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Chapter �

On the Truth-Convergence of
Open-Minded Bayesianism

Abstract
Wenmackers and Romeijn (����) formalize ideas going back to Shimony (����) and Putnam
(����) into an open-minded Bayesian inductive logic, that can dynamically incorporate stat-
istical hypotheses proposed in the course of the learning process. In this paper, we show that
Wenmackers and Romeijn’s proposal does not preserve the classical Bayesian consistency guar-
antee of almost-sure merger with the true hypothesis. We diagnose the problem, and o�er a
forward-looking open-minded Bayesians that does preserve a version of this guarantee.

�.� Introduction
On the standard philosophical conception of Bayesian learning, an agent starts out with a
particular prior distribution and learns by conditionalizing on the data it receives. Well-known
results on the merger of opinion show that the speci�c prior does not matter too much, as long
as there is agreement on what is possible at all.�ese same results can also be taken to show
that the agent converges to the truth, as long as its prior does not exclude this truth from the
start (Earman, ����, ����; Huttegger, ����).

However, a Bayesian agent cannot include in its prior every possible truth from the start; not in
practice, and not even in theory (Putnam, ����; Dawid, ����; Belot, ����; Sterkenburg, ����). A
Bayesian agent must commit to restrictive inductive assumptions in its initial choice of prior
(Howson, ����; Romeijn, ����). Standard results about convergence to the truth only apply
if these initial assumptions are actually valid in the learning situation at hand. But there is,
on the standard conception, no room for the agent to readjust (Levi, ����); not even if these
assumptions start looking faulty.

��
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In more explicitly statistical terms, a Bayesian agent’s prior can be seen to specify a particular
model, or set of hypotheses. If the model is appropriate, if one of the hypotheses is true, there
is—at least for a countable model—a guarantee of consistency that the agent with probability �
(almost surely, a.s.) converges on this truth. But if it is not, the agent’s beliefs can with positive
probability always and forever remain o� the mark. On the standard conception, there is, again,
no room for the agent to later adapt this model (Dawid, ����); there is, in particular, no room
to expand the model, to incorporate new hypotheses that might be more in accord with the
data (Gillies, ����; Gelman and Shalizi, ����).

�e question of how to open up the standard conception to make room for incorporating
new hypotheses is the Bayesian problem of new theory (Chihara, ����, ����; Earman, ����, ���f;
Romeijn, ����b). An early account that engages with the problem of new theory is the tempered
personalism due to Shimony (����). Central to Shimony’s account is an idea he traces back to
Putnam (����; see Shimony, ����, p. ��; ����), and in more veiled form to Je�reys (����; see
Shimony, ����, ���; also see Howson, ����).�is is the idea that, rather than taking as starting
point an hypothesis set that is as wide as possible, Bayesian inference is relative to a limited set
of “seriously proposed hypotheses,” that is dynamically expanded as new such hypotheses are
proposed. In this context Shimony introduced the notion of a catch-all hypothesis that is the
complement of all seriously proposed hypotheses at any given time.

Recently, Wenmackers and Romeijn (����) have worked out these ideas in a statistical setting,
into what they brand an open-minded Bayesianism. In a number of di�erent versions they
propose a Bayesian inductive logic that allows for an agent to adopt newly formulated statistical
hypotheses during the learning process.

One important question that they leave untouched, however, is whether these formalizations
actually preserve the consistency guarantee of truth-convergence.�at is, if the true hypothesis
is one of the actually formulated hypotheses, thus becomes part of the open-minded Bayesian’s
hypothesis set, is the agent from that point on still guaranteed to almost surely converge on this
truth?�at is the question we investigate in this paper.

We proceed as follows. First, in section �.�, we introduce the statistical framework of Bayesian
learning that Wenmackers and Romeijn employ, and discuss their di�erent versions of open-
minded Bayesians. �en, in section �.�, we investigate the guarantee of convergence to the
truth. We focus on the property of weak merger with the true hypothesis, whenever part of the
hypothesis set, and show that all the proposed versions of open-minded Bayesianism, unlike the
standard Bayesian, fail to guarantee this property. In section �.� we diagnose the problem and
the exact nature of the convergence we could possibly attain, in the course of which we introduce
the notions of an hypothesis and posterior scheme and that of a completed agent measure. We
then set out for a version of open-minded Bayesianism for which we can show, for every
hypothesis and posterior scheme, strong merger of the completed agent function, from which
weak merger of the agent follows.�is leads us, �nally, to our proposal of a forward-looking
open-minded Bayesian.�e general threat to truth-convergence lies in the possibility of an
endless stream of over�tting hypotheses: our forward-looking proposal meets this threat by
neutralizing the role of old evidence. In an initial proto-version this is achieved by a constraint
on the posteriors assigned to new hypotheses; in the �nal version this is achieved by combining a
constraint on new hypotheses’ priors (instantiating the idea of the catch-all) with the stipulation
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that new hypotheses’ likelihoods on old evidence are equal to the agent’s own past probability
assignment.

We should emphasize that Wenmackers and Romeijn in their paper (and we in this paper)
are concerned with the question of how to incorporate externally proposed new hypotheses:
their proposals are attempts to make this aspect part of a Bayesian logic of inductive inference.
�ey are in their paper (and we are here) not concerned with when new hypotheses should
be taken into consideration, let alone with how new hypotheses are conceived. To paraphrase
Lindley (����, p. ���) paraphrasing de Finetti: if you have your statistical model, reasoning
is mere calculation, but constructing your model actually requires thinking. We are here only
concerned with the former, but presume, withWenmackers and Romeijn, that the scope of mere
calculation may be slightly extended, to the procedure of incorporating given new hypotheses
into your model.

�.� �e open-minded Bayesians
In this section, we �rst set out the presupposed formal framework (sect. �.�.�), and then discuss
the standard Bayesian (sect. �.�.�), the vocal open-minded Bayesian (sect. �.�.�), the silent
open-minded Bayesian (sect. �.�.�) as well as its retroactive variant (sect. �.�.�), and �nally the
hybrid open-minded Bayesian (sect. �.�.�).

�.�.� Formal framework: outcomes and hypotheses
In the statistical set-up employed by Wenmackers and Romeijn,� the domain of a Bayesian
agent’s probability function is theCartesian productΩ×Θ of an outcome spaceΩ and a statistical
hypothesis space Θ.

�e outcome space

In all of the following, we assume the simple scenario of repeatedly sampling from two possible
elementary outcomes, � and �. Formally, the outcome space Ω is the space {�, �}ω of all in�nite
binary sequences Eω . It is convenient for our purposes to treat a probability measure over this
space as a function P over the �nite sequences, that satis�es P(���) = �, where��� is the empty
outcome sequence, and P(Et) = P(Et�) + P(Et�) for all �nite outcome sequences Et , where
EtE denotes outcome sequence Et of length t followed by elementary outcome E ∈ {�, �}.
Formally, the set of cones JEtK ∶= {Eω ∈ Ω ∶ Eω extends Et} for all �nite sequences Et generates
a σ-algebra F over Ω containing all the Borel sets, and an assignment P as above induces a
unique measure µ on (Ω,F) with µ(JEtK) = P(Et) for all �nite Et .

�e hypothesis space

We consider statistical hypotheses that are given by likelihood functions over the possible
outcomes. �at is, we take hypotheses H to be themselves probability measures over the

�For a recent alternative proposal for open-minded Bayesianism in a framework that does not explicitly deal with
statistical hypotheses, see Raidl (����).
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outcome space.

As a basic example, the i.i.d. or Bernoulli hypothesis Hθ with parameter θ ∈ [�, �] assigns each
length-t data sequence Et a probability Hθ(Et) = θ t� ⋅ (� − θ)t−t� with t� the number of �’s in
Et .�is induces one-step conditional probabilities Hθ(� � Et) = θ at each time point t, i.e., no
matter the past sequence Et .�us Hθ formalizes the data-generating process where the same
elementary outcome is always produced with the same probability; for instance, the process of
repeatedly tossing a coin (heads is �, tails is �) with bias θ.

Other hypotheses can express various dependencies of current probabilities on the structure of
the past data. At the extreme end are deterministic hypotheses, that at each point in time only
allow for one particular next outcome.�is corresponds to a function assigning probability � to
each initial segment of one particular in�nite outcome stream Eω .

Wewill assume that at any time there are only a �nite number of explicitly formulated hypothesis.
�ese N hypotheses H� , . . . ,HN−� are collected in a hypothesis set ΘN ∶= {Hi}i<N .

Belowwewill consider expanding sequences of hypotheses sets, for which the following notation
will be useful. Let N(t) denote the number of hypotheses formulated before time t, so that the
hypothesis formulated at time t (if it exists) is HN(t). We o�en write t� < t� < t� < . . . for the
time points at which new hypotheses are formulated. In that case we abbreviate Ni ∶= N(ti) =
N(t�)+ i, so thatHNi is the hypothesis formulated at ti andΘNi+� = {Hi}i≤Ni is the hypothesis
set right a�er the formulation of HNi . Note, again, that we do not make any assumptions on
the origin of the new hypotheses; all we suppose is that the inquiry prompts some (plausibly
data-dependent!) stream of incoming hypotheses. We will say more about this in our analysis
in sect. �.�.

Full probability functions frommarginal over ΘN

Choose some distribution over ΘN for an agent’s marginal probability function over the formu-
lated hypotheses. Since hypotheses are likelihood functions, we can de�ne the agent’s marginal
likelihood function over the outcomes, conditional on hypothesis Hi , by

P(E � Hi) ∶= Hi(E).

�en by the law of total probability we obtain the unconditional marginal likelihood over the
outcomes by

P(E) = �
i<N

P(Hi) ⋅Hi(E). (�.�)
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�us stipulating themarginal overΘN de�nes a probability function P over all ofΩ×ΘN .�

�.�.� �e standard Bayesian
A Bayesian agent starts with a set ΘN of N hypotheses, and a probability function P�, or prior,
over ΘN and hence over Ω ×ΘN .� When the agent receives a new outcome Et at time t > �, it
must update its probability function Pt−� to a new probability function or posterior Pt .

�e orthodox Bayesian way of updating on the evidence is by use of Bayes’s rule,

Pt(⋅) ∶= P�(⋅ � Et),

with Et the outcome sequence up to time t. In particular, for the agent’s predictive probabilities,
or its marginal probability function over �nite-length future outcomes,

Pt(Es) = P�(Es � Et) = P�(EtEs)
P�(Et)

.

Equivalently but more in line with the procedure in sect. �.�.�, the agent �rst updates the
marginal posterior over the hypotheses, again by Bayes’s rule and by Bayes’s theorem:

Pt(Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
P�(Et)

. (�.�)

�en, by the law of total probability on the conditional marginal likelihood,

Pt(Es) = P�(Es � Et) = �
i<N

P�(Hi � Et) ⋅Hi(Es � Et)

= �
i<N

Pt(Hi) ⋅Hi(Es � Et).

In summary, the standard Bayesian proceeds as follows.

(t = �) N hypotheses

At the start each explicitly formulated hypothesis Hi in ΘN receives a prior P�(Hi) > �,
such that∑i<N P�(Hi) = �.

�Our account of hypotheses is a slightly simpli�ed version of Wenmackers and Romeijn’s.�ey take as hypotheses
sets of probability functions, so that there is a di�erence between the “theoretical context” TN = {Hi}i<N , the set
of hypotheses, and ΘN = ∪i<NHi , the set of all probability functions that constitute the hypotheses. Furthermore,
an hypothesis’s likelihood is then only settled with the aid of a subprior over the hypothesis’s elements. While this
additional complexity arguably does more justice to the actual shape of hypotheses in scienti�c or statistical inference,
nothing in the following should hinge on the simpler formulation we have chosen to adopt. (Also note thatWenmackers
and Romeijn’s running example of the food inspection only �gures “elementary” hypotheses that are singleton sets, i.e.,
single probability functions as in our framework.)�at said, a natural further development of the current work would
allow for representing ‘hypotheses’ as models in the form of continuous distributions over parametric hypothesis
spaces, so at to be able to explicitly analyze, for instance, adding (continuously many) new parameters to an already
included model.

�We always assume that the prior for given hypothesis setΘN is regular, meaning that it assigns nonzero probability
to each element in ΘN .
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(t > �) Evidence Et

Updating on evidence at a later point in time proceeds by

Pt(Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
P�(Et)

.

