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Chapter �

Why optional stopping is a problem
for Bayesians

Abstract
Recently, optional stopping has been a subject of debate in the Bayesian psychology community.
Rouder (����) argues that optional stopping is no problem for Bayesians, and even recommends
the use of optional stopping in practice, as do Wagenmakers et al. (����).�is article addresses
the question whether optional stopping is problematic for Bayesian methods, and speci�es
under which circumstances and in which sense it is and is not. By slightly varying and extending
Rouder’s (����) experiments, we illustrate that, as soon as the parameters of interest are equipped
with default or pragmatic priors — which means, in most practical applications of Bayes factor
hypothesis testing — resilience to optional stopping can break down. We distinguish between
three types of default priors, each having their own speci�c issues with optional stopping,
ranging from no-problem-at-all (Type � priors) to quite severe (Type II priors).

�.� Introduction
P-value based null-hypothesis signi�cance testing (NHST) is widely used in the life and behavi-
oral sciences, even though the use of p-values has been severely criticized for at least the last ��
years. During the last decade, within the �eld of psychology, several authors have advocated
the Bayes factor as the most principled alternative to resolve the problems with p-values. Sub-
sequently, these authors have made an admirable e�ort to provide practitioners with default
Bayes factors for common hypothesis tests (Rouder et al. (����), Jamil et al. (����) and Rouder
et al. (����) and many others).

We agree with the objections against the use of p-value based NHST and the view that this
paradigm is inappropriate (or at least far from optimal) for scienti�c research, and we agree
that the Bayes factor has many advantages. However, as also noted by Gigerenzer andMarewski,
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����, it is not the panacea for hypothesis testing that a lot of articles make it appear.�e Bayes
factor has its limitations (cf. also (Tendeiro and Kiers, ����)), and it seems that the subtleties
of when those limitations apply sometimes get lost in the overwhelming e�ort to provide a
solution to the pervasive problems of p-values.

In this article we elucidate the intricacies of handling optional stopping with Bayes factors,
primarily in response to Rouder (����). Optional stopping refers to ‘looking at the results so far
to decide whether or not to gather more data’, and it is a desirable property of a hypothesis test
to be able to handle optional stopping.�e key question is whether Bayes factors can or cannot
handle optional stopping. Yu et al. (����), Sanborn and Hills (����) and Rouder (����) tried
to answer this question from di�erent perspectives and with di�erent interpretations of the
notion of handling optional stopping. Rouder (����) illustrates, using computer simulations,
that optional stopping is not a problem for Bayesians, also citing Lindley (����) and Edwards,
Lindman and Savage (����) who provide mathematical results to a similar (but not exactly the
same) e�ect. Rouder used the simulations to concretely illustrate more abstract mathematical
theorems; these theorems are indeed formally proven by Deng, Lu and Chen (����) and, in
a more general setting, by Hendriksen, De Heide and Grünwald (����). Other early work
indicating that optional stopping is not a problem for Bayesians includes Savage (����) and
Good (����). We brie�y return to all of these in Section �.�.

All this earlier work notwithstanding, we maintain that optional stopping can be a problem
for Bayesians — at least for pragmatic Bayesians who are either willing to use so-called ‘default’,
or ‘convenience’ priors, or otherwise are willing to admit that their priors are imperfect and
are willing to subject them to robustness analyses. In practice, nearly all statisticians who use
Bayesian methods are ‘pragmatic’ in this sense.

Rouder (����) was written mainly in response to Yu et al. (����), and his main goal was to show
that Bayesian procedures retain a clear interpretation under optional stopping. He presents a
criterion which, if it holds for a given Bayesian method, indicates that, in some speci�c sense,
it performs as one would hope under optional stopping. �e main content of this article is
to investigate this criterion, which one may call prior-based calibration, for common testing
scenarios involving default priors. We shall encounter two types of default priors, and we
shall see that Rouder’s calibration criterion — while indeed providing a clear interpretation to
Bayesian optional stopping whenever de�ned — is in many cases either of limited relevance
(Type I priors) or unde�ned (Type II priors).

We consider a strengthening of Rouder’s check which we call strong calibration, and which
remains meaningful for all default priors.�en, however, we shall see that strong calibration
fails to hold under optional stopping for all default priors except, interestingly, for a special
type of priors (which we call “Type � priors”) on a special (but common) type of nuisance
parameters. Since these are rarely the only parameters incurring in one’s models, one has
to conclude that optional stopping is usually a problem for pragmatic Bayesians — at least
under Rouder’s calibration criterion of handling optional stopping.�ere exist (at least) two
other reasonable de�nitions of ‘handling optional stopping’, which we provide in Section �.�.
�ere we also discuss how, under these alternative de�nitions, Type I priors are sometimes less
problematic, but Type II priors still are. As explained in the conclusion (Section �.�), the overall
crux is that default and pragmatic priors represent tools for inference just as much or even more
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than beliefs about the world, and should thus be equipped with a precise prescription as to
what type of inferences they can and cannot be used for. A �rst step towards implementing this
radical idea is given by one of us in the recent paper Safe Probability (Grünwald, ����).

Readers who are familiar with Bayesian theory will not be too surprised by our conclusions:
It is well-known that what we call Type II priors violate the likelihood principle (Berger and
Wolpert, ����) and/or lead to (mild) forms of incoherence (Seidenfeld, ����) and, because of
the close connection between these two concepts and optional stopping, it should not be too
surprising that issues arise. Yet it is still useful to show how these issues pan out in simple
computer simulations, especially given the apparently common belief that optional stopping
is never a problem for Bayesians. �e simulations will also serve to illustrate the di�erence
between the subjective, pragmatic and objective views of Bayesian inference, a distinction
which matters a lot and which, we feel, has been underemphasized in the psychology literature
— our simulations may in fact serve to help the reader decide what viewpoint he or she likes
best.

In Section �.� we explain important concepts of Bayesianism and Bayes factors. Section �.�
explains Rouder’s calibration criterion and repeats and extends Rouder’s illustrative experiments,
showing the sense in which optional stopping is indeed not a problem for Bayesians. Section �.�
then contains additional simulations indicating the problems with default priors as summarized
above. In Section �.� we discuss conceptualizations of ‘handling optional stopping’ that are
di�erent from Rouder’s; this includes an explication of the purely subjective Bayesian viewpoint
as well as an explication of a frequentist treatment of handling optional stopping, which only
concerns sampling under the null hypothesis. We illustrate that some (not all!) Bayes factor
methods can handle optional stopping in this frequentist sense. We conclude with a discussion
of our �ndings in Section �.�.

�.� Bayesian probability and Bayes factors
Bayesianism is about a certain interpretation of the concept probability: as degrees of belief.
Wagenmakers (����) and Rouder (����) give an intuitive explanation for the di�erent views
of frequentists and Bayesians in statistics, on the basis of coin �ips.�e frequentists interpret
probability as a limiting frequency. Suppose we �ip a coin many times, if the probability of
heads is ���, we see a proportion of ��� of all those coin �ips with heads up. Bayesians interpret
probability as a degree of belief. If an agent believes the probability of heads is ���, she believes
that it will be � times more likely that the next coin �ip will result in heads than tails; we return
to the operational meaning of such a ‘belief ’ in terms of betting in Section �.�.

A Bayesian �rst expresses this belief as a probability function. In our coin �ipping example,
it might be that the agent believes that it is more likely that the coin is biased towards heads,
which the probability function thus re�ects. We call this the prior distribution, and we denote�
it by P(θ), where θ is the parameter (or several parameters) of the model. In our example, θ

�With some abuse of notation, we use P both to denote a generic probability distribution (de�ned on sets), and
to denote its associated probability mass function and a probability density function (de�ned on elements of sets);
whenever in this article we write P(z) where z takes values in a real-valued scalar or vector space, this should be read
as f (z) where f is the density of P.
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expresses the bias of the coin, and is a real number between � and �. A�er the speci�cation of
the prior, we conduct the experiment and obtain the data D and the likelihood P(D�θ). Now
we can compute the posterior distribution P(θ�D) with the help of Bayes’ theorem:

P(θ�D) = P(D�θ)P(θ)
P(D)

. (�.�)

Rouder (����) and Wagenmakers (����) provide a clear explanation of Bayesian hypothesis
testing with Bayes factors (Je�reys, ����; Kass and Ra�ery, ����), which we repeat here for
completeness. Suppose we want to test a null hypothesisH� against an alternative hypothesis
H�. A hypothesis can consist of a single distribution, for example: ‘the coin is fair’. We call
this a simple hypothesis. A hypothesis can also consist of two or more, or even in�nitely many
hypotheses, which we call a composite hypothesis. An example is: ‘the coin is biased towards
heads’, so the probability of heads can be any number between �.� and �, and there are in�nitely
many of those numbers. Suppose again that we want to testH� againstH�. We start with the
so called prior odds: P(H�)�P(H�), our belief before seeing the data. Let’s say we believe that
both hypotheses are equally probable, then our prior odds are �-to-�. Next we gather data D,
and update our odds with the new knowledge, using Bayes’ theorem (Eq. �.�):

post-odds�D = P(H��D)
P(H��D)

= P(H�)
P(H�)

P(D�H�)
P(D�H�)

. (�.�)

�e le� term is called posterior odds, it is our updated belief about which hypothesis is more
likely. Right of the prior odds, we see the Bayes factor, the term that describes how the beliefs
(prior odds) are updated via the data. If we have no preference for one hypothesis and set
the prior odds to �-to-�, we see that the posterior odds are just the Bayes factor. If we test a
compositeH� against a compositeH�, the Bayes factor is a ratio of two likelihoods in which
we have two or more possible values of our parameter θ. Bayesian inference tells us how to
calculate P(D �H j): we integrate out the parameter with help of a prior distribution P(θ), and
we write Eq. (�.�) as:

post-odds�D = P(H��D)
P(H��D)

= P(H�)
P(H�)

∫θ � P(D�θ�)P(θ�)dθ�
∫θ� P(D�θ�)P(θ�)dθ�

(�.�)

where θ� denotes the parameter of the null hypothesisH�, and similarly, θ� is the parameter of
the alternative hypothesisH�. If we observe a Bayes factor of ��, it means that the change in
odds from prior to posterior in favor of the alternative hypothesisH� is a factor ��. Intuitively,
the Bayes factor provides a measure of whether the data have increased or decreased the odds
onH� relative toH�.

