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Chapter �

Optional stopping with Bayes
Factors

Abstract
It is o�en claimed that Bayesian methods, in particular Bayes factor methods for hypothesis
testing, can deal with optional stopping. We �rst give an overview, using elementary probability
theory, of three di�erent mathematical meanings that various authors give to this claim: (�)
stopping rule independence, (�) posterior calibration and (�) (semi-) frequentist robustness to
optional stopping. We then prove theorems to the e�ect that these claims do indeed hold in
a general measure-theoretic setting. For claims of type (�) and (�), such results are new. By
allowing for non-integrable measures based on improper priors, we obtain particularly strong
results for the practically important case of models with nuisance parameters satisfying a group
invariance (such as location or scale). We also discuss the practical relevance of (�)–(�), and
conclude that whether Bayes factor methods actually perform well under optional stopping
crucially depends on details of models, priors and the goal of the analysis.

�.� Introduction
In recent years, a surprising number of scienti�c results have failed to hold up to continued
scrutiny. Part of this ‘replicability crisis’ may be caused by practices that ignore the assumptions
of traditional (frequentist) statistical methods (John, Loewenstein and Prelec, ����a). One of
these assumptions is that the experimental protocol should be completely determined upfront.
In practice, researchers o�en adjust the protocol due to unforeseen circumstances or collect
data until a point has been proven.�is practice, which is referred to as optional stopping, can
cause true hypotheses to be wrongly rejected much more o�en than these statistical methods
promise.

Bayes factor hypothesis testing has long been advocated as an alternative to traditional testing
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that can resolve several of its problems; in particular, it was claimed early on that Bayesian
methods continue to be valid under optional stopping (Lindley, ����; Rai�a and Schlaifer,
����; Edwards, Lindman and Savage, ����). In particular, the latter paper claims that (with
Bayesian methods) “it is entirely appropriate to collect data until a point has been proven or
disproven, or until the data collector runs out of time, money, or patience.” In light of the
replicability crisis, such claims have received much renewed interest (Wagenmakers, ����;
Rouder, ����; Schönbrodt et al., ����; Yu et al., ����; Sanborn and Hills, ����). But what do
they mean mathematically? It turns out that di�erent authors mean quite di�erent things by
‘Bayesian methods handle optional stopping’; moreover, such claims are o�en shown to hold
only in an informal sense, or in restricted contexts.�us, the �rst goal of the present chapter is to
give a systematic overview and formalization of such claims in a simple, expository setting and,
still in this simple setting, explain their relevance for practice: can we e�ectively rely on Bayes
factor testing to do a good job under optional stopping or not? As we shall see, the answer is
subtle.�e second goal is to extend the reach of such claims to more general settings, for which
they have never been formally veri�ed and for which veri�cation is not always trivial.

Overview In Section �.�, we give a systematic overview of what we identi�ed to be the three
main mathematical senses in which Bayes factor methods can handle optional stopping, which
we call τ-independence, calibration, and (semi-)frequentist. We �rst do this in a setting chosen
to be as simple as possible — �nite sample spaces and strictly positive probabilities — allowing
for straightforward statements and proofs of results. In Section �.�, we explain the practical
relevance of these three notions. It turns out that whether or not we can say that ‘the Bayes
factor method can handle optional stopping’ in practice is a subtle matter, depending on the
speci�cs of the given situation: what models are used, what priors, and what is the goal of the
analysis. We can thus explain the paradox that there have also been claims in the literature that
Bayesian methods cannot handle optional stopping in certain cases; such claims were made,
for example by Yu et al., ����; Sanborn and Hills, ����, and also by ourselves (De Heide and
Grünwald, ����). We also brie�y discuss safe tests (Grünwald, De Heide and Koolen, ����)
which can be interpreted as a novel method for determining priors that behave better under
frequentist optional stopping.�e chapter has been organized in such a way that these �rst two
sections can be read with only basic knowledge of probability theory and Bayesian statistics.
For convenience, we illustrate Section �.� with an informally stated example involving group
invariances, so that the reader gets a complete overview of what the later, more mathematical
sections are about.

Section �.� extends the statements and results to a much more general setting allowing for
a wide range of sample spaces and measures, including measures based on improper priors.
�ese are priors that are not integrable, thus not de�ning standard probability distributions
over parameters, and as such they cause technical complications. Such priors are indispensable
within the recently popularized default Bayes factors for common hypothesis tests (Rouder
et al., ����; Rouder et al., ����; Jamil et al., ����).

In Section �.�, we provide stronger results for the case in which both models satisfy the same
group invariance. Several (not all) default Bayes factor settings concern such situations; prom-
inent examples are Je�reys’ (����) Bayesian one- and two-sample t-tests, in which the models
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are location and location-scale families, respectively. Many more examples are given by Berger
and various collaborators (Berger, Pericchi and Varshavsky, ����; Dass and Berger, ����; Ba-
yarri et al., ����; Bayarri et al., ����).�ese papers provide compelling arguments for using
the (typically improper) right Haar prior on the nuisance parameters in such situations; for
example, in Je�reys’ one-sample t-test, one puts a right Haar prior on the variance. In particular,
in our restricted context of Bayes factor hypothesis testing, the right Haar prior does not su�er
from themarginalization paradox (Dawid, Stone and Zidek, ����) that o�en plagues Bayesian
inference based on improper priors (we brie�y return to this point in the conclusion).

Haar priors and group invariant models were studied extensively by Eaton, ����; Andersson,
����; Wijsman, ����, whose results this chapter depends on considerably. When nuisance
parameters (shared by bothH� andH�) are of suitable form and the right Haar prior is used, we
can strengthen the results of Section �.�: they now hold uniformly for all possible values of the
nuisance parameters, rather than in the marginal, ‘on average’ sense we consider in Section �.�.
However — and this is an important insight — we cannot take arbitrary stopping rules if we
want to handle optional stopping in this strong sense: our theorems only hold if the stopping
rules satisfy a certain intuitive condition, which will hold in many but not all practical cases:
the stopping rule must be “invariant” under some group action. For instance, a rule such as
‘stop as soon as the Bayes factor is ≥ ��’ is allowed, but a rule (in the Je�reys’ one-sample t-test)
such as ‘stop as soon as∑ x�i ≥ ��’ is not.

�e chapter ends with supplementary material, comprising Section �.A containing basic back-
groundmaterial about groups, and Section �.B containing all longermathematical proofs.

Scope and Novelty Our analysis is restricted to Bayesian testing and model selection using
the Bayes factor method; we do not make any claims about other types of Bayesian inference.
Some of the results we present were already known, at least in simple settings; we refer in each
case to the �rst appearance in the literature that we are aware of. In particular, our results in
Section �.�.� are implied by earlier results in the seminal work by Berger and Wolpert, ���� on
the likelihood principle; we include them any way since they are a necessary building block for
what follows.�e real mathematical novelties in the chapter are the results on calibration and
(semi-) frequentist optional stopping with general sample spaces and improper priors and the
results on the group invariance case (Section �.�.�–�.�).�ese results are truly novel, and —
although perhaps not very surprising— they do require substantial additional work not covered
by Berger and Wolpert, ����, who are only concerned with τ-independence. In particular, the
calibration results require the notion of the ‘posterior odds of some particular posterior odds’,
which need to be de�ned under arbitrary stopping times.�e di�culty here is that, in contrast
to the �xed sample sizes where even with continuous-valued data, the Bayes factor and the
posterior odds usually have a distribution with full support, with variable stopping times, the
support may have ‘gaps’ at which its density is zero or very near zero. An additional di�culty
encountered in the group invariance case is that one has to de�ne �ltrations based on maximal
invariants, which requires excluding certain measure-zero points from the sample space.
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�.� �e Simple Case
Consider a �nite set X and a sample space Ω ∶= X T where T is some very large (but in this
section, still �nite) integer. One observes a sample xτ ≡ x� , . . . , xτ , which is an initial segment
of x� , . . . , xT ∈ X T . In the simplest case, τ = n is a sample size that is �xed in advance; but,
more generally τ is a stopping time de�ned by some stopping rule (which may or may not be
known to the data analyst), de�ned formally below.

We consider a hypothesis testing scenario where we wish to distinguish between a null hypo-
thesis H� and an alternative hypothesis H�. Both H� and H� are sets of distributions on Ω, and
they are each represented by unique probability distributions P� and P� respectively. Usually,
these are taken to be Bayesian marginal distributions, de�ned as follows. First one writes, for
both k ∈ {�, �}, Hk = {Pθ �k � θ ∈ Θk} with ‘parameter spaces’ Θk ; one then de�nes or assumes
some prior probability distributions π� and π� on Θ� and Θ�, respectively.�e Bayesian mar-
ginal probability distributions are then the corresponding marginal distributions, i.e. for any
set A ⊂ Ω they satisfy:

P�(A) = �
Θ�

Pθ ��(A)dπ�(θ) ; P�(A) = �
Θ�

Pθ ��(A)dπ�(θ). (�.�)

For now we also further assume that for every n ≤ T , every xn ∈ X n , P�(Xn = xn) > � and
P�(Xn = xn) > � (full support), where here, as below, we use random variable notation, Xn = xn
denoting the event {xn} ⊂ Ω. We note that there exist approaches to testing and model choice
such as testing by nonnegative martingales (Shafer et al., ����; Van der Pas and Grünwald, ����)
and minimum description length (Barron, Rissanen and Yu, ����; Grünwald, ����) in which
the P� and P� may be de�ned in di�erent (yet related) ways. Several of the results below extend
to general P� and P�; we return to this point at the end of the chapter, in Section �.�. In all
cases, we further assume that we have determined an additional probability mass function π
on {H� ,H�}, indicating the prior probabilities of the hypotheses.�e evidence in favor of H�
relative to H� given data xτ is now measured either by the Bayes factor or the posterior odds.
We now give the standard de�nition of these quantities for the case that τ = n, i.e., that the
sample size is �xed in advance. First, noting that all conditioning below is on events of strictly
positive probability, by Bayes’ theorem, we can write for any A ⊂ Ω,

π(H� � A)
π(H� � A)

= P(A � H�)
P(A � H�)

⋅ π(H�)
π(H�)

, (�.�)

where here, as in the remainder of the chapter, we use the symbol π to denote not just prior, but
also posterior distributions on {H� ,H�}. In the case that we observe xn for �xed n, the event
A is of the form Xn = xn . Plugging this into (�.�), the le�-hand side becomes the standard
de�nition of posterior odds, and the �rst factor on the right is called the Bayes factor.