(t > �)New hypothesis HN

An hypothesis formulated at a later point in time is not an element of the set ΘN of
hypotheses.�is hypothesis’s prior and posterior probability is and will always remain
�.

�.�.� �e vocal open-minded Bayesian

Wenmackers and Romeijn’s proposal of an open-minded Bayesianism starts with postulating,
alongside the set ΘN of explicitly formulated hypotheses, a catch-all hypothesis (����; an idea
presented in but preceding Shimony, ����, p. ��; e.g., Savage in a discussion edited by Barnard
and Cox, ����, p. ��).�is catch-all hypothesisΘN comprises all (yet) unformulated hypotheses;
Wenmackers and Romeijn explicitly de�ne it as the complement of ΘN within the class of all
possible hypotheses.

�eir vocal variant of open-minded Bayesianism (Wenmackers and Romeijn, ����, ����f, �����)
derives its name from the fact that the catch-all hypothesis comes with a symbolic prior and
likelihood function that �gures in all calculations.�is in contrast to the silent version (sect.
�.�.� below), where no such prior or likelihood is formulated.

Speci�cation

�us the vocal open-minded Bayesian starts with an hypothesis set ΘN of N explicitly for-
mulated hypotheses, and in addition a catch-all hypothesis ΘN . Each explicit hypothesis is
assigned a numerical prior probability, summing to �; and in addition the catch-all hypothesis is
assigned an “inde�nite” or “merely symbolic” prior τN .�e numerical probability assigned to an
H ∈ ΘN speci�es the prior probability value P�(H � ΘN), conditional on the hypothesis set; the
unconditional or absolute prior is given by the normalization P�(H) ∶= (� − τN) ⋅ P�(H � ΘN),
which is also inde�nite because it involves τN . While the catch-all thus receives an explicit yet in-
de�nite prior value P�(ΘN) = τN , the prior probability values P�(H′) of the (yet) unformulated
hypotheses H′ ∈ ΘN are le� fully unspeci�ed.

In addition to the inde�nite prior, the catch-all comes with a symbolic likelihood function
xN(⋅) ∶= P�(⋅ � ΘN).�us the unconditional marginal likelihood function, analogous to (�.�)
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but now not even conditional on ΘN , is given by the inde�nite term

P�(E) = �
i<N

P�(Hi) ⋅Hi(E) + τN ⋅ xN(E)

= (� − τN)�
i<N

P�(Hi � ΘN) ⋅Hi(E) + τN ⋅ xN(E).

�e calculation of an explicit hypothesis’s posterior on receiving evidence E proceeds by Bayes’s
rule and theorem in accordance with (�.�), but now also results in an inde�nite term because it
involves P�(E).

Finally and crucially, at each point in time the open-minded Bayesian may receive a newly
formulated hypothesis.�is new hypothesis, in terminology due to Earman (����, p. ���), is
shaved o� from the catch-all. Formally, the vocal agent extends its current hypothesis set ΘN
to the new set ΘN+� = ΘN ∪ {HN} to include the newly formulated hypothesis HN , leaving a
cleanly shaven catch-all ΘN+� = ΘN � {HN}. To specify the new hypothesis’s prior P�(HN)
the agent then chooses a prior probability value p that it takes from the prior τN , leaving the
inde�nite remainder τN+� ∶= τN − p for the new catch-allΘN+�. Writing xN+�(⋅) = P�(⋅ � ΘN+�)
for the new catch-all’s inde�nite likelihood function, expressions for the marginal likelihoods
and posteriors that explicitly contain HN can be calculated as above.

In summary, the vocal open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) > � conditional on ΘN ,
such that∑i<N P�(Hi � ΘN) = �. Moreover, the catch-all hypothesisΘN = Θ�ΘN receives
an inde�nite unconditional prior P�(ΘN) ∶= τN , and the unconditional priors of the
explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds in the standard fashion, although involving an inde�nite prior and
likelihood of the catch-all:

Pt (Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
∑N−�

j=� P�(Hj) ⋅Hj(Et) + τN ⋅ xN(Et)
.

(t > �)New hypothesis HN

When a new explicit hypothesis HN is formulated, extending the hypothesis set to ΘN+� =
ΘN ∪ {HN}, the prior τN of the earlier catch-all is decomposed into a value p < τN for
the prior P�(HN) of the new hypothesis and a remainder τN+� = τN − p for the prior
P�(ΘN+�) of the new catch-all.
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Discussion

�e obvious drawback of this proposal is the introduction of purely symbolic terms for the
priors and likelihoods of the catch-alls. Apart from the pain of doing actual calculations with
these terms, it is quite unclear how to understand them.

Wenmackers and Romeijn variously refer to these terms as “unknown,” “unde�ned,” “inde�nite,”
or “unspeci�ed.” But even if we grant that these terms can be considered unknown to the agent
(leaving aside worries about the notion, not just of an unknown probability, but of an unknown
epistemic probability), it seems to us that there is a di�erence between terms that are unknown
yet de�nite, and terms that are not. Only in the �rst case is there an actual matter to the fact of,
say, τN < c for a numerical constant c.�us it is only in the �rst case that it is clear that the
shaving o� from the catch-all actually imposes a limitation on how much prior the agent can
still assign to a newly formulated hypothesis.� In contrast, it is less clear whether an inde�nite
probability value allows for shaving o� any desired de�nite prior.�is might not be a problem
to Wenmackers and Romeijn; indeed this would �t their suggestion that the unconditional
probability of the catch-all’s complement is always in�nitesimally small (ibid., ����). However,
for our purposes it will prove to be important to impose such constraints on the agent, which is
why we will not further pursue the idea of inde�nite or in�nitesimal priors.

�.�.� �e silent open-minded Bayesian
�e motivation for the silent version of open-minded Bayesianism (Wenmackers and Romeijn,
����, ����f, ����f) is to evade the di�culties surrounding a symbolic assignment of prior and
likelihood to the catch-all. �is is achieved by doing away with this assignment altogether,
namely, by always only considering conditional probability evaluations, conditional on the
current hypothesis set.�e corresponding Bayesian agent is simply silent about the absolute
probability values.

Speci�cation

�e silent open-minded Bayesian starts out, as before, with an hypothesis set ΘN of explicitly
formulated hypotheses, assigning each H ∈ ΘN a conditional probability value P�(H � ΘN). As
opposed to the vocal Bayesian, there is no bookkeeping of the catch-all or the unconditional
prior P�.

Since all probability terms are conditional on the current hypothesis set, updating on evidence
proceeds fully conditional on ΘN . �at is, the term Pt(Hi � ΘN) is evaluated via the usual
Bayesian updating (�.�), conditional on ΘN .

If a new hypothesis HN is formulated, the silent open-minded Bayesian again extends its
current hypothesis set ΘN to the new set ΘN+� = ΘN ∪ {HN} to include the newly formulated
hypothesis HN . It then assigns the new hypothesis conditional on the new hypothesis set a

�For instance, Wenmackers and Romeijn (����, p. ����) mention the possibility of assigning a uniform prior to
a new hypothesis. If τN has an (unknown yet) de�nite value, then that would only be possible if this value is in fact
greater than �

N+� .
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posterior value of choice, i.e., a value for Pt(HN � ΘN+�).�e new posterior values of the earlier
hypotheses are calculated by renormalization, thus preserving the probability ratios.

In summary, the silent open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis in ΘN receives a prior P�(Hi � ΘN) conditional on the initial
hypothesis set.

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current context ΘN :

Pt(Hi � ΘN) ∶= P�(Hi � Et ,ΘN) =
P�(Hi � ΘN) ⋅Hi(Et)

P�(Et � ΘN)
.

(t > �)New hypothesis HN

When a new hypothesis HN is formulated, extending the hypothesis set to ΘN+� = ΘN ∪
{HN}, the posterior Pt(HN � ΘN+�) is set to a value p ∈ (�, �), and the posteriors of the
remaining explicit hypotheses conditional on the new hypothesis set are renormalized
by

Pt(Hi � ΘN+�) ∶= (� − p) ⋅ Pt(Hi � ΘN).

Discussion

In the silent versionWenmackers and Romeijn do awaywith the explicit monitoring of the catch-
all hypothesis by simply always “hiding behind the conditionalization stroke” (����, p. ����). As
they themselves point out, one might feel uneasy about thus still leaving unspeci�ed the agent’s
unconditional, absolute convictions. One might indeed feel that this threatens to su�ciently
compromise coherence that this is no Bayesian account anymore (cf. Glymour, ����, p. ����).
What is certainly lost, in moving to larger models, is the guarantee of dynamic coherence (see
sect. �.�.� below for more details).

However, it is surely more in line with statistical practice that probabilities are always evaluated
under the tentative assumption of a particular model, without any pledge to the truth of this
model. �e discussion by Sprenger (����) (also see Sprenger and Hartmann, ����, ch. ��,
Vassend, ����) is a recent example of several earlier expressions of this view in the Bayesian
literature (e.g., Lindley, ����, p. ���; ����), that tends to go together with a commitment to
coherence only for as long as the model does not change (see indeed Shimony, ����, ���f).
Perhaps most outspoken in this latter respect is Howson’s account of Bayesianism, “a theory of
valid inductive inference from pre-test to post-test distributions,” that o�ers the worry of an
“inconsistent assignment over time” a simple reply: “so what?” (����, p. ��).
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Moreover, Wenmackers and Romeijn stay far from the latter extreme: both versions of their
open-minded Bayesian are “conservative extensions” where the probabilities conditional on
an expanded model cohere with those conditional on the original model (����, ����f). Bayes’s
rule amounts to restricting the subalgebra on the outcome space (to the subtree of the outcome
space that extends the evidence) while preserving all probability ratios within; the rule for
incorporating new hypotheses enlarges the subalgebra on the hypothesis space (to the larger
hypothesis set) while likewise preserving all probability ratios within the original (ibid.).

We conclude that the silent version holds a conceptual advantage over the vocal version.�e
main formal di�erence, for our purposes, is that in the vocal version, a newhypothesis is assigned
a certain prior value that is constrained by the catch-all’s prior; whereas in the silent version, a
new hypothesis is assigned a posterior value, the choice of which is unconstrained.

Wenmackers and Romeijn indeed worry that “[t]he silent proposal allows too much freedom in
the assignment of a posterior to the new hypothesis—so much freedom, that it is not clear that
the old evidence has any impact” (ibid., ����).�is prompts them to propose a hybrid variant of
the vocal and the silent versions (sect. �.�.� below). Before we turn to this version, we will take
a quick look at a more direct tweak of the silent version that replaces the choice of posterior by
the choice of prior, so that the calculation of the former requires some “reconstructive work”
that does take old evidence into account (ibid., ����).

�.�.� �e silent open-minded Bayesian: retroactive variant
�us the alternative variant of the silent version is where we ‘retroactively’ assign a prior to a
new hypothesis, i.e., a value p� to P�(HN � ΘN+�). A�er renormalizing the priors of the other
hypotheses,

P�(Hi � ΘN+�) ∶= (� − p�) ⋅ P�(Hi � ΘN) (�.�)

for all H ∈ ΘN , we can with the help of Bayes’s rule (using the the new likelihood HN(Et)),
calculate Pt(HN � ΘN+�) from there.

Formally, however, it does not make a di�erence whether we choose a prior and then calculate
the posterior, or the other way around. (Provided, that is, that HN ’s likelihood on Et is positive,
or its posterior can only be �.) For any desired posterior pt for a new hypothesis, we can
uniquely reconstruct a prior p� that in combination with the new hypothesis’s likelihood, will
result at time t in that posterior. A�er all, there are, unlike in the vocal version, no constraints
on choosing a prior p�.

�.�.� �e hybrid open-minded Bayesian
�e vocal and the silent version are combined in the hybrid version (Wenmackers and Romeijn,
����, ����f) as follows.�e agent starts out, as in the vocal version, with an explicit yet symbolic
assignment to the catch-all hypothesis. During the normal learning process of updating on the
evidence, it stays in the “silent phase,” in which it evaluates all probabilities conditional on the
current hypothesis set. Only when a new hypothesis is formulated does it enter the “vocal phase,”
in which it, like in the vocal version, retroactively shaves o� a prior for the new hypothesis
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from the catch-all’s prior, a�er which it, like in the retroactive silent version, recalculates the
priors and posteriors (again conditional, but on the new hypothesis set) from there.