�.� HandlingOptional stopping in theCalibrationSense
Validity under optional stopping is a desirable property of hypothesis testing: we gather some
data, look at the results, and decide whether we stop or gather some additional data. Informally
we call ‘peeking at the results to decide whether to collect more data’ optional stopping, but if
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we want to make more precise what it means if we say that a test can handle optional stopping,
it turns out that di�erent approaches (frequentist, subjective Bayesian and objective Bayesian)
lead to di�erent interpretations or de�nitions. In this section we adopt the de�nition of handling
optional stopping that was used by Rouder, and show, by repeating and extending Rouder’s
original simulation, that Bayesian methods do handle optional stopping in this sense. In the
next section, we shall then see that for ‘default’ and ‘pragmatic’ priors used in practice, Rouder’s
original de�nitionmay not always be appropriate— indicating there are problems with optional
stopping a�er all.

�.�.� Example �: Rouder’s example
We start by repeating Rouder’s (����) second example, so as to explain his ideas and re-state
his results. Suppose a researcher wants to test the null hypothesisH� that the mean of a normal
distribution is equal to �, against the alternative hypothesisH� that the mean is not �: we are
really testing whether µ = � or not. In Bayesian statistics, the composite alternativeH� ∶ µ ≠ �
is incomplete without specifying a prior on µ; like in Rouder’s example, we take the prior on
the mean to be a standard normal, which is a fairly standard (though by no means the only
common) choice (Berger, ����; Bernardo and Smith, ����).�is expresses a belief that small
e�ect sizes are possible (though the prior probability of the mean being exactly � is �), while a
mean as large as �.� is neither typical nor exceedingly rare. We take the variance to be �, such
that the mean equals the e�ect size. We set our prior odds to �-to-�: �is expresses a priori
indi�erence between the hypotheses, or a belief that both hypotheses are really equally probable.
To give a �rst example, suppose we observe n = �� observations Now we can observe the data
and update our prior beliefs. We calculate the posterior odds, in our case equal to the Bayes
factor, via Eq. (�.�) for data D = (x� , . . . , xn):

post-odds�x� , . . . , xn =
�
�
⋅
exp� n�x�

�(n+�)�√
n + �

(�.�)

where n is the sample size (�� in our case), and x is the sample mean. Suppose we observe
posterior odds of �.�-to-� in favor of the null.

Calibration, Mathematically As Rouder writes: ‘If a replicate experiment yielded a posterior
odds of �.�-to-� in favor of the null, then we expect that the null was �.� times as probable as
the alternative to have produced the data.’ In mathematical language, this can be expressed
as

post-odds�“post-odds�x� , . . . , xn = a” = a, (�.�)

for the speci�c case n = �� and a = ���.�; of course we would expect this to hold for general n
and a.�e quotation marks indicate that we condition on an event, i.e. a set of di�erent data
realizations; in our case this is the set of all data x� , . . . , xn for which the posterior odds are
a. We say that (�.�) expresses calibration of the posterior odds. To explain further, we draw the
analogy to weather forecasting: consider a weather forecaster who, on each day, announces
the probability that it will rain the next day at a certain location. It is standard terminology
to call such a weather forecaster calibrated if, on average on those days for which he predicts
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‘probability of rain is ��%’, it rains about ��% of the time, on those days for which he predicts
��%, it rains ��% of the time, and so on.�us, although his predictions presumably depend on
a lot of data such as temperature, air pressure at various locations etc., given only the fact that
this data was such that he predicts a, the actual probability is a. Similarly, given only the fact the
posterior odds based on the full data are a (but not given the full data itself), the posterior odds
should still be a (readers who �nd (�.�) hard to interpret are urged to study the simulations
below).

Indeed, it turns out that (�.�) is the case.�is can be shown either as a mathematical theorem,
or, as Rouder does, by computer simulation. At this point, the result is merely a sanity check,
telling us that Bayesian updating is not crazy, and is not really surprising. Now, instead of a
�xed n, let us consider optional stopping: we keep adding data points until the the posterior
odds are at least ��-to-� for either hypothesis, unless a maximum of �� data points was reached.
Let τ be the sample size (which is now data-dependent) at which we stop; note that τ ≤ ��.
Remarkably, it turns out that we still have

post-odds�“post-odds�x� , . . . , xτ = a” = a, (�.�)

for this (and in fact any other data-dependent) stopping time τ. In words, the posterior odds
remain calibrated under optional stopping. Again, this can be shown formally, as a mathematical
theorem (we do so in Hendriksen, De Heide and Grünwald, ����; see also Deng, Lu and Chen,
����).

Calibration, Proof by Simulation Following Yu et al. (����) and Sanborn and Hills (����),
Rouder uses computer simulations, rather than mathematical derivation, to elucidate the
properties of analytic methods. In Rouder’s words ‘this choice is wise for a readership of
experimental psychologists. Simulation results have a tangible, experimental feel; moreover,
if something is true mathematically, we should be able to see it in simulation as well’. Rouder
illustrates both (�.�) and (�.�) by a simulation which we now describe.

Againwe draw data from the null hypothesis: say n = �� observations from a normal distribution
with mean � and variance �. But now we repeat this procedure ��, ��� times, and we see the
distribution of the posterior odds plotted as the blue histogram on the log scale in Figure �.�a.
We also sample data from the alternative distributionH�: �rst we sample amean from a standard
normal distribution (readers that consider this ‘sampling from the prior’ to be strange are urged
to read on), and then we sample �� observations from a normal distribution with this just
obtained mean, and variance �. Next, we calculate the posterior odds from Eq. (�.�). Again, we
perform ��, ��� replicate experiments of �� data points each, and we obtain the pink histogram
in Figure �.�a. We see that for the null hypothesis, most samples favor the null (the values of the
Bayes factor are smaller than �), for the alternative hypothesis we see that the bins for higher
values of the posterior odds are higher.

In terms of this simulation, Rouder’s claim that, ‘If a replicate experiment yielded a posterior
odds of �.�-to-� in favor of the null, then we expect that the null was �.� times as probable as
the alternative to have produced the data’, as formalized by (�.�), now says the following: if we
look at a speci�c bin of the histogram, say at �.�, i.e. the number of all the replicate experiments
that yielded approximately a posterior odds of �.�, then the bin fromH� should be about �.�
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times as high as the bin fromH�. Rouder calls the ratio of the two histograms the observed
posterior odds: the ratio of the binned posterior odds counts we observe from the simulation
experiments we did. What we expect the ratio to be for a certain value of the posterior odds, is
what he calls the nominal posterior odds. We can plot the observed posterior odds as a function
of the nominal posterior odds, and we see the result in Figure �.�b.�e observed values agree
closely with the nominal values: all points lie within simulation error on the identity line, which
can be considered as a ‘proof of (�.�) by simulation’.

Rouder (����) repeats this experiment under optional stopping: he ran a simulation experiment
with exactly the same setup, except that in each of the ��, ��� simulations, sampling occurred
until the posterior odds were at least ��-to-� for either hypothesis, unless a maximum of ��
observations was reached.�is yielded a �gure indistinguishable from Figure �.�b, from which
Rouder concluded that ‘the interpretation of the posterior odds holds with optional stopping’;
in our language, the posterior odds remain calibrated under optional stopping— it is a proof, by
simulation, that (�.�) holds. From this and similar experiments, Rouder concluded that Bayes
factors still have a clear interpretation under optional stopping (we agree with this for what we
call below Type � and I priors, not Type II), leading to the claim/title ‘optional stopping is no
problem for Bayesians’ (for which we only agree for Type � and purely subjective priors).

Is sampling from the prior meaningful? When presenting Rouder’s simulations to other
researchers, a common concern is: ‘how can sampling a parameter from the prior in H� be
meaningful? In any real-life experiment, there is just one, �xed population value, i.e. one �xed
value of the parameter that governs the data.’�is is indeed true, and not in contradiction with
Bayesian ideas: Bayesian statisticians put a distribution on parameters in H� that expresses
their uncertainty about the parameter, and that should not be interpreted as something that
is ‘sampled’ from. Nevertheless, Bayesian posterior odds calculations are done by calculating
weighted averages via integrals, and the results aremathematically equivalent to what one gets
if, as above, one samples a parameter from the prior, and the data from the parameter, and then
takes averages over many repetitions. We (and Rouder) really want to establish (�.�) and (�.�)
(which can be interpreted without resorting to sampling a parameter from a prior), and we
note that it is equivalent to the curve in Figure �.�b coinciding with the diagonal.

