ ,W ′ contains
a distribution whose marginal on δ coincides with W[δ] and whose marginal on σ coincides
with W[σ]. We then have:

inf
W∈W ′

�

inf
W[σ]∈W[Γ]

D(PW�P�,W[σ]) = inf
W[δ]∈W[δ]

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ])

= inf
W[δ]∈W[δ]

D(P[V]W[δ]�P
[V]
� ). (�.��)

Part � of this theorem allows us to use Part � of�eorem �.� to conclude that E∗W[δ]�V� = E
∗

W�
:

the Bayes factor based on the right Haar prior, is not just an �-variable, but even the GROW
�-variable relative to the set of all priors on δ × σ that are compatible withW[δ].
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Simple GROW safe t-test: prior on δ not available What if we have no clear idea on how
to choose a marginal prior on δ? In that case, we can once again use the δ-GROW �-variable
for δ. First, consider �-sided tests. In Appendix �.D we show that (�.��) holds in this case, i.e.
minW∈W(Θ(δ)) D(P

[Y]
W �P

[Y]
� ) is achieved for the degenerate prior that puts mass � on δ, i.e.

the δ-GROW �-variable is simple. We can then use�eorem �.� above to infer that the Bayes
factor based on the right Haar prior wH on σ and this point prior on δ, i.e. E∗δ = p′δ(V)�p′�(V)
is equal to the GROW �-variable relative to Θ(δ). Mutatis mutandis, the same holds for the
�-sided test: as shown in Appendix �.D, with the GROW set Θ(δ) = {δ ∶ �δ� ≥ δ} we get that
the δ-GROW �-variable is simple, and given by the Bayes factor with, forH�, the prior on δ
that puts mass ��� on δ and ��� on −δ.

Optional Stopping For any priorW[δ], E∗W[δ] de�nes a test statistic process (E
∗

W[δ]�V
i�)i∈N

with E∗W[δ]�V i� = p′W[δ](V
i)�p′�(V i). Notably, tests based on this process are safe for optional

stopping under De�nition �.�: by Proposition �, this process de�nes a test martingale and hence,
by the same proposition, the threshold test based on (E∗W[δ]�V

i�)i∈N preserves Type I error
guarantees also under optional stopping. As indicated by (Hendriksen, De Heide and Grünwald,
����), this test does not necessarily preserve Type-I error guarantees under optional stopping
with stopping rules that can only be written as function of Y� ,Y� , . . . and not of V� ,V� , . . .. But,
since E∗W[δ]�V

i� is a function of the Vi , it does allow for the prototypical instance of optional
stopping, where we stop at the smallest t at which E∗W[δ]�V

t� > �� = ��α.�e insight that E∗W[δ]
provides a test martingale is not new: as we learned from A. Ramdas, it was already considered
by Robbins, ����.

Extension to General Group Invariant Bayes Factors In a series of papers (Berger, Pericchi
and Varshavsky, ����; Dass and Berger, ����; Bayarri et al., ����), Berger and collaborators
developed a theory of Bayes factors forH� = {P�,γ ∶ γ ∈ Γ} andH� = {Pδ ,γ ∶ δ ∈ ∆, γ ∈ Γ}with a
nuisance parameter (vector) γ that appears in both models and that satis�es a group invariance;
the Bayesian t-test is the special case with γ = σ , Γ = R+ and with the scalar multiplication
group and δ an ‘e�ect size’. Other examples include regression based on mixtures of g-priors
(Liang et al., ����) and the many examples given by e.g. Berger, Pericchi and Varshavsky, ����;
Dass and Berger, ����, such as testing a Weibull vs. the log-normal or an exponential vs. the
log-normal.�e reasoning of the �rst part of this section straightforwardly generalizes to all
such cases: under some conditions on the prior on δ, the Bayes factor based on using the right
Haar measure on γ in both models gives rise to an �-variable. We furthermore conjecture that in
all such testing problems, the resulting Bayes factor is even GROW relative to a suitably de�ned
setW�; i.e. that a suitable analogue of �eorem �.� holds. �e proof of this theorem seems
extendable to the general group invariant setting, with the possible exception of Lemma �� in
Appendix �.E which uses particular properties of the variance of a normal; generalizing this
lemma (which also requires us to handle models with a nonunique right Haar prior (Sun and
Berger, ����), for which it is not immediately clear how a generalization would look like) is a
major goal for future work.
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�.�.� Contingency Tables
Let Y n = {�, �}n and let X = {a, b} represent two categories. We start with a multinomial
model G� on Z = X ×Y , extended to n outcomes by independence. We want to test whether
the Yi are dependent on the Xi . To this end, we condition every distribution in G� on a �xed,
given, X = x = (x� , . . . , xn), and we letH� be the set of (conditional) distributions on Z that
thus result.

We thus assume the design of X n to be set in advance, but N�, the number of ones, to be
random; alternative choices are possible and would lead to a di�erent analysis. Conditioned on
X = x, the counts n, na = Na(x) and nb (see Table �.�), the likelihood of an individual sequence
y � x with statistics Na� ,Nb� ,Nb� ,Nb� becomes:

pµ��a ,µ��b(y � x) = pµ��a ,µ��b(y � x, na , nb , n) (�.��)

= µNa�
��a (� − µ��a)

Na� ⋅ µNb�
��b (� − µ��b)

Nb�

�ese densities de�ne the alternative modelH� = {Pµ��a ,µ��b ∶ (µ��a , µ��b) ∈ Θ�}withΘ� = [�, �]�.
H�, the null model, simply has X = (X� , . . . , Xn) and Y = (Y� , . . . ,Yn) independent, with
Yi , . . . ,Yn i.i.d. Ber(µ�) distributed, µ� ∈ Θ� ∶= [�, �], i.e.

pµ�(y � x) = pµ�(y) = µN�
� (� − µ�)

N� .

To test H� against H�, we numerically calculate the GROW �-variable E∗Θ(ε) where Θ(ε)

� � sum
a µa� µa� µa
b µb� µb� µb

sum µ� µ� �

� � sum
a Na� Na� na
b Nb� Nb� nb

sum N� N� n

Table �.�: �x� contingency table: parameters and counts. µi j is the (unconditional) probability of observing category i
and outcome j, and Ni j is the corresponding count in the observed sample.

is de�ned via (�.��) for two di�erent divergence measures detailed further below. In both
cases, Θ(ε) will be compact, so that by the joint lower-semi-continuity of the KL divergence
(Posner, ����), minD(PW��PW�) is achieved by some unique (W∗

� ,W∗

� ), and we can use Part
� of�eorem �.� to infer that the GROW �-variable is given by E∗

W(Θ(ε)) = E
∗

Θ(ε) = pW∗
�
(Y �

X)�pW∗
�
(Y). Note that the ‘priors’ W∗

� and W∗

� may depend on the observed x = xn , in
particular on na and nb , since we take these as given throughout. We can further employ
Carathéodory’s theorem (see Appendix �.E.� for details) to give us thatW∗

� andW∗

� must have
�nite support, which allows us to �nd them reasonably e�ciently by numerical optimization;
we give an illustration in the next section.

We now consider two de�nitions of Θ(ε). �e �rst option is to think of µ� as a ‘nuisance’
parameter: we want to test for independence, and are not interested in the precise value of µ�, but
rather in the ‘e�ect size’ δ ∶= �µ��a−µ��b �.We can then, once again, use the δ-GROW �-variable for
parameter of interest δ. To achieve this, we re-parameterize the model in a manner that depends
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Figure �.�:�e Beam: Graphical depiction of the GROW Θ(δ).

on x via na and nb . For given µ��a and µ��b , we set µ� = (naµ��a +nbµ��b)�n, and δ as above, and
we de�ne p′δ ,µ�(y�x) (the probability in the new parameterization) to be equal to pµ��a ,µ��b(y�x)
as de�ned above. As long as x (and hence na and nb) remain �xed, this re-parameterization is
�-to-�, and all distributions in the null modelH� correspond to a p′δ ,µ� with δ = �. In Figure �.�
we show, for the case na = nb = ��, the sets Θ(δ) for δ = {�.��, �.��, �.��, �.��, �.��}. For
example, for δ = �.��, Θ(δ) is given by the region on the boundary, and outside of, the ‘beam’
de�ned by the two depicted lines closest to the diagonal. We numerically determined the JIPr,
i.e., the prior (PW∗

�
, PW∗

�
) for each choice of δ.�is prior has �nite support, the support points

are depicted by the dots; in line with intuition, we �nd that the support points for priors on
the set Θ(δ) are always on the line(s) of points closest to the null model, i.e. the δ-GROW
�-variable is simple. Variations of this de�nition of Θ(δ) and corresponding GROW �-values
have been considered by Turner, ����, who showed that for one-sided testing, one can calculate
the above JIPr analytically; moreoever, if data comes in as pairs of each group, so that all Xi are
give by (a, b) and Yi = (yia , yib) ∈ {�, �}�, then on this rougher �ltration, (where na = nb at all
sample points), the JIPR for each n de�nes a test martingale and, along the lines of Proposition �,
we can use it for testing that is safe under optional stopping.�e second option for de�ning
Θ(ε) is to take the original parameterization, and have d in (�.��)) be the KL divergence.�is
choice is motivated in Appendix �.F.�en Θ(ε) is the set of (µ��a , µ��b) with

inf
µ′�∈[�,�]

D(Pµ��a ,µ��b�Pµ′�)
n

=
D(Pµ��a ,µ��b�Pµ�)

n
≥ ε.

Note that the scaling by ��n is just for convenience — since Pµ�. are de�ned as distributions of
samples of length n, the KL grows with n and our scaling ensures that, for given µ��a , µ��b and
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Figure �.�:�e Lemon: Graphical depiction of the KL-divergence based GROW Θ(ε).

n�a , n�,b , the set Θ(ε) does not change if we multiply n�a and n�b by the same �xed positive
integer. Note also that the distributions Pµ��a ,µ��b and Pµ� are again conditional on the given
x (and hence na and nb), and µ� = (naµ��a + nbµ��b)�n as before. We can now numerically
determine Θ(ε) for various values of ε; this is done in Figure �.�, where, for example, the set
Θ(ε) for ε ∈ {log ��, log ��, . . . , log���} is given by all points on and outside of the inner-
mostly depicted ‘lemon’. Again, we can calculate the corresponding JIPr; the support points of
the corresponding priors are also shown in Figure �.�.

�.�.� General Exponential Families
�e contingency table setting is an instance of a test between two nested (conditional) expo-
nential families. We can extend the approach of de�ning GROW sets Θ(ε) relative to distance
measures d and numerically calculating corresponding JIPrs (PW∗

�
, PW∗

�
) straightforwardly to

this far more general setting. As long as�eorem �.�, Part � can be applied withW ′� =W(Θ(ε)),
the resulting Bayes factor pW∗

�
(Y)�pW∗

�
(Y)will be a GROW �-variable.�e main condition for

Part � is the requirement that D(PW′
�
�PW∗

�
) <∞ for allW ′ ∈W(Θ(ε)), which automatically

holds if D(Pθ�PW∗
�
) <∞ for all θ ∈ Θ(ε). Since, for exponential families, D(Pθ�Pθ′) <∞ for

all θ , θ′ in the interior of the parameter space Θ = Θ�, this condition can o�en be enforced to
hold though, if we take a divergence measure d such that for each ε > �, Θ(ε) is a compact
subset of Θ� and for each θ ∈ Θ� that is not on the boundary, there is an ε > � such that
θ ∈ Θ(ε).