In summary, the hybrid open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) > � conditional on ΘN ,
such that∑i<N P�(Hi � ΘN) = �. Moreover, as in the vocal version, the catch-all hypothesis
ΘN = Θ�ΘN receives an unconditional prior P�(ΘN) ∶= τN , and the unconditional priors
of the explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds as in the silent version, conditional on the current context ΘN :

Pt(Hi � ΘN) ∶= P�(Hi � Et ,ΘN) =
P�(Hi � ΘN) ⋅Hi(Et)

P�(Et � ΘN)
.

(t > �)New hypothesis HN

When a new explicit hypothesis HN is formulated, extending the hypothesis set to ΘN+� =
ΘN ∪ {HN}, as in the vocal version the unconditional prior τN of the earlier catch-all is
decomposed into a value p < τN for the unconditional prior P�(HN) of the new hypothesis
and a remainder τN+� = τN − p for the unconditional prior P�(ΘN+�) of the new catch-all.
�e priors conditional on the new hypothesis set are obtained by renormalization,

P�(Hi � ΘN+�) = �� −
p

� − τN+�
� ⋅ P�(Hi � ΘN),

from which the conditional posteriors are obtained by the usual updating,

Pt(Hi � ΘN+�) ∶= P�(Hi � Et ,ΘN+�) =
P�(Hi � ΘN+�) ⋅Hi(Et)

P�(Et � ΘN+�)
.

�us the hybrid version combines the conceptually more pleasing conditional reasoning of
the silent version with the constraint on new priors introduced by the catch-all in the vocal
version.�is constraint proves important for our concern in this paper, the guarantee of truth-
merging.

�.� �e open-minded Bayesians’ truth-convergence
We start by introducing the formal property of convergence to the truth, as satis�ed by the
standard Bayesian (sect. �.�.�). A�er some preliminary remarks about the meaning and the
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promise of this property in the open-minded case (sect. �.�.�), we demonstrate and diagnose
its failure for the silent (sect. �.�.�) and the hybrid (sect. �.�.�) version.

�.�.� �e standard Bayesian
Suppose the standard, ‘closed-minded’ Bayesian starts with a hypothesis set that includes the
hypothesis H∗ that is actually true, meaning that the probabilities given by H∗ are the true
probabilities that govern the generation of the data. In that case, one can prove a strong statement
about the agent’s convergence to this truth. Namely, one can prove that, H∗-almost surely, the
total variational distance

sup
A∈F
�Pt(A) −H∗(A � Et)� (�.�)

between the agent’s probabilities and the H∗-probabilities on future events goes to � as t →∞.
�at is, with true probability � (as given by H∗), the agent’s probabilities conditional on the past
will convergence on all events’ true probabilities. We say that the agent strongly merges with the
truth.

De�nition �. For probability measures P and Q on (Ω,F), we say that P strongly merges with
Q if Q-a.s.

sup
A∈F
�P(A � Et) − Q(A � Et)� t→∞��→ �. (�.�)

A standard Bayesian’s strong merger with the truth follows directly from a fundamental result
due to Blackwell and Dubins.

�eorem � (Blackwell andDubins, ����). For probability measures P and Q on (Ω,F) such that
the latter is absolutely continuous with respect to the former, i.e., Q(A) > � implies P(A) > � for
all events A in the σ-algebra F on Ω, it holds that Q-a.s. P strongly merges with Q.

Namely, if the Bayesian agent’s hypothesis set contains H∗, meaning that its regular prior
probability P(H∗) > �, then, in terminology due to Kalai and Lehrer (����, p. ����), P holds
a grain of H∗, or P holds a grain of the truth. �at is to say, there is an a ∈ (�, �), namely
a = P(H∗), such that the marginal prior P on the outcome space equals a ⋅H∗ + (�− a) ⋅ P′, for
some probability measure P′. More precisely still, from the fact that P(H∗) > �, we have that P
dominates H∗, meaning that P(Et) ≥ a ⋅H∗(Et) for all �nite outcome sequences Et , but that
implies that also P(A) ≥ a ⋅ H∗(A) for all events A ∈ F generated from the �nite sequences.
But that means that H∗ is absolutely continuous with respect to P.

Corollary �. If P holds a grain of the truth H∗, then P strongly merges with H∗.

Strong merger is indeed a very strong notion, as it includes all tail events A, the occurrence of
which cannot be veri�ed in �nite time. A more down-to-earth notion of truth-convergence is
weak merger (Kalai and Lehrer, ����), that only concerns the special case of the next outcome.
�is is the notion we will be focusing on in this paper.



�.�. �e open-minded Bayesians’ truth-convergence ��

De�nition �. For probability measures P and Q on (Ω,F), we say that P weakly merges with
Q if Q-a.s.

sup
Et+�∈{�,�}

�Pt(Et+�) −H∗(Et+� � Et)� t→∞��→ �. (�.�)

In fact, weak merger of two probability measures is equivalent, for every d ∈ N, to merger
where the supremum ranges over all future outcomes of length up to d (ibid.). Nevertheless,
as we will explain in more detail in our analysis in sect. �.�, we will in this paper focus on the
case d = �. Moreover, as we will still explain too, despite the fact that this is already a su�cient
condition for strong merger, the notion of holding a grain of the truth will be central to our
analysis. When in the following we refer to “truth-convergence” without further quali�cation,
we mean weak merger as in de�nition �.�

�.�.� �e open-minded Bayesians
�e question we shall investigate is whether Wenmackers and Romeijn’s proposals can retain
this conception of convergence to the truth, whenever the true hypothesis H∗ is formulated.
More precisely, the question is whether we can show that, if H∗ is indeed formulated at some
time t�, the agent function Pt(⋅ � ΘN(t)), as t > t� goes to in�nity, weakly merges with H∗.�e
question is whether we can show that, a�er H∗ has been formulated,

sup
Et+�∈{�,�}

�Pt(Et+� � ΘN(t)) −H∗(Et+� � Et)� t→∞��→ � with H∗-probability �. (�.�)

One might already object here that we should rather consider merging of the unconditional
agent function Pt(⋅) = Pt(⋅ � ΘN(t) ∪ΘN(t)). For an adherent to the vocal variant, the agent’s
beliefs are constituted by a function over all hypotheses, including those in the catch-all, and
so, from this perspective, an agent’s truth-merging should be taken to mean merging of that
function. However, we already argued in favour of the conditional perspective of the silent
or hybrid version; and the question of convergence of a measure that is partly unspeci�ed
introduces problems of interpretation that look unsurmountable.

�is is not to say that the truth-merging of Pt(⋅ � ΘN(t)) is unproblematic in its interpretation.
Indeed, we will below be much concerned with meeting two challenges in squaring the semi-
formal expression (�.�) with our intuitive demand of truth-convergence. Semi-formal, because

��ere exist other notions of truth-convergence one could consider. Note, �rst of all, that the presupposition of a true
statistical hypothesis can be distinguished fromwhat is perhaps the more usual setting in philosophy, where truth-values
are attached to events or elements of the outcome space (Gaifman and Snir, ����; Earman, ����). Note, further, that
the notion of merging is concerned with learning the probabilities of future outcomes.�is can be distinguished from
learning the correct hypothesis (‘learning the parameter’ in a statistical model), which would correspond to the agent’s
posterior concentrating on the correct element in the hypothesis set. One reason why we do not consider this notion
here is that such posterior-concentration is rather trivially impossible unless we exclude the possibility of di�erent
hypotheses that nevertheless from some point on are ‘empirically equivalent’ in that they give the same predictive
probabilities (cf. Lehrer and Smorodinsky, ����, ���f). Finally, there are still less powerful notions of truth-merging,
including almost weak merging. See Lehrer and Smorodinsky (����), Leike (����, ch. �) for overviews of learning
notions and necessary and su�cient conditions.
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we are not yet clear, �rst of all, about the exact nature of the probability-� quali�cation. Second,
we are not yet fully clear, certainly not until the �rst is resolved, about the exact nature of the
agent measure that we seek merging for.

Nevertheless, the intuitive demand that (�.�) is supposed to capture is already su�ciently precise
to isolate a straightforward case in which truth-convergence is guaranteed (sect. �.�.�).�is
will then also already point us to the general case that might be problematic (sect. �.�.�). In fact,
this is already enough to show that this case is problematic: all the variants of open-minded
Bayesianism are not in general guaranteed to preserve truth-convergence (sects. �.�.�–�.�.�).
Only in the discussion leading up to our diagnosis of this failure and our proposal of a forward-
looking open-minded Bayesian, in sect. �.�, will we �nally face the aforementioned challenges
head-on.

Finitely many new hypotheses

�e answer to our question is a clear yes if we can be sure that, a�erH∗ is formulated, no further
new hypotheses will ever be formulated. For each of the di�erent versions of open-minded
Bayesianism, the agent with function Pt(⋅ � ΘN(t)) a�er formulation of H∗ can then be treated
as a standard Bayesian that starts its investigation at t with a �xed hypothesis set ΘN(t).�us,
as H∗ ∈ ΘN(t), the agent then holds a grain of the truth and we can simply apply corollary � to
Pt(⋅ � ΘN(t)) to indeed obtain not just weak but strongmerger with the truth from there.

�is observation easily extends to the more general case where we can be sure that a�er some
�nite point in time there will no longer be new hypotheses formulated. So suppose H∗ is
formulated at t� ≤ t, say in response to data Et� .�en, to put it graphically, from each of the
possible nodes Et in the outcome tree extending Et� , we can run corollary � on the �xed agent
function to obtain, with probability �, truth-merger from there; but that means we already have
the guarantee of truth-merger from here, at Et� . Hence, under the assumption that no more
hypotheses are formulated a�er some �nite time t, we have strong merger whenever the truth
H∗ is formulated.�is assumption can be reformulated as saying that, on any in�nite outcome
stream, only a �nite number of new hypotheses will ever be formulated.

Fact �. All open-minded Bayesians are guaranteed to strongly merge with the truth whenever
the truth is formulated, if there is a �nite bound on the number of new hypotheses that will be
formulated.

In�nitely many new hypotheses

�e previous assumption, in entailing that from some point on the open-minded Bayesian
reduces to a standard, �xed-minded, Bayesian, thereby also neutralizes a good part of the
distinctive interest of the former. It is, more importantly, an assumption that we do not generally
want to make: we certainly do not want to assume that, when the true hypothesis is formulated,
who or whatever is responsible for designing new hypotheses knows that it can stop now.

On the other hand, it also sounds unrealistic that in an actual scienti�c inquiry, certainly a�er
the true hypothesis has already been found, one would mindlessly keep incorporating newly
arriving hypotheses inde�nitely. One would presumably only look out for new hypotheses if
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the currently available ones do not seem to do: if there is some mis�t between the data and
the current hypotheses. Incorporating this element, possibly in the shape of a formal model
veri�cation procedure, would still not render the scenario of an unending stream of false
hypotheses insigni�cant: there is now a tension to be resolved between risking sticking to
suboptimal hypotheses and risking incorporating false ones.

Important as this element is, it is beyond the scope of the current paper. We are here �rst
concerned with the consistency requirement of truth-convergence in the most general case
where the agent might forever keep receiving new (and false) hypotheses, which it has to
incorporate irrespective of the past outcomes and current hypothesis set.

�is general case is potentially problematic because if the agent keeps having to distribute
some of its posterior to these new and false hypotheses (and so keeps having to incorporate
these in its predictions), this could get in the way of its converging on the true hypothesis’s
true predictive probabilities. In fact, this is problematic, for all the versions of open-minded
Bayesianism. We now �rst look at the silent variants (sect. �.�.�), where this shows very directly;
and then at the more interesting hybrid variant (sect. �.�.�).

�.�.� �e silent open-minded Bayesian

�is version is the least constrained of the open-minded Bayesianisms, which makes it most
straightforwardly fail to guarantee truth-convergence. We �rst show this for the standard
open-minded version of sect. �.�.�, and then for the retroactive variant of sect. �.�.�.

�e silent open-minded version: original variant

�e reason for the failure of truth-convergence is that we cannot exclude in�nite streams of
false hypotheses that keep occupying a speci�c share of the posterior probability and in this
way keep distorting the predictive probabilities.