Some readers of an earlier dra� of this paper concluded that, given its equivalence to an
experiment involving sampling from the prior, which feels meaningless to them, (�.�) is itself
invariably meaningless. Instead, they claim, because in real-life the parameter o�en has one
speci�c �xed value, one should look at what happens under sampling under �xed parameter
values. Below we shall see that if we look at such strong calibration, we sometimes (Example �)
still get calibration, but usually (Example �) we do not; so such readers will likely agree with
our conclusion that ‘optional stopping can be a problem for Bayesians’, even though they would
disagree with us on some details, because we do think that (�.�) can be a meaningful statement
for some, but not all priors. To us, the importance of the simulations is simply to verify (�.�)
and, later on (Example �), to show that (�.�), the stronger analogue of (�.�) that we would like
to hold for default priors, does not always hold.
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Figure �.�:�e interpretation of the posterior odds in Rouder’s experiment, from ��, ��� replicate experiments. (a)
�e empirical sampling distribution of the posterior odds as a histogram underH� andH� . (b) Calibration plot: the
observed posterior odds as a function of the nominal posterior odds.

�.�.� Example �: Rouder’s example with a nuisance parameter

We now adjust Rouder’s example to a case where we still want to test whether µ = �, but the
variance σ � is unknown. Posterior calibration will still be obtained under optional stopping;
the example mainly serves to gently introduce the notions of improper prior and strong vs.
prior calibration, that will play a central role later on. So,H� now expresses that the data are
independently normally distributed with mean � and some unknown variance σ �, and H�
expresses that the data are normal with variance σ �, and some mean µ, where the uncertainty
about µ is once again captured by a normal prior: the mean is distributed according to a normal
with mean zero and variance (again) σ � (this corresponds to a standard normal distribution
on the e�ect size). If σ � = �, this reduces to Rouder’s example; but we now allow for arbitrary
σ �. We call σ � a nuisance parameter: a parameter that occurs in both models, is not directly
of interest, but that needs to be accounted for in the analysis. �e setup is analogous to the
standard �-sample frequentist t-test, where we also want to test whether a mean is � or not,
without knowing the variance; in the Bayesian approach, such a test only becomes de�ned once
we have a prior for the parameters. For µ we choose a normal,� for the nuisance parameter
σ we will make the standard choice of Je�reys’ prior for the variance: P�(σ) ∶= ��σ (Rouder
et al., ����). To obtain the Bayes factor for this problem, we integrate out the parameter σ cf.

��e advantage of a normal is that it makes calculations relatively easy. A more common and perhaps more
defensible choice is a Cauchy distribution, used in the ‘default Bayesian t-test’, which we consider further below.
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Eq. (�.�). Again, we assign prior odds of �-to-�, and obtain the posterior odds:

post-odds�D = �
�

∫
∞

�
�
σ ∏

n
i=�

�
√

�πσ � exp�−
x�i
�σ � � dσ

∫
∞

�
�
σ ∫
∞

−∞

�
√

�πσ � exp �−
µ

�σ � �∏n
i=�

�
√

�πσ � exp�−
(xi−µ)�

�σ � � dµ dσ

= �√
n + �

�
�
� −
� �
n+� ∑

n
i=� xi�

�

�
n+� ∑

n
i=� x�i

�
�

−
n
�

Formally, Je�reys’ prior on σ is a ‘measure’ rather than a distribution, since it does not integrate
to �: clearly

�
∞

�
P�(σ)dσ = �

∞

�

�
σ
dσ =∞, (�.�)

Priors that integrate to in�nity are o�en called improper. Use of such priors for nuisance
parameters is not really a problem for Bayesian inference, since one can typically plug such
priors into Bayes’ theorem anyway, and this leads to proper posteriors, i.e. posteriors that do
integrate to one, and then the Bayesian machinery can go ahead. Since Je�reys’ prior is meant
to express that we have no clear prior knowledge about the variance, we would hope that
Bayes would remain interpretable under optional stopping, no matter what the (unobservable)
variance in our sampling distribution actually is. Remarkably, this is indeed the case: for all
σ �
� > �, we have the following analogue of (�.�):

post-odds�σ � = σ �
� , “post-odds�x� , . . . , xτ = a” = a, (�.�)

In words, this means that, given that the posterior odds (calculated based on Je�reys’ prior, i.e.
without knowing the variance) are equal to a and that the actual variance is σ �

� , the posterior
odds are still a, irrespective of what σ �

� actually is.�is statement may be quite hard to interpret,
so we proceed to illustrate it by simulation again.

To repeat Rouder’s experiment, we have to simulate data under bothH� andH�. To do this we
need to specify the variance σ � of the normal distribution(s) from which we sample. Whereas,
as in the previous experiment, we can sample the mean inH� from the prior, for the variance
we seem to run into a problem: it is not clear how one should sample from an improper prior.
θ. But we cannot directly sample σ from an improper prior. As an alternative, we can pick any
particular �xed σ � to sample from, as we now illustrate. Let us �rst try σ � = �. Like Rouder’s
example, we sample the mean of the alternative hypothesisH� from the aforementioned normal
distribution.�en, we sample �� data points from a normal distribution with the just sampled
mean and the variance that we picked. For the null hypothesisH� we sample the data from
a normal distribution with mean zero and the same variance. We continue the experiment
just as Rouder did: we calculate the posterior odds from ��, ��� replicate experiments of ��
generated observations for each hypothesis, and construct the histograms and the plot of the
ratio of the counts to see if calibration is violated. In Figure �.�a we see the calibration plot
for the experiment described above. In Figure �.�b we see the results for the same experiment,
except that we performed optional stopping: we sampled until the posterior odds were at least
��-to-� forH�, or the maximum of �� observations was reached. We see that the posterior odds
in this experiment with optional stopping are calibrated as well.
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Prior Calibration vs. Strong Calibration Importantly, the same conclusion remains valid
whether we sample data using σ � = �, or σ � = �, or any other value — in simulation terms (�.�)
simply expresses that we get calibration (i.e. all points on the diagonal) no matter what σ � we
actually sample from: even though calculation of the posterior odds given a sample makes use
of the prior P�(σ) = ��σ and does not know the ‘true’ σ , calibration is retained under sampling
under arbitrary ‘true’ σ . We say that the posterior odds are prior-calibrated for parameter µ and
strongly calibrated for σ �. More generally and formally, consider general hypothesesH� andH�
(not necessarily expressing that data are normal) that share parameters γ� , γ� and suppose that
(�.�) holds with γ� in the role of σ �.�en we say that γ� is prior-calibrated (to get calibration
in simulations we need to draw it from the prior) and γ� is strongly calibrated (calibration is
obtained when drawing data under all possible γ�).

Notably, strong calibration is a special property of the chosen prior. If we had chosen another
proper or improper prior to calculate the posterior odds (for example, the improper prior
P′(σ)∝ σ−� has sometimes been used in this context) then the property that calibration under
optional stopping is retained under any choice of σ � will cease to hold; we will see examples
below.�e reason that P�(σ)∝ ��σ has this nice property is that σ is a special type of nuisance
parameter for which there exists a suitable group structure, relative to which both models are
invariant (Eaton, ����; Berger, Pericchi and Varshavsky, ����; Dass and Berger, ����).�is
sounds more complicated than it is — in our example, the invariance is scale invariance: if we
divide all outcomes by any �xed σ (multiply by ��σ), then the Bayes factor remains unchanged;
similarly, one may have for example location invariances.

If such group structure parameters are equipped with a special prior (which, for reasons to
become clear, we shall term Type � prior), then we obtain strong calibration, both for �xed
sample sizes and under optional stopping, relative to these parameters.� Je�reys’ prior for the
variance P�(σ) is the Type � prior for the variance nuisance parameter. Dass and Berger (����)
show that such priors can be de�ned for a large class of nuisance parameters — we will see the
example of a prior on a commonmean rather than a variance in Example � below; but there also
exist cases with parameters that (at least intuitively) are nuisance parameters, for which Type �
priors do not exist; we give an example in Appendix �.A. For parameters of interest, including
e.g. any parameter that does not occur in both models, Type � priors never exist.

�.� When Problems arise: Subjective versus Pragmatic and
Default Priors

Bayesians view probabilities as degree of belief.�e degree of belief an agent has before con-
ducting the experiment, is expressed as a probability function.�is prior is then updated with
data from experiments, and the resulting posterior can be used to base decisions on. For one
pole of the spectrum of Bayesians, the pure subjectivists, this is the full story (De Finetti, ����;
Savage, ����): any prior capturing the belief of the agent is allowed, but it should always be

�Technically, the Type � prior for a given group structure is de�ned as the right-Haar prior for the group (Berger,
Pericchi and Varshavsky, ����): a unique (up to a constant) probability measure induced on the parameter space by
the right Haar measure on the related group. Strong calibration is proven in general by Hendriksen, De Heide and
Grünwald, ����, and Hendriksen, ���� for the special case of the �-sample t-test.
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Figure �.�: Calibration of the experiment of Section �.�.�, from ��, ��� replicate experiments. (a)�e observed posterior
odds as a function of the nominal posterior odds. (b)�e observed posterior odds as a function of the nominal posterior
odds with optional stopping.

interpreted as the agent’s personal degree of belief; in Section �.� we explain what such a ‘belief ’
really means. On the other end of the spectrum, the objective Bayesians (Je�reys, ����; Berger,
����) argue that degrees of belief should be restricted, ideally in such a way that they do
not depend on the agent, and in the extreme case boil down to a single, rational, probability
function, where a priori distributions represent indi�erence rather than subjective belief and
a posteriori distributions represent ‘rational degrees of con�rmation’ rather than subjective
belief. Ideally, in any given situation there should then just be a single appropriate prior. Most
objective Bayesians do not take such an extreme stance, recommending instead default priors
to be used whenever only very little a priori knowledge is available.�ese make a default choice
for the functional form of a distribution (e.g. Cauchy) but o�en have one or two parameters that
can be speci�ed in a subjective way.�ese may then be replaced by more informative priors
when more knowledge becomes available a�er all. We will see several examples of such default
priors below.