�.�.� First Sense of Handling Optional Stopping: τ-Independence
Now, in reality we do not necessarily observe Xn = xn for �xed n but rather Xτ = xτ where τ is
a stopping time that may itself depend on (past) data (and that in some cases may in fact be
unknown to us).�is stopping time may be de�ned in terms of a stopping rule f ∶ �T

i≥�X
i →
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{stop, continue}. τ ≡ τ(xT) is then de�ned as the random variable which, for any sample
x� , . . . , xT , outputs the smallest n such that f (x� , . . . , xn) = stop. For any given stopping time
τ, any � ≤ n ≤ T and sequence of data xn = (x� , . . . , xn), we say that xn is compatible with τ if
it satis�es Xn = xn ⇒ τ = n. We let X τ ⊂ �T

i=�X i be the set of all sequences compatible with
τ.

Observations take the form Xτ = xτ , which is equivalent to the event Xn = xn ; τ = n for some
n and some xn ∈ X n which of necessity must be compatible with τ. We can thus instantiate
(�.�) to

π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

= P(τ = n � Xn = xn ,H�) ⋅ π(H� � Xn = xn)
P(τ = n � Xn = xn ,H�) ⋅ π(H� � Xn = xn)

=

= π(H� � Xn = xn)
π(H� � Xn = xn)

. (�.�)

where in the �rst equality we used Bayes’ theorem (keeping Xn = xn on the right of the
conditioning bar throughout); the second equality stems from the fact that Xn = xn logically
implies τ = n, since xn is compatible with τ; the probability P(τ = n � Xn = xn ,Hj) must
therefore be � for j = �, �. Combining (�.�) with Bayes’ theorem we get:

γ(xn
)

����������������������������������������������������������������������������������������������������������������������������������������
π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

β(xn
)

����������������������������������������������������������������
P�(Xn = xn)
P�(Xn = xn)

⋅ π(H�)
π(H�)

(�.�)

where we introduce the notation γ(xn) for the posterior odds and β(xn) for the Bayes factor
based on sample xn , calculated as if n were �xed in advance.�

We see that the stopping rule plays no role in the expression on the right.�us, we have shown
that, for any two stopping times τ� and τ� that are both compatible with some observed xn , the
posterior odds one arrives at will be the same irrespective of whether xn came to be observed
because τ� was used or if xn came to be observed because τ� was used. We say that the posterior
odds do not depend on the stopping rule τ and call this property τ-independence. Incidentally,
this also justi�es that we write the posterior odds as γ(xn), a function of xn alone, without
referring to the stopping time τ.

�e fact that the posterior odds given xn do not depend on the stopping rule is the �rst
(and simplest) sense in which Bayesian methods handle optional stopping. It has its roots in
the stopping rule principle, the general idea that the conclusions obtained from the data by
‘reasonable’ statistical methods should not depend on the stopping rule used.�is principle
was probably �rst formulated by Barnard (����; ����); Barnard, ���� very implicitly showed
that, under some conditions, Bayesian methods satisfy the stopping rule principle (and hence
satisfy τ-independence). Other early sources are Lindley (����) and Edwards, Lindman and
Savage (����). Lindley gave an informal proof in the context of speci�c parametric models;

�A slightly di�erent way to get to (�.�), which some may �nd even simpler, is to start with P�(Xn
= xn , τ = n) =

P�(Xn
= xn) (since Xn

= xn implies τ = n), whence π(Hj � Xn
= xn , τ = n) ∝ P j(Xn

= xn , τ = n)π(Hj) =

P j(Xn
= xn)π(Hj).
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in Section �.�.� we show that, under some regularity conditions, the result indeed remains
true for general σ-�nite P� and P�. A special case of our result (allowing continuous-valued
sample spaces but not general measures) was proven by Rai�a and Schlaifer, ����, and a more
general statement about the connection between the ‘likelihood principle’ and the ’stopping rule
principle’ which implies our result in Section �.�.� can be found in the seminal work (Berger
and Wolpert, ����), who also provide some historical context. Still, even though not new in
itself, we include our result on τ-independence with general sample spaces and measures since
it is the basic building block of our later results on calibration and semi-frequentist robustness,
which are new.

Finally, we should note that both Rai�a and Schlaifer, ���� and Berger and Wolpert, ����
consider more general stopping rules, which can map to a probability of stopping instead of
just {stop, continue}. Also, they allow the stopping rule itself to be parameterized: one deals
with a collection of stopping rules { fξ ∶ ξ ∈ Ξ} with corresponding stopping times {τξ ∶ ξ ∈ Ξ},
where the parameter ξ is equipped with a prior such that ξ and Hj are required to be a priori
independent. Such extensions are straightforward to incorporate into our development as well
(very roughly, the second equality in (�.�) now follows because, by conditional independence,
we must have that P(τξ = n � Xn = xn ,H�) = P(τξ = n � Xn = xn ,H�)); we will not go into
such extensions any further in this chapter.

�.�.� Second Sense of Handling Optional Stopping: Calibration
An alternative de�nition of handling optional stopping was introduced by Rouder, ����. Rouder
calls γ(xn) the nominal posterior odds calculated from an obtained sample xn , and de�nes the
observed posterior odds as

π(H� � γ(xn) = c)
π(H� � γ(xn) = c)

as the posterior odds given the nominal odds. Rouder �rst notes that, at least if the sample
size is �xed in advance to n, one expects these odds to be equal. For instance, if an obtained
sample yields nominal posterior odds of �-to-� in favor of the alternative hypothesis, then it
must be � times as likely that the sample was generated by the alternative probability measure.
In the terminology of De Heide and Grünwald, ����, Bayes is calibrated for a �xed sample size
n. Rouder then goes on to note that, if n is determined by an arbitrary stopping time τ (based
for example on optional stopping), then the odds will still be equal — in this sense, Bayesian
testing is well-behaved in the calibration sense irrespective of the stopping rule/time. Formally,
the requirement that the nominal and observed posterior odds be equal leads us to de�ne the
calibration hypothesis, which postulates that c = P(H� � γ = c)�P(H� � γ = c) holds for any
c > � that has non-zero probability. For simplicity, for now we only consider the case with equal
prior odds for H� and H� so that γ(xn) = β(xn).�en the calibration hypothesis says that, for
arbitrary stopping time τ, for every c such that β(xτ) = c for some xτ ∈ X τ , one has

c = P(β(xτ) = c � H�)
P(β(xτ) = c � H�)

. (�.�)
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In the present simple setting, this hypothesis is easily shown to hold, becausewe canwrite:

P(β(Xτ) = c � H�)
P(β(Xτ) = c � H�)

=
∑y∈X τ

∶β(y)=c P({y} � H�)
∑y∈X τ ;β(y)=c P({y} � H�)

=
∑y∈X τ

∶β(y)=c cP({y} � H�)
∑y∈X τ

∶β(y)=c P({y} � H�)
= c.

Rouder noticed that the calibration hypothesis should hold as a mathematical theorem, without
giving an explicit proof; he demonstrated it by computer simulation in a simple parametric
setting. Deng, Lu and Chen, ���� gave a proof for a somewhat more extended setting yet
still with proper priors. In Section �.�.� we show that a version of the calibration hypothesis
continues to hold for general measures based on improper priors, and in Section �.�.�we extend
this further to strong calibration for group invariance settings as discussed below.

We note that this result, too, relies on the priors themselves not depending on the stopping time,
an assumption which is violated in several standard default Bayes factor settings. We also note
that, if one thinks of one’s priors in a default sense — they are practical but not necessarily fully
believed — then the practical implications of calibration are limited, as shown experimentally
by De Heide and Grünwald, ����. One would really like a stronger form of calibration in which
(�.�) holds under a whole range of distributions in H� and H�, rather than in terms of P� and
P� which average over a prior that perhaps does not re�ect one’s beliefs fully. For the case that
H� and H� share a nuisance parameter g taking values in some set G, one can de�ne this strong
calibration hypothesis as stating that, for all c with β(xτ) = c for some xτ ∈ X τ , all g ∈ G,

c = P(β(xτ) = c � H� , g)
P(β(xτ) = c � H� , g)

. (�.�)

where β is still de�ned as above; in particular, when calculating β one does not condition
on the parameter having the value g, but when assessing its likelihood as in (�.�) one does.
De Heide and Grünwald, ���� show that the strong calibration hypothesis certainly does
not hold for general parameters, but they also show by simulations that it does hold in the
practically important case with group invariance and right Haar priors (Example �.� provides
an illustration). In Section �.�.� we show that in such cases, one can indeed prove that a version
of (�.�) holds.

�.�.� �ird SenseofHandlingOptional Stopping: (Semi-)Frequentist
In classical, Neyman-Pearson style null hypothesis testing, a main concern is to limit the false
positive rate of a hypothesis test. If this false positive rate is bounded above by some α > �,
then a null hypothesis signi�cance test (NHST) is said to have signi�cance level α, and if the
signi�cance level is independent of the stopping rule used, we say that the test is robust under
frequentist optional stopping.

De�nition �.�. A function S ∶ �T
i=m X

i → {�, �} is said to be a frequentist sequential test with
signi�cance level α and minimal sample size m that is robust under optional stopping relative
to H� if for all P ∈ H�

P (∃n,m < n ≤ T ∶ S(Xn) = �) ≤ α,

i.e. the probability that there is an n at which S(Xn) = � (‘the test rejects H� when given sample
Xn ’) is bounded by α.
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In our present setting, we can take m = � (larger m become important in Section �.�.�), so n
runs from � to T and it is easy to show that, for any � ≤ α ≤ �, we have

P� �∃n, � < n ≤ T ∶
�

β(xn)
≤ α� ≤ α. (�.�)

Proof. For any �xed α and any sequence xT = x� , . . . , xT , let τ(xT) be the smallest n such that,
for the initial segment xn of xT , β(xn) ≥ ��α (if no such n exists we set τ(xT) = T).�en τ is a
stopping time, Xτ is a random variable, and the probability in (�.�) is equal to the P�-probability
that β(Xτ) ≥ ��α, which by Markov’s inequality is bounded by α.

It follows that, ifH� is a singleton, then the sequential test S that rejectsH� (outputs S(Xn) = �)
whenever β(xn) ≥ ��α is a frequentist sequential test with signi�cance level α that is robust
under optional stopping.