Fact �. �e original variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example �.�. Consider the scenario where the data is generated by some Bernoulli distribution
Hθ∗ . Suppose for concreteness that θ∗ = ����, and that this correct hypothesis H∗ = Hθ∗
is indeed formulated at some stage t�. Now consider the possibility that in�nitely o�en (i.e.,
for each stage t′ > t� there is a still later stage t > t′ at which) a new hypothesis HN(t) is
formulated that issues a predictive probability HN(t)(� � Et) = �. Since there are no restrictions
on the posterior which the silent open-minded Bayesian can assign to these newly formulated
hypotheses, it can choose to keep assigning a value Pt(HN(t) � ΘN(t)+�) ≥ ���� + ε for positive
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ε. In that case there will be in�nitely many stages t at which the predictive probability

Pt(� � ΘN(t)+�) = �
H∈ΘN(t)+�

Pt(H � ΘN(t)+�) ⋅H(� � Et)

> � �
��
+ ε� ⋅HN(t)(� � Et)

= �
��
+ ε,

blocking convergence to the correct predictive probability H∗(� � ⋅) = ����. �

�is example can be adapted at will to show that for any trueH∗ there are hypothesis streams and
posterior assignments that block convergence.�e essential trait is that the newly formulated
hypotheses receive—keep receiving—too much posterior.�is leads us to an obvious diagnosis:
the silent open-minded Bayesian is allowed too much freedom in assigning posteriors to newly
formulated hypotheses.

�e silent open-minded version: retroactive variant

Following up on the previous diagnosis, one way in which it might seem we can constrain the
freedom of the open-minded Bayesian is to insist that the posterior must be informed by the old
evidence.�is is the retroactive variant of the silent open-minded Bayesian, sect. �.�.� above; but
as we explained there already, there is, barring the case where the new hypothesis’s likelihood is
�, actually no formal di�erence between the two versions.�at is, any choice of posterior can
be modeled as a retroactive choice of prior.�is means that any counterexample to the silent
open-minded version also yields a counterexample to the retroactive variant, including the
previous example �.�.

Fact �. �e retroactive variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example �.�. Recall from the reconstruction of p� from pt in sect. �.�.� that the exact calcu-
lations now do depend on the likelihoods of all hypotheses on the past data, something that
was not speci�ed in example �.�. �e most straightforward circumstance is where the new
hypothesis’s likelihood on Et actually equals the probability of Et on ΘN ,

HN(Et) = P�(Et � ΘN), (�.�)

in which case a prior assignment P�(HN � ΘN+�) ∶= p translates into a posterior Pt(HN �
ΘN+�) = p. In that case, a prior choice of p ≥ ���� + ε recovers the previous example. If the
new hypothesis’s likelihood on the past data is lower than P�(Et � ΘN), the prior must be set
higher to retrieve the same posterior. As an illustration, if HN(Et) = ��� ⋅ P�(Et � ΘN), then a
posterior pt > ���� requires a choice of prior p� > ���.

Arguably, however, the more plausible circumstance is for newly proposed hypotheses to have
higher likelihood than the earlier hypotheses. Plausibly, new hypotheses (formulated a�er we
have already seen the past data) rather over�t the data: in the most extreme case, actually have
a likelihood �. In that case, of course, the same posterior pt requires a smaller prior p�. To
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illustrate again, suppose indeed HN(Et) = �; then in general to obtain posterior pt we need to
set

p� =
P�(Et � ΘN)

P�(Et � ΘN) + �
pt
− �

. (�.�)

But if the data is actually generated by Hθ∗ with θ∗ = �.�, then P�(Et � ΘN), with high
probability, will not exceed Hθ∗ ’s likelihood on the past data Et , which for typical data is about
�.��.�t ⋅ �.��.�t . In that case, the same posterior only requires an exponentially smaller prior:
already for t = ��, for instance, it su�ces for posterior pt > ���� to set p� > �����. �

�e arguably most natural circumstance of new hypotheses that over�t is thus also the most
di�cult case for our purposes. An extremely modest choice of prior here already su�ces for a
substantial posterior, and the threat to truth-convergence is precisely such substantial posterior
assignments to new and false hypotheses.

One can defend the retroactive approach on the grounds that it accommodates how old evidence
con�rms new theories (Wenmackers and Romeijn, ����, ����f); or one can disown it on the
grounds that it involves a “double counting” of the old evidence, since the hypothesis and
presumably its prior was already formulated in response to the evidence (cf. Earman, ����, ���f).
We point out here that for the above reason of over�tting hypotheses, a retroactive procedure
appears more challenging for the aim of truth-convergence. Of course, in the silent version, this
cannot make an essential di�erence: both variants are formally equivalent, and the challenge
above is limited to a moderate choice of prior in the retroactive variant that does not correspond
to a moderate choice of posterior in the original variant. But our analysis below reveals that in
the hybrid case, the di�erence between prior and posterior assignments will be crucial for the
guarantee of truth-convergence.

�.�.� �e hybrid open-minded Bayesian
�e diagnosis from the previous sectionwas clear: the (retroactive) silent open-minded Bayesian
is allowed too much freedom in assigning posteriors (priors) to newly formulated hypotheses.
Given this diagnosis, one might expect the hybrid version to do better. A�er all, here there
is an explicit constraint on priors: there is only so much the agent can shave o� from the
catch-all!

Again, this is only so becausewe interpret the catch-all’s prior as at least having some determinate
value.�is does not quite exclude that this is “a number extremely close to unity,” but it does
exclude a conception where it is some indeterminate value arbitrarily close to �, perhaps made
precise as “unity minus an in�nitesimal” (Wenmackers and Romeijn, ����, p. ����). Perhaps
the latter is the more natural conception. When it comes to truth-convergence, however, this
renders the hybrid version on a par with the silent version: both put no constraints on the
choice of prior (posterior), wherefore convergence cannot be guaranteed.�

�Wenmackers and Romeijn (ibid.) evoke Earman’s worry that the procedure of shaving-o� from the catch-all “leads
to the assignment of ever smaller initial probabilities to successive waves of new theories until a point is reached where
the new theory has such a low initial probability as to stand not much of a �ghting chance” (����, p. ���). On our
analysis, the danger is rather that new theories keep amassing too much probability.
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We will for this reason proceed with supposing that the hybrid version is characterized by
putting de�nite constraints on the choices of priors. Speci�cally, we imagine that there is a
certain limited reservoir of prior probability, from which the probability for new hypotheses
must be taken.We can think of this constraint as simply that, a constraint; we are not committed
to understanding this constraint in terms of a catch-all. Nevertheless, we see it as a conceptual
plus that it can be understood in this way, and this carries over to our own proposal in sect.
�.�.

Failure of truth-convergence

Unfortunately, the constraint introduced in the hybrid version does not su�ce: we can even
produce a scenario where convergence to the true predictive probabilities is guaranteed to fail.
�is scenario again exploits the possibility of a stream of over�tting hypotheses, that despite the
constraint on new prior assignments still keep taking up too much posterior. More precisely, on
every possible outcome stream we can repeat the following: wait while all current probabilistic
hypotheses have lower and lower likelihood on the unfolding sequence of outcomes, until the
di�erence with the maximal likelihood of a new over�tting hypothesis is large enough for such
a new hypothesis to have a su�cient impact, despite its necessarily constrained prior, on the
agent’s predictive probabilities.

Proposition �. �e hybrid open-minded Bayesian is not guaranteed to weakly merge with the
truth whenever the truth is formulated.

Example �.�. Suppose that the true hypothesis is the Bernoulli H∗ = Hθ∗ with θ∗ = ���,
and that this hypothesis is indeed formulated at a point in time t�.�us H∗ is assigned some
unconditional prior value p∗ =∶ P�(H∗), leaving the catch-all ΘN�+� with some unconditional
prior τN�+� = τN� − p∗.

Consider a history with t� < t� < t� < . . . in�nitely many later points in time at which a new
hypothesis is formulated.�e vocal open-minded Bayesian is restricted by the prior held by
the catch-all in how much prior it can shave o� and assign to these new hypotheses; but it can
choose to assign each HNi an unconditional prior

P�(HNi ) = �−i ⋅ τN�+� , (�.��)

since∑∞i=� �−i ⋅ τN�+� = τN�+�.

Now consider such a history where the newly proposed hypotheses all maximally over�t the
past data at their time of formulation, i.e., HNi (Eti ) = � for each i, and then make some biased
prediction HNi (� � Eti ) = pi , with �pi − ���� > ε for some pre-set ε > �.

Suppose, further, that all hypotheses formulated before the true hypothesis, and all the new
hypotheses a�er their formulation, issue predictive probabilities that are bounded away from �:
there is some δ > � such that all predictive probabilities are smaller than � − δ (equivalently, all
predictive probabilities are greater than δ).�e idea is that, whatever the subsequent data, the
hypotheses in play will each point in time leak some of their likelihood, so that, when a new
over�tting hypotheses HNi comes in, a�er the stretch of time between ti−� and ti has been large
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enough, its relative likelihood is so large that its biased prediction will su�ciently distort the
overall predictive probability.

Speci�cally, �x some ε′ < ε, and let

r =
�
� + ε

′

�
� + ε

, (�.��)

which itself lies in the interval � �� , ��. Now if at each ti we have

Pti (HNi � ΘNi+�) > r, (�.��)

then we have for E with HNi (E � Eti ) > �
� + ε that

Pti (E � ΘNi+�) = �
H∈ΘNi+�

Pti (H � ΘNi+�) ⋅H(E � Eti )

> Pti (HNi � ΘNi+�) ⋅HNi (E � Eti )

>
�
� + ε

′

�
� + ε

⋅ � �
�
+ ε�

= �
�
+ ε′ ,

blocking convergence.

As worked out in appendix �.A.�, inequality (�.��) is guaranteed if each

ti − ti−� >
− log (� − r) − (− log r) + i − log τN�+�

− log(� − δ)
. (�.��)

To break (�.��) down a little, note that if ε is reasonably large, and ε′ chosen very small, then r
is relatively close to �/� and has a minor in�uence on the bound. For instance, if r < ���, which
would follow from ε > ��� and ε′ ≈ �, then − log (� − r) − (− log r) < �, so that (�.��) is already
implied by

ti − ti−� >
� + i − log τN�+�

− log(� − δ)
. (�.��)

Furthermore, we have δ = ��� and (�.��) reduces to

ti − ti−� > � + i − log τN�+� (�.��)

in the extreme casewhere all hypotheses exceptHNi a�er ti−� always give predictive probabilities
(���, ���). �

Discussion

�e failure of truth-convergence of the hybrid open-minded agent may strike one as surprising.
It is, a�er all, characteristic of the hybrid procedure that the true hypothesis, once formulated,
holds an explicitly assigned share p∗ > � of the absolute prior. As soon as the true hypothesis
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is formulated, the unconditional agent function P� holds a grain p∗ of this truth, no matter
what hypotheses with what priors are still added later.�is carries over to the retroactive prior
measures conditional on any hypothesis set a�er the truth is formulated: P�(H∗ � ΘN) ≥ p∗
for all hypothesis sets ΘN a�er the formulation of H∗. But does this not suggest that the
agent function holds a grain of the truth, and was this not already enough for strong truth-
merger?

A complete answer to what is wrong with this intuition requires us to make perfectly precise
the desideratum of an open-minded agent’s truth-convergence. We will here �rst brie�y make
the above intuition precise in a particular way, a way that is clearly faulty, but that allows us to
highlight the challenges we face in formalizing our desideratum of an open-minded agent’s
truth-convergence. In the next section we proceed to meet these challenges and formalize our
desideratum, to subsequently propose a version of an open-minded Bayesian that does satisfy a
version of truth-convergence.

�us let us for a moment consider the measure P�(⋅ � Θ∞), induced by the actually generated
hypotheses and prior assignments in the limit.�is measure must also hold a grain p∗ of the
truth. What, exactly, is unsatisfying about proclaiming truth-convergence of the open-minded
agent, from the fact that we can always derive, with corollary �, strong truth-merger of this
measure?