For large n though, numerical calculation of GROW �-variables may be time consuming, and
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one may wonder whether there exists other nontrivial (but perhaps not GROW, or at least
not GROW relative to any intuitive sets Θ(ε)) �-variables that take less computational e�ort.
It turns out that these exist: one can calculate a conditional GROW-�-variable. We illustrate
this for the contingency table setting. Fix an arbitrary function g mapping x toW(Θ�), the
set of priors on Θ�. Conditional on the su�cient statistic relative to H�, µ̂�(Y) = N��n, all
distributions in H� assign the same probability mass p�(y � µ̂�(y)) = ��� nN�

� to all y with
µ̂�(y) = µ̂�(Y).�e conditional �-variable based on g is then given by

E =
pg(x)(Y � µ̂�(Y), x)
p�(Y � µ̂�(Y))

= � n
N�
� ⋅

pg(x)(Y � x)
pg(x)(µ̂�(Y) � x)

. (�.��)

�is gives a conditional (and hence also unconditional) �-variable for every choice of function
g(x). In fact it coincides with what has been called a method for obtaining ‘clean’ evidence
for the � × � table setting by eliminating the nuisance parameter µ̂� (Royall, ����). In settings
with optional stopping based on the value of µ̂�, it has a GROW-like optimality property for
certain choices of g which we will further explore in future work. In settings with �xed n, it is
not GROW and may perhaps be seen as a ‘quick and dirty’ approach to design an �-variable.
It clearly can be extended to any combination ofH� (not necessarily an exponential family)
and any exponential familyH� such that the ML estimator θ̂�(y) is almost surely well-de�ned
under all P ∈H�, whereas at the same time, θ̂�(Y) is a su�cient statistic forH�, i.e. there is a
�-to-� correspondence between the ML estimator θ̂�(Y) and the su�cient statistic �(Y).�is
will hold for most exponential families encountered in practice (to be precise,H� has to be a
regular or ‘aggregate’ Barndor�-Nielsen, ����, page ���-��� exponential family). In such cases,
if, for example, a reasonable priorW� on Θ� is available, we can e�ciently calculate nontrivial
�-variables based on taking g(x) =W�, but whether these are su�ciently strong approximations
of the GROW �-variable will have to be determined on a case-by-case, i.e. model-by-model
basis; we did some experiments for the contingency table, with W� a Beta prior, and there
we found them to be noncompetitive in terms of GROW and power with respect to the full
JIPr�.

�.� Testing Our GROWTests
We perform some initial experiments with GROW �-variables for compositeH� nested within
H�. We consider two common settings: in one setting, we want to perform the most sensitive
test possible for a given sample size n; we illustrate this with the contingency table test. In the
second setting, we are given aminimum clinically relevant e�ect size δ and we want to �nd the
smallest sample size n for which we can expect good statistical (power) properties.

�.�.� Case �: Fixed n, ε unknown
Mini-Simulation-Study �: �e �x� Table We �rst consider the GROW �-variables E∗Θ(δ)
relative to parameter of interest δ = �µ��a − µ��b �, the �rst option considered in Section �.�.�. For

�Although it was not connected to �-variables, the idea to modify Bayes factors for nested exponential families by
conditioning on the smaller model’s su�cient statistic was communicated to us by T. Seidenfeld, ����.
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a grid of δ’s in the range [�.�, �.�] we looked at the best power that can be achieved by GROW
�-variable E∗Θ(δ∗), i.e. we looked for the δ∗ (again taken from a grid in the range [�.�, �.�])
such that

� − β(δ, δ∗) ∶= inf
θ∈Θ((δ))

Pθ �log E∗Θ((δ∗)) ≥ − log α� (�.��)

is maximized. We summarized the results in Table �.�. We see that, although we know of no

δ ��(Θ(δ)) = D(PW∗
�
�PW∗

�
) δ∗ power � − β

�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��

Table �.�: Relating δ, δ∗, power and capital growth ��(Θ(δ)) for na = nb = �� for the GROW �-variables. For
example, the row with �.�� in the �rst column corresponds to the two black lines in Figure �.� which represent all
θ� = (µ��a , µ��b) with δ = �.��.

analogue to Johnson’s�eorem �.� here, something like a “uniformly most powerful δ-GROW
safe test” does seem to exist — it is given by E∗Θ(δ∗) with δ∗ = �.��; and we can achieve power
�.� for all θ ∈ Θ(δ) with δ � �.�.�e same exercise is repeated with the GROW �-variables
de�ned relative to the KL divergence in Table �.�, again indicating that there is something
like a uniformly most powerful δ-GROW safe test. We now compare four hypothesis tests
for contingency tables for the na = nb = �� design: Fisher’s exact test (with signi�cance level
α = �.��), the default Bayes Factor for contingency tables (Gunel and Dickey, ����; Jamil
et al., ����) (which is turned into a test by rejecting if the Bayes factor ≥ �� = − log α), the
‘uniformly most powerful’ GROW �-variable E∗Θ(δ∗) with δ∗ = �.�� (see Table �.�) which
we call GROW(Θ(δ)) and the ‘uniformly most powerful’ KL-GROW �-variable E∗Θ(ε∗) with
ε∗ = log �� (see Table �.�) which we call (Θ(ε)). �e �.�-iso-power lines are depicted in
Figure �.�; for example, if θ� = (µ��a , µ��b) is on or outside the two curved red lines, then Fisher’s
exact test achieves power �.� or higher.�e di�erence between the four tests is in the shape:
Bayes and the δ-based JIPr yield almost straight power lines, the KL-based JIPr and Fisher
curved. Fisher gives a power ≥ �.� in a region larger than the KL-based JIPr, which makes sense
because the corresponding test is not safe; the δ-GROW and default Bayes factor behave very
similarly, but they are not the same: in larger-scale experiments we do �nd di�erences. We see
similar �gures if we compare the rejection regions rather than the iso-power lines of the four
tests (�gures omitted).
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log nε ��(Θ(ε)) = D(PW∗
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) log nε∗ power
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Table �.�: Relating ε, ε∗, power and capital growth ��(Θ(ε)) for na = nb = �� for the KL-GROW �-variables. For
example, the row with �� in the �rst column corresponds to the two curved red lines in Figure �.� which represent all
θ� = (µ��a , µ��b) with inf µ∈[�,�] D(Pθ ��Pµ) = log ��.
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�.�.� Case �: n to be determined, δ known
Consider δ-GROW �-variables for some scalar parameter of interest δ. Whereas in Case �, the
goal was implicitly to detect the ‘smallest detectable deviation’ fromH�, in Case � we know
beforehand that we are only really interested in rejectingH� if δ ≥ δ. Here δ > � is the minimum
value at which the statement ‘�δ� ≥ δ’ has any practical repercussions.�is is common inmedical
testing in which one talks about theminimum clinically relevant e�ect size δ.

Assuming that generating data costs money, we would like to �nd the smallest possible n at
which we have a reasonable chance of detecting that �δ� ≥ δ. Proceeding analogously to Case
�, we may determine, for given signi�cance level α and desired power � − β, the smallest n at
which there exist δ∗ such that the safe test based on �-variable E∗Θ(δ∗) has power at least � − β
for all θ ∈ Θ(δ). Again, both n and δ∗ may have to be determined numerically (note that δ∗ is
not necessarily equal to δ).

Mini-Simulation-Study �: �-Sample t-test In this simulation study, we test whether the
mean of a normal distribution is di�erent from zero, when the variance is unknown. We
determine, for a number of tests, the minimum n needed as a function of minimal e�ect size
δ to achieve power at least �.� when rejecting at signi�cance level α = �.��. We compare the
classical t-test, the Bayesian t-test (with Cauchy prior on δ, turned into a test that is safe under
optional continuation by rejecting when BF ≥ �� = ��α) and our safe test based on the GROW
�-variable E∗Θ(δ∗)�V

n� = E∗δ∗�Vn� that maximizes power while having a GROW property. For
the standard t-test we can just compute the required (batch) sample size.�is is plotted (black
line) in Figure �.� as a function of δ, where we also plot the corresponding required sample
sizes for the Bayesian t-test (larger by a factor of around �.� − �.�) and our maximum power
δ∗-GROW t-test (larger by a factor of around �.� − �.�).

However, these three lines do not paint the whole picture: we have already indicated in Sec-
tion �.�.� that for any priorW[δ], the threshold test based on (E∗W[δ]�V

i�)i∈N is safe also under
optional stopping. Since both the Bayesian t-test and our δ-GROW t-test are an instance of
E∗W[δ] as given by (�.��), we preserve Type-I error guarantees if we stop at the smallest t at
which E∗W[δ]�V

t� > �� = ��α. We can now compute an e�ective sample size under optional
stopping in two steps, for given δ. First, we determine the smallest n at which the δ∗-GROW
�-variable E∗Θ(δ∗) which optimizes power achieves a power of at least �.� = � − β; we call this
nmax. We then draw data sequentially and record the E∗W[δ]�V

t� until either this �-variable
exceeds ��α or t = nmax.�is new procedure still has Type I error at most α, and it must have
power ≥ �.�.�e ‘e�ective sample size’ is now the sample size we expect if data are drawn from
a distribution with e�ect size at δ and we do optional stopping in the above manner (‘stopping’
includes both the occasions on whichH� is accepted and t = nmax, and the occasions whenH�
is rejected and t ≤ nmax). In Figure �.� we see that this e�ective sample size is almost equal to
the �xed sample size we need with the standard t-test to obtain the required power.�us, quite
unlike the classical t-test, our δ-GROW t-test �-variable preserves Type I error probabilities
under optional stopping; it needs more data than the classical t-test in the worst-case, but
hardly more on average underH�. For a Neyman-Pearsonian hypothesis tester, this should be a
very good reason to adopt it!
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‘o.s.’ denote the sample size needed if optional stopping (see main text) is done (and for E∗, the prior is optimized for
the batch sizes that were plotted as well.�e ratios between the curves at δ = �.� and the batch sample size needed
for the t-test is �.� (E∗ with o.s.), �.� (Bayes t-test with o.s.), �.� (E∗ with �xed sample size) and �.� (Bayes t-test with
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the main text.
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�.� Earlier, Related and Future Work
�-Variables, Test Martingales, General Novelty As seen in Section �.�, �-variables are close
cousins of test martingales, which go back to Ville, ����, the paper that introduced the modern
notion of a martingale. �-variables themselves have probably been originally introduced by
Levin (of P vs NP fame) (����) (see also (Gács, ����)) under the name test of randomness, but
Levin’s abstract context is quite di�erent from ours. Independently discovered by Zhang, Glancy
and Knill, ����, they were later analyzed by Shafer et al., ����; Shafer and Vovk, ����; Vovk
and Wang, ����; all these authors used di�erent names for the concept. While we originally
called them ‘S-value’, the paper (Vovk and Wang, ����), which appeared a�er the �rst version
of the present paper, called them �-variables, a name which we decided to adopt for its better
motivation (� can stand both for expectation, just like the � in �-value stands for probability;
but also for ‘evidence’).

Test martingales themselves have been thoroughly investigated by Shafer et al., ����; Shafer and
Vovk, ����.�ey themselves underlie AV (anytime-valid) �-values (Johari, Pekelis and Walsh,
����), AV tests (which we call ‘tests that are safe for optional stopping’) and AV con�dence
sequences.�e latter were recently developed in great generality byA. Ramdas and collaborators;
see e.g. (Balsubramani and Ramdas, ����; Howard et al., ����b; Howard et al., ����a). Both
AV tests and con�dence sequences have �rst been developed by H. Robbins and his students
(Darling and Robbins, ����; Lai, ����; Robbins, ����). Like we do for �-variables, Ramdas et
al. (and also e.g. Pace and Salvan, ����) stress the promise of the AV notions for a safer kind
of statistics that is signi�cantly more robust than standard testing and con�dence interval
methodology.

Just like regular tests can be turned into con�dence intervals by varying the null and ‘inverting’
the resulting tests, AV con�dence intervals can be created by starting with a collection of test
martingales, one for each null, and then varying the null and inverting the AV test based on
the test martingale for each null. We can do (and plan to investigate in future work) the same
thing with �-variables. More generally, the work on AV tests and con�dence sequences is very
similar in spirit to ours, with our work stressing analysis at the level of batches of data rather
than individual data points.�us, we do not claim any real novelty for the ‘safe’ or ‘always valid’
setting.�e real novelty is in�eorem �.� and �.�. However, as we discovered a�er posting
the �rst version of the present paper, a special case of �eorem �.� was already formulated
and proved� by Zhang, Glancy and Knill, ���� (see also (Zhang, ����)) who show that GROW
�-variables can be constructed for discrete outcome spaces, simple (singleton)H� and convex
H�.�eorem �.� extends this to its full generality, showing that nontrivial �-variables always
exist and that optimal ones can o�en be constructed, for nonconvexH� andH� that are both
composite — that insight is the main novelty of this paper.