So what category of priors is used in practice? Recent papers that advocate the use of Bayesian
methods within psychology such as Rouder et al. (����), Rouder et al. (����) and Jamil et
al. (����) are mostly based on default priors. Within the statistics community, nowadays a
pragmatic stance is by far the most common, in which priors are used that mix ‘default’ and
‘subjective’ aspects (Gelman, ����) and that are also chosen to allow for computationally feasible
inference. Very broadly speaking, we may say that there is a scale ranging from completely
‘objective’ (and hardly used) via ‘default’ (with a few, say � or � parameters to be �lled in
subjectively, i.e. based on prior knowledge) and ‘pragmatic’ (with functional forms of the prior
based partly on prior knowledge, partly by defaults, and partly by convenience) to the fully
subjective.Within the pragmatic stance, one explicitly acknowledges that one’s prior distribution
may have some arbitrary aspects to it (e.g. chosen to make computations easier rather than
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re�ecting true prior knowledge). It then becomes important to do sensitivity analyses: studying
what happens if a modi�ed prior is used or if data are sampled not by �rst sampling parameters
θ from the prior and then data from P(⋅ � θ) but rather directly from a �xed θ within a region
that does not have overly small prior probability.�

�e point of this article is that Rouder’s view on what constitutes ‘handling optional stopping’
is tailored towards a fully subjective interpretation of Bayes; as soon as one allows default and
pragmatic priors, problems with optional stopping do occur (except for what we call Type �
priors). We can distinguish between three types of problems, depending on the type of prior
that is used. We now give an overview of type of prior and problem, giving concrete examples
later.

�. Type � Priors: these are priors on parameters freely occurring in both hypotheses for
which strong calibration (as with σ � in (�.�)) holds under optional stopping.�is includes
all right Haar priors on parameters that satisfy a group structure; Hendriksen, De Heide
and Grünwald (����) give a formal de�nition; Dass and Berger (����) and Berger,
Pericchi and Varshavsky (����) give an overview of such priors. We conjecture, but have
no proof, that such right Haar priors on group structure parameters are the only priors
allowing for strong calibration under optional stopping, i.e. the only Type � Priors. Some,
but not all so-called ‘nuisance parameters’ admit group structure/right Haar priors. For
example, the variance in the t-test setting does, but the mean in � × � contingency tables
(Appendix �.A) does not.

�. Type I Priors: these are default or pragmatic priors that do not depend on any aspects
of the experimental setup (such as the sample size) or the data (such as the values of
covariates) and are not of Type � above.�us, strong calibration under optional stopping
is violated with such priors— an example is the Cauchy prior in Example � of Section �.�.�
below.

�. Type II Priors: these are default and pragmatic priors that are not of Type � or I: the priors
may themselves depend on the experimental setup, such as the sample size, the covariates
(design), or the stopping time itself, or other aspects of the data. Such priors are quite
common in the Bayesian literature. Here the problem is more serious: as we shall see,
prior calibration is ill-de�ned, and correspondingly Rouder’s experiments cannot be
performed for such priors, and ‘handling optional stopping’ is in a sense impossible in
principle. An example is the g-prior for regression as in Example � below or Je�reys’
prior for the Bernoulli model as in Section �.�.� below.

We illustrate the problems with Type I and Type II priors by further extending Rouder’s
experiment to two extensions of our earlier setting, namely the Bayesian t-test, going back to
Je�reys (����) and advocated by Rouder et al. (����), and objective Bayesian linear regression,
following Liang et al. (����). Both methods are quite popular and use default Bayes factors
based on default priors, to be used when no clear or very little prior knowledge is readily
available.

�To witness, one of us recently spoke at the bi-annual OBAYES (Objective Bayes) conference, and noticed that a
substantial fraction of the talks featured such �xed θ-analyses and/or used priors of Type II below.
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�.�.� Example �: Bayesian t-test —�e Problem with Type I Priors
Suppose a researcher wants to test the e�ect of a new fertilizer on the growth of some wheat
variety.�e null hypothesisH� states that there is no di�erence between the old and the new
fertilizer, and the alternative hypothesisH� states that the fertilizers have a di�erent e�ect on
the growth of the wheat. We assume that the length of the wheat is normally distributed with
the same (unknown) variance under both fertilizers, and that with the old fertilizer, the mean
is known to be µ� = �meter. We now take a number of seeds and apply the new fertilizer to
each of them. We let the wheat grow for a couple of weeks, and we measure the lengths.�e
null hypothesisH� is thus: µ = µ� = �, and the alternative hypothesisH� is that the mean of the
group with the new fertilizer is di�erent from �meter: µ ≠ �.

Again we follow Rouder’s calibration check; again, the end goal is to illustrate a mathematical
result, (�.�) below, which will be contrasted with (�.�). And again, to make the result concrete,
we will �rst perform a simulation, generating data from both models and updating our prior
beliefs from this data as before. We do this using the Bayesian t-test, where Je�reys’ prior
P�(σ) = ��σ is placed on the standard deviation σ within both hypothesesH� andH�. Within
H� we set the mean to µ� = � and withinH�, a standard Cauchy prior is placed on the e�ect size
(µ − µ�)�σ ; details are provided by Rouder et al. (����). Once again, the nuisance parameter σ
is equipped with an improper Je�reys’ prior, so, like in Experiment � above and for the reasons
detailed there, for simulating our data, we will choose a �xed value for σ ; the experiments will
give the same result regardless of the value we choose.

We generate �� observations for each fertilizer under bothmodels: forH� we sample data from a
normal distribution with mean µ� = �meter and we pick the variance σ � = �. ForH� we sample
data from a normal distribution where the variance is � as well, and the mean is determined
by the e�ect size above. We adopt a Cauchy prior to express our beliefs about what values of
the e�ect size are likely, which is mathematically equivalent to the e�ect size being sampled
from a standard Cauchy distribution. We follow Rouder’s experiment further, and set our prior
odds onH� andH�, before observing the data, to �-to-�. We sample �� data points from each
of the hypotheses, and we calculate the Bayes factors. We repeat this procedure ����� times.
�en, we bin the ����� resulting Bayes factors and construct a histogram. In Figure �.�a we
see the distribution of the posterior odds when either the null or the alternative are true in
one �gure. In Figure �.�b we see the calibration plot for this data from which Rouder checks
the interpretation of the posterior odds: the observed posterior odds is the ratio of the two
histograms, where the width of the bins is �.� on the log scale.�e posterior odds are calibrated,
in accordance with Rouder’s experiments. We repeated the experiment with the di�erence that
in each of the ��, ��� experiments we sampled more data points until the posterior odds were
at least ��-to-�, or the maximum number of �� data points was reached.�e histograms for this
experiment are in Figure �.�c. In Figure �.�d we can see that, as expected, the posterior odds
are calibrated under optional stopping as well.

Since σ � is a nuisance parameter equipped with its Type � prior, it does not matter what value
we take when sampling data. We may ask ourselves what happens if, similarly, we �x particular
values of the mean and sample from them, rather than from the prior; for sampling fromH�,
this does not change anything since the prior is concentrated on the single point µ� = �; in
H�, this means we can basically pick any µ and sample from it. In other words, we will check
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Figure �.�: Calibration in the t-test experiment, Section �.�.�, from ��, ��� replicate experiments. (a)�e distribution
of posterior odds as a histogram underH� andH� in one �gure. (b)�e observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d)�e observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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whether we have strong calibration rather than prior-calibration not just for σ �, but also for
the mean µ. We now �rst describe such an experiment, and will explain its importance further
below.

We generate �� observations under both models.�e mean length of the wheat is again set to
be �meter with the old fertilizer, and now we pick a particular value for the mean length of
the wheat with the new fertilizer: ��� centimeters. For the variance, we again pick σ � = �. We
continue to follow Rouder’s experiment and set our prior odds onH� andH�, before observing
the data, to �-to-�. We sample ��, ��� replicate experiments with �� + �� observations each, ��
from one of the hypotheses (normal with mean � forH�) and �� from the other (normal with
mean µ = �.� forH�), and we calculate the Bayes factors. In Figure �.�a we see that calibration is,
to some extent, violated: the points follow a line that is still approximately, but now not precisely,
a straight line. Now what happens in this experiment under optional stopping? We repeated
the experiment with the di�erence that we sampled more data points until the posterior odds
were at least ��-to-�, or the maximum number of �� data points was reached. In Figure �.�b
we see the results: calibration is now violated signi�cantly — when we stop early the nominal
posterior odds (on which our stopping rule was based) are on average signi�cantly higher than
the actual, observed posterior odds. We repeated the experiment with various choices of µ’s
withinH�, invariably getting similar results.� In mathematical terms, this illustrates that when
the stopping time τ is determined by optional stopping, then, for many a and µ′,

post-odds�µ = µ′ , “post-odds�x� , . . . , xτ = a” is very di�erent from a, (�.�)

We conclude that strong calibration for the parameter of interest µ is violated somewhat for �xed
sample sizes, but much more strongly under optional stopping. We did similar experiments for
a di�erent model with discrete data (see Appendix �.A), once again getting the same result. We
also did experiments in which the means ofH� were sampled from a di�erent prior than the
Cauchy: this also yielded plots which showed violation of calibration. Our experiments are all
based on a one-sample t-test; experiments with a two-sample t-test and ANOVA (also with the
same overall mean for bothH� andH�) yielded severe violation of strong calibration under
optional stopping as well.