�e straightforward answer is that this formal almost-sure strong merger must be unsatisfying
because, as we already know from example �.�, it can go together with a guaranteed failure
of weak merger. But how can this be? Here it is important to note that, in example �.�, the
hypothesis stream emphatically depends on the actually generated data stream. While the agent
function P�(⋅ � Θ∞) induced by this particular data and hence hypotheses stream can be shown
to a.s. merge with H∗ (as it contains a grain of H∗), this is still consistent with it failing to merge
on the actual data stream that induced it. (�e latter is consistent with truth-merger, because,
in our example, any particular outcome stream that is actually generated is an H∗-probability-�
event.)

�is provides an illustration of the two challenges we already identi�ed in sect. �.�.�. First,
since we have an hypothesis stream as a moving part, we have to be very careful with the
interpretation of probability-� statements on the data space.�e agent function P�(⋅ � Θ∞) was
only put in place, so to speak, a�er already �xing the actually generated data stream, and the
a.s. merger only derived a�er that. In contrast, intuitively, the ‘almost sure’ should range over
the possible data and all that depends on it, including the possible hypotheses (hence possible
shapes of the agent function) that are formulated in response to it.�e challenge is to attain
a formal a.s. merger that is also still meaningful in this sense. �is is intertwined with the
second challenge, which is to make precise which agent function we actually seek merger for.
�e obvious diagnosis is that the functions P�(⋅ � Θ∞), having this “a�er the fact” quality of
being dependent on a particular data and hence hypothesis stream, and indeed of then having
available this hypothesis set from the start, are not what we are a�er.

We now proceed to look for an answer to these two challenges, towards reclaiming a property
of truth-convergence.
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�.� �e forward-looking Bayesians and their truth-
convergence

We further analyze the goal of truth-convergence, introducing the assumption of a scheme
for hypothesis and posterior generation and the notion of a completed agent measure (sect.
�.�.�). We then propose a forward-looking open-minded Bayesian, the competed agent measure
of which does retain a grain of the truth, from which weak merger follows. We �rst propose
a proto-variant of this version, which is a variant of the silent open-minded Bayesian with a
limited posterior reservoir (sect. �.�.�), before we introduce the �nal version, that is a variant
of the hybrid open-minded Bayesian with a restriction on new hypotheses’ likelihoods (sect.
�.�.�).

�.�.� Towards regaining truth-convergence
Fixing the hypothesis scheme

We start with the �rst challenge in drawing up the desired convergence statement: how should
we think about the ‘almost surely’? In the following, we suppose for simplicity of presentation
that the agent possesses the true hypothesis H∗ from the start, H∗ ∈ Θ�.�

We �rst observe that it is impossible to derive a statement of the following form.

(i) For every H∗, there is an H∗-measure-� class of in�nite output streams on which the
open-minded agent converges to H∗, independent of the stream of newly formulated
hypotheses.

Already in the case of the standard Bayesian agent, the H∗-measure-� class of output streams
on which the agent converges cannot generally be independent of the other elements in the
agent’s hypothesis class. Consider for the true H∗ again the Bernoulli-�/�measure: it is not hard
to see that for each possible in�nite outcome stream, there exist hypothesis sets that contain
H∗ yet are such that the agent does not converge on this outcome stream. As an extreme case,
the agent will not converge on outcome stream Eω if the hypothesis set contains an hypothesis
that assigns probability � to this exact sequence Eω : the agent will converge, not on the true
predictive probabilities ���, but on predictive probabilities � for the correct next outcomes.�is
example concerns the initial hypothesis set of a standard (or indeed open-minded) agent, but
easily transfers to the streams of newly formulated hypotheses given to any plausible version of
an open-minded agent.� �us a statement of form (i) is too strong.

�is leads us to the following statement, where we have shi�ed the quanti�ers to allow the exact
measure-� class to depend on the hypothesis stream.

�For the general case where the truth is formulated a�er some �nite time t, or more speci�cally, a�er some �nite
sequence Et , mentions of ‘an H∗-measure-� class of in�nite outcome streams’ should be replaced by ‘an H∗(⋅ � Et

)-
measure-� class of in�nite outcome streams extending Et ,’ and the ‘stream (scheme) of newly formulated hypotheses’
by the ‘stream (scheme) of newly formulated hypotheses a�er Et .’

�We only need to assume that the agent’s posteriors will indeed converge on the predictions of hypotheses that
perform perfectly, which is a minimal condition for a version that will in fact have the capacity to converge to the truth.
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(ii) For everyH∗, every hypothesis stream, there is anH∗-measure-� class of in�nite outcome
streams on which the open-minded agent converges to H∗.

In order to demonstrate a statement of the form (ii), we must prove, for any given hypothesis
stream, a.s. convergence on the presupposition of this stream. Formally, we conceive of ΘN(⋅)
as a function that maps each time t to an hypothesis set Θ. Of course, this function must
also return hypothesis sets that actually correspond to some possible open-minded agent. For
instance, for each t there can be at most one hypothesis in ΘN(t+�) �ΘN(t).

�ere is a clear sense, however, in which a statement of form (ii) is too weak.�e main challenge
for establishing truth-convergence is, recall example �.�, the possibility of over�tting hypotheses
in reaction to each possible outcome stream. In light of such scenarios, presupposing a particular
hypothesis stream, irrespective of the generated data, is obviously unsatisfying.

But we can just as well assume that the generation of hypotheses is given by a function that
links hypothesis sets, not simply to the possible points in time, but to all possible �nite outcome
sequences.�at is, we presuppose some data-dependent (what we shall call) scheme for generat-
ing hypotheses, or simply hypothesis scheme, that is a function Θ(⋅) that maps each �nite data
sequence Et to an hypothesis set ΘEt . Again, this function must also be constrained by the
open-minded agent’s speci�cation.

�is then leads us to aim for a convergence statement of the following form.

(iii) For everyH∗, every hypothesis scheme, there is anH∗-measure-� class of in�nite outcome
streams on which the open-minded agent converges to H∗.

Note that the assumption of a particular H∗ in conjunction with an hypothesis scheme comes
down to treating hypothesis streams as random quantities, as they are given by a function on
the outcome streams governed by probability measure H∗. One could take this further and
consider for the true measure more elaborate probabilistic models that also directly range over
the class of possible hypothesis streams. We do not go this way here: we stick here to a true
measure H∗ that is a function over outcome sequences only, and work towards a convergence
statement where theH∗ measure-� class can depend on the hypothesis scheme. Of course, there
is more to say about the conceptual status of a convergence statement of the form (iii), and we
will say a bit more below.

We �rst observe, however, that there is still something le� implicit in statement (iii).�is is the
agent’s actual choice of posteriors (or, depending on the version, retroactive choice of priors
resulting in posteriors) for the incoming hypotheses.

Fixing the posterior scheme

But given a particular hypothesis scheme, perhaps we could always derive convergence for a
particular H∗-measure-� class of outcome streams, that is independent of the exact (positive)
posterior values the agent chooses to assign to these incoming hypotheses?

Unfortunately, this is again not attainable in general. Again we indeed already have for the stand-
ard Bayesian agent that a di�erent choice of prior distribution over the exact same hypothesis
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set (more exactly, a di�erent regular prior distribution that assigns each element positive prob-
ability) can result in a di�erentH∗-measure-� class of outcome sequences on which it converges
to H∗. In fact, we can show that there are single hypotheses sets such that for every individual
stream we can tweak the priors in such a way that convergence fails on this stream.

Proposition �. �ere exist countable hypothesis sets Θ and hypotheses H∗ ∈ Θ such that for
every in�nite outcome stream Eω , there is a regular prior distribution P over Θ such that the
Bayesian agent P’s predictive probabilities do not converge to H∗ on Eω .

Proof. See Appendix �.A.�.

�is result pertains to the initial hypothesis set of a standard (or indeed open-minded) agent,
but the initial set is already part of an open-minded agent’s hypothesis scheme, and the result
could also again readily be modi�ed to pertain to the posterior assignments to a scheme’s newly
formulated hypotheses.�us the result implies that we must allow the measure-� class to also
depend on the posterior scheme, that speci�es what numerical posterior values are assigned to
each (incoming) hypothesis. Formally, the combination of the hypothesis and the posterior
scheme is now codi�ed in a function P(⋅) that maps each �nite data sequence Et to a posterior
distribution PEt over the hypothesis setΘEt . Again, this function must also return distributions
that actually correspond to some possible open-minded agent; that is to say, these distributions
must be consistent with the speci�cations of the version of the open-minded agent in question.
For instance, in case of the hybrid agent (sec. �.�.� above), the distribution PEt is the distribution
Pt(⋅ � ΘN) a�er having observed Et and with ΘN = ΘEt . By the speci�cation of the hybrid
agent, this distribution Pt(⋅ � ΘN) = P�(⋅ � Et ,ΘN) is derived from some prior distribution P�
over ΘN .�is latter distribution must cohere with the priors P�(⋅ � ΘN′) for earlier and later
hypothesis sets ΘN′ , which likewise constrain the distributions PEs(⋅) = Ps(⋅ � ΘN′) for Es that
extend or are extended by Et . Whenever we invoke hypothesis and posterior schemes in the
following, we implicitly limit our attention to schemes that actually correspond to open-minded
agents of the version we are then considering.�

�is then leads us, �nally, to aim for a convergence statement of the following form.

(iv) For every H∗, every hypothesis and posterior scheme, there is an H∗-measure-� class of
in�nite outcome streams on which the open-minded agent converges to H∗.

Having thus derived the formal structure of the strongest convergence statement we can hope
for, let us expand a little bit on its conceptual status. One possible interpretation is that this
statement corresponds to an assumption that prior to the inquiry, both the future hypotheses
and the posteriors that will be assigned to them are, albeit still dependent on the random data
and unknown the agent, already �xed.�ere is at least a super�cial tension between such an
interpretation and a crucial motivation for investigating open-minded agents, namely that

�Some care is required in deriving relations between the functions PEt (⋅ � ΘEt ) from the agent speci�cations,
which also involves matching the original notation for agent functions (“Pt(⋅ � ΘN)”) with the PEt (⋅ � ΘEt ). �e
former notation leaves implicit what exactly are the past data that have resulted in the posteriors and hypothesis sets,
which becomes especially risky when analyzing retroactive assignments (what future hypothesis set and posteriors is
P�(⋅ � ΘN) actually reconstrued from?).�is will mostly matter for the proofs to follow: see appendix �.A.� on notation
used there for details.
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hypotheses and their priors are not forever �xed in advance, and the agent has the freedom to
change its mind. How problematic this is, would then conceivably depend on one’s view on the
external process where the hypotheses and posteriors come from: is there some mechanical
procedure that delivers them, or is this rather some process of creative and fundamentally
unalgorithmic scienti�c discovery? On the other hand, we think it is actually not so clear that the
mathematical structure of (proving) a statement of form (iv), “�x arbitrary x, we now show. . . ,”
commits one to a conceptual view of the kind, “assuming that x is �xed in advance, we have
that. . . ,” let alone what it exactly means for an hypothesis scheme to be (unknown to the agent
but) determined in advance.�ese are philosophically murky waters, and we will here limit
ourselves to noting that mathematically, this is the best we can aim for. Indeed, if already for
the standard Bayesian agent the precise measure-� class must depend on the other hypotheses
and exact priors, it is only natural to aim for the analogous statement for the open-minded
agent—in general.�is does not exclude the possibility of deriving statements of form (i) with
certain restrictions on the possible hypotheses, say a restriction of e�ective computability. But
this lies out of the scope of the current paper.

With this conceptual provision, we are now clear on the nature of the ‘a.s.’ quali�cation. In fact,
we have also already touched on the second challenge: what, exactly, is the agent function that
we seek convergence for? We will now make this precise.