Relation to Sequential Testing Sequential testing (Lai, ����), pioneered by Wald and Barn-
ard and developed much further by H. Robbins and his students, is mathematically similar
to testing based on test martingales and (therefore) �-variables. Sequential tests are based on

�Zhang, Glancy and Knill, ���� was in turn inspired by Van Dam, Gill and Grunwald, ����, co-authored by one of
us, which identi�es the importance of the KL divergence in test design but falls short of de�ning �-values.
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random processes (Si)i∈N that are a likelihood ratio of (potentially coarsened) data under all P
in bothH� andH�. By this we mean that there is a coarsening {Vi} of the {Yi} so that both the
null and the alternative are simple for data coarsened to {Vi}, as in Proposition �, so that for
each n, all distributions in P� ∈H� induce the same distribution Q�[Vn] on Vn with density q′�,
and all distributions P� ∈H� induce the same distribution Q�[Vn] on Vn with density q′�, and
Sn = q′�(Vn)�q′�(Vn).�e setting can be extended to the case whereH� contains additional
distributions inH� andH�, as long as for all P� ∈H�, Q�[Sn], the marginal distribution of Sn
under Q�[Vn], stochastically dominates P�[Vn], and under all P� ∈H�, Q�[S−�n ], the marginal
distribution of ��Sn under Q�[Vn], stochastically dominates P�[Vn].

For such likelihood ratio processes, S� , S� , . . . has the property of being a test martingale under
bothH� and (a�er inversion) underH�.�e sequential test based on S� , S� , . . . with prespeci�ed
parameters α, β proceeds by calculating S� , S� , . . . and stopping at τ∗, the smallest τ at which
either Sτ ≥ (� − β)�α (‘accept’) or Sτ ≤ (� − α)�β (‘reject’). Wald showed that this test has Type
I error probability bounded by α and Type II error bounded by β.�e reason one can stop at a
smaller threshold ((� − β)�α rather than ��α) is that one has to stop at τ∗,�us, the method
does not allow for optional stopping in our sense: the probability that there is some n with
Sn ≥ (� − β)�α is strictly larger than α.

Still, since S� , S� , . . . forms a test martingale underH�, it can be used to generate useful �-values
as explained in Section �.�.�. �us, much of the work in sequential testing can be re-cycled
to obtain test martingales and �-values. Of course, as discussed in that section, not all useful
(δ-GROW) �-variables derive from martingales, let alone from ‘two-sided’ martingales.

Conditional Frequentist Tests In a series of papers starting with the landmark (Berger,
Brown and Wolpert, ����), Berger, Brown, Wolpert (BBW) and collaborators, extending initial
ideas by Kiefer, ���� develop a theory of frequentist conditional testing that “in spirit” is very
similar to ours (see also Wolpert, ����; Berger, ����) — one can view the present paper as a
radicalization of the BBW stance. Yet in practice there are important di�erences. For example,
our link between posteriors and Type I error is slightly di�erent (Bayes factors, i.e. posterior
ratios vs. posterior probabilities), in our approach there are no ‘no-decision regions’, in the BBW
papers there is no direct link to optional continuation.

Related Work on Relating �-values and �-variables Shafer and Vovk, ���� give a general
formula for calibrators f . �ese are decreasing functions f ∶ [�, �] → [�,∞] so that for any
�-value P, E ∶= �� f (P) is an �-variable. Let f��(P) ∶= −eP log P, a quantity sometimes called
the Vovk-Sellke bound (Bayarri et al., ����)), having roots in earlier work by by Vovk, ���� and
Sellke et al. (Sellke, Bayarri and Berger, ����). All calibrators satisfy limP↓� f (P)� f��(P) =∞,
and calibrators f advocated in practice additionally satisfy, for all P ≤ ��e, f (P) ≥ f��(P).
For example, for any calibrator f suggested for practice, rejection under the safe test with
signi�cance level α = �.��, so that E ≥ ��, would then correspond to reject only if P ≤
f −�(�.��) > f −��� (�.��) ≈ �.����, requiring a substantial amount of additional data for rejection
under a given alternative. Note that the �-variables we developed for givenmodels in previous
sections are more sensitive than such generic calibrators though. For example, in Section �.�.�
the threshold �.���

√
n corresponding to α = �.�� corresponds roughly to p = �.���, a factor



��� Chapter �. Safe Testing

� larger. Experiments in the master’s study (Hu, ����) indicate a similar phenomenon for
nonparametric tests: GROW �-values designed speci�cally for a given H� and H� achieve
higher growth rate and higher power than calibration �-values based on �-values for theseH�
andH�.

RelatedWork: Testing based on Data-Compression and MDL

Example �.�. Ryabko and Monarev, ���� show that bit strings produced by standard random
number generators can be substantially compressed by standard lossless data compression
algorithms such as zip, which is a clear indication that the bits are not so random a�er all.�us,
the null hypothesis states that data are ‘random’ (independent fair coin �ips).�ey measure
‘amount of evidence againstH� provided by data y = y� , . . . , yn ’ as

n − Lzip(y),

where Lzip(y) is the number of bits needed to code y using (say) zip. Now, de�ne p�(y) =
�−Lzip(y). Via Kra�’s inequality (Cover and�omas, ����) one can infer that∑y∈{�,�}n p�(y) ≤ �
(for this particular case, see the extended discussion by Grünwald, ����, Chapter ��). At the
same time, for the null we have H� = {P�}, where P� has mass function p� with for each n,
y ∈ {�, �}, p�(y) = �−n . De�ning E ∶= p�(Y)�p�(Y) we thus �nd

EY∼P�[E] = �
y∈{�,�}n

p�(y) ≤ � ; log E = n − Lzip(Y).

�us, the Ryabko-Monarov codelength di�erence is the logarithm of an �-variable. Note that
in this example, there is no clearly de�ned alternative; being able to compress by zip simply
means that the null hypothesis is false; it certainly does not mean that the ‘sub-distribution’ p�
is true (if one insists on there being an alternative, one could view p� as a representative of a
nonparametricH� consisting of all distributions P� with EY∼P�[log E] > �, a truly huge and not
so intuitive set).

More generally, by the same reasoning, for singletonH� = {P�}, any test statistic of the form
p�(Y)�p�(Y), with p� the density of P� and p� a density or sub-density (integrating to less
than �) is an �-variable. Such �-variables have been considered extensively within theMinimum
Description Length (MDL) and prequential approaches to model selection (Rissanen, ����;
Dawid, ����; Barron, Rissanen and Yu, ����; Grünwald and Roos, ����). In these approaches
there usually is a clearly de�ned alternativeH�, so that a Bayesian would choose p� ∶= pW� to be
a Bayes marginal density. In contrast, the MDL and prequential approach allow more freedom
in the choice of p�. MDL merely requires p� to be a ‘universal distribution’ such as a Bayes
marginal, a normalized maximum likelihood, prequential plug-in or a ‘switch’ distribution
(Grünwald, ����). With simple H�, all such ‘MDL factors’ also constitute �-variables; but
with compositeH�, just as with Bayes factors, the standard MDL approach may fail to deliver
�-variables.

FutureWork,OpenProblems In Section �.�.�we indicated that standard δ-GROW �-variables
o�en turn out to be ‘simple’ (and therefore easy to implement): they are de�ned to be GROW
relative to a large set, but they end up as Bayes factors pW∗

�
�pW∗

�
in whichW∗

� puts all mass
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on the boundary of Θ�. We aim to investigate the generality of this phenomenon in future
work.

We already indicated that it may be possible to extend �eorem �.� to show that the Bayes
factor based on the right Haar prior can be GROW in more general group invariant settings;
showing or disproving this is a major goal for future work. Also, just as we propose to fully
base testing on a method that has a sequential gambling/investment interpretation, Shafer and
Vovk have suggested, even more ambitiously, to base the whole edi�ce of probability theory
on sequential-gambling based game theory rather than measure theory (Shafer and Vovk,
����; Shafer and Vovk, ����); see also (Shafer, ����) who emphasizes the ease of the betting
interpretation. Obviously our work is related, and it would be of interest to understand the
connections more precisely.

�.� A�eory of Hypothesis Testing

�.�.� A Common Currency for Testers adhering Je�reys’, Neyman’s and
Fisher’s Testing Philosophies

�e three main approaches towards null hypothesis testing are Je�reys’ Bayes factor methods,
Fisher’s �-value-based testing and the Neyman-Pearson method. Berger, ����, based on earlier
work, e.g. (Berger, Brown and Wolpert, ����), was the �rst to note that, while these three meth-
odologies seem super�cially highly contradictory, there exist methods that have a place within
all three. Our proposal is in the same spirit, yet more radical; it also di�ers in many technical
respects from Berger’s. Let us brie�y summarize how �-variables and the corresponding safe
tests can be �t within the three paradigms:

Concerning the Neyman-Pearson approach: �-variables lead to tests with Type-I error guar-
antees at any �xed signi�cance level α, which is the �rst requirement of a Neyman-Pearson
test.�e second requirement is to use the test that maximizes power. But we can use GROW
�-variables designed to do exactly this, as we illustrated in Section �.�.�e one di�erence to the
NP approach is that we optimize power under the constraint that the �-variable is GROW—
which is essential to make the results of various tests of the same null easily combinable, and
preserve Type I error probabilities under optional stopping. Note though that this constraint
is major: as shown in Example �.�, the standard NP tests lead to useless �-variables under the
GROW criterion.

Concerning the Fisherian approach: we have seen that �-variables can be reinterpreted as
(quite) conservative �-values. But much more importantly within this discussion, �-variables
can be de�ned, and have a meaningful (monetary) interpretation, even if no clear (or only a
highly nonparametric/nonstationary) alternative can be de�ned.�is was illustrated in the data
compression setting of Example �.�.�us, in spirit of Fisher’s philosophy, we can use �-variables
to determine whether there is substantial evidence againstH�, without predetermining any
alternative: we simply postulate that the larger E, the more evidence againstH� without having
speci�c frequentist error guarantees. �e major di�erence though is that these �-variables
continue to have a clear (monetary) interpretation even if we multiply them over di�erent tests,
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and even if the decision whether or not to perform a test (gather additional data) depends on
the past.

Concerning the Bayesian approach: despite their monetary interpretation, all �-variables that
we encountered can also be written as likelihood ratios, although (e.g. in Example �.� or
Section �.�.�) either H� or H� may be represented by a distribution that is di�erent from a
Bayes marginal distribution. Still, all GROW (optimal) �-variables we encountered are in fact
equivalent to Bayes factors, and�eorem �.� Part � strongly suggests that this is a very general
phenomenon. While the point priors arising in the δ-GROW �-variables may be quite di�erent
from priors commonly adopted in the Bayesian literature, one can also obtain �-variables by
using priors on H� that do re�ect prior knowledge or beliefs — we elaborate on this under
Hope vs. Belief below.

�e Dream With the massive criticisms of �-values in recent years, there seems a consensus
that �-values should be used not at all or, at best, with utter care (Wasserstein, Lazar et al.,
����; Benjamin et al., ����), but otherwise, the disputes among adherents of the three schools
continue — intuitions among great scientists still vary dramatically. For example, some highly
accomplished statisticians reject the idea of testing without a clear alternative outright; others
say that such goodness-of-�t tests are an essential part of data analysis. Some insist that sig-
ni�cance testing should be abolished altogether (Amrhein, Greenland and McShane, ����),
others (perhaps slightly cynically) acknowledge that signi�cance may be silly in principle, yet
insist that journals and conferences will always require a signi�cance-style ‘bar’ in practice
and thus such bars should be made as meaningful as possible. Finally, within the Bayesian
community, the Bayes factor is sometimes presented as a panacea for most testing ills, while
others warn against its use, pointing out for example that with di�erent default priors that have
been proposed, one can get quite di�erent answers.