�e fact that Bayes factor testing with singletonH� handles optional stopping in this frequentist
way was noted by Edwards, Lindman and Savage (����) and also emphasized by Good, ����,
among many others. If H� is not a singleton, then (�.�) still holds, so the Bayes factor still
handles optional stopping in a mixed frequentist (Type I-error) and Bayesian (marginalizing
over prior within H�) sense. From a frequentist perspective, one may not consider this to be
fully satisfactory, and hence we call it ‘semi-frequentist’. In some quite special situations though,
it turns out that the Bayes factor satis�es the stronger property of being truly robust to optional
stopping in the above frequentist sense, i.e. (�.�) will hold for all P ∈ H� and not just ‘on average’.
�is is illustrated in Example �.� below and formalized in Section �.�.�.

�.� Discussion: why should one care?
Nowadays, even more so than in the past, statistical tests are o�en performed in an on-line
setting, in which data keeps coming in sequentially and one cannot tell in advance at what point
the analysis will be stopped and a decision will be made — there may indeed be many such
points. Prime examples include group sequential trials (Proschan, Lan and Wittes, ����) and
A�B-testing, to which all internet users who visit the sites of the tech giants are subjected. In
such on-line settings, it may or may not be a good idea to use Bayesian tests. But can and should
they be used? Together with the companion paper (De Heide and Grünwald, ����) (DHG from
now on— corresponding to Chapter � of this dissertation), the present chapter sheds some light
on this issue. Let us �rst highlight a central insight from DHG, which is about the case in which
none of the results discussed in the present chapter apply: in many practical situations, many
Bayesian statisticians use priors that are themselves dependent on parts of the data and/or the
sampling plan and stopping time. Examples are Je�reys prior with the multinomial model and
the Gunel-Dickey default priors for �x� contingency tables advocated by Jamil et al., ����. With
such priors, �nal results evidently depend on the stopping rule employed, and even though
such methods typically count as ‘Bayesian’, they do not satisfy τ-independence. �e results
then become non-interpretable under optional stopping (i.e. stopping using a rule that is not
known at the time the prior is decided upon), and as argued by De Heide and Grünwald, ����,
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the notions of calibration and frequentist optional stopping even become unde�ned in such a
case.

In such situations, one cannot rely on Bayesian methods to be valid under optional stopping
in any sense at all; in the present chapter we thus focus on the case with priors that are �xed
in advance, and that themselves do not depend on the stopping rule or any other aspects of
the design. For expository simplicity, we consider the question of whether Bayes factors with
such priors are valid under optional stopping in two extreme settings: in the �rst setting, the
goal of the analysis is purely exploratory— it should give us some insight in the data and/or
suggest novel experiments to gather or novel models to analyze data with. In the second setting
we consider the analysis as ‘�nal’ and the stakes are much higher — real decisions involving
money, health and the like are involved — a typical example would be a Stage � clinical trial,
which will decide whether a new medication will be put to market or not.

For the �rst, exploratory setting, exact error guarantees might neither be needed at all nor
obtainable anyway, so the frequentist sense of handling optional stopping may not be that
important. Yet, one would still like to use methods that satisfy some basic sanity checks for use
under optional stopping. τ-independence is such a check: any method for which it does not
hold is simply not suitable for use in a situation in which details of the stopping rule may be
unknown. Also calibration can be viewed as such a sanity check: Rouder, ���� introduced it
mainly to show that Bayesian posterior odds remainmeaningful under optional stopping: they
still satisfy some key property that they satisfy for �xed sample sizes.

For the second high stakes setting, mere sanity and interpretability checks are not enough:
most researchers would want more stringent guarantees, for example on Type-I and/or Type-II
error control. At the same time, most researchers would acknowledge that their priors are far
from perfect, chosen to some extent for purposes of convenience rather than true belief.� Such
researchersmay thus want the desired Type-I error guarantees to hold for all P ∈ H�, and not just
in average over the prior as in (�.�). Similarly, in the high stakes setting the form of calibration
(�.�) that can be guaranteed for the Bayes factor would be considered too weak, and one would
hope for a stronger form of calibration as explained at the end of Section �.�.�.

DHG show empirically that for some o�en-used models and priors, strong calibration can be
severely violated under optional stopping. Similarly, it is possible to show that in general, Type-I
error guarantees based on Bayes factors simply do not hold simultaneously for all P ∈ H� for
suchmodels and priors.�us, one should be cautious using Bayesianmethods in the high stakes
setting, despite adhortations such as the quote by Edwards, Lindman and Savage, ���� in the
introduction (or similar quotes by e.g. Rouder et al., ����): these existing papers invariably use
τ-independence, calibration or Type-I error control with simple null hypotheses as a motivation
to— essentially — use Bayes factor methods in any situation, including presumably high-stakes
situations and situations with composite null hypotheses.�

�Even De Finetti and Savage, fathers of subjective Bayesianism, acknowledged this: see Section � of DHG.
�Since the authors of the present chapter are inclined to think frequentist error guarantees are important, we

disagree with such claims, as in fact a subset of researchers calling themselves Bayesians would as well. To witness,
a large fraction of recent ISBA (Bayesian) meetings is about frequentist properties of Bayesian methods; also the
well-known Bayesian authors Good, ���� and Edwards, Lindman and Savage, ���� focus on showing that Bayes factor
methods achieve a frequentist Type-I error guarantee, albeit only for the simple H� case.
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Still, and this is equally important for practitioners, while frequentist error control and strong
calibration are violated in general, in some important special cases they do hold, namely if the
models H� and H� satisfy a group invariance. We proceed to give an informal illustration of
this fact, deferring the mathematical details to Section �.�.�.

Example �.�. Consider the one-sample t-test as described by Rouder et al., ����, going back
to Je�reys, ����.�e test considers normally distributed data with unknown standard deviation.
�e test is meant to answer the question whether the data has mean µ = � (the null hypothesis)
or some othermean (the alternative hypothesis). Following (Rouder et al., ����), a Cauchy prior
density, denoted by πδ(δ), is placed on the e�ect size δ = µ�σ .�e unknown standard deviation
is a nuisance parameter and is equipped with the improper prior with density πσ(σ) = �

σ under
both hypotheses.�is is the so-called right Haar prior for the variance.�is gives the following
densities on n outcomes:

p�,σ(xn) =
�

(�πσ �)n��
⋅ exp� �

�σ �

n
�
i=�

x�i � [ = p�,σ ,�(xn) ] (�.�)

p�,σ ,δ(xn) =
�

(�πσ �)n��
⋅ exp�−n

�
�� x

σ
− δ�

�
+ �

�
n ∑

n
i=�(xi − x)�

σ � ��� , where

x = �
n

n
�
i=�

xi ,

so that the corresponding Bayesian marginal densities are given by

p�(x
n) = �

∞

�
p�,σ(xn)πσ(σ)dσ ,

p�(x
n) = �

∞

�
�
∞

−∞

p�,σ ,δ(xn)πδ(δ)πσ(σ)dδ dσ = �
∞

�
p�,σ(xn)πσ(σ)dσ .

Our results in Section �.� imply that — under a slight, natural restriction on the stopping rules
allowed — the Bayes factor p�(xn)�p�(xn) is truly robust to optional stopping in the above
frequentist sense.�at is, (�.�) will hold for all P ∈ H�, i.e. all σ > �, and not just ‘on average’.
�us, we can give Type I error guarantees irrespective of the true value of σ . Similarly, strong
calibration in the sense of Section �.�.� holds for all P ∈ H�. �e use of a Cauchy prior is
not essential in this construction; the result will continue to hold for any proper prior on δ,
including point priors that put all mass on a single value of δ.

As we show in Section �.�, these results extend to a variety of settings, namely wheneverH� and
H� share a common so-called group invariance. In the t-test example, it is a scale invariance —
e�ectively this means that for all δ, all σ , the distributions of

X� , . . . , Xn under p�,σ ,δ , and σX� , . . . , σXn under p�,�,δ , coincide. (�.�)

For other models, one could have a translation invariance; for the full normal family, one has
both translation and scale invariance; for yet other models, onemight have a rotation invariance,
and so on. Each such invariance is expressed as a group—a set equipped with a binary operation
that satis�es certain axioms.�e group corresponding to scale invariance is the set of positive
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reals, and the operator is scalar multiplication or equivalently division; similarly, the group
corresponding to translation invariance is the set of all reals, and the operation is addition.

In the general case, one starts with a group G that satis�es certain further restrictions (detailed
in Section �.�), a model {p�,g ,θ ∶ g ∈ G , θ ∈ Θ} where g represents the invariant parameter
(vector) and the parameterization must be such that the analogue of (�.�) holds. In the example
above g = σ is the variance and θ is set to δ ∶= µ�σ . One then singles out a special value of θ,
say θ�, one sets H� ∶= {p�,g ,θ� ∶ g ∈ G}; within H� one puts an arbitrary prior on θ. For every
group invariance, there exists a corresponding right Haar prior on G; one equips both models
with this prior on G.�eorem �.� and �.� imply that in all models constructed this way, we
have strong calibration and Type-I error control uniformly for all g ∈ G. While this is hinted at
in several papers (e.g. (Bayarri et al., ����; Dass and Berger, ����)) and the special case for the
Bayesian t-test was implicitly proven in earlier work by Lai, ����, it seems to never have been
proven formally in general before.

Our results thus imply that in some situations (group invariance) with composite null hypo-
theses, Type-I error control for all P ∈ H� under optional stopping is possible with Bayes factors.
What about Type-II error control and composite null hypotheses that do not satisfy a group
structure?�is is partially addressed by the safe testing approach of Grünwald, De Heide and
Koolen, ���� (see alsoHoward et al., ����b for a related approach).�ey show that for completely
arbitrary H� and H�, for any given prior π� on H�, there exists a corresponding prior π� on H�,
the reverse information projection prior, so that, for all P ∈ H�, one has Type-I error guarantees
under frequentist optional continuation, a weakening of the idea of optional stopping. Further,
if one wants to get control of Type-II error guarantees under optional stopping/continuation,
one can do so by �rst choosing another special prior π∗� on H� and picking the corresponding
π∗� on H�. Essentially, like in ‘default’ or ‘objective’ Bayes approaches, one chooses special priors
in lieu of a subjective choice; but the priors one ends up with are sometimes quite di�erent
from the standard default priors, and, unlike these, allow for frequentist error control under
optional stopping.