�e Issue Why is this important? When checking Rouder’s prior-based calibration, we
sampled the e�ect size from a Cauchy distribution, and then we sampled data from the realized
e�ect size. We repeated this procedure many times to approximate the distribution on posterior
odds by a histogram analogous to that in Figure �.�a. But do we really believe that such a histo-
gram, based on the Cauchy prior, accurately re�ects our beliefs about the data?�e Cauchy
prior was advocated by Je�reys for the e�ect size corresponding to a location parameter µ
because it has some desirable properties in hypothesis testing, i.e. when comparing two models
(Ly, Verhagen and Wagenmakers, ����). For estimating a one-dimensional location parameter
directly, Je�reys (like most objective Bayesians) would advocate an improper uniform prior on
µ.�us, objective Bayesians may change their prior depending on the inference task of interest,

�Invariably, strong calibration is violated both with and without optional stopping. In the experiments without
optional stopping, the points still lie on an increasing and (approximately) straight line; the extent to which strong
calibration is violated — the slope of the straight line — depends on the e�ect size. In the experiments with optional
stopping, strong calibration is violated more strongly in the sense that the points do not follow a straight line anymore.
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Figure �.�: Calibration in the t-test experiment with �xed values for the means ofH� andH� (Section �.�.�, from
��, ��� replicate experiments). (a)�e observed posterior odds as a function of the nominal posterior odds. (b)�e
observed posterior odds as a function of the nominal posterior odds with optional stopping.

even when they are dealing with data representing the same underlying phenomenon. It does
then not seem realistic to study what happens if data are sampled from the prior; the prior is
used as a tool in inferring likely parameters or hypotheses, and not to be thought of as something
that prescribes how actual data will arise or tend to look like. �is is the �rst reason why it is
interesting to study not just prior calibration, but also strong calibration for the parameter of
interest. One might object that the sampling from the prior done by Rouder, and us, was only
done to illustrate the mathematical expression (�.�); perhaps sampling from the prior is not
realistic but (�.�) is still meaningful? We think that, because of the mathematical equivalence, it
does show that the relevance of (�.�) is questionable as soon as we use default priors.

Prior calibration in terms of (�.�) — which indeed still holds� — would be meaningful if
a Cauchy prior really described our prior beliefs about the data in the subjective Bayesian
sense (explained in Section �.�). But in this particular setup, the Cauchy distribution is highly
unrealistic: it is a heavy tailed distribution, which means that the probability of getting very
large values is not negligible, and it is very much higher than with, say, a Gaussian distribution.
To make the intuition behind this concrete, say that we are interested in measuring the height of
a type of corn that with the old fertilizer reaches on average �meters.�e probability that a new
fertilizer would have a mean e�ect of �meters or more under a standard Cauchy distribution
would be somewhat larger than one in twenty. For comparison: under a standard Gaussian, this
is as small as �.�� ⋅ ��−��. Do we really believe that it is quite probable (more than one in twenty)
that the fertilizer will enable the corn to grow to �meters on average? Of course we could use a
Cauchy with a di�erent spread, but which one? Default Bayesians have emphasized that such
choices should be made subjectively (i.e. based on informed prior guesses), but whatever value

�Note though that strong calibration still fails.
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one choices, the chosen functional form of the prior (a Cauchy has, e.g., no variance) severely
restricts the options, making any actual choice to some extent arbitrary. While growing crops
(although a standard example in this context) may be particularly ill-suited to be modeled by
heavy-tailed distributions, the same issue will arise with many other possible applications for
the default Bayesian t-test: one will be practically sure that the e�ect size will not exceed certain
values (not too large, not too small, certainly not negative), but it may be very hard to specify
exactly which values. As a purely objective Bayesian, this need not be such a big problem -
one resorts to the default prior and uses it anyway; but one has to be aware that in that case,
sampling from the prior — as done by Rouder — is not meaningful anymore, since the data
one may get may be quite atypical for the underlying process one is modeling.

In practice, most Bayesians are pragmatic, striking a balance between ‘�at’, ‘uninformative’
priors, prior knowledge and ease of computation. In the present example, they might put a
Gaussian prior withmean µ on the e�ect size instead, truncated at � to avoid negativemeans. But
then there is the question what variance this Gaussian should have — as a pragmatic Bayesian,
one has to acknowledge that there will always be arbitrary or ‘convenience’ aspects about one’s
priors.�is is the second reason why it is interesting to study not just prior calibration, but also
strong calibration for the parameter of interest.

�us, both from a purely objective and from a pragmatic Bayesian point of view, strong cal-
ibration is important. Except for nuisance parameters with Type � priors, we cannot expect
it to hold precisely (see Gu, Hoijtink and Mulder, ���� for a related point) — but this is �ne;
like with any sensitivity or robustness test, we acknowledge that our prior is imperfect and we
merely ask that our procedure remains reasonable, not perfect. And we see that by and large
this is the case if we use a �xed sample size, but not if we perform optional stopping. In our
view this indicates that for pragmatic Bayesians using default priors, there is a real problem
with optional stopping a�er all. However, within the taxonomy de�ned above, we implicitly
used Type I priors (Cauchy) here. Default priors are o�en of Type II, and then, as we will see,
the problems get signi�cantly worse.

As a �nal note, we note that in our strong calibration experiment, we chose parameter values
here which we deemed ‘reasonable’, by this we mean values which reside in a region of large
prior density — i.e. we sampled from µ that are not too far from µ�. Sampling from µ in the
tails of the prior would be akin to ‘really disbelieving our own prior’, and would be asking for
trouble. We repeated the experiment for many other values of µ not too far from µ� and always
obtained similar results. Whether our choices of µ are truly reasonable is of course up to debate,
but we feel that the burden of proof that our values are ‘unreasonable’ lies with those who want
to show that Bayesian methods can deal with optional stopping even with default priors.

�.�.� Example �: Bayesian linear regression and Type II Priors
We further extend the previous example to a setting of linear regression with �xed design. We
employ the default Bayes factor for regression from the R package Bayesfactor (Morey and
Rouder, ����), based on Liang et al. (����) and Zellner and Siow (����), see also Rouder and
Morey (����). �is function uses as default prior Je�reys’ prior for the intercept µ and the
variance (P�(µ, σ) ∼ ��σ), and a mixture of a normal and an inverse-gamma distribution for
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the regression coe�cients, henceforth g-prior:

y ∼ N �µ + Xβ, σ �� ,
β ∼ N ��, gσ �n(X′X)−�� , (�.��)

g ∼ IG� �
�
,
√
�
�
� .

Since the publication of Liang et al. (����), this prior has become very popular as a default prior
in Bayesian linear regression. Again we provide an example concerning the growth of wheat.
Suppose a researcher wants to investigate the relationship between the level of a fertilizer, and
the growth of the crop. We can model this experiment by linear regression with �xed design.
We add di�erent levels of the fertilizer to pots with seeds: the �rst pot gets a dose of �.�, the
second �.�, ans so on up to the level �.�ese are the x-values (covariates) of our simulation
experiment. If we would like to repeat the examples of the previous sections and construct
the calibration plots, we can generate the y-values — the increase or decrease in length of the
wheat from the intercept µ — according to the proposed priors in Eq. (�.��). First we draw a g
from an inverse gamma distribution, then we draw a β from the normal prior that we construct
with the knowledge of the x-values, and we compute each yi as the product of β and xi plus
Gaussian noise.

As we can see in Equation �.��, the prior on β contains a scaling factor that depends on the
experimental set-up — while it does not directly depend on the observations (y-values), it
does depend on the design/covariates (x-values). If there is no optional stopping, then for
a pragmatic Bayesian, the dependency on the x-values of the data is convenient to achieve
appropriate scaling; it poses no real problems, since the whole model is conditional on X: the
levels of fertilizer we administered to the plants. But under optional stopping, the dependency
on X does become problematic, for it is unclear which prior she should use! If initially a design
with �� pots was planned (a�er each dose from �.� up to �, another row of pots, one for each
dose is added), but a�er adding three pots to the original twenty (so now we have two pots
with the doses �.�, �.� and �.�, and one with each other dose), the researcher decides to check
whether the results already are interesting enough to stop, should she base her decision on the
posterior reached with prior based the initially planned design with �� pots, or the design at the
moment of optional stopping with �� pots?�is is not clear, and it does make a di�erence, since
the g-prior changes as more x-values become available. In Figure �.�a we see three g-priors on
the regression coe�cient β for the same �xed value of g, the same x-values as described in the
fertilizer experiment above, but increasing sample size. First, each dose is administered to one
plant, yielding the black prior distribution for β. Next, � plants are added to the experiment,
with doses �.�, �.� and �.�, yielding the red distribution: wider and less peeked, and lastly,
another �� plants are added to the experiment, yielding the blue distribution which puts even
less prior mass close to zero.