Wouldn’t it be nice if all these accomplished but disagreeing people could continue to go their way,
yet would have a common language or ‘currency’ to express amounts of evidence, and would be
able to combine their results in a meaningful way?�is is what �-variables can provide: consider
three tests with the same null hypothesisH�, based on samples Y(�), Y(�) and Y(�) respectively.
�e results of a δ-based �-variable test aimed to optimize power on sample Y(�), an �-variable
test for sampleY(�) based on a Bayesian priorW� onH� and a Fisherian �-variable test in which
the alternativeH� is not explicitly formulated, can all be multiplied — and the result will be
meaningful.

Hope vs. Belief In a purely Bayesian set-up, optional stopping is justi�ed if θ viewed as a
random variable is independent of the stopping time N under the prior W . In that case, a
celebrated result going back to Barnard, ���� (see Hendriksen, De Heide and Grünwald, ����
for an overview) says that the posterior does not depend on the stopping rule used; hence it
does not matter how N was determined (as long as it does not depend on future data). If Bayes
factors are ‘local’, based on priors that depend on the design and thus on the sample size n, then,
from a purely Bayesian perspective, optional (early) stopping is not allowed: since the prior
depends on n, when stopping at the �rst T < n at which pW�(yT)�pW�(yT) > ��, neither the
original prior based on the �xed n nor the prior based on the observed T (which treats the
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random T as �xed in advance) is correct any more.�is happens, for example, for the default
(Gunel and Dickey, ����) Bayes factors for � × � contingency tables advocated by Jamil et al.,
����— from a Bayesian perspective, these do not allow for optional stopping.

�e same holds for the UMP Bayes factors that we considered in Section �.�.�.�ese generally
are ‘local’, the priorW� (and, presuming the idea can be extended to compositeH�, potentially
also W�) depending on the sample size n. For example, for the �-sided test with the normal
location family, Example �.�, we set all priormass on µ̃n =

�
�(− log α)�n; a similar dependence

holds for the prior on δ∗ in the δ∗-based GROW t-test if we choose δ∗ tomaximize power.�us,
while from a purely Bayesian perspective such �-variables/Bayes factors are not suitable for
optional stopping, in Section �.�, both the δ-based GROW �-variable for the normal location
family and for the t-test setting do allow for optional stopping under our de�nition: one may
also stop and report the Bayes factor at any time one likes during the experiment, and still Type
I error probabilities are preserved (Hendriksen, De Heide and Grünwald, ����).�is is what
we did in the experiment of Figure �.�: the pre-determined n (called there nmax) on which the
priorW� on δ (that puts mass ��� on δ∗, and ��� on −δ∗) is based is determined there such that,
if we stop at any �xed T = n′, the statistical power of the test is optimal if n′ = nmax; but the
likelihood ratio e(YT) ∶= pW�(YT)�pW�(YT) remains an �-variable even if T = n′ ≠ nmax or
even if one stops at the �rst T ≤ nmax such that E(YT) ≥ ��.�us, we should make a distinction
between prior beliefs as they arise in Bayesian approaches, and what one may call ‘prior hope’
as it arises in the �-variable approach.�e purely Bayesian approach relies on the beliefs being,
in some sense, adequate. In the �-variable based approach, one can use priors that represent
subjective a priori assessments; for example, in the Bayesian t-test, one can use any priorW� on
δ one likes as long as it has more than two moments, and still the resulting Bayes factor with
the right Haar prior on σ will be a GROW �-variable (�eorem �.�). IfH� is the case, and the
data behave as one would expect according to the prior W�, then the �-variable will tend to be
large – it GROWs fast. But if the data come from a distribution inH� in a region that is very
unlikely underW�, E(Y) will tend to be smaller — but it is still an �-variable, hence leads to
valid Type-I error guarantees and can be interpreted when multiplied across experiments.�us,
from the �-variable perspective, the prior onW� represents something more like ‘hope’ than
‘belief ’ — if one is lucky and data behave likeW� suggests, one gets better results; but one still
gets valid and safe results even ifW� is chosen badly (corresponds to false beliefs).

�is makes the �-variable approach part of what is perhaps among the most under-recognized
paradigms in statistics and machine learning: methods supplying results that have frequentist
validity under a broad range of conditions (in our case: as long asH� orH� is correct), but that
can give much stronger results if one is ‘lucky’ on the data at hand (e.g. the data matches the
prior). It is, for example, the basis of the so-called PAC-Bayesian approach to classi�cation in
machine learning (McAllester, ����; Grünwald andMehta, ����), which itself, via Shawe-Taylor
and Williamson, ����, can be traced back to be inspired by the conditional testing approach of
Kiefer, ���� that also inspired the BBW approach to testing. It also connects to the general idea
of ‘safe’ inference (Grünwald, ����; Grünwald, ����).
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�.�.� Possible Objections
By the nature of the subject, the relevance of this work is bound to be criticized. We would like
to end this paper by brie�y anticipating three potential criticisms.

Where does all this leave the poor practitioner? A natural question is, whether the �-
variable based approach is not much too di�cult and mathematical. Although the present,
initial paper is quite technical, we feel the approach in general is in fact easier to understand
than any approach based on �-values.�e di�culty is that one has to explain it to researchers
who have grown up with �-values — we are con�dent that, to researchers who neither know
�-values nor �-variables, the �-variables are easier to explain, via the direct analogy to gambling.
Also, we suggested δ-based ‘default’ �-variables that (unlike some default Bayes factors) can be
used in absence of strong prior knowledge about the problem yet still have a valid monetary
interpretation and valid Type I Error guarantees. Finally, if, as suggested above, practitioners
really were to be forced, when starting an analysis, to think about optional stopping, optional
continuation and misspeci�cation — this would make life di�cult, but would make practice all
the better.

No Binary Decisions, Part I: Removing Signi�cance �ere is a growing number of in�uen-
tial researchers who hold that the whole concept of ‘signi�cance’, and ensuing binary ‘reject’ or
‘accept’ decisions, should be abandoned altogether (see e.g. the ��� co-signatories of the recent
Amrhein, Greenland and McShane, ����, or the call to abandon signi�cance by McShane et al.,
����).�is paper is not the place to take sides in this debate, but we should stress that, although
we strongly emphasized Type-I and Type-II error probability bounds here, �-variables still
have a meaningful interpretation, as amount of evidence measured in monetary terms, even if
one never uses them to make binary decisions; and we stress that, again, this monetary inter-
pretation remains valid under optional continuation, also in the absence of binary decisions.
We should also stress here that we do not necessarily want to adopt ‘uniformly most powerful
�-variables, even though our comparison to Johnson’s uniformly most powerful Bayes tests
in Section �.� and the experiments in Section �.�might perhaps suggest this. Rather, our goal
is to advocate using GROW �-variables relative to some prior W on Θ� or a subset of Θ(δ)
of Θ� — the GROW criterion leaves open some details, and our point in these experiments is
merely to compare our approach to classical, power-optimizing Neyman-Pearson approaches —
to obtain the sharpest comparison, we decided to �ll in the details (the priorW on Θ(δ)) for
which the two approaches (�-variables vs. classical testing) behave most similarly.

No Binary Decisions, Part II: Towards Safe Con�dence Intervals Another group of re-
searchers (e.g. Cumming, ����) has been advocating for generally replacing testing by estim-
ation accompanied by con�dence intervals; or, more generally (McShane et al., ����), that
researchers should always provide an analysis of the behavior of and uncertainty inherent in
one or more estimators for the given data. While we sympathize with the latter point of view, we
stress that standard con�dence intervals (as well as other measures of uncertainty of estimators
such as standard errors) su�er from a similar problem as �-values: they are not safe under
optional continuation.�e aforementined anytime-valid con�dence sequences developed by
Lai and later Ramdas and collaborators (Lai, ����; Howard et al., ����b; Howard et al., ����a)
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do allow for optional stopping and hence, if subsequent experimenters keep using the same
underlying test martingales, optional continuation. We strongly feel that if one really wants to
replace testing by con�dence approaches, one should adopt anytime-valid rather than standard
con�dence intervals, even though the former ones are invariably a bit broader. In future work
we hope to study whether it is useful to consider ‘safe con�dence intervals’, merely allowing for
optional continuation rather than optional stopping (at each data point).
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�.A Proof Preliminaries
In the next sections we prove our theorems. To make all statements in the main text mathem-
atically rigorous and their notations mutually compatible, we �rst provide a few additional
de�nitions and notation.

Sample Spaces and σ-Algebras In all mathematical results and examples in the main text,
we tacitly make the following assumptions: all random elements mentioned in the main text
are de�ned on some measurable space (Ω,A). We assume that {Yi}i∈I and {Ri}i∈I are two
collections of measurable functions fromΩ to measurable spaces (Y ,A′) and (R,A′′) respect-
ively, where either I = {�, �, . . . , nmax} for some �nite nmax or I = N. We additionally assume
that each Yi takes values in Y ⊆ Rm for some �nite m, and we equip (Ω,A) with the �ltration
(Fi)i∈I where Fi is the σ-algebra generated by (Y i , Ri).

For each θ ∈ Θ ∶= Θ�∪Θ�, in the unconditional case, Pθ is a distribution for the random process
(Yi)i∈I . In the conditional case, we assume �nite I and existence of a �xed function � and
another collection of functions {Xi}i∈I such that for all i ∈ I, Xi = �(Ri), with Xi taking values
in some set X . For each xn ∈ X n , Pθ(⋅ � Xn = xn) is then a distribution on (Y� , . . . ,Ynmax). We
assume throughout that Pθ(Yn � Xn = xn) = Pθ(Yn � Xm = xm) for every n,m > n, xm ∈ X m :
present data is independent of future covariates given present covariates. Whenever we refer to
a random variable such as Y without giving an index, it stands for Yn = (Y� , . . . ,Yn); similarly
for all other time-indexed random variables.

We stated in the main text that we assume that the parameterization is �-to-�. By this we mean
that for each θ , θ′ ∈ Θ with θ ≠ θ′, the associated distributions are also di�erent, so that
Pθ ≠ Pθ′ . We also assume thatΘ� andΘ� are themselves associated with appropriate σ-algebras.
In general, Θ j need not be �nite-dimensional, so we allow non-parametric settings.

(In)-Dependence and Densities In Section �.� on optional continuation we make no fur-
ther assumptions about Pθ . Speci�cally, the Yi need not be independent. In all other sections,
unless we explicitly state otherwise, we assume independence. Speci�cally, when the Pθ rep-
resent unconditional distributions, then we assume that the random variables Y� ,Y� , . . . are
independent under each Pθ with θ ∈ Θ, and that for all i, the marginal distribution Pθ(Yi)
has a density relative to some underlying measure λ�. �at is, we for each j we can write
pθ(Y j) = pθ(Y� , . . . ,Yj) =∏ j

i=� p
′

θ , i(Yi) as a product density where p′θ , i is a density relative to
λ�. In all our examples, λ� is either a probability mass function on Y or a density on Y relative
to Lebesgue measure, but the theorems work for general λ�.�en pθ(Y) =∏n

i=� p′θ , i(Yi) is a
density relative to λ ∶= λn , de�ned as the n-fold product measure of λ�.

With the exception of the contingency table setting of Section �.�.� and the conditional expo-
nential family setting that we brie�y mentioned in Section �.�.� (the only sections in which the
+Pθ are conditional (on x) distributions), we assume that the Yi are not just independent but
also identically distributed, hence p′θ , i = p′θ ,� for all i.

Notational Conventions When we mention a distribution Pθ without further quali�cation,
we mean that it is the distribution of Y = (Y� , . . . ,Yn) = Yn de�ned on Ω; and we use pθ for its
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density as de�ned above. We sometimes refer to the marginal distribution of a random variable
U under Pθ , whereU is a function (coarsening) of Y. We denote this distribution as Pθ[U], and
its density by p′θ(u� , . . . , un), avoiding the cumbersome pθ[U](u� , . . . , un).

We generically use E∗. . . to denote �-variables that are GROW relative to some prior, set, or
set of priors, e.g. E∗W�

, E∗Θ(Θ), E
∗

W�
, and so on. If we consider �-variables that can be written

as a function of a coarsened random variable V = f (Y), and that are also GROW on the
‘coarsened’ level of distributions on V rather than Y, then we write E∗. . .�V�. �us, standard
GROW �-variables could equivalently be written as E∗. . .�Y�.