�.� �e General Case
Let (Ω,F) be a measurable space. Fix some m ≥ � and consider a sequence of functions
Xm+� , Xm+� , . . . on Ω so that each Xn , n > m takes values in some �xed set (‘outcome space’)
X with associated σ-algebra Σ. When working with proper priors we invariably take m = �
and then we de�ne Xn ∶= (X� , X� , . . . , Xn) and we let Σ(n) be the n-fold product algebra of Σ.
When working with improper priors it turns out to be useful (more explanation further below)
to takem > � and de�ne an initial sample random variable �X(m)� on Ω, taking values in some
set �X m� ⊆ X m with associated σ-algebra �Σ(m)�. In that case we set, for n ≥ m, �X n� = {xn =
(x� , . . . , xn) ∈ X n ∶ xm = (x� , . . . , xm) ∈ �X m�}, and Xn ∶= (�X(m)�, Xm+� , Xm+� , . . . , Xn)
and we let Σ(n) be �Σ(m)� ×∏n

j=m+� Σ. In either case, we let F n be the σ-algebra (relative to
Ω) generated by (Xn , Σ(n)).�en (F n)n=m ,m+�, . . . is a �ltration relative to F and if we equip
(Ω,F) with a distribution P then �X(m)�, Xm+� , Xm+� , . . . becomes a random process adapted
to F . A stopping time is now generalized to be a function τ ∶ Ω → {m + �,m + �, . . .} ∪ {∞}
such that for each n > m, the event {τ = n} is F n-measurable; note that we only consider
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stopping a�er m initial outcomes. Again, for a given stopping time τ and sequence of data
xn = (x� , . . . , xn), we say that xn is compatible with τ if it satis�es Xn = xn ⇒ τ = n, i.e.
{ω ∈ Ω � Xn(ω) = xn} ⊂ {ω ∈ Ω � τ(ω) = n}.

H� and H� are now sets of probability distributions on (Ω,F). Again one writes Hj = {Pθ � j �
θ ∈ Θ j}where now the parameter setsΘ j (which, however, could itself be in�nite-dimensional)
are themselves equipped with suitable σ-algebras.

We will still represent both H� and H� by unique measures P� and P� respectively, which we
now allow to be based on (�.�) with improper priors π� and π� that may be in�nite measures.
As a result P� and P� are positive real measures that may themselves be in�nite. We also allow
X to be a general (in particular uncountable) set. Both non-integrability and uncountability
cause complications, but these can be overcome if suitable Radon-Nikodym derivatives exist.
To ensure this, we will assume that for all n ≥ max{m, �}, for all k ∈ {�, �} and θ ∈ Θk , P

(n)
θ �k ,

P
(n)
� and P

(n)
� are all mutually absolutely continuous and that the measures P

(n)
� and P

(n)
� are

σ-�nite.�en there also exists a measure ρ on (Ω,F) such that, for all such n, P
(n)
� , P

(n)
� and

ρ(n) are all mutually absolutely continuous: we can simply take ρ(n) = P(n)� , but in practice, it
is o�en possible and convenient to take ρ such that ρ(n) is the Lebesgue measure on Rn , which
is why we explicitly introduce ρ here.

�e absolute continuity conditions guarantee that all required Radon-Nikodym derivatives
exist. Finally, we assume that the posteriors πk(Θk � xm) (as de�ned in the standard manner in
(�.��) below; when m = � these are just the priors) are proper probability measures (i.e. they
integrate to �) for all xm ∈ �X m�.�is �nal requirement is the reason why we sometimes need to
consider m > � and nonstandard sample spaces �X n� in the �rst place: in practice , one usually
starts with the standard setting of a (Ω,F) where m = � and all Xi have the same status. In all
practical situations with improper priors π� and/or π� that we know of, there is a smallest �nite
j and a setX ○ ⊂ X j that has measure � under all probability distributions in H� ∪H�, such that,
restricted to the sample space X j �X ○, the measures P

( j)
� and P

( j)
� are σ-�nite and mutually

absolutely continuous, and the posteriors πk(Θk � x j) are proper probability measures. One
then sets m to equal this j, and sets �X m� ∶= X m �X ○, and the required properness will be
guaranteed. Our initial sample �X(m)� is a variation of what is called (for example, by Bayarri
et al. (����)) a minimal sample. Yet, the sample size of a standard minimal sample is itself a
random quantity; by restricting X m to �X m�, we can take its sample size m to be constant
rather than random, which will greatly simplify the treatment of optional stopping with group
invariance; see Example �.� and �.� below.

We henceforth refer to the setting now de�ned (with m and initial space �X m� satisfying the
requirements above) as the general case.

We need an analogue of (�.�) for this general case. If P� and P� are probability measures, then
there is still a standard de�nition of conditional probability distributions P(H � A) in terms of
conditional expectation for any given σ-algebraA; based on this, we can derive the required
analogue in two steps. First, we consider the case that τ ≡ n for some n > m. We know in
advance that we observe Xn for a �xed n: the appropriate A is then F n , π(H � A)(ω) is
determined by Xn(ω) hence can be written as π(H � Xn), and a straightforward calculation
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gives that

π(H� � Xn = xn)
π(H� � Xn = xn)

=
�
�
�
�
dP
(n)
� �dρ(n)

dP
(n)
� �dρ(n)

�
�
(xn)
�
�
⋅ π(H�)
π(H�)

(�.��)

where (dP(n)� �dρ(n)) and (dP
(n)
� �dρ(n)) are versions of the Radon-Nikodym derivatives

de�ned relative to ρ(n). �e second step is now to follow exactly the same steps as in the
derivation of (�.�), replacing β(Xn) by (�.��) wherever appropriate (we omit the details).�is
yields, for any n such that ρ(τ = n) > �, and for ρ(n)-almost every xn that is compatible with
τ,

γn
��������������������������������������������������
π(H� � xn)
π(H� � xn)

= π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

βn

���������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
dP
(n)
� �dρ(n)

dP
(n)
� �dρ(n)

�
�
(xn)
�
�
⋅ π(H�)
π(H�)

, (�.��)

where here, as below, for n ≥ m, we abbreviate π(Hk � Xn = xn) to π(Hk � xn).

�e above expression for the posterior is valid if P� and P� are probability measures; we will
simply take it as the de�nition of the Bayes factor for the general case. Again this coincides with
standard usage for the improper prior case. In particular, let us de�ne the conditional posteriors
and Bayes factors given �X(m)� = xm in the standard manner, by the formal application of
Bayes’ rule, for k = �, � and measurable Θ′k ⊂ Θk and F-measurable A,

πk(Θ′k � xm) ∶=
∫Θ′k

dP(m)θ�k
dρ(m) (x

m)dπk(θ)

∫Θk

dP(m)θ�k
dρ(m) (xm)dπk(θ)

(�.��)

Pk(A � xm) ∶= Pk(A � �X(m)� = xm) ∶= �
Θk

Pθ �k(A � �X(m)� = xm)dπk(θ � xm), (�.��)

where Pθ �k(A � �X(m)� = xm) is de�ned as the value that (a version of) the conditional
probability Pθ �k(A � Fm) takes when �X(m)� = xm , and is thus de�ned up to a set of ρ(m)-
measure �.

With these de�nitions, it is straightforward to derive the following coherence property, which
automatically holds if the priors are proper, and which in combination with (�.��) expresses
that �rst updating on xm and then on xm+� , . . . , xn (multiplying posterior odds given xm with
the Bayes factor for n outcomes given Xm = xm , which we denote by βn�m) has the same
result as updating based on the full x� , . . . , xn at once (i.e. multiplying the prior odds with the
unconditional Bayes factor βn for n outcomes):

π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

βn�m
���������������������������������������������������������������������������������������������������������������������������
�
�
dP
(n)
� (⋅ � xm)

dP
(n)
� (⋅ � xm)

(xn)
�
�
⋅ π(H� � xm)
π(H� � xm)

. (�.��)



��� Chapter �. Optional stopping with Bayes Factors

�.�.� τ-independence, general case
�e general version of the claim that the posterior odds do not depend on the speci�c stopping
rule that was used is now immediate, since the expression (�.��) for the Bayes factor does not
depend on the stopping time τ.

�.�.� Calibration, general case
We will now show that the calibration hypothesis continues to hold in our general setting.
From here onward, we make the further reasonable assumption that for every xm ∈ �X m�,
P�(τ =∞ � xm) = P�(τ =∞ � xm) = � (the stopping time is almost surely �nite), and we de�ne
Tτ ∶= {n ∈ N>m � P�(τ = n) > �}.

To prepare further, let {Bj � j ∈ Tτ} be any collection of positive random variables such that for
each j ∈ Tτ , Bj is F j-measurable. We can de�ne the stopped random variable Bτ as

Bτ ∶=
∞

�
j=�

{τ= j}Bj =
∞

�
j=m+�

{τ= j}Bj , (�.��)

where we note that, under this de�nition, Bτ is well-de�ned even if EP�
[τ] =∞.

We can de�ne the induced measures on the positive real line under the null and alternative
hypothesis for any probability measure P on (Ω,F):

P[Bτ] ∶ B(R>�)→ [�, �] ∶ A� P �B−�τ (A)� . (�.��)

where B(R>�) denotes the Borel σ-algebra of R>�. Note that, when we refer to P[Bn], this is
identical to P[Bτ] for the stopping time τ which on all of Ω stops at n.�e following lemma is
crucial for passing from �xed-sample size to stopping-rule based results.

Lemma �. Let Tτ and {Bn � n ∈ Tτ} be as above. Consider two probability measures P� and
P� on (Ω,F). Suppose that for all n ∈ Tτ , the following �xed-sample size calibration property
holds:

for some �xed c > �, P�[Bn]-almost all b ∶ P�(τ = n)
P�(τ = n)

⋅ dP�
[Bn](⋅ � τ = n)

dP�[Bn](⋅ � τ = n)
(b) = c ⋅ b. (�.��)

�en we have

for P�[Bτ]-almost all b :
dP�[Bτ]

dP�[Bτ]
(b) = c ⋅ b. (�.��)

�e proof is in Section �.B in the supplementary material.

In this subsection we apply this lemma to the measures Pk(⋅ � xm) for arbitrary �xed xm ∈
�X m�, with their induced measures P

[γτ]
� (⋅ � xm), P

[γτ]
� (⋅ � xm) for the stopped posterior odds

γτ . Formally, the posterior odds γn as de�ned in (�.��) constitute a random variable for each n,
and, under our mutual absolute continuity assumption for P� and P�, γn can be directly written
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as dP(n)�

dP(n)�

⋅ π(H�)�π(H�). Since, by de�nition, the measures Pk(⋅ � xm) are probability measures,
the Radon-Nikodym derivatives in (�.��) and (�.��) are well-de�ned.

Lemma �. We have for all xm ∈ �X m�, all n > m:

for P
[γn]
� (⋅ � xm)-almost all b :

P
[γn]
� (τ = n � xm)

P
[γn]
� (τ = n � xm)

⋅ dP
[γn]
� (⋅ � xm)

dP
[γn]
� (⋅ � xm)

(b) = π(H� � xm)
π(H� � xm)

⋅ b.

(�.��)

Combining the two lemmas now immediately gives (�.��) below, and combining further with
(�.��) and (�.��) gives (�.��):

Corollary �. In the setting considered above, we have for all xm ∈ �X m�:

for P
[γτ]
� (⋅ � xm)-almost all b :

π(H� � xm)
π(H� � xm)

⋅ dP
[γτ]
� (⋅ � xm)

dP
[γτ]
� (⋅ � xm)

(b) = b, (�.��)

and also

for P
[γτ]
� (⋅ � xm)-almost all b :

π(H�)
π(H�)

⋅ dP
[γτ]
�

dP
[γτ]
�

(b) = b, (�.��)

Inwords, the posterior odds remain calibrated under any stopping rule τwhich stops almost surely
at times m < τ <∞.

For discrete and strictly positive measures with prior odds π(H�)�π(H�) = �, we always have
m = �, and (�.��) is equivalent to (�.�). Note that P

[γτ]
� (⋅ � xm)-almost everywhere in (�.��) is

equivalent to P
[γτ]
� (⋅ � xm)-almost everywhere because the two measures are assumed to be

mutually absolutely continuous.

�.�.� (Semi-)Frequentist Optional Stopping
In this section we consider our general setting as in the beginning of Section �.�.�, i.e. with the
added assumption that the stopping time is a.s. �nite, and with Tτ ∶= { j ∈ N>m � P�(τ = j) >
�}.

Consider any initial sample xm ∈ �X m� and let P� � xm and P� � xm be the conditional Bayes
marginal distributions as de�ned in (�.��). We �rst note that, by Markov’s inequality, for any
nonnegative random variable Z on Ω with, for all xm ∈ �X m�, EP� �xm [Z] ≤ �, we must have, for
� ≤ α ≤ �, P�(Z−� ≤ α � xm) ≤ EP� �xm [Z]�α−� ≤ α.

Proposition �. Let τ be any stopping rule satisfying our requirements. Let βτ�m be the stopped
Bayes factor given xm, i.e., in accordance with (�.��), βτ�m = ∑∞j=m+� {τ= j}β j�m with β j�m as
given by (�.��).�en βτ�m satis�es, for all xm ∈ �X m�, EP� �xm [βτ�m] ≤ �, so that, by the reasoning
above, P�( �

βτ�m ≤ α � x
m) ≤ α.
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Proof. We have

EP� �xm [γτ] = � bP
[γτ]
� (db � xm) =

�
dP
[γτ]
� (b � xm)

dP
[γτ]
� (b � xm)

⋅ π(H� � xm)
π(H� � xm)

P
[γτ]
� (db � xm) =

π(H� � xm)
π(H� � xm)

,

where the �rst equality follows by de�nition of expectation, the second follows from Corollary �,
and the third follows from the fact that the integral equals �.

But now note that

βτ�m =
∞

�
j=m+�

{τ= j}β j�m =
∞

�
j=m+�

{τ= j}γ j ⋅
π(H� � xm)
π(H� � xm)

= γτ ⋅
π(H� � xm)
π(H� � xm)

,

where the second equality follows from (�.��) together with the �rst equality in (�.��). Combin-
ing the two equations we get:

EP� �xm �βτ�m� = EP� �xm �γτ ⋅
π(H� � xm)
π(H� � xm)

� = �.

�e desired result now follows by plugging in a particular stopping rule: let S ∶ �∞i=m+�X
i →

{�, �} be the frequentist sequential test de�ned by setting, for all n > m, xn ∈ �X n�: S(xn) = �
if and only if βn�m ≥ ��α.

Corollary �. Let t∗ ∈ {m+ �,m+�, . . .}∪{∞} be the smallest t∗ > m for which β−�t�m ≤ α.�en
for arbitrarily large T, when applied to the stopping rule τ ∶=min{T , t∗}, we �nd that

P�(∃n,m < n ≤ T ∶ S(Xn) = � � xm) = P�(∃n,m < n ≤ T ∶ β−�n�m ≤ α � x
m) ≤ α.

�e corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to H� (De�nition �.�). Note that, just as in the simple case, the setting is really just
‘semi-frequentist’ whenever H� is not a singleton.

�.� Optional stopping with group invariance
Whenever the null hypothesis is composite, the previous results only hold under the marginal
distribution P� or, in the case of improper priors, under P�(⋅ � Xm = xm). When a group
structure can be imposed on the outcome space and (a subset of the) parameters that is joint to
H� and H�, stronger results can be derived for calibration and frequentist optional stopping.
Invariably, such parameters function as nuisance parameters and our results are obtained if
we equip them with the so-called right Haar prior which is usually improper. Below we show
how we then obtain results that simultaneously hold for all values of the nuisance parameters.
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Such cases include many standard testing scenarios such as the (Bayesian variations of the)
t-test, as illustrated in the examples below. Note though that our results do not apply to settings
with improper priors for which no group structure exists. For example, if Pθ �� expresses that
X� , X� , . . . are i.i.d. Poisson(θ), then from an objective Bayes or MDL point of view it makes
sense to adopt Je�reys’ prior for the Poisson model; this prior is improper, allows initial sample
size m = �, but does not allow for a group structure. For such a prior we can only use the
marginal results Corollary � and Corollary �. Group theoretic preliminaries, such as de�nitions
of a (topological) group, the right Haar measure, et cetera can be found in Section �.A of the
supplementary material.

�.�.� Background for �xed sample sizes
Here we prepare for our results by providing some general background on invariant priors
for Bayes factors with �xed sample size n on models with nuisance parameters that admit a
group structure, introducing the right Haar measure, the corresponding Bayes marginals, and
(maximal) invariants. We use these results in Section �.�.� to derive Lemma �, which gives us a
strong version of calibration for �xed n.�e setting is extended to variable stopping times in
Section �.�.�, and then Lemma � is used in this extended setting to obtain our strong optional
stopping results in Section �.�.� and �.�.�.

For now, we assume a sample space �X n� that is locally compact and Hausdor�, and that is
a subset of some product space X n where X is itself locally compact and Hausdor�. �is
requirement is met, for example, when X = R and �X n� = X n . In practice, the space �X n�
is invariably a subset of X n where some null-set is removed for technical reasons that will
become apparent below. We associate �X n� with its Borel σ-algebra which we denote as F n .
Observations are denoted by the random vector Xn = (X� , . . . , Xn) ∈ �X n�. We thus consider
outcomes of �xed sample size, denoting these as xn ∈ �X n�, returning to the case with stopping
times in Section �.�.� and �.�.�.

From now on we let G be a locally compact group G that acts topologically and properly� on
the right of �X n�. As hinted to before, this proper action requirement sometimes forces the
removal from X n of some trivial set with measure zero under all hypotheses involved.�is is
demonstrated at the end of Example �.� below.

Let P�,e and P�,e (notation to become clear below) be two arbitrary probability distributions
on �X n� that are mutually absolutely continuous. We will now generate hypothesis classes H�
and H�, both sets of distributions on �X n� with parameter space G, starting from P�,e and P�,e ,
where e ∈ G is the group identity element. �e group action of G on �X n� induces a group
action on these measures de�ned by

Pk ,g(A) ∶= (Pk ,e ⋅ g)(A) ∶= Pk ,e(A ⋅ g−�) = � {A}(x ⋅ g) Pk ,e(dx) (�.��)

for any set A ∈ F n , k = �, �. When applied to A = �X n�, we get Pk ,g(A) = �, for all g ∈ G,

�A group acts properly on a set Y if the mapping ψ ∶ Y × G � Y × Y de�ned by ψ(y, g) = (y ⋅ g , y) is a proper
mapping, i.e. the inverse image of ψ of each compact set in Y ×Y is a compact set in Y ×G. (Eaton (����), De�nition �.�)
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whence we have created two sets of probability measures parameterized by g, i.e.,

H� ∶= {P�,g � g ∈ G} ; H� ∶= {P�,g � g ∈ G}. (�.��)

In this context, g ∈ G, can typically be viewed as nuisance parameter, i.e. a parameter that
is not directly of interest, but needs to be accounted for in the analysis.�is is illustrated in
Example �.� and Example �.� below.�e examples also illustrate how to extend this setting to
cases where there are more parameters than just g ∈ G in either H� or H�. We extend the whole
setup to our general setting with non-�xed n in Section �.�.�.

We use the right Haar measure for G as a prior to de�ne the Bayes marginals:

Pk(A) = �
G
�
�X n�

{A} dPk ,g ν(dg) (�.��)

for k = �, � and A ∈ F n . Typically, the right Haar measure is improper so that the Bayes
marginals Pk are not integrable. Yet, in all cases of interest, they are (a) still σ-�nite, and, (b),
P�, P� and all distributions Pk ,g with k = �, � and g ∈ G are mutually absolutely continuous; we
will henceforth assume that (a) and (b) are the case.

Example �.� (continued) Consider the t-test of Example �.�. For consistency with the earlier
Example �.�, we abbreviate for general measures P on �X n�, (dP�dλ) (the density of distribu-
tion P relative to Lebesgue measure on Rn) to p. Normally, the one-sample t-test is viewed as a
test betweenH� = {P�,σ � σ ∈ R>�} andH′� = {P�,σ ,δ � σ ∈ R>� , δ ∈ R}, but we can obviously also
view it as test between H� and H� = {P�,σ} by integrating out the parameter δ to obtain

p�,σ(xn) = � p�,σ ,δ(xn)πδ(δ)dδ. (�.��)

�e nuisance parameter σ can be identi�ed with the group of scale transformations
G = {c � c ∈ R>�}. We thus let the sample space be �X n� = Rn � {�}n , i.e., we remove the
measure-zero set {�}n , such that the group action is proper on the sample space.�e group
action is de�ned by xn ⋅ c = c xn for xn ∈ �X n�, c ∈ G. Take e = � and let, for k = �, �, Pk ,e be the
distribution with density pk ,� as de�ned in (�.�) and (�.��).�e measures P�,g and P�,g de�ned
by (�.��) then turn out to have the densities p�,σ and p�,σ as de�ned above, with σ replaced by
g.�us, H� and H� as de�ned by (�.�) and (�.��) are indeed in the form (�.��) needed to state
our results.