�is problem may perhaps be pragmatically ‘solved’ in practice in two ways: either one could,
as a rule, base the decision to stop at sample size n always using the prior for the given design
at sample size n; or one could, as a rule, always use the design for the maximum sample
size available. It is very unclear though whether there is any sense in which any of these two
(or other) solutions ‘handle optional stopping’ convincingly. In the �rst case, the notion of
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Figure �.�: Default priors that depend on aspects of the experimental setup: (a) G-priors for the regression example
of Section �.�.� with di�erent sample sizes: n = �� (black), n = �� (red) and n = �� (blue). (b) Je�reys’ prior for the
Bernoulli model for the speci�c case that n is �xed in advance (no optional stopping): a Beta (���, ���) distribution.

prior calibration is ill-de�ned, since post-odds�x� , . . . , xτ in (�.�) is ill-de�ned (if one tried
to illustrate (�.�) by sampling, the procedure would be unde�ned since one would not know
what prior to sample from until a�er one has stopped); in the second, one can perform it (by
sampling β from the prior based on the design at the maximum sample size), but it seems
rather meaningless, for if, for some reason or other, even more data were to become available
later on, this would imply that the earlier sampled data were somehow ‘wrong’ and would have
to be replaced.

What, then, about strong calibration? Fixing particular, ‘reasonable’ values of β does seem
meaningful in this regression example. However (�gures omitted), when we pick reasonable
values for β instead of sampling β from the prior, we obtain again the conclusion that strong
calibration is, on one hand, violated signi�cantly under optional stopping (where the prior used
in the decision to stop can be de�ned in either of the two ways de�ned above); but on the other
hand, only violatedmildly for �xed sample size settings. Using the taxonomy above, we conclude
that optional stopping is a signi�cant problem for Bayesians with Type-II priors.

�.�.� Discrete Data and Type-II Priors

Now let us turn to discrete data: we test whether a coin is fair or not. �e data D consist of
a sequence of n� ones and n� zeros. Under H�, the data are i.i.d. Bernoulli(���); under H�
they can be Bernoulli(θ) for any � ≤ θ ≤ � except ���, θ representing the bias of the coin. One
standard objective and default Bayes method (in this case coinciding with anMDL (Minimum
Description Length) method, (Grünwald, ����)) is to use Je�reys’ prior for the Bernoulli model
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withinH�. For �xed sample sizes, this prior is proper, and is given by

P�(θ) =
��

θ(� − θ)
⋅ �
π
, (�.��)

where the factor ��π is for normalization; see Figure �.�b. If we repeat Rouder’s experiment, and
sample from this prior, then the probability that we would pick an extreme θ, within �.�� of
either � or �, would be about �� times as large as the probability that we would pick a θ within
the equally wide interval [�.��, �.��]. But, lacking real prior knowledge, do we really believe
that such extreme values are much more probable than values around the middle? Most people
would say we do not: under the subjective interpretation, i.e. if one really believes one’s prior
in the common interpretation of ‘belief ’ given in Section �.�, then such a prior would imply a
willingness to bet at certain stakes. Je�reys’ prior is chosen in this case because it has desirable
properties such as invariance under reparameterization and good frequentist properties, but
not because it expresses any ‘real’ prior belief about some parameter values being more likely
than others.�is is re�ected in the fact that in general, it depends on the stopping rule. Using
the general de�nition of Je�reys’ prior (see e.g. Berger (����)), we see, for example, that in the
Bernoulli model, if the sample size is not �xed in advance but depends on the data (for example,
we stop sampling as soon as three consecutive �s are observed), then, as a simple calculation
shows, Je�reys’ prior changes and even becomes improper (Jordan, ����).

In Appendix �.A we give another example of a common discrete setting, namely the � × �
contingency table. Here the null hypothesis is a Bernoulli model and its parameter θ is intuitively
a nuisance parameter, and thus strong calibration relative to this parameter would be especially
desirable. However, the Bernoulli model does not admit a group structure, and hence neither
Je�reys’ nor any other prior we know of can serve as a Type � prior, and strong calibration
can presumably not be attained — the experiments show that it is certainly not attained if the
default Gunel and Dickey Bayes factors (Jamil et al., ����) are used (these are Type-II priors,
so we need to be careful about what prior to use in the strong calibration experiment; see
Appendix �.Afor details).

�.� Other Conceptualizations of Optional Stopping
We have seen several problems with optional stopping under default and pragmatic priors. Yet
it is known from the literature that, in some senses, optional stopping is indeed no problem
for Bayesians (Lindley, ����; Savage, ����; Edwards, Lindman and Savage, ����; Good, ����).
What then, is shown in those papers? Interestingly, di�erent authors show di�erent things; we
consider them in turn.

�.�.� Subjective Bayes optional stopping
�e Bayesian pioneers Lindley (����) and Savage (����) consider a purely subjective Bayesian
setting, appropriate if one truly believes one’s prior (and at �rst sight completely disconnected
from strong calibration — but see the two quotations further below). But what does this mean?
According to De Finetti, one of the two main founding fathers of modern, subjective Bayesian
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statistics, this implies a willingness to bet at small stakes, at the odds given by the prior.� For
example, a subjective Bayesian who would adopt Je�reys’ prior P� for the Bernoulli model as
given by (�.��) would be willing to accept a gamble that pays o� when the actual parameter
lies close to the boundary, since the corresponding region has substantially higher probability,
cf. the discussion underneath Eq. (�.��). For example, a gamble where one wins �� cents if the
actual Bernoulli parameter is in the set [�, �.��] ∪ [�.��, �] and pays ��� cents if it is in the set
[�.��, �.��] and neither pays nor gains otherwise would be considered acceptable� because
this gamble has positive expected gain under P�. We asked several Bayesians who are willing
to use Je�reys’ prior for testing whether they would also be willing to accept such a gamble;
most said no, indicating that they do not interpret Je�reys prior the way a subjective Bayesian
would.�

Now, if one adopts priors one really believes in in the above gambling sense, then it is easy to
show that Bayesian updating from prior to posterior is not a�ected by the employed stopping
rule; one ends up with the same posterior if one had decided the sample size n in advance or if
it had been determined, for example, because one was satis�ed with the results at this n. In this
sense a subjective Bayesian procedure does not depend on the stopping rule (as we have seen,
this is certainly not the case in general for default Bayes procedures).�is is the main point
concerning optional stopping of Lindley (����), also made by e.g. Savage (����) and Bernardo
and Smith (����), among many others. A second point made by Lindley (����, p. ���) is that the
decisions a Bayesian makes will “not, on average, be in error, when ignoring the stopping rule”.
Here the “average” is really an expectation obtained by integrating θ over the prior, and then
the data D over the distribution P(D � θ), making this claim very similar to prior calibration
(�.�) — once again, the claim is correct, but works only if one believes that sampling (or taking
averages over) the prior gives rise to data of the type one would really expect; and if one would
not be willing to bet based on the prior in the above sense, it indicates that perhaps one doesn’t
really expect that data a�er all.

We cannot resist to add here that, while for a subjective Bayesian, prior-based calibration is
sensible, even the founding fathers of subjective Bayes gave a warning against taking such a
prior too seriously:��

“ Subjectivists should feel obligated to recognize that any opinion (so much more
the initial one) is only vaguely acceptable... So it is important not only to know the
exact answer for an exactly speci�ed initial problem, but what happens changing
in a reasonable neighborhood the assumed initial opinion” De Finetti, as quoted by
Dempster (����). — note that when we checked for strong calibration, we took

�Savage, the other father, employs a slightly di�erent conceptualization in terms of preference orderings over
outcomes, but that need not concern us here.

�One might object that actual Bernoulli parameters are never revealed and arguably do not exist; but one could
replace the gamble by the following essentially equivalent gamble: a possibly biased coin is tossed ��, ��� times, but
rather than the full data only the average number of �s will be revealed. If it is in the set [�, �.��] ∪ [�.��, �] one gains
�� cents and if it is in the set [�.��, �.��] one pays ��� cents. If one really believes Je�reys’ prior, this gamble would be
considered acceptable.

�Another example is the Cauchy prior with scale one on the standardized e�ect size (Rouder et al., ����), as most
would agree that this is not realistic in psychological research.�anks to an anonymous reviewer for pointing this out.

��Many thanks to Chris Holmes for bringing these quotations to our attention.
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parameter values µ which were not too unlikely under the prior, which one may
perhaps view as ‘a reasonable neighborhood of the initial opinion’.

“ ...in practice the theory of personal probability is supposed to be an idealization
of one’s own standard of behavior; the idealization is o�en imperfect in such a way
that an aura of vagueness is attached to many judgments of personal probability...”
(Savage, ����).

Hence, one would expect that even a subjectivist would be interested in seeing what happens
under a sensitivity analysis, for example checking for strong rather than prior-based calibration
of the posterior. And even a subjectivist cannot escape the conclusion from our experiments
that optional stopping leads to more brittle (more sensitive to the prior choice) inference than
stopping at a �xed n.