�.B Optional Continuation with Side-Information
Proof of Proposition � Although Proposition � is easily proved using Doob’s optional stop-
ping theorem, it may be useful to give a direct proof:

Proof. (sketch)We �rst consider the case with K���� = kmax. Under all Pθ , we have

E �E(k)� = E �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅ . . . ⋅ eh�V(k−�)��τ(k−�) ,g(V(k−�)) �V
(k)��

= EV(�)∼PθEV(�)∼Pθ �V(�) . . .EV(k)∼Pθ �V(k−�) �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅

eh�V(�)��τ(�) ,g(V(�)) �V
(�)� ⋅ . . . ⋅ eh�V(k−�)��τ(k−�) , g(V(k−�)) �V

(k)��

= EV(�)∼Pθ �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅ EV(�)∼Pθ �V(�) �eh�V(�)��τ(�) ,g(V(�)) �V
(�)� ⋅

. . . ⋅ EV(k)∼Pθ �V(k−�) �eh�V(k−�)��τ(k−�) , g(V(k−�)) �V
(k)�� . . .�� .

By de�nition of �-variables, all factors in the product are bounded by �, and the result follows.
For general K���� ≤ kmax, note that without loss of generality we may assume thatW contains
the parameter �, where for all n,m, en�m ,� is the trivial �-variable en�m ,�(vn+m) ≡ � for all
vn+m ∈ Vn+m . For any sequence v� , v� . . . we modify g , h to g′ , h′ recursively as follows: we let
h′(v(�)) ∶= h(v(�)), h′(v(�)) = h(v(�)), . . ., similarly for g′ and g, until we reach the smallest
k such that g(v(k)) = ����. �en we set g′(vn) = g′(v� , . . . , vn) = � and h′(yn) = � for
all n ≥ τ(k) and all vn that are extensions of vτ(k) . �e E′ based on the new g′, h′ will have
E′(kmax) = E(K). It follows from (a) that E′(kmax) is an �-variable, so the result follows.

Extending Proposition � We want to extend the proposition to allow for two possibilities,
First, the sample size for the j-th batch of data may be determined by a stopping time N( j),
which generalizes the N( j) used in the main text to the case that the sample size of the j-th
sample Y( j) is not �xed in advance. For example, in the � × � table (Example �.�.�) we might
continue sampling until we have obtained �� new examples of category a. Second, we want
to model the idea of ‘side information’. For this, we assume we make additional observations
Z(�) , Z(�) , Z(�) , . . ..�e idea is that at the end of analyzing the k-th data batch Y(k), we also
get some side information Z(k) which may in�uence our decision whether or not to take into
account a new data batch Y(k+�). We want to make as few assumptions as possible about this
side-information; speci�cally, we will not assume that is itself of stochastic nature (i.e. will
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assume no distribution on it), and the Z(k) may take values in an unspeci�ed countable set
Z(k).�us, whereas the data Y(k) can always be viewed as a vector (Yτ(k−�)+� , . . . ,Yτ(k)), we do
not assume that Z(k) has such (or any other) sub-structure. To make this compatible with the
measure-theoretic setting of the previous section, we assume that all Z( j) are random variables
on (Ω,A). Whereas before, the �ltration (Fi)i∈I was de�ned by setting Fi to be the σ-algebra
generated by (Y i , Ri), we now set Fi to be the σ-algebra generated by (Y i , Ri , Z(J i)) where
Ji is the largest J ≥ � such that τ(J) ≤ i, where τ(J) is de�ned as below. Since τ(�) = �, Ji is a
measurable function. It represents ‘which batch sample size i is part of ’. For example, if the �rst
batch has sample size N(�) = � and the second N(�) = ��, then, for � ≤ i ≤ �, before observing Yi ,
the available information is Y i−� , Ri−� , Z(�).�en, for � ≤ i ≤ ��, we are ‘in the second batch’,
and the available information is Y i−� , Ri−� , Z(�). A�erwards, Z(�) becomes available, and so on
.

As formalized in (�.��) below, we will assume that past outcomesmay in�uence the value of Z(k),
but Z(k) should be independent of any futureY(k+ j). Our optional continuation result continues
to hold irrespective of the actual de�nition of Z(k) andZ(k), as long as these independences hold.
�us, we may think of Z(k) as encoding information that is di�cult to think of stochastically,
such as ‘more money to perform future tests is available’. Still, the con�nements of classical
probability theory (or rather the measure theory on which it is based) force us to assume the
existence of sets of possible outcomes Z(k), even if we do not need to specify them. It seems
that even this can be avoided by re-expressing the optional continuation result in terms of the
open protocols enabled by the Game-�eoretic�eory of Probability due to Shafer and Vovk,
����; but that would really go beyond the scope of this paper.

Batch Stopping Times To further incorporate Z(k) into our framework together with sample
sizes N( j) that are not �xed in advance, we need a slight generalization of the idea of stopping
time and stopping rule. In our context, a stopping rule for the k-th batch with start time t is a col-
lection of functions f(k),t , i , i ∈ N, where f(k),t , i maps (Z(k−�) , Xt+i ,V t+i) to {����, ��������}
such that for every z ∈ Z(k−�), every sequence (x� , v�), (x� , v�), . . ., there is an i > t such
that

f(k),t , i(z, ((x� , v�), . . . , (xt+i , vt+i)) = ����.
�us, we require stopping times that are �nite on all sample paths rather than the more usual
‘almost surely �nite’ stopping times because the Xi and Z(k) do not have a distribution associated
with them.

We now de�ne τ(k) as the stopping time for the k-th batch in terms of stopping rules f(k) de�ned
above. We set τ(�) ∶= N(�) to be the smallest i such that f(�),�, i(Z(�), Xi ,V i) = ����, and more
generally, we set τ(k) to be τ(k−�) + N(k), where N(k) is the smallest i such that

f(k),τ(k−�) , i(Z
(k−�) , Xτ(k−�)+i ,V τ(k−�)+i) = ����.

To make all required probabilities and expectations well-de�ned we set, for all i ≥ �,

Pθ(Yτ( j)+� , . . . ,Yτ( j)+i � Z
( j) ,Y( j) , Xτ( j)+i) ∶= Pθ(Yτ( j)+� , . . . ,Yτ( j)+i � Y

( j) , Xτ( j)+i). (�.��)

�at is, according to all distributions Pθ under consideration, the ‘side-information’ Z( j) avail-
able a�er the j-th data batch cannot in�uence future outcomes Yτ( j)+i ; on the other hand,
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the formulation allows that all data obtained up to and including Y( j) may in�uence the
side-information Z( j).

�e de�nition below evidently generalizes (�.��), and the proposition evidently generalizes
Proposition �:

De�nition �.� (Conditional �-Variables). Let Xi ,Yi ,Vi and τ(�) , . . . , τ(k) with � ≤ k ≤ kmax
be as above. Let E(k) be a nonnegative random variable that can be written as a function of
(X(k) ,V (k)). We call E(k) an �-variable for V(k) conditional on X(k) ,V(k−�) if it satis�es, for
all P ∈H�,

EP[E(k) � X(k) ,V(k−�)] ≤ �. (�.��)

Proposition �. [Optional Continuation with Side-Information] Let τ(�) , . . . , τ(k) with k ≤
kmax and τ∗ be generalized stopping times as above such that on all sample paths, τ∗ coincides
with τ( j) for some j = �..k. Let E(�) , E(�) , . . . , E(k) be a sequence of randomvariables such that for
each j = �..k, E( j) is an �-variable for V( j) conditional on X( j) ,V( j−�). Let the random variable
K���� be such that τ∗ = τ(K����). �en E(K����) is an �-variable, so that under all P� ∈ H�, for
every � ≤ α ≤ �, (�.��) of Proposition � and all its consequences hold.

Proof. (sketch) By (�.��), E( j) being an �-variable conditional onX( j) ,V( j−�) implies that E( j)
is also an �-variable conditional on X( j) ,V( j−�) , Z( j−�).�en, since E( j−�) can be written as a
function of X( j−�) ,V( j−�) , Z( j−�), we have, under all P ∈H�, for j ≥ �,

EP[E( j) � X( j) ,V( j−�) , Z( j−�)] = EP[E( j) ⋅ E( j−�) � X( j) ,V( j−�) , Z( j−�)]
= EP[E( j) � X( j) ,V( j−�) , Z( j−�)] ⋅ E( j−�) ≤ E( j−�) ,

where the �nal step is just the de�nition of conditional �-variable.�is shows that the process
E(�) , E(�) , . . . constitutes a nonnegative supermartingale relative to the process
X(�) ,V(�) , Z(�) ,X(�) ,V(�) , Z(�) , . . ..�e result now follows by Doob’s optional stopping the-
orem.

�.C Elaborations and Proofs for Section �.�
Meaning of “E∗ as de�ned by achieving (�.��) is essentially unique” ConsiderΘ′� ⊂ Θ� and
Θ�, as in the main text in Section �.�. Suppose that there exists an �-variable E∗ achieving the
in�mum in (�.��). We say that E∗ is essentially unique if for any other �-variable E○ achieving
the in�mum in (�.��), we have Pθ(E∗ = E○) = �, for all θ ∈ Θ′� ∪ Θ�. �us, if the GROW
�-variable exists and is essentially unique, any two GROW �-variables will take on the same
value with probability � under all hypotheses considered, and then we can simply take one of
these GROW �-variables and consider it the ‘unique’ one.

�.C.� Proof of�eorem �.�
For Part � of the result, we �rst need the following lemma. We call a measure Q on Ym a
sub-probability distribution if � < Q(Ym) ≤ �. Note that the KL divergence D(P�Q) remains
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well-de�ned even if themeasureQ is not a probabilitymeasure (e.g.Q could be a sub-probability
distribution or might not be integrable), as long as P and Q both have a density relative to a
common underlying measure (the de�nition of KL divergence does require the �rst argument
P to be a probability measure though).

Lemma �. Let {QW ∶ W ∈ W�} be a set of probability measures where each QW has a dens-
ity qw relative to some �xed underlying measure λ. Let Q be any convex subset of these pdfs.
Fix any pdf p (de�ned relative to measure λ) with corresponding probability measure P so that
infQ∈Q D(P�Q) <∞ and so that all Q ∈ Q are absolutely continuous relative to P.�en:

�. �ere exists a unique sub-distribution Q○ with density q○ such that

D(P�Q○) = inf
Q∈Q

D(P�Q), (�.��)

i.e. Q○ is the Reverse Information Projection of P onQ.

�. For q○ as above, for all Q ∈ Q, we have

EY∼Q �
p(Y)
q○(Y)

� ≤ �. (�.��)

We note that we may have Q○ �∈ Q.

�. Let Q� be a probability measure in Q with density q�. �en: the in�mum in (�.��) is
achieved by Q�⇔ Q○ = Q�⇔ (�.��) holds for q○ = q�.

Proof. �e existence and uniqueness of a measure Q○ (not necessarily a probability measure)
with density q○ that satis�es D(P�Q○) = infQ∈Q D(P�Q), and furthermore has the property

for all q that are densities of some Q ∈ Q: EY∼P �
q(Y)
q○(Y)

� ≤ �. (�.��)

follows directly from Li, ����,�eorem �.�. But by writing out the integral in the expectation
explicitly we immediately see that we can rewrite (�.��) as:

for all Q ∈ Q: EY∼Q �
p(Y)
q○(Y)

� ≤ �.

Li’s�eorem �.� still allows for the possibility that ∫ q○(y)dλ(y) > �. To see that in fact this is
impossible, i.e. q○ de�nes a (sub-) probability density, use Lemma �.� of Li, ����.�is shows
Part � and � of the lemma. �e third part of the result follows directly from Lemma �.� of
Li, ����). (additional proofs of (extensions of) Li’s results can be found in the refereed paper
Grünwald and Mehta, ����).