�e completed agent measure

Given an hypothesis and a posterior scheme, an open-minded Bayesian’s probability assign-
ments a�er each possible �nite outcome sequence are fully determined. For all �nite Et , the
agent’s assignment to any event A is �xed and given by

PEt(A) = PEt(A � ΘEt). (�.��)

�e corresponding convergence statement of form (iii), for strong merger, is that for each
hypothesis and posterior scheme, we have for an H∗-measure-� class of in�nite outcome
sequences that

sup
A∈F
�PEt(A) −H∗(A � Et)� t→∞��→ �. (�.��)

Here we still adhered to the simplifying assumption made at the beginning of sect. �.�.�, that
the truth H∗ is contained in the initial hypothesis class.�e general case is covered by adding
the formulation of H∗ on the outcome stream as an condition for the convergence.�at is, for
an H∗-measure-� class of in�nite outcome sequences,

H∗ is formulated�⇒ sup
A∈F
�PEt(A) −H∗(A � Et)� t→∞��→ �. (�.��)

For weakmerger, this comes down to

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �. (�.��)
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A circumstance that makes convergence of the terms (�.��) hard to analyze is that, even under
the assumption of a given hypothesis and posterior scheme, they may not correspond to a single
probability measure. �at is to say, the assignments PEt(⋅) cannot in general be reconstrued
as the conditional probabilities of a particular measure: there need not be a single measure P
such that P(⋅ � Et) = PEt(⋅) for each Et .�is stems from the fact that an open-minded agent’s
assignments can be dynamically incoherent, in the sense that for �nite sequences Et� , Et� , the
second extending the �rst,

PEt� (A � Et�) ≠ PEt� (A). (�.��)

In words, the agent’s assignment to event A at time t�, conditional on the extended outcome
sequence Et� , may not equal the agent’s assignment to A at time t�, a�er having in fact seen
Et� . To make this slightly more concrete, consider again the hybrid open-minded agent. From
its speci�cation, there is some prior distribution P� such that PEt� (A � Et�) = P�(A � Et� ,ΘEt� )
and PEt� (A) = P�(A � Et� ,ΘEt� ). But there is no reason why the terms P�(A � ΘEt� ) and
P�(A � ΘEt� ), conditional on di�erent hypotheses, should be equal.

Nevertheless, the agent’s one-step predictive probabilities, given a particular hypothesis and pos-
terior scheme, do induce a coherent set of probability assignments.�e predictive probabilities
PEt(Et+�) induce a probability assignment P∞ on all �nite evidence sequences, by

P∞(Et) ∶=
t−�
�
i=�

PEi (Ei+�), (�.��)

and this induces a measure on all outcome streams. We will call this measure P∞ the completed
agent measure.

If we are able to show that, for any given hypothesis and posterior scheme, this measure
retains a grain of the truth H∗, then a statement of form (iii), for strong merger, follows from
corollary �.�at is, for any given hypothesis and posterior scheme, we can conclude that for an
H∗-measure-� class of outcome streams,

H∗ is formulated�⇒ sup
A∈F
�P∞(A � Et) −H∗(A � Et)� t→∞��→ �. (�.��)

However, this statement concerns the completed agent measure P∞, and not the open-minded
agent’s actual assignments at each time, given by (�.��).�ese assignments P∞(A � Et) and
PEt(A)may not coincide.�e potential disagreement lies in the fact that P∞(A � Et) is already
in�uenced by what future hypotheses, formulated a�er Et but before A, say about A; whereas
PEt(A) only depends on the hypothesis set ΘEt .

Still, we do have by de�nition that these functions coincide on the one-step predictive probabilit-
ies. We have that P∞(Et+� � Et) = PEt(Et+�) for each outcome sequence Et and single outcome
Et+�, so that convergence statement (�.��) does imply convergence statement (�.��).��

��In fact, for any t, measures P∞(⋅ � Et
) and PEt coincide up to the smallest time ahead at which a new hypothesis

will be formulated; though this only implies weak convergence of the latter for d > � if this time horizon will eventually
always be at least d.
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�us, if we can show, for any given hypothesis and posterior scheme, that the open-minded
agent’s completed agent measure holds a grain of the truth, then we can derive a convergence
statement of form (iii) for weakmerger of the agent functions. Consequently, in the following,
we will work towards ensuring this property, that the completed agent measure holds a grain of
the truth, whenever the truth is formulated.

�e failure of holding a truth-grain

Consider again the hybrid open-minded agent. Connecting back to the discussion of sect. �.�.�,
it might seem that the completed agent measure should hold a grain of the truth as soon as
for every single Et , the retroactive prior function P�(⋅ � ΘEt) holds at least a grain p∗ of H∗;
that is, whenever all these P�(⋅ � ΘEt) uniformly retain at least the same grain of the truth.�is,
however, is not so.

�at this cannot be so is again already implied by example �.�.�is example in fact features
a (partially speci�ed) hypothesis and posterior scheme for over�tting hypothesis generation,
where every P�(⋅ � ΘEt) for t ≥ t∗ holds at least a grain p∗ of the truth. Yet we saw that the
agent (the completed agent measure) in that example fails to merge with H∗, which by the
contraposition of corollary � entails that the completed agent measure cannot hold a grain of
H∗.

Proposition �. For the hybrid open-minded Bayesian, there are hypothesis schemes with H∗ ∈
Θ� such that nevertheless the completed agent measure fails to hold a grain of the truth: there is
no a ∈ (�, �) with P∞(Et) ≥ a ⋅H∗(Et) for all Et .

Proof. Such a scheme is given by example �.�: see appendix �.A.� for details.

What, intuitively, explains this fact, that each P�(⋅ � ΘEt) can uniformly hold a grain of the
truth, yet P∞ does not?�e di�erence between each of the former functions and P∞ is that in
the latter, over�tting hypotheses are not represented in the predictive probabilities issued by
the agent until this hypothesis actually comes in. But by de�nition these over�tting hypotheses
have high likelihood (and thus issue high predictive probabilities) on these initial segments;
so taking them out will de�ate the agents’ predictive probabilities on these initial segments.
�e counterexample shows that this e�ect can be so strong that it destroys the grain of the
truth.

In our proposal of a forward-looking open-minded Bayesian, that we turn to now, we focus on
making sure that the completed agent measure does retain a grain of the truth, whenever the
truth is formulated, in order to derive a guarantee of truth-convergence.

�.�.� �e forward-looking open-minded Bayesian, proto-version
We �rst consider a version of an open-minded Bayesian, a proto-version of the forward-looking
open-minded Bayesian that we propose in sect. �.�.� below, that rests on the following simple
idea. Instead of a limited reservoir of probability for assigning priors to new hypotheses, the
agent has a limited reservoir of posterior mass to assign to new hypotheses.
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Speci�cation

�e forward-looking open-minded agent, in this proto-version, is like the silent open-minded
agent, in that we do not stipulate a catch-all or a limited absolute reservoir of prior probability.
However, we do stipulate a limited absolute reservoir of posterior probability: unlike the silent
open-minded Bayesian, that can assign any posterior to a new hypothesis, the agent must
shave o� a new posterior from this reservoir, thereby shrinking the reservoir for posterior
assignments to future new hypotheses. We assume that the starting reservoir holds a certain
real-valued mass d > � (we do not need to assume that this mass is bounded by �). In addition,
as a minimal restriction that facilitates the proof of truth-convergence, we assume that there is
a constant c < � such that agent is not allowed to assign a posterior greater than c to any single
new hypothesis.

In summary, the proto-version of the forward-looking open-minded Bayesian proceeds
as follows.

(t = �) N explicit hypotheses

As in the silent version, each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) >
� conditional on ΘN , such that ∑i<N P�(Hi � ΘN) = �. In addition, there is assumed
a reservoir τN = d > � of posterior probability, and a maximal one-time probability
c < �.

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current hypothesis set ΘN .

(t > �)New hypothesis HN

As in the silent version, when a new hypothesisHN is formulated, extending the hypothesis
set to ΘN+� = ΘN ∪ {HN}, the posterior Pt(HN � ΘN+�) is directly set to a value pN ; but
now this value pN ≤ c must be obtained from decomposing the posterior reservoir τN into
pN and a remainder τN+� = τN − pN that is the new posterior reservoir.

Veri�cation

�e forward-looking open-minded Bayesian’s constraints in attributing posterior mass to
newly formulated hypotheses rules out a scenario like example �.�, where constrained prior
assignments still lead to high posterior values. As a matter of fact, the restriction on posterior
values results in a completed agent measure that does retain a grain of the truth, whenever it is
proposed.

�eorem �. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, the completed agent measure conditional on any Et with H∗ ∈ ΘEt

holds a grain of H∗.
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Proof. See appendix �.A.�.

Corollary �. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, we have that H∗-a.s.

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �.

Discussion

As mentioned, this proto-version of a forward-looking Bayesian is a constrained version of the
silent open-minded Bayesian. More precisely, it is a constrained version, not of the retroactive,
but of the standard variant of the silent Bayesian.�e posteriors of new hypotheses are chosen
directly; and however this is done (within the constraint of the posterior reservoir), it is not
required to be (not part of the agent’s speci�cation to be) an explicit calculation of the posterior
from a chosen prior and the hypothesis’s likelihood on the past outcome sequence.

Again, the choice of posterior can always proceed like this: formally, any choice of posterior
corresponds, via the likelihood on the past data, to a choice of prior. But the constraint on the
posteriors does not translate into a simple constraint on the priors, depending as it does on the
contingent fact of the actually formulated hypotheses’ likelihoods, and so a retroactive variant
of the forward-looking Bayesian does not appear a natural option—as, of course, its name is
intended to suggest.

�at said, the idea of an absolute reservoir of posterior probability is not a terribly natural
conception. Unlike the idea of an absolute reservoir of prior probability, it cannot be coupled
to a conception of a prior assignment to a catch-all hypothesis, from which new hypotheses
may be shaven o�. Perhaps the best way to understand this is simply as a pragmatic device, that
is easy to understand and does the job of regaining the guarantee of truth-convergence.

However, we think there is yet a conceptually more pleasing option, that is formally very similar
to the current version but that has a more natural interpretation. In fact, this version, our actual
forward-looking Bayesian, does regain the idea of shaving prior mass from a catch-all, while
still looking forward.

�.�.� �e forward-looking open-minded Bayesian
An alternative way of defusing the threat of extreme posteriors of incoming hypotheses is to
place restrictions, not directly on the posteriors, but on the likelihoods of new hypotheses. Our
proposal is to introduce the stipulation that new hypotheses have some default likelihood on
past outcomes.

We will focus on an idea that we borrowed from the theory of competitive online learning��, and
that has important technical and conceptual advantages.�is idea is to identify the likelihood of

��See Cesa-Bianchi and Lugosi, ���� for a general account of competitive online learning or prediction with expert
advice.�e idea that we refer to, �rst proposed, within the setting of specialists (Freund et al., ����), by Chernov and
Vovk (����), is known as the specialist or abstention trick; also see Koolen, Adamskiy and Warmuth, ����; Mourtada
and Maillard, ����. An instance of this idea also appears in Romeijn (����, p. ���).
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new hypotheses on past data with the agent’s probability assignment to this data, induced from
its past predictive probabilities.�at is, a new hypothesis HN ’s likelihood HN(Et) on the data
sequence Et generated by its time t of formulation is set equal to the product∏t−�

s=� P�(Es+� �
Es ,ΘN(s)) of predictive probabilities. Note that this is precisely the completed agent measure’s
assignment P∞(Et).

�is is a natural way of modeling that a new hypothesis is only evaluated a�er its formulation; or
that with respect to this new hypotheses, the old evidence does not count.�e new hypotheses
is, to put it di�erently, at its time of formulation treated in a neutral fashion, in that it is supposed
to have had the same predictive success on the past data as the agent itself.�is also translates
in this new hypothesis having, for any chosen prior P�(HN � ΘN+�), at its time of formulation
t a posterior P�(HN � Et ,ΘN+�) that simply equals the prior.

Moreover, this allows us to recover the picture of a catch-all, or more precisely, the �xed well
of prior probability from which the agent must draw in its assignment to (new) hypotheses.
In combination with the restriction on prior assignments that this entails, this version of a
forward-looking Bayesian indeed regains truth-convergence.

Speci�cation

�e forward-looking open-minded Bayesian, in its current version, proceeds exactly as the
hybrid-open minded Bayesian, except for the crucial stipulation that each new hypothesis Ni
formulated at time ti satis�es

HNi (Et) ∶= P∞(Et) for all t ≤ ti . (�.��)

In summary, the forward-looking open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

As in the hybrid version, each explicit hypothesis Hi in ΘN receives a prior P�(Hi �
ΘN) > � conditional onΘN , such that∑i<N P�(Hi � ΘN) = �; and the catch-all hypothesis
ΘN = Θ �ΘN receives an unconditional prior P�(ΘN) ∶= τN , so that the unconditional
priors of the explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current hypothesis set ΘN .