�.�.� Frequentist optional stopping underH�

Interestingly, some other well-known Bayesian arguments claiming that ‘optional stopping
is no problem for Bayesians’ really show that some Bayesian procedures can deal, in some
cases, with optional stopping in a di�erent, frequentist sense.�ese include Edwards, Lindman
and Savage (����) and Good (����) and many others (the di�erence between this justi�cation
and the above one by Lindley (����) roughly corresponds to Example � vs. Example � in the
appendix to (Wagenmakers, ����)).We now explain this frequentist notion of optional stopping,
emphasizing that some (but — contrary to what is claimed — by no means all!) tests advocated
by Bayesians do handle optional stopping in this frequentist sense.

�e (or at least, ‘a common’) frequentist interpretation of handling optional stopping is about
controlling the Type I error of an experiment. A Type I error occurs when we reject the null
hypothesis when it is true, also called a false positive. �e probability of a Type I error for a
certain test is called the signi�cance level, usually denoted by α, and in psychology the value of
α is usually set to �.��. A typical classical hypothesis test computes a test statistic from the data
and uses it to calculate a p-value. It rejects the null hypothesis if the p-value is below the desired
Type I error level α. For other types of hypothesis tests, it is also a crucial property to control
the Type I error, by which we mean that we can make sure that the probability of making a
Type I error remains below our chosen signi�cance level α.�e frequentist interpretation of
handling optional stopping is that the Type I error guarantee holds if we do not determine the
sampling plan — and thus the stopping rule — in advance, but we may stop when we see a
signi�cant result. As we know, see e.g. Wagenmakers (����), maintaining this guarantee under
optional stopping is not possible with most classical p-value based hypothesis tests.

At �rst sight none of this seems applicable to Bayesian tests, which output posterior odds rather
than a p-value. However, in the case thatH� is simple (containing just one hypothesis, as in
Example �), there is a well-known intriguing connection between Bayes factors and Type I
error probabilities: — if we reject H� i� the posterior odds in favor ofH� are smaller than some
�xed α, then we are guaranteed a Type I error of at most α. And interestingly, this holds not
just for �xed sample sizes but even under optional stopping.�us, if one adopts the rejection
rule above (reject i� the posterior odds are smaller than a �xed α), for simpleH�, frequentist
optional stopping is no problem for Bayesians. �is is what was noted by Edwards, Lindman
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and Savage (����) (using a di�erent terminology) and Good (����), based on what Sanborn
and Hills (����) call the universal bound, and what in probability theory is known as Doob’s
maximal inequality (Doob, ����); see also Vovk et al. (����) and Van der Pas and Grünwald
(����).

But what happens ifH� is composite? As was only shown very recently (Hendriksen, De Heide
and Grünwald, ����), the Bayes factor still handles optional stopping in the frequentist sense if
all free parameters inH� are nuisance parameters observing a group structure and equipped
with the corresponding Type � prior and are shared withH�, an example being Je�reys’ Bayesian
t-test of Section �.�.�. As explained by Hendriksen, De Heide and Grünwald (����), for general
priors and compositeH� though, this is typically not the case; for example, the Gunel-Dickey
default Bayes factors for� × � tables (another compositeH�) cannot handle optional stopping
in the frequentist sense.

An Empirical Frequentist Study of Bayesian Optional Stopping Schönbrodt et al. (����)
performed a thorough simulation study to analyze frequentist performance of optional stopping
with Bayes factors both underH� and underH�.�ey con�ned their analysis to the Bayesian t-
test, i.e. our Example �, and found excellent results for the Bayesian optional stopping procedure
under a certain frequentist interpretation of the Bayes factors (posterior odds). As to optional
stopping under H� (concerning Type I error), this should not surprise us: in the Bayesian
t-test, all free parameters inH� are equipped with Type � priors, which, as we just stated, can
handle optional stopping. We thus feel that one should be careful in extrapolating their results
to other models such as those for contingency tables, which do not admit such priors. As to
optional stopping underH�, the authors provide a table showing how, for any given e�ect size
δ and desired level of Type II error β, a threshold B can be determined such that the standard
Bayesian t-test with (essentially) the following optional stopping and decision rule, has Type II
error β:

Take at least �� data points. A�er that stop as soon as posterior odds are larger
than B or smaller than ��B; acceptH� if they are smaller than ��B, and rejectH�
if larger than B.

For example, if δ ≥ �.� and one takes B = � then the Type II error will be smaller than �%
(see their Table �).�ey also determined the average sample size needed before this procedure
stops, and noted that this is considerably smaller than with the standard t-test optimized for
the given desired levels of Type I and Type II error and a priori expected e�ect size.�us, if one
determines the optional stopping threshold B in the Bayesian t-test based on their table, one
can use this Bayesian procedure as a frequentist testing method that signi�cantly improves on
the standard t-test in terms of sample size. Under this frequentist interpretation (which relies
on the speci�cs of a table), optional stopping with the t-test is indeed unproblematic. Note that
this does not contradict our �ndings in any way: our simulations show that if, when sampling,
we �x an e�ect size inH�, then the posterior is biased under optional stopping, which means
that we cannot interpret the posterior in a Bayesian way.
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�.� Discussion and Conclusion
When a researcher using Bayes factors for hypothesis testing truly believes in her prior, she
can deal with optional stopping in the Bayesian senses just explained. However, these senses
become problematic for every test that makes use of default priors, including all default Bayes
factor tests advocated within the Bayesian Psychology community. Such ‘default’ or ‘objective’
priors cannot be interpreted in terms of willingness to bet, and sometimes (Type II priors)
depend on aspects of the problem at hand such as the stopping rule or the inference task of
interest. To make sense of such priors generally, it thus seems necessary to restrict their use to
their appropriate domain of reference — for example, Je�reys’ prior for the Bernoulli model as
given by (�.��) is okay for Bayes factor hypothesis testing with �xed sample size, but not for more
complicated stopping rules.�is idea, which is unfortunately almost totally lacking from the
modern Bayesian literature, is the basis of a novel theory of the very concept of probability called
Safe Probability which is being developed by one of us (Grünwald, ����; Grünwald, ����).�at
(mis)use of optional stopping is a serious problem in practice, is shown by, among others, John,
Loewenstein and Prelec (����b); however, that paper is (implicitly) mostly about frequentist
methods. It would be interesting to investigate to what extent optional stopping when combined
with default Bayesian methods is actually a problem not just in theory but also in practice.�is
would, however, require substantial further study and simulation.

Rouder (����) argues in response to Sanborn and Hills (����) that the latter ‘evaluate and
interpret Bayesian statistics as if they were frequentist statistics’, and that ‘the more germane
question is whether Bayesian statistics are interpretable as Bayesian statistics’. Given the betting
interpretation above, the essence here is that we need to make a distinction between the purely
subjective and the pragmatic approach: we can certainly not evaluate and interpret all Bayesian
statistics as purely subjective Bayesian statistics, what Rouder (����) seems to imply. He advises
Bayesians to use optional stopping — without any remark or restriction to purely subjective
Bayesians, and for a readership of experimental psychologists who are in general not familiar
with the di�erent �avors of Bayesianism — as he writes further on: ‘Bayesians should consider
optional stopping in practice. [...] Such an approach strikes me as justi�able and reasonable,
perhaps with the caveat that such protocols be made explicit before data collection’.�e crucial
point here is that this can indeed be done when one works with a purely subjective Bayesian
method, but not with the default Bayes factors developed for practical use in social science: both
strong calibration and the frequentist Type I-error guarantees will typically be violated, and for
Bayes factors involving Type II-priors, both prior and strong calibration are even unde�ned.
In Table �.� we provide researchers with a simpli�ed overview of four common default Bayes
factors indicating which forms of optional stopping they can handle.

While some �nd the purely subjective Bayesian framework unsuitable for scienti�c research
(see e.g. Berger (����)), others deem it the only coherent approach to learning from data per
se. We do not want to enter this discussion, and we do not have to, since in practice, nowadays
most Bayesian statisticians tend to use priors which have both ‘default’ and ‘subjective’ aspects.
Basically, one uses mathematically convenient priors (which one does not really believe, so
they are not purely subjective — and hence, prior calibration is of limited relevance), but they
are also chosen to be not overly unrealistic or to match, to some extent, prior knowledge one
might have about a problem.�is position is almost inevitable in Bayesian practice (especially
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Prior Cal. Strong Calibration Freq. OS
Default Bayes Factors

T-test (Rouder et al., ����) 3 but... (I) 3 for σ (�)
3

7 for δ (e�ect size) (I)

ANOVA (Rouder et al., ����) 3 but... (I) 3 for µ, σ (�)
3

7 for δ (e�ect size) (I)
Regression

7 (II) 3 for µ, σ (�)
3(Rouder and Morey, ����) 7 for β (e�ects) (II)

Contingency Tables
7 (II) 7 7(Jamil et al., ����)

Bayes Factors with proper, fully
3 N/A N/Asubjective priors (Rouder, ����)

Table �.�: Overview of several common default Bayes Factors (from the R-package BayesFactor (Morey and Rouder,
����)), and their robustness against di�erent kinds of optional stopping (proofs can be found in Hendriksen, De Heide
and Grünwald, ����). ‘Prior Cal.’ means ‘prior calibration’ and ‘Freq. OS’ means ‘frequentist optional stopping’. Between
parentheses is the type of prior used, in the taxonomy introduced in this paper.�e but.. indicates that, formally, prior
calibration works for the priors, yet, because we are in the default setting, the Bayes factor is not fully subjective, so
prior calibration is not too meaningful — which is just the main point of this paper.

since we would not like to burden practitioners with all the subtleties regarding objective and
subjective Bayes), and we have no objections to it — but it does imply that, just like frequentists,
Bayesians should be careful with optional stopping. For researchers who like to engage in
optional stopping but care about frequentist concepts such as Type I error and power, we
recommend the safe tests of Grünwald, De Heide and Koolen, ���� based on the novel concept
of S-values: S-values are related to, and sometimes coincide with, default Bayes factors, but
tests based on S-values invariably handle a variation of frequentist optional stopping. For
example, the three default Bayes factors that handle frequentist optional stopping in Table �.�
are also S-values, but there exist other S-values for these three settings that also handle optional
stopping but achieve higher frequentist power; and there also exists an S-value for contingency
tables that, unlike the default Bayes factor, handles frequentist optional stopping.