In most standard invariant settings, H� and H� share the same vector of nuisance parameters,
and one can reduce H� and H� to (�.��) in the same way as above, by integrating out all other
parameters; in the example above, the only non-nuisance parameter was δ.�e scenario of
Example �.� can be generalized to a surprisingly wide variety of statistical models. In practice
we o�en start with a model H� = {P�,γ ,δ ∶ γ ∈ Γ, θ ∈ Θ} that implicitly already contains a
group structure, and we single out a special subset {P� , γ, θ� ∶ γ ∈ Γ}; this is what we inform-
ally described in Example �.�. More generally, we can start with potentially large (or even
nonparametric) hypotheses

H′k = {Pθ′�k ∶ θ′ ∈ Θ′k} (�.��)
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which at �rst are not related to any group invariance, but which we want to equip with an
additional nuisance parameter determined by a group G acting on the data. We can turn this
into an instance of the present setting by �rst choosing,for k = �, �, a proper prior density πk
on Θ′k , and de�ning Pk ,e to equal the corresponding Bayes marginal, i.e.

Pk ,e(A) ∶= � Pθ′�k(A) dπk(θ′). (�.��)

We can then generateHk = {Pk ,g � g ∈ G} as in (�.��) and (�.��). In the example above,H′� would
be the set of all Gaussians with a single �xed variance σ �

� andΘ′� = Rwould be the set of all e�ect
sizes δ, and the groupG would be scale transformation; but there aremany other possibilities. To
give but a few examples, Dass and Berger, ���� consider testing the Weibull vs. the log-normal
model, the exponential vs. the log-normal, correlations in multivariate Gaussians, and Berger,
Pericchi and Varshavsky, ���� consider location-scale families and linear models where H� and
H� di�er in their error distribution. Importantly, the group G acting on the data induces groups
Gk , k = �, �, acting on the parameter spaces, which depend on the parameterization. In our
example, the Gk were equal to G, but, for example, if H� is Weibull and H� is log-normal, both
given in their standard parameterizations, we get G� = {g�,b ,c � g�,b ,c(β, γ) = (bβc , γ�c), b >
�, c > �} and G� = {g�,b ,c � g�,b ,c(µ, σ) = (cµ + log(b), cσ), b > �, c > �}. Several more
examples are given by Dass, ����.

On the other hand, clearly not all hypothesis sets can be generated using the above approach.
For instance, the hypothesis H′� = {Pµ ,σ � µ = �, σ > �} with Pµ ,σ a Gaussian measure with
mean µ and standard deviation σ cannot be represented as in (�.��).�is is due to the fact that
for σ , σ ′ > �, σ ≠ σ ′, no element g ∈ R>� exists such that for any measurable set A ⊆ �X n� the
equality

P�,σ(A) = P�,σ ′(A ⋅ g−�)

holds.�is prevents an equivalent construction of H′� in the form of (�.��).

We now turn to the main ingredient that will be needed to obtain results on optional stopping:
the quotient σ-algebra.

De�nition �.� (Eaton (����), Chapter �). A group G acting on the right of a set Y induces
an equivalence relation: y� ∼ y� if and only if there exists g ∈ G such that y� = y� ⋅ g. �is
equivalence relation partitions the space in orbits:Oy = {y ⋅ g � g ∈ G}, the collection of which is
called the quotient space Y�G.�ere exists a map, the natural projection, from Y to the quotient
space which is de�ned by φY ∶ Y → Y�G ∶ y � {y ⋅ g � g ∈ G}, and which we use to de�ne the
quotient σ-algebra

Gn = {φ−��X n�(φ�X n�(A)) � A ∈ F n}. (�.��)

De�nition �.� (Eaton (����), Chapter �). A random element Un on �X n� is invariant if for all
g ∈ G, xn ∈ �X n�, Un(xn) = Un(xn ⋅ g).�e random element Un ismaximal invariant if Un is
invariant and for all yn ∈ �X n�, Un(xn) = Un(yn) implies xn = yn ⋅ g for some g ∈ G.

�us, Un is maximal invariant if and only if Un is constant on each orbit, and takes di�erent
values on di�erent orbits; φ�X n� is thus an example of a maximal invariant. Note that any
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maximal invariant is Gn-measurable. �e importance of this quotient σ-algebra Gn is the
following evident fact:

Proposition �. For �xed k ∈ {�, �}, every invariant Un has the same distribution under all
Pk ,g , g ∈ G.

Chapter � of (Eaton, ����) provides several methods and examples how to construct a concrete
maximal invariant, including the �rst two given below. Since βn is invariant under the group
action of G (see below), βn is an example of an invariant, although not necessarily of a maximal
invariant.

Example �.� (continued) Consider the setting of the one-sample t-test as described above
in Example �.�. A maximal invariant for xn ∈ �X n� is

Un(xn) = (x���x��, x���x��, . . . , xn��x��).

Example �.�. A second example, with a group invariance structure on two parameters, is the set-
ting of the two-sample t-test with the right Haar prior (which coincides here with Je�reys’ prior)
π(µ, σ) = ��σ (see Rouder et al. (����) for details): the group is G = {(a, b) � a > �, b ∈ R}. Let
the sample space be �X n� = Rn � span(en), where en denotes a vector of ones of length n
(this is to exclude the measure-zero line for which the s(xn) is zero), and de�ne the group
action by xn ⋅ (a, b) = axn + ben for xn ∈ �X n�.�en (Eaton (����), Example �.��) a maximal
invariant for xn ∈ �X n� is Un(xn) = (xn − xen)�s(xn), where x is the sample mean and
s(xn) = �∑n

i=�(xi − x)��
���
.

However, we can also construct a maximal invariant similar to the one in Example �.�, which
gives a special status to an initial sample:

Un (Xn) = � X� − X�

�X� − X��
,
X� − X�

�X� − X��
, . . . ,

Xn − X�

�X� − X��
� , n ≥ �.

�.�.� Relatively Invariant Measures and Calibration for Fixed n
Let Un be a maximal invariant, taking values in the measurable space (Un ,Gn). Although
we have given more concrete examples above, it follows from the results of Andersson, ����
that, in case we do not know how to construct a Un , we can always take Un = φ�X n�, the
natural projection. Since we assumemutual absolute continuity, the Radon-Nikodym derivative
dP[Un]

�,g �dP
[Un]
�,g must exist and we can apply the following theorem (note it is here that the use

of right Haar measure is crucial; a di�erent result holds for the le�Haar measure):�

�eorem Berger, Pericchi and Varshavsky, ����,�eorem �.� Under our previous de�ni-
tions of and assumptions on G, Pk ,g , Pk let β(xn) ∶= P�(xn)�P�(xn) be the Bayes factor based
on xn . Let Un be a maximal invariant as above, with (adopting the notation of (�.��)) marginal

��is theorem requires that there exists some relatively invariant measure µ on �X n
� such that for k = �, �, g ∈ G,

the Pk ,g all have a density relative to µ. Since the Bayes marginal P� based on the right Haar prior is easily seen to be
such a relatively invariant measure, the conditions for the theorem apply.
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measures P[Un]

k ,g , for k = �, � and g ∈ G.�ere exists a version of the Radon-Nikodym derivative
such that we have for all g ∈ G, all xn ∈ �X n�,

dP[Un]
�,g

dP[Un]
�,g

(Un(xn)) = β(xn). (�.��)

As a �rst consequence of the theorem above, we note (as did Berger, Pericchi and Varshavsky
(����)) that the Bayes factor βn ∶= β(XN) is Gn-measurable (it is constant on orbits) , and
thus it has the same distribution under P�,g and P�,g for all g ∈ G.�e theorem also implies the
following crucial lemma:

Lemma �. [Strong Calibration for Fixed n] Under the assumptions of the theorem above,
let Un be a maximal invariant and let Vn be a Gn-measurable binary random variable with
P�,g(Vn = �) > �, P�,g(Vn = �) > �. Adopting the notation of (�.��), we can choose the Radon-
Nikodym derivative dP[βn]

�,g (⋅ � Vn = �)�dP[βn]
�,g (⋅ � Vn = �) so that we have, for all xn ∈ �X n�:

P�,g(Vn = �)
P�,g(Vn = �)

⋅
dP[βn]

�,g (⋅ � Vn = �)

dP[βn]
�,g (⋅ � Vn = �)

(βn(xn)) = βn(xn), (�.��)

where for the special case with Pk ,g(Vn = �) = �, we get
dP[βn]

�,g

dP[βn]
�,g

(βn(xn)) = βn(xn).

�.�.� Extending toOurGeneral SettingwithNon-FixedSample Sizes
We start with the same setting as above: a group G on sample space �X n� ⊂ X n that acts
topologically and properly on the right of �X n�; two distributions P�,e and P�,e on (�X n�,F n)
that are used to generate H� and H�, and Bayes marginal measures based on the right Haar
measure P� and P�, which are both σ-�nite. We now denote Hk as H

(n)
k , Pk ,e as P

(n)
k ,e and Pk as

P
(n)
k , all P ∈ H(n)� ∪H(n)� are mutually absolutely continuous.

We now extend this setting to our general random process setting as speci�ed in the beginning
of Section �.�.� by further assuming that, for the same group G, for some m > �, the above
setting is de�ned for each n ≥ m. To connect the H(n)k for all these n, we further assume that
there exists a subset �X m� ⊂ X m that has measure � under P(n)k ,e (and hence under all P(n)g ,e )
such that for all n ≥ m:

�. We can write �X n� = {xn ∈ X n ∶ (x� , . . . , xm) ∈ �X m�}.

�. For all xn ∈ �X n�, the posterior ν � xn based on the right Haar measure ν is proper.

�. �e probability measures P(n)k ,e and P(n+�)k ,e satisfy Kolmogorov’s compatibility condition
for a random process.

�. �e group action ⋅ on the measures P(n)k ,e and P(n+�)k ,e is compatible, i.e. for every n > �,
for every A ∈ F n , every g ∈ G, k ∈ {�, �}, we have P(n+�)k ,g (A) = P

(n)
k ,g (A).
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Requirement �. simply imposes the condition that the group action considered is the same
for all n ∈ N. As a consequence of �. and �., the probability measures P(n)k ,g and P(n+�)k ,g satisfy
Kolmogorov’s compatibility condition for all g ∈ G, k ∈ {�, �} which means that there exists a
probabilitymeasure Pk ,g on (Ω,F) (under which �X(m)�, Xm+� , Xm+� , . . . is a randomprocess),
de�ned as in the beginning of Section �.�, whose marginals for n ≥ m coincide with P(n)k ,g , and

there exist measures P� and P� on (Ω,F) whose marginals for n ≥ m coincide with P
(n)
� and

P
(n)
� . We have thus de�ned a set H� and H� of hypotheses on (Ω,F) and the corresponding

Bayes marginals P� and P� and are back in our general setting. It is easily veri�ed that the �-
and �-sample Bayesian t-tests both satisfy all these assumptions: in Example �.�, take m = �
and �X m� = R � {�}; in Example �.�.�, take m = � and �X m� = R� � {(a, a) ∶ a ∈ R}. �e
conditions can also be veri�ed for the variety of examples considered by Berger, Pericchi and
Varshavsky (����) and Bayarri et al., ����. In fact, our initial sample xm ∈ �X m� is a variation
of what they call aminimal sample; by excluding ‘singular’ outcomes from X m to ensure that
the group acts properly on �X m�, we can guarantee that the initial sample is of �xed size.�e
size of the minimal sample can be larger, on a set of measure � under all P ∈ H� ∪H�, e.g. if,
in Example �.�.�, X� = X�. We chose to ensure a �xed size m since it makes the extension to
random processes considerably easier.

In Section �.�.�, underneath Example �.� we already outlined how a composite alternative
hypothesis can be reduced to a hypothesis with just a free nuisance parameter (or parameter
vector) g ∈ G, by putting a proper prior on all other parameters and integrating them out. A
similar construction for a single parameter alternative hypothesis in the form of (�.��) can be
applied in the non-�xed sample size case.

�.�.� Strong Calibration
Consider the setting, de�nitions and assumptions of the previous subsection, with the additional
assumptions and de�nitionsmade in the beginning of Section �.�.�, in particular the assumption
of a.s. �nite stopping time. For simplicity, from now on, we shall also assume equal prior odds,
π(H�) = π(H�) = ���. We will now show a strong calibration theorem for the Bayes factors
βn = (dP

(n)
� )�(dP

(n)
� )(Xn) de�ned in terms of the Bayes marginals P� and P� with the right

Haar prior.�us βτ is de�ned as in (�.��) with β in the role of B.

�eorem �.� (Strong calibration under optional stopping). Let τ be a stopping time satisfying
our requirements, such that additionally, for each n > m, the event {τ = n} is Gn-measurable.
�en, adopting the notation of (�.��), for all g ∈ G, for P[βτ]

�,g -almost every b > �, we have:

dP[βτ]
�,g

dP[βτ]
�,g

(b) = b.

�at means that the posterior odds remain calibrated under every stopping rule τ adapted to the
quotient space �ltration Gm ,Gm+� , . . ., under all P�,g .

Proof. Fix some g ∈ G. We simply �rst apply Lemma � with Vn = {τ=n}, which gives that the
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premise (�.��) of Lemma � holds with c = � and βn in the role of Bn (it is here that we need that
τn is Gn-measurable, otherwise we could not apply Lemma � with the required de�nition of
Vn). We can now use Lemma � with P�,g in the role of P� to reach the desired conclusion for
the chosen g. Since this works for all g ∈ G, the result follows.

Example �.�, Continued: Admissible and Inadmissible Stopping Rules We obtain strong
calibration for the one-sample t-test with respect to the nuisance parameter σ (see Example �.�
above) when the stopping rule is adapted to the quotient �ltration Gm ,Gm+� , . . .. Under each
Pk ,g ∈ Hk , the Bayes factors βm , βm+� , . . . de�ne a random process on Ω such that each βn is
Gn-measurable.�is means that a stopping time de�ned in terms of a rule such as ‘stop at the
smallest t at which βt > �� or t = ���’ is allowed in the result above. Moreover, if the stopping
rule is a function of a sequence of maximal invariants, like x���x��, x���x��, . . ., it is adapted to
the �ltration Gm ,Gm+� , . . . and we can likewise apply the result above. On the other hand, this
requirement is violated, for example, by a stopping rule that stops when ∑ j

i=�(xi)� exceeds
some �xed value, since such a stopping rule explicitly depends on the scale of the sampled
data.

�.�.� Frequentist optional stopping
�e special case of the following result for the one-sample Bayesian t-test was proven in the
master’s thesis (Hendriksen, ����). Here we extend the result to general group invariances.

�eorem �.� (Frequentist optional stopping for composite null hypotheses with group invari-
ance). Under the same conditions as in Section �.�.�, let τ be a stopping time such that, for each
n > m, the event {τ = n} is Gn-measurable.�en, adopting the notation of (�.��), for all g ∈ G,
the stopped Bayes factor satis�es EP�,g [βτ] = ∫R>� c dP

[βτ]
�,g (c) = �, so that, by the reasoning above

Proposition �, we have for all g ∈ G: P�,g( �
βτ
≤ α) ≤ α.

Proof. We have

�
R>�

c dP[βτ]
�,g (c) = �

R>�
dP[βτ]

�,g

dP[βτ]
�,g

(c)dP[βτ]
�,g (c) = �

R>�
dP[βτ]

�,g (c) = �.

where the �rst equality follows directly from�eorem �.� and the �nal equality follows because
P�,g is a probability measure, integrating to �.

Analogously to Corollary �, the desired result now follows by plugging in a particular stopping
rule: let S ∶ �∞i=m X

i → {�, �} be the frequentist sequential test de�ned by setting, for all n > m,
xn ∈ �X n�: S(xn) = � if and only if βn ≥ ��α.

Corollary ��. Let t∗ ∈ {m + �,m + �, . . .} ∪ {∞} be the smallest t∗ > m for which β−�t∗ ≤ α.
�en for arbitrarily large T, when applied to the stopping rule τ ∶= min{T , t∗}, we �nd that for
all g ∈ G:

P�,g(∃n,m < n ≤ T ∶ S(Xn) = � � xm) = P�,g(∃n,m < n ≤ T ∶ β−�n ≤ α � xm) ≤ α.



��� Chapter �. Optional stopping with Bayes Factors

�e corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to H� (De�nition �.�).

Example�.� (continued) Whenwe choose a stopping rule that is (Gm ,Gm+� , . . .)-measurable,
the hypothesis test is robust under (semi-)frequentist optional stopping.�is holds for example,
for the one- and two-sample t-test (Rouder et al., ����), Bayesian ANOVA (Rouder et al.,
����), and Bayesian linear regression (Liang et al., ����). Again, for stopping rules that are
not (Gm ,Gm+� , . . .)-measurable, robustness under frequentist optional stopping cannot be
guaranteed and could reasonably be presumed to be violated.�e violation of robustness under
optional stopping is hard to demonstrate experimentally as frequentist Bayes factor tests are
usually quite conservative in approaching the asymptotic signi�cance level α.

�.� Concluding Remarks
We have identi�ed three types of ‘handling optional stopping’: τ-independence, calibration
and semi-frequentist. We extended the corresponding de�nitions and results to general sample
spaces with potentially improper priors. For the special case of models H� and H� sharing a
nuisance parameter with a group invariance structure, we showed stronger versions of calibra-
tion and semi-frequentist robustness to optional stopping. A couple of remarks are in order.
First, one of the remarkable properties of the right Haar prior is that, under some additional
conditions on P�,g and P�,g in (�.��), βm = β(xm) = � for all xm ∈ �X m�, implying that equal
prior odds lead to equal posterior odds a�er a minimal sample, no matter what the minimal
sample is (Berger, Pericchi and Varshavsky, ����). One might conjecture that our results rely
on this property, but this is not the case: in general, one can have β(xm) ≠ �, yet our results still
hold. For example, in the Bayesian t-test, Example �.�, m = � and β(x �) = � can be guaranteed
only if the prior πδ on δ is symmetric around �; but our calibration and frequentist robustness
results hold irrespective of whether it is symmetric or not.

Secondly, in multiple-parameter problems, the suitable transformation group acting on the
parameter space may not be unique, in which case there are multiple possible right Haar
priors, see Example �.� and �.� in (Berger, Bernardo, Sun et al., ����) and (Berger, Sun et al.,
����). However, in all examples we considered and further know of, this does not lead to
ambiguity, because di�erent transformation groups give rise to di�erent sets H� of invariant
null hypotheses.

As a third remark, it is worth noting that — as is immediate from the proofs — all our group-
invariance results continue to hold in the setting with H′k as in (�.��), and the de�nition of the
Bayes marginal Pk ,e relative to θ′ as in (�.��) replaced by a probability measure on (Ω,F) that
is not necessarily of the Bayes marginal form.�e results work for any probability measure;
in particular one can take the alternatives for the Bayes marginal with proper prior that are
considered in the the minimum description length and sequential prediction literature (Barron,
Rissanen and Yu, ����; Grünwald, ����) under the name of universal distribution relative to
{Pθ′ � θ′ ∈ Θ′}; examples include the prequential or ‘switch’ distributions considered by Van
der Pas and Grünwald, ����.
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As a fourth and �nal remark, a sizable fraction of Bayesian statisticians is wary of using improper
priors at all. An important (though not the only) reason is that their use o�en leads to some
form of themarginalization paradox described by Dawid, Stone and Zidek, ����. It is thus useful
to stress that in the context of Bayes factor hypothesis testing, the right Haar prior is immune at
least to this particular paradox. In an informal nutshell, the marginalization paradox occurs if
the following happens: (a) the Bayes posterior π(ζ � Xn) for the quantity of interest ζ based on
prior π(ζ , g) with improper marginal on g, only depends on the data Xn through the maximal
invariant Un , i.e. π(ζ � Xn) = f (Un(Xn)) for some function f , yet (b) there exists no prior π′
on ζ such that the corresponding posterior π′(ζ � Un(Xn)) = f (Un(Xn)). In words, the result
of Bayesian updating based on the full data Xn only depends on the maximal invariant Un ; but
Bayesian updating directly based on Un can never give the same result — a paradox indeed.
While in general, this can happen even if g is equipped with the right Haar prior [Case �, page
���](Dawid, Stone and Zidek, ����), Berger et. al.’s�eorem �.� (reproduced in Section �.�.�
in our chapter) implies that it does not occur in the context of Bayes factor testing, where
ζ ∈ {H� ,H�}, andH� andH� are null and alternatives satisfying the requirements of Section �.�.
Berger’s theorem expresses that for all values of the nuisance parameter g ∈ G, the likelihood
ratio dP[Un]

�,g �dP
[Un]
�,g (Un(Xn)) based on Un(Xn) is equal to the Bayes factor based on Xn

with the right Haar prior on g, so that the paradox cannot occur.
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�.A Group theoretic preliminaries
We start with some group-theoretical preliminaries; for more details, see e.g. (Eaton, ����;
Wijsman, ����; Andersson, ����).

De�nition �.� (Topological space). A non-empty set S together with a �xed collection of
subsets T is called a topological space T = (S , T ) if

�. S ,� ∈ T ,

�. U ∩ V ∈ T for any two sets U ,V ∈ T , and

�. S� ∪ S� ∈ T for any collections of sets S� , S� ⊆ T .

�e collection T is called a topology for S, and its members are called the open sets of T . A
topological space T is calledHausdor� if for any two distinct points x , y ∈ T there exist disjoint
open subsets U ,V of T containing one point each.

De�nition �.� ((Local) compactness). A topological space T is compact if every open cover,
that is, every collection C of open sets of T

T = �
U∈C

U ,

has a �nite subcover: a �nite subcollection F ∈ C such that

T = �
V∈F

V .

It is locally compact if for every x ∈ T there exist an open set U such that x ∈ U and the closure
of U , denoted by Cl(U), is compact, that is, the union of U and all its limit points in T is
compact. We can also formulate this as each x having a neighborhood U such that Cl(U) is
compact.

Example �.� (Locally compact Hausdor� spaces). �e reals R and the Euclidean spaces Rn

together with the Euclidean topology (also called the usual topology) are locally compact Haus-
dor� spaces. Rn (for n ∈ N) is locally compact because any open ball B(x , r) has a compact
closure Cl(B(x , r)) = {y ∈ Rn ; d(x , y) ≤ ε}, where d(x , y) is the Euclidean metric. Any
discrete space is locally compact and Hausdor� as well, as any singleton is a neighborhood
that equals its closure, and it is compact only if it is �nite. In�nite dimensional Banach spaces
(function spaces) are for example not locally compact.

De�nition �.� (Group). A set G together with a binary operation ○, o�en called the group law,
is called a group when

�. there exists an identity element e ∈ G for the group law ○,

�. for every three elements a, b, c ∈ G, we have (a ○ b) ○ c = a ○ (b ○ c) (associativity), and

�. for each element a ∈ G, there exists an inverse element, a† ∈ G, with a ○ a† = a† ○ a = e.
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Transformation groups A group that consists of a set G of transformations on some set S is
called a transformation group. We also say that the group G acts on the set S. A transformation is
a mapping from S to itself that preserves certain properties, such as isometries in the Euclidean
plane. Transformation groups are usually not commutative, that is a ○ b ≠ b ○ a for a, b ∈
G.

De�nition �.� (Topological group). A topological space G that is also a group is called a
topological group when the group operation ○ is continuous, that is, for a, b ∈ G, we have that
the operations of product

�. G ×G → G ∶ (a, b)� a ○ b, and taking the inverse

�. G → G : a � a†,

are continuous, where G ×G has the product topology.

A topological group for which the underlying topology is locally compact and Hausdor�, is
called a locally compact group.

De�nition �.� (Eaton (����), De�nition �.�). Let Y be a set, and let G be a group with identity
element e. A function F ∶ Y ×G → Y satisfying

�. F(y, e) = y, y ∈ Y

�. F(y, g�g�) = F(F(y, g�), g�), g� , g� ∈ G , y ∈ Y

speci�es G acting on the right of Y .

In practice, F is omitted: we will write y ⋅ g for a group element g acting on the right of y ∈ Y .
For a subset A ⊆ Y , we write A ⋅ g ∶= {a ⋅ g � a ∈ A}.

De�nition �.� (Conway (����), Example �.��). Let G be a locally compact topological group.
�en the right invariant Haar measure (in short: right Haar measure) for G is a Borel measure
ν satisfying

�. ν(A) > � for every nonempty open set A ⊆ G,

�. ν(K) <∞ for every compact set K ⊆ G,

�. ν(A ⋅ g) = ν(A) for every g ∈ G and every measurable A ⊆ G.

�.B Proofs Omitted fromMain Text

Proof. [of Lemma �] Let A ⊂ R>� be any Borel measurable set. In the equations below, the sum
and integral can be swapped due to the monotone convergence theorem and the fact that Bτ is
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a positive function.

�
A
dP�[Bτ] = �

Ω
{Bτ∈A} dP�

[Bτ]

=
∞

�
n=�
�
�X n�

{Bτ∈A} {τ=n} dP
(n)
�

(�)=
∞

�
n=�
�
�X n�

{Bn∈A} {τ=n} P
(n)
� (τ = n) ⋅ dP

(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} P
(n)
� (τ = n) ⋅ dP

(n)
� (⋅ � τ = n)

(�)=
∞

�
n=�
�
r>�

{r∈A} P
(n)
� (τ = n) ⋅ dP�

[Bn](⋅ � τ = n)

=
∞

�
n=�
�
r>�

{r∈A}
dP�[Bn](⋅ � τ = n)
dP�[Bn](⋅ � τ = n)

(r) P(n)� (τ = n) ⋅ dP�
[Bn](⋅ � τ = n)

(∗)=
∞

�
n=�
�
r>�

{r∈A}
P(n)� (τ = n)
P(n)� (τ = n)

⋅ r ⋅ P(n)� (τ = n) ⋅ dP�
[Bn](⋅ � τ = n)

=
∞

�
n=�
�
r>�

{r∈A}r P
(n)
� (τ = n) ⋅ dP�

[Bn](⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} ⋅ Bn ⋅ P(n)� (τ = n) ⋅ dP
(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} {τ=n} ⋅ Bn ⋅ P(n)� (τ = n) ⋅ dP
(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bτ∈A} {τ=n} ⋅ Bn dP(n)�

= �
Ω
{Bτ∈A} �

∞

�
n=�

{τ=n}Bn� dP�

= �
Ω
{Bτ∈A}Bτ dP�

(��)= �
A
tP�[Bτ](dt),

where (∗) follows because of our �xed n-calibration assumption. Furthermore, (�) follows
from the following equality for any C ∈ F

P(n)� (C ∩ {τ = n}) = P
(n)
� (τ = n) ⋅ P

(n)
� (C � τ = n), (�.��)

and in (�) we perform a change of variables where we integrate over the possible values of the
Bayes Factor instead of over the outcome space, which we repeat in (��).

We have shown that the function g de�ned by g(t) = t is the Radon-Nikodym

derivative
dP�[Bτ]

dP�[Bτ]
.
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Proof. [of Lemma �] Let A be any Borel subset of R>�. We have:

�
A
dP
[γn]
� (⋅ � xm , τ = n) = �

�X n�
{γn∈A} dP

(�)
n (⋅ � xm , τ = n)

= �
�X n�

{γn∈A}
�
�
dP
(�)
n (⋅ � xm , τ = n)

dP
(�)
n (⋅ � xm , τ = n)

�
�
dP
(�)
n (⋅ � xm , τ = n)

(∗)= �
�X n�

{γn∈A}γn ⋅ �
π(H� � xm , τ = n)
π(H� � xm , τ = n)

� dP(�)n (⋅ � xm , τ = n)

= �
�X n�

{γn∈A}γn �
P�(τ = n � xm)π(H�)
P�(τ = n � xm)π(H�)

� dP(�)n (⋅ � xm , τ = n)

= �P�(τ = n � xm)π(H� � xm)
P�(τ = n � xm)π(H� � xm)

� ⋅ �
A
γn dP

[γn]
� (⋅ � xm , τ = n),

where, for the case m = �, (∗) follows from (�.�), which can be veri�ed to be still valid in our
generalized setting.�e case m > � follows in exactly the same way, by shi�ing the data by m
places (so that the new x� becomes what was xm+�, and treating, for k = �, �, π(Hk � xm) as the
priors for this shi�ed data problem, and then applying the above with m = �).

We have shown that the Radon-Nikodym derivative
dP
[γn]
� (⋅ � xm)

dP
[γn]
� (⋅ � xm)

at γn is given by

γn ⋅
P�(τ = n � xm)π(H� � xm)
P�(τ = n � xm)π(H� � xm)

, which is what we had to show.

Proof. [of Lemma �] Let A′ denote the event Vn = � and let A ⊂ R>� be a Borel measurable
subset of the positive real numbers. We have that βn is a function of the maximal invariant Un
as de�ned in De�nition �.�, and we write βn(Un). With this notation, we have:

P[βn]
�,g (A � A

′) = �
R>� {A} dP

[βn]
�,g (⋅ � A

′)

(�)= �
Un

{βn(Un)∈A} dP
[Un]
�,g (⋅ � A

′)

= �
Un

{βn(Un)∈A}
dP[Un]

�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A

′)

(�)= �
Un

{βn(Un)∈A}
P(n)�,g (A′)

P(n)�,g (A′)

dP[Un]
�,g

dP[Un]
�,g

dP[Un]
�,g (⋅ � A

′)

(�)=
P(n)�,g (A′)

P(n)�,g (A′)
⋅ �
Un

{βn(Un)∈A}βn(Un) dP[Un]
�,g (⋅ � A

′)

=
P(n)�,g (A′)

P(n)�,g (A′)
⋅ �

R>� {A}t dP
[βn]
�,g A′(t),
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where step (�) holds because βn is Gn-measurable. On the set A′ we have

dP[Un]
�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A′)

P(n)�,g (A′)

P(n)�,g (A′)
=

dP[Un]
�,g

dP[Un]
�,g

,

which explains step (�), and step (�) follows from the de�nition of βn in Equation (�.��).

We have shown that
P(n)�,g (A′)

P(n)�,g (A′)
⋅ t is equal to the Radon-Nikodym derivative

dP[βn]
�,g (⋅ � Vn = �)

dP[βn]
�,g (⋅ � Vn = �)

,

which is what we had to prove.