We shall now prove�eorem �.� itself.�roughout the proof, λ stands for the n-fold product
measure as de�ned in the introduction of this appendix, so that all distributions PW with
W ∈W ′� ∪W(Θ�) have a density pW relative to λ, and whenever we speak of a ‘density’ we
mean ‘a density relative to λ’.
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Proof of �eorem �.�, Part � Let W� ∶= W(Θ�) and let Q = {PW ∶ W ∈ W(Θ�)} and
P ∶= PW� . We see thatQ is convex so we can apply Part � and � of the lemma above to P andQ
and we �nd that E∗W�

∶= pw�(Y)�q○(Y) is an �-variable, and that it satis�es

EPW�
�log E∗W�

� = EPW�
�log pW�(Y)

q○(Y)
� = D (PW��Q○) = inf

W�∈W(Θ�)
D (PW��PW�) ,

where the second equality is immediate and the third is from (�.��). It only remains to show
that (a)

sup
E∈E(Θ�)

EY∼PW�
[log E] ≤ EPW�

�log E∗W�
�

and (b) that E∗W�
is essentially unique. To show (a), �x any �-variable E = e(Y) in E(Θ�). Now

further �x ε > � and �x aW(ε) ∈W(Θ�) with D(PW��PW(ε)) ≤ infW�∈W(Θ�) D(PW��PW�) + ε.
We must have, with q(y) ∶= e(y)pW(ε)(y), that ∫ q(y)dλ = EY∼PW(ε) [E] ≤ �, so q is a sub-
probability density, and by the information inequality of information theory (Cover and�omas,
����), it follows:

EPW�
[log E] = EPW�

�log q(Y)
pW(ε)(Y)

�

≤ EPW�
�log pW�(Y)

pW(ε)(Y)
�

= D(PW��PW(ε))
≤ inf

W�∈W(Θ�)
D(PW��PW�) + ε.

Since we can take ε to be arbitrarily close to �, it follows that

EPW�
[log E] ≤ inf

W�∈W(Θ�)
D(PW��PW�) = EPW�

[log E∗W�
],

where the latter equality was shown earlier.�is shows (a).

To show essential uniqueness, let E be any �-variable with EPW�
[log E] = EPW�

[log E∗W�
]. By

linearity of expectation, E′ = (���)E∗W�
+ (���)E is then also an �-variable, and by Jensen’s

inequality applied to the logarithm we must have EPW�
[log E′] > EPW�

[log E∗W�
] unless PW�(E =

E∗W�
) = �. Since we have already shown that for any �-variable E′, EPW�

[log E′] ≤ EPW�
[log E∗W�

],
it follows that PW�(E ≠ E∗W�

) = �. But then, by our assumption of absolute continuity, we also
have Pθ�(E ≠ E∗W�

) = � so E∗W�
is essentially unique.

Proof of�eorem �.�, Part � �e general result of Part � (without the di�erentiability con-
dition imposed in the proof in the main text) is now a direct extension of Part � which we
just proved above: by Part � of the lemma above, we must have that Q○ = PW∗

�
and everything

follows.
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Proof of�eorem �.�, Part � �e proof consists of two sub-parts, Part �(a) relying on Part �
above (and the RIPr-construction, which works for the case thatW ′� is a singleton), Part �(b)
relying on a minimax theorem from Grünwald and Dawid, ���� (relying heavily on an earlier
result from Topsøe, ����) that itself works for the case that Θ� is a singleton.

Part �(a).We show the following inequalities:

D(P[V]W∗
�
�P[V]W∗

�
) = inf

W�∈W
′
�

inf
W�∈W�

D(PW��PW�) ≥ sup
E∈E(Θ�)

inf
W∈W ′

�

EPW [log E] ≥ inf
W∈W ′

�

EPW [log E∗W ′
�
].

(�.��)
�e �rst equality follows by assumption of the�eorem. For the �rst inequality, note that by
�eorem �.�, Part �, we have for each �xedW� ∈W ′� that

inf
W�∈W�

D(PW��PW�) = sup
E∈E(Θ�)

EPW�
[log E]

and this directly implies the inequality by a standard “inf sup ≥ sup inf” argument (the
trivial side of the minimax theorem).�e second inequality is then immediate since E∗

W ′
�
∈

E(Θ�).

Part (�(b). From (�.��) we see that it now su�ces to show that

D(P[V]W∗
�
�P[V]W∗

�
) ≤ inf

W∈W ′
�

EPW [log E∗W ′
�
], (�.��)

where by the assumptions of the theorem we may assume that minW�∈W
′
�
D(P[V]W�

�P[V]W∗
�
) =

D(P[V]W∗
�
�P[V]W∗

�
). Since all distributions occurring in (�.��) are marginals on V, and E∗ can be

written as a function of V, we will from now on simply refer to the marginal densities on
V corresponding to PW as pW (rather than p′W as in the main text), and we will omit the
superscripts [V] from P; thus we take as our basic outcome now V rather than Y.

We will show the stronger statement that (�.��) holds with equality. For this, letW∗

� andW∗

� be
as in the statement of the theorem. Let P be a probability measure that is absolutely continuous
with respect to P∗W�

. Such P must have a density p and the logarithmic score of p relative to
measure PW∗

�
is de�ned, in the standard manner, as L(z, p) ∶= − log p(v)�pW∗

�
(v), which is

P-almost surely �nite, so that, following standard conventions for expectations of random
variables that are unbounded both from above and from below (see Grünwald and Dawid, ����,
Section �.�), HW∗

�
(P) ∶= EV∼P[L(V, p)] = −D(P�PW∗

�
), the standard de�nition of entropy

relative to PW∗
�
, is well-de�ned and nonpositive.

Wewill apply theminimax�eorem �.� of (Grünwald andDawid, ����) with L as de�ned above.
For this, we need to verify Conditions �.�–�.� of that paper, where Γ in Condition �.� and �.�
is set to be ourW ′� , and the setQmentioned in Condition �.�must be a superset of Γ. We will
takeQ to be the set of all probability distributions absolutely continuous relative to PW∗

�
; note

that each Q ∈ Q then has a density q; we letQ���� be the set of all densities corresponding to
Q. By our requirement that D(PW��PW∗

�
) <∞ for allW� ∈W ′� , we then have thatW ′� = Γ ⊂ Q

as required. By our de�nition of Q, Condition �.� then follows from Proposition A.�. from
the same paper (Grünwald and Dawid, ����) (with µ in the role of PW∗

�
), and it remains to



�.D. Proofs that δ-GROW �-variables claimed to be simple really are simple ���

verify Condition �.� and �.�, which, taken together, in our notation together amount to the
requirements (a)W ′� is convex, (b�) for everyW� ∈W ′� , PW� has a Bayes act relative to L and
(b�) HW∗

�
(PW�) > −∞, and (c) there existsW∗

� with HW∗
�
(PW∗

�
) = supW�∈W

′
�
HW∗

�
(PW�) <∞.

Now, (a) holds by de�nition; (b�) holds because L is a proper scoring rule so the density p
of any P is an L-Bayes act for P (see Grünwald and Dawid, ���� for details); (b�) holds by
our assumption that −HW∗

�
(PW�) = D(PW��PW∗

�
) <∞ and (c) holds because for allW� ∈W ′� ,

HW∗
�
(PW�) = −D(PW��PW∗

�
) ≤ �.

�eorem �.� of Grünwald and Dawid, ���� together with Lemma �.� of that same paper then
gives

HW∗
�
(PW∗

�
) = sup

W∈W ′
�

EV∼PW �− log
pW(V)
pW∗

�
(V)
� = sup

W∈W ′
�

inf
q∈Q����

EY∼PW �− log
q(V)

pW∗
�
(V)
�

= inf
q∈Q����

sup
W∈W ′

�

EV∼PW �− log
q(V)

pW∗
�
(V)
� = sup

W∈W ′
�

EV∼PW �− log
pW∗

�
(V)

pW∗
�
(V)
� , (�.��)

where, to be more precise, the �rst equality is immediate from the fact that −HW∗
�
(PW∗

�
) =

D(PW∗
�
�PW∗

�
) = infW�∈W

′
�
D(PW��PW∗

�
) (which we may assume as stated underneath (�.��).

�e second follows because the W∗

� -logarithmic score is a proper scoring rule, the third is
�eorem �.� of Grünwald and Dawid, ����; this�eorem also gives that the in�mummust be
achieved by someW ′

� ∈W ′� , and Lemma �.� of that paper then gives that it must be equal to
W∗

� , which gives the fourth equality.

But, because the �rst and last terms in (�.��) must be equal, and using again that
HW∗

�
= −D(⋅�PW∗

�
), (�.��) implies (�.��), which is what we had to prove.

�.D Proofs that δ-GROW �-variables claimed to be simple
really are simple

All our results will rely on the following proposition, which we state and prove �rst:

Proposition �. [stochastic dominance and simple �-variables] Let Θ� = {�}, let, for δ >
�, Θ(δ) be de�ned as in (�.��) and let ��(Θ(δ)) be the boundary ��(Θ(δ)) = {θ ∈ Θ� ∶
d(θ�Θ�) = δ}. Suppose thatminW∈W(��(Θ(δ))) D(PW�P�) is achieved by some W∗

� (note that
this will automatically be the case if ��(Θ(δ)) is a �nite set), so that by �eorem �.�, Part �,
E∗��(Θ(δ)) = pW∗

�
(Y)�p�(Y).�en the following statements are equivalent:

�.

inf
θ∈Θ(δ)

EY∼Pθ �log
pW∗

�
(Y)

p�(Y)
� = inf

θ∈��(Θ(δ))
EY∼Pθ �log

pW∗
�
(Y)

p�(Y)
� . (�.��)

�. For all W� ∈W(Θ(δ)), we have D(PW��P�) ≥ D(PW∗
�
�P�).

�. We have E∗Θ(δ) = E
∗

��(Θ(δ)) which, ifΘ� andΘ� are as above (�.��), is equivalent to (�.��).
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Furthermore, suppose that there exist a function t, a random variable T = t(Y) (whose density
under θ we denote by p′θ ), a θ∗ ∈ ��(Θ(δ)) and a strictly increasing function f such that
log pW∗

�
(Y)�p�(Y) = log p′θ∗(t(Y))�p′�(t(Y)) = f (t(Y)) and such that for all θ ∈ Θ(δ) �

��(Θ(δ)), Pθ[T], the distribution of T under Pθ , �rst-order stochastically dominates Pθ∗[T]
(i.e. for all t, Fθ(t) ≤ Fθ∗(t) where Fθ is the distribution function of Pθ[T]).�en (�.��) holds.

Proof. (�) ⇒ (�)We �rst note that the conditions of the proposition imply that for all θ ∈
��(Θ(δ)),

EY∼Pθ �log
pW∗

�
(Y)

p�(Y)
� ≥ EY∼PW∗� �log

pW∗
�
(Y)

p�(Y)
� = D(PW∗

�
�P�), (�.��)

as is immediate from�eorem �.�, Part �, which gives that PW∗
�
is the information projection

on the set W ′� = W(��(Θ(δ))). Now, �x any W� ∈ W(Θ(δ)) and consider the function
f (α) = D((� − α)PW∗

�
+ αPW��P�) on α ∈ [�, �]. Straightforward di�erentiation gives the

following: the second derivative of f is nonnegative, so f is convex on [�, �].�e �rst derivative
of f (α) at α = � is given by

EY∼PW�
�log

pW∗
�
(Y)

p�(Y)
� − EY∼PW∗� �log

pW∗
�
(Y)

p�(Y)
� ≥

EY∼PW�
�log

pW∗
�
(Y)

p�(Y)
� − inf

θ∈��(Θ(δ))
EY∼Pθ �log

pW∗
�
(Y)

p�(Y)
� , (�.��)

where the �rst expression is just di�erentiation and the inequality follows from (�.��). So, if we
can show that, no matter howW� was chosen, the right-hand side of (�.��) is nonnegative, we
must have f (�) ≥ f (�) and the desired result follows. But nonnegativity of (�.��) follows by the
premise (�.��) and linearity of expectation.

(�)⇒ (�) Since infW�∈W(Θ(δ)),W�∈W(Θ�) D(PW��P�) = D(PW∗
�
�P�) we can apply�eorem �.�,

Part �, which gives the required result.

(�)⇒ (�) is immediate using the de�nitions of E∗Θ(δ) and E∗��(Θ(δ))

For the second part, note that, by a general property of stochastic dominance (Pomatto, Strack
and Tamuz, ����) we have for arbitrary distributions P[T]: if P[T] stochastically dominates
Pθ∗[T], then we must also have EP[T][ f (T)] ≥ EPθ∗ [ f (T)]. �is immediately implies the
result.

Proofs that δ-GROW �-variables claimed to be simple are simple We need to show this
for four cases mentioned in the main text. In all these cases we show this by establishing the
existence of a statistic T as needed to apply the second part of Proposition �.

�. One-Sided Exponential Families (Section �.�.�) In this case ��(Θ(δ)) is a singleton, soW∗

�
is the degenerate distribution putting all mass on δ. We take T = t(Y) to be the su�cient
statistic for the family at the given sample size.�at is, we re-represent our exponential family
in the canonical parameterization, and let βδ be the canonical parameter corresponding to
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δ > �; we can choose the parameterization such that β� = �. With T = t(Y) the su�cient
statistic, we then have log pδ(Y)�p�(Y) = βδ t(Y) + log(Z(�)�Z(βδ)) = f (t(Y)); here Z(⋅)
is the normalization function. Since βδ is strictly increasing with δ (another general property
of exponential families) and β� = �, we have that f (T) is increasing in T . It thus remains to
show that P[T]δ stochastically dominates P[T]δ for δ > δ. But this is immediate by basic rewriting,

giving Fβ(t) = ∫
t
−∞

exp(βt)dP[T]� (t)� ∫
∞

−∞
exp(βt)dP[T]� , and then taking derivatives.

�. Two-Sided Normal Location Family (Section �.�.�)We take T = µ̂�, the square of the empirical
mean.�e result then follows by reasoning similarly to �. below but is easier, hence we omit
details.

�. One-Sided normal with unknown variance (Section �.�.�) Note �rst that E∗δ = p′δ(V)�p′�(V).
�us, by expressing �-variables in terms of V we can re-represent the problem as having a
simpleH� so that we can use Proposition �. We take T = ts(Y) to be the Student’s T-statistic.
Straightforward rewriting gives that, for δ > �, for all σ , pδ(V)�p�(V) = f (T) for some
increasing function f of T . We thus need to show that the distribution of T under P[T]δ is

stochastically dominated by its distribution under P[T]δ′ , for δ′ > δ. But these are just two
noncentral t-distributions with ν ∶= n − � degrees of freedom and noncentrality parameter
µ =
√
nδ vs. µ =

√
nδ′ respectively. Since a noncentral t distribution with parameters (ν, µ)

can be viewed as the distribution of (Z + µ)�
�
V�ν where Z is standard normal and V is

an independent χ� random variable, stochastic dominance is immediate from the fact that
δ > �.

�. Two-sided normal with unknown variance (Section �.�.�)�is case is similar to the previous
one but now we take T = (ts(Y))� to be the absolute value of Student’s t-statistic ts(Y).
Symmetry considerations dictate that E∗δ = ((���)p′−δ(V) + (���)p′δ(V))�p′�(V). It is easy to
verify that this quantity only depends on T and is strictly increasing in T . Again by symmetry,
the distribution of T under Pδ[T] is the same as its distribution under P−δ[T] and then
also the same as its distribution under P(���)δ−(���)δ[T]. It thus su�ces to show that Pδ[T] is
stochastically dominated by Pδ′[T] for δ′ > δ > �. But the distribution of T under Pδ is now
the ratio of two independent χ� distributions, a noncentral χ� with one degree of freedom and
noncentrality δ and a central χ� with n − � degrees of freedom. By independence, it is su�cient
to prove that noncentral χ�’s with one degree of freedom and noncentrality δ′ > δ dominates a
noncentral χ� with one degree of freedom and noncentrality δ. But this is straightforward by
di�erentiating the cumulative distribution functions.

Relating E○Θ(δ) and E∗Θ(δ) in the two-sided case We have, on all samples,

log E○Θ(δ) ≥max{log(���)E∗δ , log(���)E∗−δ},
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so that

inf
θ ∶�θ �≥δ

EY∼Pθ [log E
○

Θ(δ)] ≥ inf
θ ∶�θ �≥δ

max�EY∼Pθ [log
�
�
E∗δ ],EY∼Pθ [log

�
�
E∗
−δ]� (�.��)

≥max� inf
θ ∶�θ �≥δ

EY∼Pθ [log
�
�
E∗δ ], inf

θ ∶�θ �≥δ
EY∼Pθ [log

�
�
E∗
−δ]�

≥max� inf
θ ∶θ≥δ

EY∼Pθ [log
�
�
E∗δ ], inf

θ ∶θ≤−δ
EY∼Pθ [log

�
�
E∗
−δ]�

=max�EY∼Pδ [log
�
�
E∗δ ],EY∼P−δ [log

�
�
E∗
−δ]� ,

where the �nal equality is just condition (�.��) of the proposition above again for the one-sided
case, which above we already showed to hold for �-dimensional exponential families. On the
other hand, lettingWδ be the prior that puts mass ��� on δ and ��� on −δ, we have:

inf
θ ∶�θ �≥δ

EY∼Pθ [log E
∗

Θ(δ)] ≤ Eθ∼WδEY∼Pθ [log E
∗

Θ(δ)] (�.��)

≤ Eθ∼WδEY∼Pθ �log
PWδ(Y)
P�(Y)

�

= Eθ∼WδEY∼Pθ �log E
○

Θ(δ)�

= �
�
Eδ[log

�
�
E∗δ ] +

�
�
E−δ[log

�
�
E∗
−δ] + εn

≤max�EY∼Pδ [log
�
�
E∗δ ],EY∼P−δ [log

�
�
E∗
−δ]� + εn ,

where the �rst inequality is linearity of expectation and the second inequality follows because,
since E∗Θ(δ) is an �-variable relative to {P�}, we can set q ∶= E∗Θ(δ) ⋅ p�; then ∫ q(Y)dλ ≤ � and
E∗Θ(δ) = q(Y)�p�(Y), and the inequality follows by the information inequality of information
theory. εn above is de�ned as:

εn =
�
�
⋅ �Eδ[log E○Θ(δ) − log

�
�
E∗δ ] + E−δ[log E○Θ(δ) − log

�
�
E∗
−δ]�

= log � + �
�
⋅ �Eδ[log E○Θ(δ)�E

∗

δ ] + E−δ[log E○Θ(δ)�E
∗

−δ]�

= log � − �
�
�D(Pδ(Y)�PWδ(Y)) + D(P−δ(Y)�PWδ(Y))� .

Together, (�.��) and (�.��) show that E○Θ(δ) is an �-variable whose worst-case growth rate is
always within εn ≤ log � (‘� bit’) of that of the minimax optimal E∗Θ(δ); moreover, for �xed δ, εn
quickly converges to �, since, for θ ∈ {δ,−δ}, if Y ∼ Pθ , then with high probability, P−θ�Pθ will
be exponentially small in n, so that D(Pθ(Y)�PWδ(Y)) ≈ − log(���) = log �.

�.E Proofs and Details for Section �.�.�
We �rst walk through the claims made in Section �.�.�.�e �rst claim is that under all P�,σ with
σ > �, V has the same distribution, say P�, and under all PW[δ],σ with σ > �, V has the same
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distribution, say PW[δ](V). To show this, it is su�cient to prove that for all σ , all δ ∈ R, under
all Pδ ,σ , the distribution ofV only depends on δ but not on σ . But this follows easily: for i ∈ �..n,
we de�ne Y ′i = Yi�σ .�en Y ′i is ∼ N(δ, �). But we can write V as a function of (Y ′� , . . . ,Y ′n),
hence the distribution of V does not depend on σ either (note that at this stage, symmetry of
the prior is not yet required).

(�.��) (we only need to show the �rst equality) is straightforward to show: one �rst notes that,
for every c > �,

∫σ pW[δ],σ(Y�c)wH(σ)dσ

∫σ p�,σ(Y�c)wH(σ)dσ
= ∫σ

pW[δ],σ(Y)wH(σ)dσ

∫σ p�,σ(Y)wH(σ)dσ
,

which follows easily by changing the domain of integration in the le�most expression in both
numerator and denominator from σ to cσ and noting that this incurs the same factor cn in
both numerator and denominator, which therefore cancels. Since we assume Y� ≠ �, the �rst
equality in (�.��) now follows by setting c ∶= Y�.

Proof of�eorem �.� Part �. For � < a < b <∞, denote byW[a ,b] the restricted Haar prior,
i.e. the probability distribution on σ with density

w[a ,b](σ) ∶=
�������

�
σ ⋅

�
log b�a if σ ∈ [a, b],

� otherwise.

For notational convenience we abbreviate the joint distribution of σ and Y for e�ect size prior
W[δ] and restricted Haar priorW[a ,b] on σ to PW[δ],[a ,b] ∶= PW[δ],W[a ,b][σ].�e Bayes factor
for e�ect size priorW[δ] vs. e�ect size � at sample size n based on using the restricted Haar
priorW[a ,b] in bothH� andH� and data Y will be denoted as

B[a ,b](Y) =
∫σ∈[a ,b] pW[δ],σ(Y)w[a ,b](σ)dσ

∫σ∈[a ,b] p�,σ(Y)w[a ,b](σ)dσ
.

�e Bayes factor based on the right Haar prior can then be written as B[�,∞](Y). From (�.��),
we have for all σ > � that

D �P[V]W[δ]�P
[V]
� � = EV∼PW[δ] �

p′W[δ](V)
p′�(V)

� = EY∼PW[δ],σ �logB[�,∞](Y)� . (�.��)

Since V is a coarsening of Y, by the information inequality (Cover and�omas, ����), we must
also have, for all priorsW[σ],W[σ ′]:

D �PW[δ],W′[σ]�P�,W[σ]� ≥ D �P
[V]
W[δ],W′[σ]�P

[V]
�,W[σ]� = D �P

[V]
W[δ]�P

[V]
� � , (�.��)

where we also used that the marginal distributions onV do not depend on σ . Combining (�.��)
and (�.��), we �nd that it su�ces to prove the following lemma, which is done further below.
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Lemma ��. For all W[δ] satisfying the condition of�eorem �.�, for all σ > �, we have:

lim
i→∞

D �PW[δ],[��i , i]�P�,[��i , i]� = EY∼PW[δ],σ �logB[�,∞](Y)� . (�.��)

Part �. Fix W[δ] as in the theorem statement, and any corresponding W ′� as above. We
have:

inf
W[δ]∈W[δ]

D �P[V]W[δ]�P
[V]
� � ≤ inf

W∈W ′
�

inf
W[σ]∈W[Γ]

D(PW�P�,W[σ])

≤ inf
W[δ]∈W[δ]

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ]) = inf
W[δ]∈W[δ]

D �P[V]W[δ]�P
[V]
� � . (�.��)

Here the �rst inequality is based on (�.��), the second is immediate and the third follows by
noting that, by Part �, for any �xedW[δ] ∈W[δ], we have

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ]) = D �P
[V]
W[δ]�P

[V]
� � .

But (�.��) is equivalent to the desired result.

�.E.� Proof of Lemma ��
De�ne random variables U ∶=

�
n−�∑Y �

i , Y ∶= n−�∑Yi and T ∶= Y�U ∈ [−�, �] is an invariant,
i.e. a function of V. We will sometimes express U and T as functions of Y and freely write
U(Y), T(Y) when this notation is more convenient.

�e Bayes factor B[a ,b](Y) depends on Y only through the functions U(Y) and T(Y). We
will therefore also write it, whenever convenient, as a function of these random variables, and
denote it as B[a ,b](U , T).

�e proof will combine the following two (sub-) lemmas, whose proof is deferred to further
below.�e �rst lemma allows us to conclude that, when restricted to events of small (marginal)
probability, the expectation of the log Bayes factor is also small.

�e second lemma allows us to conclude that, as i →∞, the expected log Bayes factor uniformly
converges on y ∈ Ai , where Ai is a set that itself grows towards Rn . �us, while uniform
convergence for all y ∈ Rn is too much to ask for, remarkably we do get uniform convergence
on a ‘noncompact’ sequence of sets: the sets Ai are not included in any compact set.

Lemma ��. [Uniform Integrability-Flavored Lemma] Let A be ameasurable subset ofRn.We
have for all � < a < b <∞, W[δ] as in the theorem statement, that:

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �− logB[�,∞](Y)�� ≤ PW[δ],[a ,b](Y ∈ A) log
�

PW[δ],[a ,b](Y ∈ A)
(�.��)

Suppose further that Eδ∼W[δ][�δ��+ε] <∞ for some ε > �.�en

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ logB[a ,b](Y)� ≤ PW[δ],[a ,b](Y ∈ A)
ε�(�−ε) ⋅ C (�.��)

were C is a constant depending on W[δ], n (but not on a, b).
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Lemma ��. [Uniform Convergence Beyond Compactness] Let (ai , bi , ci , ci)i∈N be a se-
quence of numbers in R+ such that for all i, c i > � and ci < �, c i ai < cibi (hence also ai < bi),
and limi→∞ ai = �, limi→∞ bi =∞, limi→∞ ci =∞, limi→∞ ci = �, lim(cibi − ci ai) =∞ (For
example, take ai = ��i , bi = i , ci = log(i + �), ci = �� log(i + �)).�en:

lim sup
i→∞

sup
t∈[−�,�],u∈[ai c i ,bi c i]

�logB[ai ,bi](u, t) − logB[�,∞](u, t)� = �.

�e proof of Lemma �� is itself based on another key observation, which is an immediate
consequence of the fact thatW[a ,b] is proportional to the Haar measure on [a, b]:

Proposition ��. [Change-of-Variables] We have for all u > �, all t ∈ [−�, �], B[a ,b](u, t) =
B[a�u ,b�u](�, t).

We now �rst show how the two lemmas imply the main result. Take any sequence (ai , bi , ci , ci)
satisfying the requirements of Lemma ��. Let

Ai = {Y ∈ Rn ∶ ci ai ≤ U(Y) ≤ cibi}.

and let Ai ⊂ Rn be its complement. We have

EY∼PW[δ],[ai ,bi ] �logB[ai ,bi](Y) − logB[�,∞](Y)� = f (i) + g(i),

where

f (i) = EY∼PW[δ],[ai ,bi ] � {Y∈Ai} ⋅ log
B[ai ,bi](Y)
B[�,∞](Y)

� ,

g(i) = EY∼PW[δ],[ai ,bi ] � {Y∈Ai}
⋅ log

B[ai ,bi](Y)
B[�,∞](Y)

� .

Now, take ai = ��i , bi = i , ci = log(i + �), ci = �� log(i + �). We already indicated in Lemma ��
that this choice allows us to apply Lemma �� to f (i), whichwill therefore converge to � as i →∞.
It thus remains to show that g(i)→ �. By Lemma �� we have g(i) = o(PW[δ],[ai ,bi](Y ∈ Ai)).
It thus su�ces to show that PW[δ],[ai ,bi](Y ∈ Ai)→ �. For this, note that we can write:

PW[δ],[ai ,bi](Y ∈ Ai) = Eσ∼W[ai ,bi ]EY∼PW[δ],� � {(σY� , . . . ,σYn)∈Ai}
�

= Eσ∼W[ai ,bi ]EY∼PW[δ],� � {σU(Y)<c i ai∨σU(Y)>c i bi}�

≤W[ai ,bi](σ < ci ai ∨ σ > cibi) + Eσ∼W[ai ,bi ] � {c i ai<σ<c i bi} ⋅ EY∼PW[δ],� � {σU(Y)<c i ai∨σU(Y)>c i bi}��

=W[ai ,bi](σ < ci ai) +W[ai ,bi](σ > cibi) + PW[δ],�(U < ci ai) + PW[δ],�(U > cibi),

where we used the union bound. Now, by our choice of (ai , bi , ci , ci), the �rst two probabilities
go to � as i →∞. And, since ai ci → � and cibi →∞ and U has a �xed distribution which has
no mass at U ≤ � (to be precise, nU �

has a noncentral χ� distribution), the third and fourth
term go to � as well.�e result is proved.
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Remaining Proofs underlying Lemma ��

Proof. (of Proposition ��) Changing the integration variable from σ to ρ ∶= σ�u, we have:

B[a ,b](u, t) =
∫δ ∫

σ=b
σ=a

�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[δ]

∫
b
a

�
σ e−(n��)⋅u

��σ � dσ

=
∫δ ∫

ρ=b�u
ρ=a�u

�
uρ e

n⋅(− �
� δ

�
+δut�(uρ)− �

� u
�
�(u�ρ�)) � dσ

dρ � dρ dW[δ]

∫
ρ=b�u
ρ=a�u

�
uρ e−(n��)⋅u

��(u�ρ�) � dσ
dρ � dρ

,

and the result follows by rewriting.

Proof. (of Lemma ��)Part �.LetW[a ,b] � y be the posterior distribution on (δ, σ) based on prior
W[δ] ×W[a ,b]. By straightforward rewriting we can re-express ��B[a ,b](y) as an expectation
over the posterior W[a ,b] � y. We do this in the second step below, and then continue using
Jensen’s inequality:

logB[a ,b](y) = − log
∫δ ∫σ∈[a ,b] e

−n(y���σ �
+δ���−δ⋅y�σ)+n(δ���−δ⋅y�σ) dσ dW[δ]

e−n(y���σ �+δ���−δ⋅y�σ) dσ dW[δ]
= − logE(δ ,σ)∼W[a ,b]�y �e

n⋅( �
� δ

�
−δy�σ)�

≤ − �
�
⋅ nδ� + �

�
n ⋅ E(δ ,σ)∼W[a ,b]�y [y ⋅ δ�σ] ≤

�
�
n ⋅ E(δ ,σ)∼W[a ,b]�y [�y� ⋅ �δ��σ] .

We thus have, by Hölder’s inequality, for q, r > � with ��r + ��q = �:

EY � {Y∈A} ⋅ logB[a ,b](Y,W[δ])� ≤ �EY � q
{Y∈A}��

��q
⋅ �EY �E(δ ,σ)∼W[a ,b]�Y �(n��)�Y��δ��σ��

r�
��r

≤ P(Y ∈ A)��q ⋅ (n��) ⋅ �EYE(δ ,σ)∼W[a ,b]�Y ��Y��δ��σ�
r�

��r
,

where in the �nal line we once again used Jensen.�e expectation can be rewritten as:

EYE(δ ,σ)∼Wa ,b �Y ��Y��δ��σ�
r = Eδ∼W[δ],σ∼W[a ,b]EY� , . . . ,Yn i.i.d.∼Pδ ,σ ��Y��δ��σ�

r

= Eδ∼W[δ]Eσ∼W[a ,b]EY′∼N(δ�n ,��n) (�Y′��δ�)
r

= n−rEδ∼W[δ]�δ�rEY′∼N(δ ,�)�Y′�r

≤ �rn−rEδ∼W[δ]�δ�rEY′∼N(�,δ)[(�Y′ − δ� + �δ�)r]
≤ �rn−rEδ∼W[δ] ��δ��r + �δ�rCr� ,

where we used that �a + b�r ≤ (�max{�a�, �b�})r ≤ �r(�a�r + �b�r) and that, if Y ∼ N�,�, then
E[�Y�r] ≤ Cr for a constant Cr that does not depend on δ.�e result follows.



�.E. Proofs and Details for Section �.�.� ���

Part �. Recall that V denotes the maximal invariant. Its marginal distribution does not depend
on σ , so for any � < a′ < b′ we can write:

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �− logB[�,∞](Y)�� =

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �log
p[a ,b],�(V(Y))

pW[δ],[a ,b](V(Y))
�� =

PW[δ],[a ,b](Y ∈ A) ⋅ EY∼PW[δ],[a ,b]�Y∈A �log
p[a ,b],�(V(Y) � Y ∈ A)

pW[δ],[a ,b](V(Y) � Y ∈ A)
+ log

P[a ,b],�(Y ∈ A)
PW[δ],[a ,b](Y ∈ A)

� ≤

PW[δ],[a ,b](Y ∈ A) ⋅ �log P[a ,b],�(Y ∈ A) − log PW[δ],[a ,b](Y ∈ A)� ≤
− PW[δ],[a ,b](Y ∈ A) log PW[δ],[a ,b](Y ∈ A)

where we used Jensen’s inequality.

Proof. (of Lemma ��) Using Proposition �� and its consequence that B[�,∞] depends on the
invariant only, i.e. for all u > �, B[�,∞](u, t) = B[�,∞](�, t), we can rewrite the supremum as

sup
t∈[−�,�], u∈[ai c i ,bi c i]

�logB[ai�u ,bi�u](�, t) − logB[�,∞](�, t)� ≤

sup
t∈[−�,�], �<c<��c i , c′>��c i

�logB[c ,c′](�, t) − logB[�,∞](�, t)� ≤

sup
�<c<��c i , c′>��c i

�log�
∞

�

�
σ
e−(n��)σ

−�
dσ − log�

c′

c

�
σ
e−(n��)σ

−�
dσ� ≤

�log�
∞

�

�
σ
e−(n��)σ

−�
dσ − log�

��c i

��c i

�
σ
e−(n��)σ

−�
dσ� = f (ci , ci)

for some function f (c, c) with limc→∞,c↓� f (c, c) = � (note that the dependence on t has
disappeared); the result follows. Here we used that, for general u, t, � < a < b,

logB[a ,b](u, t) − logB[�,∞](u, t) =

log ∫δ ∫
b
σ=a

�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[δ]

∫
b
a

�
σ e−(n��)⋅u

��σ � dσ
− log ∫δ ∫

∞

σ=�
�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[σ]

∫
∞

�
�
σ e−(n��)⋅u

��σ � dσ
≤

log�
∞

�

�
σ
e−(n��)⋅u

�
�σ �

dσ − log�
b

a

�
σ
e−(n��)⋅u

�
�σ �

dσ .

�.E.� WhyW∗

� andW∗

� are achieved andhave�nite support in Section �.�.�
�e minima are achieved because of the joint lower-semi-continuity of KL divergence (Posner,
����). To see that the supports are �nite, note the following: for given sample size n, the
probability distribution PW is completely determined by the probabilities assigned to the
su�cient statistics N��a ,N��b .�is means that for each priorW ∈W(Θ�), the Bayes marginal



��� Chapter �. Safe Testing

PW can be identi�ed with a vector of Mn ∶= (na + �) ⋅ (nb + �) real-valued components. Every
such PW can also be written as a mixture of Pθ ’s for θ = (µa�� , µb��) ∈ Θ�, a convex set. By
Carathéodory’s theorem we need at most Mn components to describe an arbitrary PW .

�.F Motivation for use of KL to de�ne GROW sets
If there is more than a single parameter of interest, then a natural (but certainly not the
only reasonable!) divergence measure to use in (�.��) is to set d equal to the KL divergence
D(θ��Θ�) ∶= inf θ�∈Θ� D(θ��θ�).

To seewhy, note that ε indicates the easiness of testingΘ(ε) vs.Θ�: the larger ε, the ‘further’Θ(ε)
from Θ� and the larger the value of ��(ε).�e KL divergence is the only divergence measure
in which ‘easiness’ of testing Θ(ε) is consistent with easiness of testing individual elements
of Θ�. By this we mean the following: suppose there exist θ� , θ′� ∈ Θ� with θ� ≠ θ′� achieving
equal growth rates ��({θ′�}) = ��({θ�}) in the tests of the individual point hypotheses {θ�}
vs Θ� and {θ′�} vs. Θ� �en if d is not the KL it can happen that, for some ε > �, θ� ∈ Θ(ε) yet
θ′� �∈ Θ(ε). With d equal to KL this is impossible.�is follows immediately from�eorem �.�,
Part �, which tells us D(θ��Θ�) = ��({θ�}).