Open Practices Statement Since all the data involved in this paper was generated by straight-
forward computer simulations rather than ‘real-world’ experiments, we did not make the data
available. No experiments were done, and hence no experiments were preregistered.
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�.A Example �: An independence test in a �x� contingency
table

Suppose that a researcher considers two hypotheses: a null hypothesisH� that states that there
is no di�erence in voting preference (Democrat or Republican) between men and women,
and an alternative hypothesisH� stating that men’s voting preferences di�er from the women’s
preferences. Both hypotheses are composite — we may think of a Bernoulli model forH�: the
data are i.i.d. with a �xed probability of � (voting Democrat). We are however not interested
in the percentage of the persons voting for the Democrats. We are, instead, only interested
to learn if this percentage is equal for men and women or not.�us our null hypothesisH�
consists of all Bernoulli distributions (all possible biases of the coin, in�nitely many between �
and �) where the model for the men is the same as for the women. Our alternative hypothesis is
composite as well: all the sets of two Bernoulli distributions — one for the men and one for
the women — that are not equal.�us, the Bernoulli parameter inH� is not a parameter of
interest; instead, at least intuitively, it is a nuisance parameter similar to the variance in Example
�; however, it does not observe a group structure and a Type �-prior for this parameter does
not exist.

Once again we follow Rouder’s experiments closely. We now use the Default Gunel and Dickey
Bayes Factors for Contingency Tables (Jamil et al., ����), which employs speci�c default choices
for the priors withinH� andH�, depending on four di�erent sampling schemes (see Section �.A
for the details). We immediately run into a problem similar to the problems described with the
g-prior and Je�reys’ prior for Bernoulli: which prior we should choose depends on the sampling
plan itself. Based on earlier work by Gunel and Dickey, ���� (GD from now on), Jamil et al.
(����) provide di�erent default priors depending on whether the sample size n and/or some of
the four counts (number of men/women voting democratic/republican) are �xed in advance.
For the case that none of these are �xed in advance, they provide a prior which assumes that
the four counts are all Poisson distributed; see the next section for details. Intuitively, none of
these priors seem to be compatible with the very idea of ‘optional stopping’ and prior-based
calibration under optional stopping cannot be tested (since it is not clear what prior to sample
from— a Type II-problem in our earlier terminology). Still, to check the claim that ‘optional
stopping is no problem for Bayesians’ we will again check whether strong calibration holds
with and without optional stopping. We display here the results of an experiment with the
prior advocated for the case in which neither n nor any of the counts are assumed to be �xed
in advance, since this seems the choice least incompatible with optional stopping. To avoid
discussion on this issue though, we also performed the experiments with the priors advocated
for other sampling schemes and combinations of di�erent sampling schemes, which led to very
similar results.

We will again �x some ‘reasonable’ parameter values in each model: when sampling fromH�,
we really sample from θ = ���, i.e. we suppose that ��% of either gender prefers the Democrats.
When we sample fromH�, we suppose that ��% of the men prefers the Democrats, but for the
women it is as much as ��%. If there are equally many men as women, under both hypotheses
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the average percentage is equal. Like Rouder, we set our prior odds to �-to-�.

We simulate ��.��� replicate experiments of ��� + ��� samples each, from bothH� andH�,
and we calculate the Bayes Factors. We construct the histograms and the plots with the odds
as before. We can check the calibration in Figure �.�b: we can see that the nominal posterior
odds agree roughly with the observed posterior odds. In Figure �.�d however, we see the same
plot where we did the same experiment with optional stopping. We can clearly see that even
the rough linear relationship from Figure �.�b is completely gone. For this example, we can
conclude as well that strong calibration is violated.

We now revisit the example, but we change the proportions under both hypotheses and survey
only ��men and �� women, and we use a joint multinomial sampling scheme (the grand total,
n, is �xed). UnderH�, ��% of both men and women vote for the Democrats, and underH�,
��% of the men and ��% of the women do. We repeat exactly the same experiment (without
optional stopping), and we see the resulting plot in Figure �.�a. We see that the relationship
between the observed and nominal posterior odds looks linear, but the slope is o�. If we repeat
the same experiment with optional stopping, we see in Figure �.�b that additionally the linear
association is missing.

We do note that the objective priors used in the default Bayes Factor test for contingency tables
are proper, so we are able to sample from them. In Figure �.�c we see what happens if we do
exactly the same experiment as in Figure �.�a, but sampled from the prior: we see the observed
posterior odds plotted against the nominal posterior odds, and the points lie approximately on
the identity line, in contrast with Figure �.�a. Furthermore, we performed the same experiment
as in Figure �.�b in this subjective Bayesian way, and we see that (in Rouder’s terminology) the
interpretation of the posterior odds holds with optional stopping in Figure �.�d. As said, we
do not think this kind of sampling is very meaningful in default prior context; we just add the
experiment to show that invariably, if one can and wants to sample from priors, then Rouder’s
conclusions do hold.

Subjective vs. Objective Interpretation In their original paper, Gunel andDickey, ���� (GD)
give a subjective interpretation to their priors.�ese priors depend on the sampling scheme,
i.e. on whether the grand total, and/or one or both of the marginals are known or set by the
experimenter in advance. At �rst sight, this seems to be at odds with the fact that, with subjective
priors, Bayesian procedures do not depend on the stopping rule used, as we pointed out in
Section �.�. However, closer inspection reveals that if one follows the method under their
subjective interpretation, then the posterior indeed would not depend on the sampling scheme.
How is this possible? To see this, note that GD do not model their data as coming in sequentially,
but rather they consider a �xed, single datum D = (N� , . . . ,N�) consisting of the four entries in
the contingency table (see e.g. Table �.� below).�e di�erent versions of their model and prior
are then arrived at by calculating, for example, P(D � H�) for the case that no information
about the design is given, and P(D �H� , n) (where n = N� +N� +N� +N�) for the case that the
grand total (sample size) n is determined in the experiment design. In every case, the posterior
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Figure �.�: Calibration of the contingency table experiment, Section �.A, from ��.��� replicate experiments. (a)�e
distribution of posterior odds as a histogram underH� andH� . (b)�e observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d)�e observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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(d)

Figure �.�:�e observed posterior odds as a function of the nominal posterior odds, from ��.��� replicate experiments.
(a) Contingency table experiment, without optional stopping. (b) Contingency table experiment, with optional stopping.
(c) Subjective Bayesian version of the experiment in a. (d) Subjective Bayesian version of the experiment in b.
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odds post-odds�D will remain the same; for they require the prior to be used when n is given,
P(H� � n), to be arrived at by conditioning the original prior P(H�) on the grand total n. In
particular, this means that a truly subjective Bayesian who follows the GD model would have
P(H� � n) ≠ P(H�), and could thus not use a (���, ���) ‘uninformative’ prior on (H� ,H�)
both when the grand total is known in advance and when it is not. In other words, the posterior
is not a�ected by the sampling scheme, but the prior is.

Details of the experiments For Example � above, we used the functioncontingencyTableBF.
�is function gives the user the option to choose between four di�erent so called sampling
schemes, implementing the Default Gunel and Dickey Bayes Factors for Contingency Tables
of Jamil et al. (����). Which of the four options to use, depends on which covariates in the
contingency table are to be treated as �xed or as random, depending on the design of the
experiment.

� � sum
� n� − k� n� − k� n − k
� k� k� k

sum n� n� n

Table �.�: �x� contingency table; the four entries correspond to the numbers N� ,N� , . . . ,N� above.

In the �rst sampling scheme, none of the cell counts in the contingency table are considered �xed,
and the assumption is made that each cell count is Poisson distributed.�e default prior for
this scheme is a conjugate gamma prior on the Poisson rate parameter, with hyperparameters
suggested by Gunel and Dickey. We use this sampling scheme for our �rst experiment in
Section �.A, but as we noted in our discussion in the same section, the question of ‘what is the
actual sampling scheme’ and hence ‘what is the right default prior’ for the type of experiment
we do — the same experiment with and without optional stopping — is really impossible to
answer.�us, we repeated the experiment with other (combinations of) sampling schemes, in
all cases obtaining similar results. Indeed, when we perform the experiment without optional
stopping, we sample a �xed number of men and women, whereupon one margin (n� , n�) and
the grand total (n) is �xed. For our second example (Figure �.�a and �.�b) we used the prior
advocated for the sampling scheme in which the grand total (n in Table �.�) is �xed. Under
this sampling scheme, the cell counts are assumed to be jointly multinomial distributed, and a
Dirichlet conjugate distribution with the suggested parameters (Jamil et al., ����) is used as
prior, which in our case amounts to a uniform prior on the Bernoulli parameter θ; see Jamil
et al. (����) for details. Again, using instead one of the priors advocated for one of the other
sampling schemes leads to very similar results.