(t > �)New hypothesis HN

As in the hybrid version, when a new explicit hypothesis HN is formulated, extending the
hypothesis set to ΘN+� = ΘN ∪ {HN}, the unconditional prior τN of the earlier catch-all is
decomposed into a value p < τN for the unconditional prior P�(HN) of the new hypothesis
and a remainder τN+� = τN − p for the unconditional prior P�(ΘN+�) of the new catch-all.
�e priors conditional on the new hypothesis set are obtained by renormalization, from
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which the conditional posteriors are obtained by the usual updating on their likelihoods,
where the new hypothesis’s likelihood HN(Et) is stipulated to equal P∞(Et).

Veri�cation

Although they di�er in their interpretation and also slightly in the precise shape of the con-
straints they impose, the forward-looking Bayesian and its proto-version share the formal
property of a constraint on new posterior assignments. In appendix �.A.� we give a general
proof that for both types of constraints shows that a completed agent measure will hold a grain
of the truth, whenever it is formulated, from which weak merger of the agent follows.��

�eorem �. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, the completed agent measure conditional on any Et with H∗ ∈ ΘEt holds a grain of H∗.

Proof. See appendix �.A.�.

Corollary �. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, we have that H∗-a.s.

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �.

Beyond weak merger

Corollary � states, for the forward-looking agent, and as a consequence of the strong truth-
merger of the completed agent measure, the weak truth-merger (with d = �) of the agent
measures PEt . �e obvious further question is whether we also have strong merger, or at
least weak merger for any �nite d, for the agent measures PEt . We conjecture that already
strong merger does hold, but unfortunately we have no proof, and must leave this as an open

��An alternative proof proceeds by deriving from the abstention stipulation (�.��) that the forward-looking agent’s
probability P∞(Et

)must coincide with the retroactive prior probability P�(Et
� ΘNi ) for every ΘNi with ti+� > t.

�e additional stipulation of a �xed amount of prior mass guarantees again that these P�(Et
� ΘNi ) indeed uniformly

retain a grain of the truth, so that truth-merger follows. Recall from sect. �.�.� that the hybrid open-minded Bayesian’s
completed agent measure can fail to retain a grain of the truth even if every P�(⋅ � ΘNi ) for i ≥ i∗ uniformly does so:
stipulation (�.��) thus rules out this possibility.
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question.��

�.� Conclusion
We investigated the failure of truth-convergence for Wenmackers and Romeijn’s versions of
open-minded Bayesianism, and, towards reclaiming this property, proposed a forward-looking
open-minded Bayesian.�e general threat to convergence to the truth is the possibility of new
and false hypotheses that keep receiving too much posterior: either by direct assignment or by
retroactive calculation from a high likelihood on the past evidence.�e proto-version and the
�nal version of our forward-looking Bayesian implement the two respective ways of meeting
this threat: by restricting the posteriors, or by restricting the priors and likelihoods.

We think that the �nal version of our forward-looking agent, which is based on an idea from the
theory of competitive online learning, indeed provides an elegant account of how a Bayesian
agent should deal with newly formulated hypotheses.�e idea of identifying a new hypothesis’s
likelihood with the agent’s probability assignment on the past data is a graceful way of neut-
ralizing the impact of old evidence. Moreover, this idea has the pleasant consequence that the
stipulation of a limited reservoir of prior probability (with the associated interpretation of a
catch-all hypothesis) is su�cient to guarantee truth-convergence. Unlike the proto-version,
that we ourselves feel is mainly a technical device geared towards the aim of truth-convergence,
we think the �nal version makes intuitive sense quite independent of this aim.

�ere are a number of avenues for further investigation. Firstly, we proved, more precisely, the
forward-looking agent’s weak truth-merger, or convergence to the true one-step predictive
probabilities. We leave as an open question whether this may be extended to an arbitrary
�nite-length horizon, or even to strong merger, that includes all tail events. Secondly, a possible
lingering doubt is that in our convergence statement the measure-� class of sequences is depend-
ent on the hypothesis and posterior scheme.�is at least suggests an interpretation where the
latter quantities are somehow �xed prior to the inquiry, which, one might feel, does not sit well
with the original motivation for investigating an open-minded agent. Whether or not this is so,
we showed that in general we cannot avoid this dependence, as an analogue in fact already holds
in the case of the standard Bayesian. Nevertheless, it might be avoided as further re�nements
are added to our proposal. Perhaps, �nally, the main peculiarity about our approach is that in
the course of an inquiry hypotheses are not (should not be) introduced haphazardly.�ere will

��For any in�nite Eω in the measure-� class of in�nite streams on which we, for given hypothesis and posterior
scheme, have strong merger with H∗ of the completed agent measure, it might seem that strong truth-merger of
the agent functions PEt (⋅ � ΘEt ) on this Eω should follow, too: as the posterior reservoir is used up the measures
P∞(⋅ � Et

) and PEt (⋅ � ΘEt ) can di�er less and less. However, on any individual Eω , it is possible that the posterior
reservoir is not fully used up: this allows for a counterexample, on this particular stream, where the same constant
posterior keeps being assigned to new hypotheses on side-branches of Eω to force a di�erence between P∞(⋅ � Et

)

and PEt (⋅ � ΘEt ). Now one could push further and consider the measure-� class that is the countable intersection of
the previous class and, for every length s, the measure-� class of streams on which every measure PEs (⋅ � Es

), from
that point treated as a standard Bayesian, strongly merges with H∗. But even for a stream Eω in this class, it is still
consistent that the agent measures Pt(⋅ � Et

) do not strongly merge with H∗ on this particular Eω ; at the same time,
such a scenario is now so bizarre that it does not seem feasible to turn it into an actual counterexample, for which
this must actually happen with positive probability.�is invites the hope for some (martingale) argument that such
scenarios must indeed have probability �.
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normally only arise a need for formulating a new hypothesis if somemis�t between the data and
the current model is observed, which may indeed be regulated via a formal model veri�cation
procedure.�is raises the question how (our version of) an open-minded Bayesian inductive
logic may be extended beyond just how to incorporate externally proposed hypotheses, to also
include when to accept such new hypotheses, and how this interacts with the guarantee of
truth-convergence.
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�.A Calculations and proofs

�.A.� Notation
We introduce additional notation for use in the appendices.

For sequences Et and Es we write Et � Es if Et is an initial segment of Et , and Et � Es if Et � Es

and Et ≠ Es . We write Et � Es if neither Et � Es nor Es � Et . For the concatenation of sequences
Et and Es we write Et+s = EtEs . For sequences Et � Es we write Et∶s for the sequence Es minus
its initial segment Et .

Recall that an hypothesis and posterior scheme are given by a function P(⋅) that for given
sequence Et returns a distribution PEt = PEt(⋅ � ΘEt) over hypothesis set ΘEt .�is induces the
distribution PEt(⋅) = ∑H∈ΘEt

PEt(H) ⋅H(⋅ � Et) over events in the outcome space.

�e conditional distributions PEt(⋅ � Θ) forΘ ⊆ ΘEt are clearlywell-de�ned.One can also derive
from the speci�cations of any of the open-minded versions we discussed that for Es � Et

PEs(⋅ � ΘEt) = PEt(⋅ � Et∶s ,ΘEt), (�.��)

a fact that we will rely on in the proofs of lemma � and corollary ��, in �.A.� below.

�e conditional distributions PEt(⋅ � Θ) forΘ ⊃ ΘEt are not well-de�ned, because the posteriors
of the elements in Θ �ΘEt are not de�ned. Nevertheless, for the purpose of analyzing an open-
minded agent’s procedure of retro-actively setting a prior (as in the proof of lemma � in �.A.�
below), it will be useful to agree on the following. For Es � Et , the probability PEt(H � ΘEs)
is the posterior probability of H ∈ ΘEs a�er Et , retroactively calculated from the posterior
probability PEs(H � ΘEs) a�er Es . More precisely, we can de�ne for all H ∈ ΘEs ,

PEt(H � Et∶s ,ΘEs) ∶= PEs(H � ΘEs), (�.��)

from which the function PEt(⋅ � ΘEs), by using the likelihoods of all H ∈ ΘEs on Et∶s , can
unambiguously be retrieved.

�.A.� Calculations for example �.�
We want to ensure (�.��), that is,

P�(HNi � ΘNi+�) ⋅HNi (Eti )
∑H∈ΘNi+� P�(H � ΘNi+�) ⋅H(Eti )

> r. (�.��)

Write q ∶= P�(HNi � ΘNi+�) for the conditional prior, that by (�.��) equals

P�(Hi)
� − τNi+�

= �−i ⋅ τN�+�

� − (� −∑i
j=� �− j) ⋅ τN�+�

= �−i ⋅ τN�+�

� − �−i ⋅ τN�+�
. (�.��)

Since HNi (Eti ) = �, (�.��) translates into

q > r ⋅
�
�
q + �

H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti )
�
�
, (�.��)
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that is,
� − r
r
⋅ q > �

H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti ). (�.��)

Now assuming that there is positive δ such that all other hypotheses’ predictive probabilities
are no more than � − δ for each possible outcome from ti−� up to ti , so that

�
H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti ) < (� − q) ⋅ (� − δ)t i−t i−� , (�.��)

it su�ces for (�.��) that
� − r
r
⋅ q
� − q

> (� − δ)t i−t i−� . (�.��)

Writing out

q
� − q

=
� �−i ⋅τN�+�
�−�−i ⋅τN�+� �

�� − �−i ⋅τN�+�
�−�−i ⋅τN�+� �

=
� �−i ⋅τN�+�
�−�−i ⋅τN�+� �

� �
�−�−i ⋅τN�+� �

= �−i ⋅ τN�+� , (�.��)

we thus require
� − r
r
⋅ �−i ⋅ τN�+� > (� − δ)

t i−t i−� , (�.��)

that is,

ti − ti−� >
− log (� − r) − (− log r) + i − log τN�+�

− log(� − δ)
. (�.��)

�.A.� Proof of proposition �
Let the truth H∗ ∈ Θ be Bernoulli-�/�, and put P(H∗) = ���. De�ne an in�nite series of
times t� , t� , t� , . . . by t� = �, ti+� = ti + i + �. For each time ti , let Eti

j be the j-th (� < j ≤ �t i )
outcome sequence of length ti . We will now de�ne a countable collection of hypothesesHi , j that
each over�t one particular sequence between two successive times ti−� and ti , and follow H∗
elsewhere. More precisely, we de�ne for each i, for each positive j ≤ �t i and the corresponding
j′ such that Eti−�

j′ � E
ti
j , the hypothesis Hi , j by

Hi , j(Es) =

�����������������

�−t i−� if Eti−�
j′ � E

s � Eti
j

� if Eti−�
j′ � E

s but Es � Eti
j

H∗(Es) ⋅ �t i−t i−� if Eti
j � E

s

H∗(Es) otherwise.

(�.��)

Given an in�nite outcome stream Eω . We can now assign positive prior to each of these
hypotheses as follows. Denote by (Eti

j )
C the sequence Eti

j with the very last outcome inverted,
� for � or vice versa. For each i, for each j ≤ �t i , let

P(Hi , j) =
�������

�−i−� if (Eti
j )

C � Eω

�−i−� ⋅ (�t i − �)−� otherwise.
(�.��)
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�is is a valid prior assignment because∑H∈Θ P(H) = �−� +∑i>�(�−i−�) = �.

Now we consider, on the stream Eω , for arbitrary i and the j such that Eti
j � E

ω , the error in
the agent’s predictive probability P(� � Eti−�

j ) a�er having observed all of Eti
j but the very last

outcome.�at is, we consider the distance

�P(� � Eti−�
j ) −H

∗(� � Eti−�
j )� . (�.��)

To this end, write Θ′ ∶= Θ � {Hi , j} and �rst consider the posterior ratio of P(Hi , j � Eti−�
j ),

write α, and P(Θ′ � Eti−�
j ) = � − α,

α
� − α

=
P(Hi , j � Eti−�

j )
P(Θ′ � Eti−�

j )
=

P(Hi , j) ⋅Hi , j(Eti−�
j )

P(Θ′) ⋅ P(Eti−�
j � Θ′)

. (�.��)

It follows from speci�cation (�.��) that all hypotheses in Θ′ assign true probability H∗(Eti−�
j )

to Eti−�
j , except for the over�tting hypotheses Hi′ , j′ for i′ ≤ i and j′ such that there is j′′ with

Eti′−�
j′′ � E

ti′
j′ , E

ω . But for each i′ < i, among these hypotheses Hi′ , j′ there is only one Hi′ ,k′ that
does not give probability � to Eti−�

j , and with assignment (�.��) each member of the majority
already holds at least as much prior as the single exception Hi′ ,k′ . Similarly, for i, it is, among
these Hi , j′ and apart from Hi , j , only the hypothesis Hi ,k for Eti

k � Eω that does not assign
probability � to Eti−�

j , and each other Hi , j′ already holds at least as much prior as Hi ,k . We thus
have that the likelihood of hypothesis set Θ′ satis�es

P(Eti−�
j � Θ′) = �

H∈Θ′
P(H � Θ′) ⋅H(Eti−�

j ) < H
∗(Eti−�

j ) = �
−t i+� , (�.��)

wherefore

α
� − α

> �−i−� ⋅ �−t i−�
(� − �−i−�) ⋅ �−t i+�

= �−i−�

(� − �−i−�) ⋅ �−(t i−t i−�)

= �−i−�

(� − �−i−�) ⋅ �−i−�

> �,

meaning that α > ���.

Finally, apart from Hi , j , it is only the hypothesis Hi ,k for Eti
k � Eω that is still included in

the posterior over Θ conditional on Eti−�
j (that did not assign probability � to Eti−�

j ) and
that gives a predictive probability Hi ,k(� � Eti−�

j ) di�erent from H∗(� � Eti−�
j ) = ���. Write

α′ ∶= P(Hi ,k � Eti−�
j ) for the posterior of Hi ,k , and abbreviate Θ i ; j ,k ∶= {Hi , j ,Hi ,k}. Since
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indeed Hi ,k(� � Eti−�
j ) = � −Hi , j(� � Eti−�

j ),

P(� � Eti−�
j ,Θ i ; j ,k) =

α
α + α′

⋅Hi , j(� � Eti−�
j ) +

α′

α + α′
⋅Hi ,k(� � Eti−�

j ) (�.��)

evaluates to either α
α+α′ = � −

α′
α+α′ or

α′
α+α′ . Using α

′ < ��� < α, it follows that

�P(� � Eti−�
j ,Θ i ; j ,k) −H∗(� � Eti−�

j )� = ��� −
α′

α + α′
. (�.��)

We can then rewrite (�.��) as

�(α + α′) ⋅ P(� � Eti−�
j ,Θ i ; j ,k) + (� − (α + α′)) ⋅H∗(� � Eti−�

j ) −H
∗(� � Eti−�

j )� , (�.��)

which simpli�es to

(α + α′) ⋅ �P(� � Eti−�
j ,Θ i ; j ,k) −H∗(� � Eti−�

j )� = (α + α
′) ⋅ ���� − α′

α + α′
�

= α + α′

�
− α′

> ��� − ��� ⋅ α′ .

But note that Hi , j and Hi ,k have the same likelihood Hi , j(Eti−�
j ) = Hi ,k(Eti−�

j ), so that by
assignment (�.��) the ratio

α
α′
=
P(Hi , j)
P(Hi ,k)

= �t i − �, (�.��)

which implies that α′ < (�t i − �)−� is arbitrarily small for large enough i.�at means that indeed
for any choice of ε > �, we have for in�nitely many i that

�P(� � Eti−�
j ) −H

∗(� � Eti−�
j )� > ��� − ε,

blocking convergence on the stream Eω . �

�.A.� Proof of proposition �
Consider example �.� with t� = �, ε′ > ���, and where a�er each ti all hypotheses HNj for j ≤ i
always give predictive probabilities (���, ���). Let the sequence of time points t� < t� < t� . . .
at which over�tting hypotheses are introduced satisfy (�.��), with prior assignments given by
(�.��).�is de�nes a hypothesis and posterior scheme, and thus induces a completed agent
measure.

Next, take an in�nite outcome stream Eω that is constructed as follows. For any i ≥ �, take for
the subsequence Eti+�∶t i+� any sequence of length ti+� − ti − �, and let Eti+� be the outcome with
Pti (Eti+� � ΘEti ) < ��� − ε′ = ��� (for E� take either � or �). Now the completed agent measure
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P∞ fails to hold a grain of H∗ on any such sequence Eω . Namely, for such a sequence Eω we
have by construction that for each t, with jmaximal such that t j < t, that

P∞(Et) < ��−��t− j ⋅ ��−�� j = �−t− j . (�.��)

But since �−t− j��−t = �− j goes to � as t hence j goes to in�nity, there is no positive a such that
P∞(Et) ≥ a ⋅H∗(Et) for all t. �

�.A.� Proof of theorems � and �

We show for both the forward-looking open-minded Bayesian agent and its proto-version that
for any hypothesis and posterior scheme, any �nite outcome sequence Et� , for any hypothesis
H ∈ ΘEt� , there is a constant a ∈ (�, �) such that for every outcome sequence Et � Et� it holds
that

P∞(Et� ∶t � Et�) ≥ a ⋅H(Et� ∶t � Et�). (�.��)

In words, for any outcome sequence Et� , the completed agent measure conditional on Et� holds
a positive grain of every hypothesis H in the hypothesis set ΘEt� . In particular, the completed
agent measure conditional on Et� holds a grain of the truth H∗, if H∗ is in ΘEt� .

Our proof consists of two main steps. First, we show that for any open-minded agent the
completed agent measure conditional on Et� dominates the agent function PEt� with a factor
that involves the posteriors assigned to new hypotheses (lemma � and corollary ��). Second,
we show for (the proto-version of) the forward-looking open-minded Bayesian that this latter
factor is indeed at least a positive constant (lemma � and �, respectively).

In all of the following statements we quantify over all Et� and Et � Et� , and in the accompanying
proofs we start by presupposing any such two sequences.�is allows for the following simpli�ed
notation, that unambiguously pertains to a particular instantiated Et and initial segment Et� .
We abbreviate Ps ∶= PEs and Θs ∶= ΘEs for all Es � Et . Moreover, we always let i ≥ � denote
the number of new hypotheses that are formulated along the sequence Et�+�∶t , and we write
p j ∶= Pt j(HEt j � Θt j) for the conditional posterior assigned to the j-th ( j ≤ i) such hypothesis
HEt j ∈ Θt j �Θt j−� , incoming at time t j .

Lemma �. For an open-minded agent, we have that for any hypothesis and posterior scheme, for
every Et� , every Et � Et� , every � ≤ j ≤ i,

Pt j(Et j ∶t � Θt j) ≥
∏ j−�

k=�(� − pk+�) ⋅ Pt�(E
t� ∶t � Θt�)

∏ j−�
k=� Ptk(Etk ∶tk+� � Θtk)

. (�.��)

Proof. We proceed by induction.�e base case, j = �, follows trivially from empty products.
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Next, assuming as induction hypothesis that (�.��) holds for given j < i, we derive for j + � that

Pt j+�(Et j+� ∶t � Θt j+�) = �
H∈Θ t j+�

Pt j+�(H � Θt j+�) ⋅H(Et j+� ∶t � Et j+�)

≥ (� − p j+�) �
H∈Θ t j

Pt j(H � Et j ∶t j+� ,Θt j) ⋅H(Et j+� ∶t � Et j+�)

= (� − p j+�) �
H∈Θ t j

Pt j(H � Θt j) ⋅H(Et j ∶t j+� � Et j)
Pt j(Et j ∶t j+� � Θt j)

⋅H(Et j+� ∶t � Et j+�)

= (� − p j+�) ⋅
∑H∈Θ t j

Pt j(H � Θt j) ⋅H(Et j ∶t � Et j)

Pt j(Et j ∶t j+� � Θt j)

=
(� − p j+�) ⋅ Pt j(Et j ∶t � Θt j)

Pt j(Et j ∶t j+� � Θt j)

≥
(� − p j+�) ⋅ ∏ j−�

k=�(� − pk+�) ⋅ Pt�(E
t� ∶t � Θt�)

Pt j(Et j ∶t j+� � Θt j) ⋅ ∏
j−�
k=� Ptk(Etk ∶tk+� � Θtk)

= ∏
j
k=�(� − pk+�) ⋅ Pt�(E

t� ∶t � Θt�)

∏ j
k=� Ptk(Etk ∶tk+� � Θtk)

.

Corollary ��. For an open-minded agent, we have that for any hypothesis and posterior scheme,
for every Et� , every Et � Et� ,

P∞(Et� ∶t � Et�) ≥
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et� ∶t � Θt�). (�.��)

Proof. We write out

P∞(Et� ∶t � Et�) =
t−�
�
s=t�

Ps(Es+� � Θs)

=
�
�

i−�
�
j=�

t j+�−�
�
s=t j

Ps(Es+� � Θs)
�
�

t−�
�
s=t i

Ps(Es+� � Θt i )

=
�
�

i−�
�
j=�

Pt j(Et j ∶t j+� � Θt j)
�
�
⋅ Pti (Eti ∶t � Θt i ),
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where the latter equality follows from the fact that for each j and t j ≤ t′j < t j+� we have

t′j
�
s=t j

Ps(Es+� � Θs) =
t′j
�
s=t j

Pt j(Es+� � Et j ∶s ,Θt j)

=
t′j
�
s=t j

Pt j(Et j ∶s+� � Θt j)
Pt j(Et j ∶s � Θt j)

=
Pt j(Et j ∶t j+� � Θt j)
Pt j(Et j ∶t j � Θt j)

= Pt j(Et j ∶t j+� � Θt j).

But applying lemma (�.��) for i = j then yields

P∞(Et � Et�) ≥
�
�

i−�
�
j=�

Pt j(Et j ∶t j+� � Θt j)
�
�
⋅
∏i−�

j=�(� − p j+�) ⋅ Pt�(Et � Θt�)
∏i−�

j=� Pt j(Et j+� � Θt j)

=
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et � Θt�).

Lemma �. For the proto-version of the forward-looking open-minded agent, we have that for
every hypothesis and posterior scheme, there is a constant b ∈ (�, �) such that for every Et� , every
Et � Et� ,

i
�
j=�
(� − p j) ≥ b. (�.��)

Proof. We have by speci�cation that � < p j ≤ c for each j and a positive constant c < �, and that
∑i

j=� p j ≤ d for some positive constant d. Using the standard inequality x−�
x ≤ ln x for x > �,

this allows us to derive

− ln
i
�
j=�
(� − p j) =

i
�
j=�
− ln(� − p j)

≤
i
�
j=�

p j

� − p j

≤ �
� − c

i
�
j=�

p j

≤ d
� − c

,

where the second inequality follows from the fact that � − c ≤ � − p j for all j.�us we have

i
�
j=�
(� − p j) ≥ exp�−

d
� − c
� , (�.��)
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yielding the desired statement with constant b = exp �− d
�−c � independent of E

t .

Lemma �. For the forward-looking open-minded agent, we have that for every hypothesis and
posterior scheme, there is a constant b ∈ (�, �) such that for every Et� , every Et � Et� ,

i
�
j=�
(� − p j) ≥ b. (�.��)

Proof. By speci�cation, and in particular the abstention trick (�.��), for each j the posterior
p j = Pt j(Ht j � Θt j) conditional on Θt j equals the prior P�(Ht j � Θt j) conditional on Θt j . But
the latter is calculated from a choice of absolute prior, denoted p′j , by

p j =
p′j

� − τ j
=
τ j−� − τ j
� − τ j

, (�.��)

where τ j is the probability of the catch-all a�er formulation of Ht j . We thus have

i
�
j=�
�� − p j� =

i
�
j=�
�� −

τ j−� − τ j
� − τ j

�

=
i
�
j=�
�
� − τ j−�
� − τ j

�

= � − τ�
� − τ i
≥ � − τ� ,

yielding the desired statement with constant b = � − τ� independent of Et .

Finally, combining the previous results, we obtain that for the (proto-version of) the forward-
looking open-minded Bayesian, for any hypothesis and posterior scheme, any Et� , any hypo-
thesis H ∈ ΘEt� , any Et � Et� , it holds that

P∞(Et� ∶t � Et�) ≥
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et� ∶t � Θt�)

≥ b ⋅ Pt�(Et� ∶t � Θt�)
≥ b ⋅ Pt�(H � Θt�) ⋅H(Et� ∶t � Et�),

yielding the desired statement (�.��) with constant a = b ⋅ Pt�(H � Θt�) independent of Et� ∶t .
�


