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Chapter �

Introduction

�is dissertation is about Bayesian learning from data. How can humans and computers learn
from data?�is question is at the core of both statistics and — as its name already suggests
— machine learning. Bayesian methods are widely used in these �elds, yet they have certain
limitations and problems of interpretation. In two chapters of this dissertation, we examine
such a limitation, and overcome it by extending the standard Bayesian framework. In two
other chapters, we discuss how di�erent philosophical interpretations of Bayesianism a�ect
mathematical de�nitions and theorems about Bayesianmethods and their use in practise.While
some researchers see the Bayesian framework as normative (all statistics should be based on
Bayesian methods), in the two remaining chapters, we apply Bayesian methods in a pragmatic
way: merely as tool for interesting learning problems (that could also have been addressed by
non-Bayesian methods). In this introductory chapter, I �rst explain Bayesian learning by means
of a coin tossing example.�erea�er, I review how di�erent scientists view Bayesian learning,
and in Section �.� the limitations and challenges of Bayesian inference that are addressed in this
dissertation are discussed. In Sections �.� through �.�, I give a brief introduction to the topics
of this dissertation.

�.� Bayesian learning
Learning A learner, which can be a human or a computer, interacts with the world she wants
to learn about via data, also called observations, examples or samples. We can view the data as
�nite initial segments Zt ∶= Z� , . . . , Zt of an in�nite data stream, denoted with Zω .�e learner’s
task is inductive inference: inference that progresses from given examples to hitherto unknown
examples and to general observational statements.�e learner needs to start with background
assumptions that restrict the space of possible outcomes. �is is called prior knowledge or
inductive bias. We assume that there is some collection of hypotheses that the learner can
propose or investigate. We can view an hypothesis as a general statement about the world. In
our context, the �elds of machine learning and statistics, hypotheses are o�en expressed by
a probability distribution over a sample space. We call those statistical hypotheses. A set of

�
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statistical hypotheses is a (statistical)model. A model captures the background assumptions
mathematically: It is a simpli�ed description of the part of the world we consider relevant.
In some chapters of this dissertation, we examine the behaviour of standard methods under
misspeci�cation, which means that the true world is not in the set of ways the world could be
that would make the assumptions true. In other words: the model is wrong.

Example �.� (Coin tossing). Suppose we toss a coin with unknown bias. If it lands heads, we
denote a one, if it lands tails, we denote a zero.�e learner sees a �nite string zt of zeros and
ones. We can model the coin tosses by Bernoulli random variables with parameter θ ∈ [�, �]. A
possible hypothesis is: ‘�e coin is fair’, and the corresponding statistical hypothesis is that the
data, i.e. the outcomes zt = z� , . . . , zt , are independently distributed according to a Bernoulli
distribution with parameter θ = ���.

Learning objectives �e task of the learner is inductive inference, which can have three dis-
tinct objectives.�e �rst objective is estimation, for example: estimating a regression coe�cient.
Another objective is to predict or classify future data, e.g. predicting how well a patient will
respond to a certain medicine, given patient characteristics such as white blood cell count,
age, gender, etc. A third objective, which is the focus of several chapters of this dissertation, is
testing.�e learner is handed an hypothesis and some �nite data sequence, and is requested to
conjecture an assessment, o�en binary valued: {true, false} or {accept, reject}.�ere is also a
dichotomy between exploratory and con�rmatory research. In exploratory research the learner
is given some data, and asked to produce an hypothesis about the origin of the data. We might
for example be interested in understanding a possible genetic basis for a disease. Paraphrasing
Tukey (����): Exploratory research is about �nding the question. In con�rmatory research the
validity of an existing hypothesis is tested.

Example �.� (continued). In the coin tossing example, we can estimate the bias of the coin, or
we can predict the next outcome, or we can test whether the coin is fair or not.

Bayesian inference With the model in place and the data to our disposal, we need one
more ingredient for induction: amethod, or rule for inference. In this dissertation, the focus
is on (variations on) Bayesian inference.�e essence of Bayesian inference is that it employs
probability distributions both over statistical hypotheses as well as over data. Following Ghosh,
Delampady and Samanta (����), we denote with θ a quantity of interest.�e learner starts with
specifying a prior distribution π(θ), which quanti�es her uncertainty about θ before seeing the
data Z .�en she calculates the posterior π(θ � z), the conditional density of θ given Z = z, by
Bayes theorem

π(θ � z) = π(θ) f (z � θ)
∫Θ π(θ′) f (z � θ′)dθ′

. (�.�)

�e numerator consists of the prior π(θ) and the likelihood f (z � θ), the denominator is the
marginal density of Z, also called Bayes marginal (likelihood) ormodel evidence.�e posterior
distribution represents the learner’s uncertainty regarding θ conditioned on the data. It is a
trade-o� between the prior and data distributions, determined by the strength of the prior
information and the amount of data available.
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A property that many �nd attractive of Bayesian methods, is that all inference goes via the
posterior distribution. In the situation of parameter estimation the learner could for example
report the posterior mean and variance

E(θ � z) = �
∞

−∞

θπ(θ � z)dθ ; Var(θ � z) = �
∞

−∞

(θ − E(θ � z))� π(θ � z)dθ . (�.�)

In case of hypothesis testing, she could compute the posterior odds or Bayes factor, see Sec-
tion �.�.

Computation For a long time Bayesian inference was mostly limited to conjugate families
of distributions: speci�c choices of the model and prior distribution that give a closed-form
expression for the posterior.�e development ofMarkov ChainMonte Carlo (MCMC)methods
in the ����s (Gelfand and Smith, ����) revolutionised Bayesian statistics. MCMC methods are
algorithms that generate samples from a probability distribution, by constructing a reversible
Markov chain that has the target distribution as its equilibrium distribution. In Chapter � we
develop some MCMC algorithms.

Let us return to our coin tossing example.

Example �.� (continued). Suppose a learner wants to learn the bias of the coin, i.e. the parameter
θ of a Bernoulli distribution. She �rst needs to specify a prior distribution on the parameter
space: the interval [�, �]. At this point, it is unclear how she should choose the prior; we will get
back on this issue in Section �.�.�. Already back in ����, Laplace suggested that, if one is ignorant
about the bias of the coin, one should choose a uniform distribution over the parameter space
(Laplace, ����), although the idea to translate ignorance to uniform was later challenged (see
Section �.�.�). Let us follow Laplace for now: the learner chooses a uniform distribution, which
corresponds to a Beta(�, �) distribution. As the Beta distribution is conjugate to the Bernoulli
family, quantities such as in (�.�) can be easily computed analytically. Speci�cally, the coin is
tossed t times and she observes the sequence zt consisting of n� ones and n� zeros.�e likelihood
is f (z � θ) = θn�(� − θ)n� . Due to the Beta-Bernoulli conjugacy, she can easily compute the
posterior distribution (�.�), which has the form of a Beta(� + n� , � + n�) distribution. To give an
estimate of the parameter θ, she can take the posterior mean E(θ � z) = (n� + �)�(n� + n� + �).
Alternatively, she can report the posterior mode: argmaxθ π(θ � zt) = n��(n� + n�).

With modern MCMC methods, Bayesian analyses are not restricted to conjugate families
anymore, and models with many parameters can be handled, even non-parametric (roughly:
in�nite-dimensional) models.�ese problems can also be addressed with non-Bayesian, o�en
called classicalmethods, see Section �.�.�.�ere exist however philosophers and statisticians
who believe that all learning problems should be addressed in a Bayesian way, I will loosely call
them Bayesians.

In the example, we saw how Bayesian inference is done in practise. However, we already
encountered a potential problem: How should the learner choose the prior?�ere are di�erent
views on this, and choice of prior is only one of many quarrels among Bayesians. To cite the
famous mathematician I.J. Good: “�ere are ����� varieties of Bayesians” (Good, ����); in other
words, there is no unique Bayesian theory of inference. Bayesianism extends far beyond the
�eld of statistics:�ere is Bayesian epistemology, Bayesian con�rmation theory (in philosophy
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of science), Bayesian learning theory (in psychology), Bayesian decision theory, and more.
Discussions about the foundations of Bayesianism are mostly held by philosophers, yet these
certainly a�ect (statistical) practise: Adherents to di�erent varieties of Bayesianism choose
di�erent priors, and present di�erent mathematical de�nitions and theorems.�e implications
of the philosophical discussions about Bayesianism for statistical practise are the subject of
Chapters � and �.

In the next section I explain the common ground of most of the varieties of Bayesianism.�is is
followed by an exposition of the main di�erences and disputes between Bayesians, in particular,
the subjectivists and the objectivists, yet I also introduce a third category that encompasses many
Bayesian statisticians: the pragmatists.

Since this dissertation is about Bayesian methods, an obvious question is: Why do people use a
Bayesian approach? For some (who perhaps may be called the true Bayesians) the main reasons
are philosophical, for others the fact that all inference is based on the posterior distributions is
attractive, and many �nd it intuitively appealing. Others have a more pragmatic view:�ere
exists an interesting problem, and Bayesian inference is a good way to solve it. In Section �.�.� I
discuss some of those arguments for the use of Bayesian methods, and also some against.

Section �.�.� brie�y describes ‘the other’main theory of statistics: classical or frequentist statistics.
In Chapters � and �, we use Bayesian methods, but we want them to have certain frequentist
properties and guarantees.

�.� Views on Bayesianism
As I mentioned above quoting I.J. Good, there is no uni�ed Bayesian movement, or theory of
inference, yet, there are some common foundations. Notable Bayesians and texts presenting
some in�uential interpretations are: Ramsey (����), Savage (����), Je�reys (����), De Finetti
e.g. (����), Je�rey (����), Howson and Urbach (����), and, from a more statistical perspect-
ive: Bernardo and Smith (����), Gelman et al. (����), and Ghosh, Delampady and Samanta
(����).

Central to Bayesian statistics, epistemology and con�rmation theory — the interests of this
dissertation — is the epistemic interpretation� of probability as degrees of belief. Most Bayesians
further agree (Romeijn, ����a; Easwaran, ����) that these degrees of belief should obey ra-
tionality conditions in two respects. In the �rst place, these concern the degrees of belief at a
certain point in time: Kolmogorov’s ���� axioms of probability theory. Secondly, these concern
how degrees of belief should change over time: this should be done by conditionalisation. We
have seen in the previous section and Example �.� how this is done: Formally, let S be some
statement, then we start with a prior probability Pold(S)— our prior belief in S. Upon acquir-
ing new evidence� E, we transform our prior probability to generate a posterior probability by

�One can also interpret a (mathematical) probability as physical probability: a relative frequency or propensity,
o�en termed chance. Some also called this objective probability, however, I �nd that an unfortunate wording, because of
possible confusion with what follows next in the main text: subjective and objective probability, which can both apply
to physical and epistemic probabilities. See also Hacking (����), who discusses the concept of probability historically
and philosophically.

�Assume for simplicity here that E comprises every statementwe became certain of and had positive prior probability.
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conditionalising on E, that is, Pnew(S) = Pold(S�E).�is is called Bayes’ rule.

But this is where the agreement among Bayesians ends.�e �rst issue that is at the heart of
many disputes among Bayesians — the interpretation of epistemic probability — is closely
related to the issue of the origin of priors. I now describe the views on these two issues held
by two central categories of Bayesians: the subjectivists and the objectivists. A�er that, I add a
third category: the pragmatists.

�.�.� �e origin of priors
Subjectivism At one end of the spectrum of Bayesians, the subjectivists (Ramsey, De Finetti,
Savage) take probability to be the expression of personal opinion. Probabilities can be related
to betting contracts (see Section �.�.�)), and the most extreme subjectivists impose no ra-
tionality constraints on prior probabilities other than probabilistic coherence, i.e. respecting
Kolmogorov’s probability axioms (De Finetti, ����; Savage, ����). For some subjectivists (e.g. Jef-
frey (����)), there can be some further constraints, but they exclude little, and in general, the
prior probability assignments may originate from non-rational factors.

Objectivism At the other tail of the spectrum, the objectivists (Je�reys, Jaynes) feel that prior
probabilities should be rationally constrained, for example by physical probabilities or sym-
metry principles. Ideally such rationality constraints would uniquely determine a prior for
every speci�c case, making prior probabilities logical probabilities.�e objective program was
already started by Sir Harold Je�reys in ���� (Je�reys, ����), and he advanced his theory of
invariants in ���� (Je�reys, ����; Je�reys, ����). His invariance principle leads to a rule to
identify distributions that represent ‘ignorance’ about a quantity of interest, considering the
statistical model.�is distribution is now known as Je�reys’ prior�. Assuming regularity condi-
tions (see Grünwald (����), p.����.), it is proportional to the square root of the determinant
of the Fisher information, and it is invariant under �-� di�erentiable transformations of the
parameter space. Je�reys’ invariance principle is modi�ed by Jaynes into hismaximum entropy
principle (Jaynes, ����). However, no principles exist that uniquely determine rational priors in
all cases (which is, besides, not claimed by any self-declared objective Bayesian either).�is
is by no means the only problem with objectivism, see Seidenfeld (����). Still, some authors
advocate its use in practice (Berger, ����).

Example �.� (continued). Je�reys’ prior for the coin tossing example is

π(θ)∝
�
I(θ)

=

�
���E �� d

dθ
log f (z � θ)�

�
�

= ��
θ(� − θ)

,

which corresponds to a Beta(���, ���) distribution.
�Related are reference priors for higher dimensional models (Bernardo, ����), Jaynes’ maximum entropy priors (see

the main text), and MDL-type priors (Grünwald, ����).
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Pragmatism Nowadays, many if not most statisticians using Bayesian methods do not adhere
to a particular philosophy, but choose their priors for pragmatic reasons: for mathematical
or computational convenience, because of their e�ects (e.g. shrinkage priors, see Chapter �),
to provide applied researchers with a default Bayesian method (see Chapter � and �), or to
construct methods that satisfy speci�c criteria (such as the GROW in Chapter �). O�en, these
priors exhibit a mix of subjective and objective elements, but the reasons for using these priors
and Bayesian methods in general are practical rather than philosophical.�is is what I call
pragmatic Bayesianism. Pragmatic Bayesians do not view probabilities as degrees of belief;
they call them for example weights.�is view is eloquently described by Gelman and Shalizi
(����).

Besides the interpretation of degrees of belief and the origin of priors, philosophers disagree
about many other aspects of Bayesianism, such as whether probability should be treated as
countably or �nitely additive (see Seidenfeld and Schervish (����), Kadane, Schervish and
Seidenfeld (����), Williamson (����) and Elliot (����)), whether conditionalisation can be
generalised to situations in which the observations are themselves probabilistic statements (see
Je�rey (����)), and more.

�.�.� Arguments for Bayesianism and criticism
�ere are various arguments for (types of) Bayesianism.�e most well-known are probably
the Dutch Book arguments, introduced by Ramsey (����) and De Finetti (����). �ey relate
probability, as degrees of belief, to a willingness to bet. If a bookmaker does not respect the
axioms of probability theory, a clever gambler can make a Dutch book: He can propose a set
of bets that wins him some amount of money no matter what the outcomes may be. �ere
exist versions with �nite and countable additivity, see e.g. Freedman (����). Related arguments
are exchangeability and De Finetti’s (����) representation theorem, see e.g. Bernardo (����),
Easwaran (����) and Romeijn (����).

In Bayesian decision theory, there are complete class theorems, originally due toWald (����) (see
e.g. Robert (����)), which provide a very pragmatic argument for Bayesianism.�ey basically
state that for every method for learning from data, there exists a method that is at least as good,
and that is Bayesian in the sense that it is based on updating beliefs using Bayes’ theorem with
a particular prior. A drawback of this argument is the limited applicability of these theorems, it
holds for compact parameter spaces and convex loss functions, and besides that, there is still
considerable room for manoeuvre in the choice of the prior. In particular, the choice of prior
may depend on e.g. the sample size and the choice of loss function, which may be unnatural to
many non-pragmatists.

Bayesian statistics can be justi�ed in other ‘non-Bayesian’ ways too. Some �nd Bayesian analysis
attractive because it does not rely on counterfactuals, whereas some non-Bayesian methods
do: they rely on integration over the sample space, hence on data that could have but have not
realised (Dawid and Vovk, ����). Others like Bayesian methods because all inference is based
on the posterior only, which leads to straightforward uncertainty quanti�cation — for example,
separate ‘con�dence intervals’ are not needed. Other reasons are more practical. Bayesian
inference o�en works very well in practise. For example in clinical trials, researchers o�en
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have to deal with missing data because of the intention-to-treat policy. Here Bayesian ways of
dealing with the missing data because of drop-outs o�en outperform other, classical methods
(Asendorpf et al., ����). Another example of a practical motivation is the success of shrinkage
priors, which are chosen to produce a sparse estimate of a regression parameter vector; these
are discussed in Chapter �.

Criticism

How to specify the prior?�is question both divides subjective and objective Bayesians, and
lies at the root of the main criticisms from non-Bayesians. Several issues can be �led under
the problem of priors. Subjectivists and objectivists debate whether there should be constraints
on prior probabilities, other than the laws of probability theory. In the case of objective Bayes,
there are no principles that uniquely determine objective priors in all cases. In particular, it is
unclear how a prior should represent ignorance. Subjective Bayesianism is criticised for the idea
that prior and posterior represent the learner’s subjective belief, while scientists are expected to
be concerned with objective knowledge (Gelman, ����).

Another objection to Bayesianism is the problem of old evidence (Glymour, ����): suppose a
new hypothesis is proposed, and it turns out to explain old evidence very well. How can the old
evidence be used to con�rm this hypothesis? Related is the problem of new theories (Earman,
����): the standard Bayesian framework does not provide a way to incorporate new hypotheses
in course of the learning process.�is problem is addressed in Chapter �.

�.�.� Classical statistics and frequentism

�e major alternative to Bayesian statistics is classical statistics. It is really a hotchpotch of many
di�erent methods, philosophical views, and interpretations of probability (see e.g. Section �.�
and Hájek (����)).�e common factor is that it only considers probability assignments over
the sample space and not over parameters that themselves represent probability distributions.
�e most important interpretation of the concept of probability in classical statistics, developed
by Von Mises (����), is that it can be identi�ed with a relative frequency: we can describe
the probability of a coin landing ‘tails’, with the number of tails in a (very long) sequence of
coin tosses, divided by the total number of tosses.�is is called frequentism. Since this is the
predominant view, classical statistics is o�en called frequentist statistics, but methods based on
other physical interpretations of probability, such as propensity, are considered classical as well.

�.� �e topics of this dissertation: challenges, limitations, and
pragmatics

I now give a high-level description of the main topics of this dissertation.�is is followed by a
brief, speci�c introduction for every chapter.
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Bayesian inference under model misspeci�cation
�e Bayesian framework as described above provides us with a way to change our degrees
of belief over time when new evidence obtains. A Bayesian learner starts with specifying a
model, and assigning prior probabilities to its elements. If the model is appropriate, i.e. if the
true data generating process is in the model and the prior does not exclude it from the start,
consistency is guaranteed: the learner will converge on the truth as more and more data are
obtained. However, it might happen that the model is misspeci�ed: the true data generating
process is not part of the model (or is assigned zero prior probability), which can be problematic
in di�erent ways, and in this dissertation, Bayesianism is extended in two di�erent ways to face
the problem.

First, it might happen that in the course of the learning process, the learner wants to incorporate
an hypothesis that did not occur to her before. �e standard Bayesian framework does not
o�er a way how to incorporate new hypotheses, it seems that the learner has to throw away her
data and start from scratch by specifying the larger model and assigning prior probabilities
to its elements. In Chapter �, further introduced in Section �.�, we consider an open-minded
Bayesian logic, to allow for dynamically incorporating new hypotheses.

Secondly, it could be that we want Bayes to concentrate on the best element in themodel, instead
of the truth, which is outside the model, where the best is the element that is closest to the truth.
In Chapter �, we show that standard Bayesian inference can fail to concentrate on this best
element in the model. We subsequently modify Bayes theorem (�.�) by equipping the likelihood
with an exponent, called the learning rate, and call this generalised Bayes. When the learning
rate is chosen appropriately, generalised Bayes concentrates on the best element in the model.
In Section �.� this problem is presented further.

Bayes factor hypothesis testing under optional stopping
Bayes factor hypothesis testing is a Bayesian approach to hypothesis testing based on the ratio of
two Bayes marginal likelihoods. In Chapters � and �, we study optional stopping, which inform-
ally means ‘looking at the results so far to decide whether or not to gather more data’. Di�erent
authors make claims about whether or not Bayes factor hypothesis testing is robust under
optional stopping, but it turns out that one can give three di�erent mathematical de�nitions
of what robustness under optional stopping actually means. We see in Chapters � and � that
adhering to one of the varieties of Bayesianism has implications for the claims one can make
in practise. For example, in Chapter � we elucidate claims about optional stopping which are
only meaningful from a purely subjective Bayesian perspective, yet the suggestion is made as if
those claims apply to pragmatic inference. In Section �.� I give an overview of current practise
in hypothesis testing, with �-values, and with Bayes factors.

A new theory for hypothesis testing with a Bayesian interpretation
In Chapter � we introduce a new theory for hypothesis testing. �e central concept of this
theory is the �-variable, a random variable similar to, but in many cases an improvement of
the �-value. We introduce an optimality criterion, called GROW, for designing �-variables,
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and it turns out that these GROW �-variables have an interpretation as a Bayes factor, yet
with special priors, which are very di�erent from those currently used by Bayesians.�is is
an example of radical pragmatism: we do not choose these priors based on any philosophical
considerations, but these special priors are designed so that the resulting method satis�es some
practically motivated criterion — namely, the GROW. One could even state that the Bayesian
interpretation of GROW �-variables is merely a by-product, yet a convenient one, because
it provides a common language for adherents of di�erent frequentist and Bayesian testing
philosophies. In Section �.� these schools of hypothesis testing (Fisherian, Neyman-Pearsonian,
the commonly used hybrid form with �-values, and Bayesian) are brie�y discussed.

Best-arm identi�cation with a Bayesian-�avoured algorithm
Another example of radical pragmatic Bayesianism can be found in Chapter �.�ere, we want
to identify from a sequence of probability distributions the one with the highest mean. We
can assign prior probabilities to distributions ν j , j = �, . . . ,K of having the highest mean, and
update these with Bayes’ theorem when we obtain a sample. We can construct a rule which
distribution to sample at time t based on the posterior distribution, but in order to meet certain
frequentist (and Bayesian) criteria, we do not always pick the distribution with the highest
posterior probability of having the highest mean. �e setting of Chapter �, which is called
Best-arm identi�cation, is introduced in Section �.�.

�.� Chapter �: Merging
In Chapter �, we consider the problem of dynamically incorporating hypotheses during the
Bayesian learning process. Here, successful learning means that if the true data generating
process is added to our model at some point, the learner almost-surely converges to the truth
as more and more data becomes available.

Setting Let the sample space be the set of all in�nite sequences, denoted byX∞, and consider
a σ-algebra F∞ containing all Borel sets�. We can for example look at the space of all binary
in�nite sequences, �ω (Cantor space). Now let H∗ and P be two probability measures over this
measurable space (X∞,F∞) of in�nite sequences, and denote with A ∈ F∞ a proposition�. An
example of such a proposition is: ‘the frequency of ones is equal to �.�’, or ‘every other bit is the
next bit of π’. We think of H∗ as the truth, i.e. the distribution generating the data, and we can
view P as the learner’s belief distribution.

�e learner starts with a number of propositions Ai , i ∈ N, to which she assigns a prior belief
P(Ai). At each time step t she observes an evidence item xt ∈ X , and she updates her belief in
the Bayesian way: her posterior belief in proposition Ai is

P(Ai �xt) = P(Ai ∩ xt)
P(xt)

.

�For a more detailed exposition, see Chapter �.
�Many authors call this an hypothesis, but to keep the introduction simple and to avoid confusion with statistical

hypotheses, I call it a proposition here, following e.g. Huttegger (����).
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�e learning goal If H∗ is the true distribution that governs the generation of the data, the
learner should use the data coming from H∗ to change her beliefs P towards H∗. Eventually, if
she sees enough data, we want P to come close to H∗.�ere are many notions for this closeness,
and an obvious one would be concentration of the learner’s posterior distribution on the true
distribution. However, this is too strong for our purposes, as we do not want to exclude the
possibility of di�erent distributions that are from some point on empirically equivalent (see
Lehrer and Smorodinsky (����)).�us, we will use the notion of truth-merger, which comes in
two variants.�e �rst is called strong merger (Kalai and Lehrer, ����; Lehrer and Smorodinsky,
����; Leike, ����)), which is still reasonably strong, as discussed in Chapter �.

De�nition �.� (Strong truth-merger). P merges with the truth H∗ if H∗-almost surely

sup
A∈F∞

�P(A�xt) −H∗(A�xt)�→ � as t →∞.

In words, with true probability �, the learner’s probabilities conditional on the past will asymp-
totically coincide with the true probabilities. Truth-merger is thus concerned with learning the
probabilities of future outcomes. In Chapter �, we are mainly concerned with the predictive
probabilities up to a �nite point in time, which is captured in the notion of weak merger (Lehrer
and Smorodinsky, ����):

De�nition �.� (Weak truth-merger). We say that P weakly merges with the truth H∗ if and
only if for ` ∈ N we have H∗-almost surely

sup
A∈Ft+`

�P(A�xt) −H∗(A�xt)�→ � as t →∞,

where Ft+` denotes the σ-algebra generated by the �rst t + ` outcomes.

Strong merger implies weak merger, as follows directly from the de�nitions.

Contribution In the standard form, a Bayesian learner starts with specifying her prior distri-
bution P, and learns by conditionalisation on the data.�e prior speci�es a particular model (set
of hypotheses to which positive probability is assigned), and if the truthH∗ is in this model and
H∗ is absolutely continuous with respect to P, then she will almost surely merge with the truth
(Blackwell and Dubins, ����). However, she cannot include every hypothesis from the start (see
Chapter �), she needs to commit to restrictions on her model (inductive assumptions), and
there is no room to adapt the model later on in the standard form of Bayesianism as described
in Section �.�. In particular, she can not expand the model to incorporate new hypotheses
(the Bayesian problem of new theory) that might be more in accordance with the data than
the hypotheses in the initially formulated model. For example, somebody might come along
and tell her about a new hypothesis that is eminently reasonable but which she simply did
not think of.�us, the challenge is to come up with an open-minded Bayesian inductive logic
that can dynamically incorporate new hypotheses. Wenmackers and Romeijn (����) formalise
this idea, but in Chapter � we show that their proposal does not preserve merger with the
true hypothesis. We then diagnose the problem, and o�er two versions of a forward-looking
open-minded Bayesian that do weakly merge with the truth when it is formulated.
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�.� Chapters �, � and �: Hypothesis testing
A large part of this dissertation is about hypothesis testing. Here I �rst introduce this topic in a
simpli�ed setting; for a more general treatment, see Chapter �, Section �.�. I then summarise
our contributions of Chapters �, � and �.

Setting Let the null hypothesisH� and the alternative hypothesisH� be statistical hypotheses,
i.e. sets of probability distributions on a measurable space (Ω,F). Let Xn ∶= X� , . . . , Xn be
random variables taking values in the outcome space Ω.

�e learning goal We wish to test the veracity of H�, possibly in contrast with some altern-
ativeH�, based on a sample Xτ that may or may not be generated according to an element of
H� orH�.�ere are several paradigms for testing, based on di�erent philosophies and also
with di�erent objectives.�e most commonly used framework for hypothesis testing in the
applied sciences, o�en referred to as classical or frequentist, is that of the p-value based null
hypothesis signi�cance testing (NHST).

De�nition �.� (P-value). A p-value is a random variable P such that for all � ≤ α ≤ � and all
P� ∈H�, we have P�(P ≤ α) = α.

P-values were advocated by Sir Ronald Fisher to measure the strength of evidence against the
null hypothesis, a smaller p-value indicating greater evidence (Fisher, ����). In his framework
of signi�cance testing, the learner comes up with a null hypothesis that the sample comes from
an in�nite population with known (hypothetical) distribution, so if the data are unusual under
H�, it constitutes evidence against the null.�e level of signi�cance is simply a convention� to
use as a cut-o� level for rejectingH�. In his later work (Fisher, ����; Fisher, ����), he re�ned
this and prescribed to report the exact level of signi�cance, which is thus a property of the
data.

Jerzy Neyman and Egon Pearson developed an alternative theory of null hypothesis testing
where the main concern is to limit the false positive rate of the test, and a second hypothesis, the
alternative hypothesis needs to be speci�ed. As opposed to the Fisherian framework in which
the p-value is a measure of evidence, the outcome of the Neyman-Pearson test is acceptance or
rejection of the null hypothesis.�e probability α of falsely rejecting the null hypothesis when it
is true is called the Type I error, the probability β of falsely accepting the null hypothesis is called
the Type II error, and the complement �− β is called the power of a test. If we �x the signi�cance
level α, a most powerful test is the one that minimises the Type II error β, and Neyman and
Pearson proved in the famous lemma named a�er them, that such a most powerful test for
simpleH� andH� has the form of a likelihood ratio threshold test. Note that in this framework
the signi�cance level is a property of the test. Whereas in Fisher’s framework, p-values from
single experiments provide evidence againstH�, in the Neyman-Pearsonian framework the
behaviour of the test in the long run is considered, and we can view the signi�cance level α as a
relative frequency of the Type I errors over many repeated experiments. As such, a test does not

�According to some authors (Hubbard, ����; Gigerenzer and Marewski, ����), the �% level was taken just because
�% tables were available to Fisher at the time he wrote his earlier works.
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provide evidence for the truth or falsehood of a particular hypothesis (Neyman and Pearson,
����).

�e current practise of the p-value based NHST is, remarkably, a hybrid of the methods
proposed by Fisher on the one hand, and Neyman and Pearson on the other hand, despite their
utter disagreement about hypothesis testing (see Hubbard (����) who quotes their reciprocal
reproaches), and the con�icting aspects of their theories of inference. Typically, a signi�cance
level α is pre-speci�ed (o�en �.��), then an experiment is designed so that it achieves a certain
power �− β, and a�er the data are obtained a p-value is calculated. When the p-value is smaller
than α, the null hypothesis is rejected, and inmany journals, the p-value is reported as well, o�en
with a superscript of one or more stars� indicating whether p < �.��, p < �.��, or p < �.���.
As early as the ����s (e.g. Edwards, Lindman and Savage (����)), many papers have been
published in which the p-value based NHST is criticised. Besides that it is a combination of
the two (incompatible) frameworks described above, it is criticised because of the widespread
misinterpretations of p-values (for example, they are thought to be equal to the Type I error
rate, or to the probability of an hypothesis being true given the data), their dependence on
counterfactuals and the need of the full experimental protocol to be determined upfront. For
articles debating the use of p-value based NHST, see e.g. Berger and Sellke (����), Wagenmakers
(����), Gigerenzer and Marewski (����), Grünwald (����), Wasserstein, Lazar et al. (����)
and Benjamin et al. (����). For work on Fisherian versus Neyman-Pearsonian views, see e.g.
Gigerenzer et al. (����), Gigerenzer (����) and Hubbard (����), and an interesting investigation
into why many are unaware of these di�erent views and their incompatibility is Huberty
(����).

Another framework for hypothesis testing is based on Bayes factors (Je�reys, ����; Kass and
Ra�ery, ����). Since the last decade this framework has been advocated by several researchers
as an alternative for the p-value based NHST (see e.g. Wagenmakers (����)). Here,H� and
H� are represented by measures P� and P� that are taken to be Bayesian marginal distributions.
Denote H j = {Pθ � j ; θ ∈ Θ j}, with (possibly in�nite) parameter spaces Θ j , and de�ne prior
distributions π� and π� on Θ� and Θ� respectively.�e Bayes marginals then are, for any set
A ⊂ Ω

P�(A) = �
Θ�

Pθ ��(A)dπ�(θ) ; P�(A) = �
Θ�

Pθ ��(A)dπ�(θ). (�.�)

�e Bayes factor is de�ned as the ratio of these Bayes marginals (for simpleH� andH� this
is simply a likelihood ratio). Sometimes we want to allow for improper prior distributions
(integrating to in�nity). For this case, we give a more general de�nition in Chapter �, in terms
of versions of the Radon-Nikodym derivatives of P� and P� w.r.t. some underlying measure. A
large Bayes factor corresponds to evidence against the null hypothesis. Sometimes, one can
also obtain frequentist Type-I error guarantees with Bayes factors.�e probability under (an
element of) the null hypothesis that a Bayes factor based on a sample with a �xed size n is larger
than ��α for α ∈ (�, �) is by Markov’s inequality bounded by α.�us, one can use Bayes factors
together with a frequentist Type I error guarantee by choosing a threshold of ��α, and rejecting
the null if the Bayes factor exceeds that threshold.

�See Gigerenzer and Marewski (����) for an excellent critique of, as they call it, the null ritual.
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Contribution (�) When a researcher wants to use p-value based NHST, the experimental
protocol must be completely determined upfront. In practise, researchers o�en adjust the
protocol due to unforeseen circumstances, or collect data until a point has been proven.�is
is o�en referred to as optional stopping. Informally, this means: ‘looking at the results so far
to decide whether or not to gather more data’. With (standard) p-value based NHST (aiming
to control the Type I error) this is not possible: one can prove that even if the null hypothesis
is the true data generating process, one is guaranteed to reject it upon collecting and testing
more and more data. Bayes factor hypothesis testing on the other hand has been claimed
by several authors to continue to be valid under optional stopping. But what does it mean
for a test to remain valid under optional stopping? It turns out that di�erent authors mean
quite di�erent things by ‘Bayesian methods can handle optional stopping’, and such claims are
o�en only made informally, or in restricted settings. We can discern three main mathematical
concepts of handling optional stopping, which we identify and formally de�ne in Chapter �:
τ-independence, calibration and (semi-)frequentist. We also mathematically prove that Bayesian
methods can indeed handle optional stopping in many (but not all!) ways, in many (but not
all!) settings. While Chapter � is written to untangle the optional stopping confusion by giving
rigorous mathematical de�nitions and theorems, Chapter � is written for practitioners and
methodologists who want to work with default Bayes factors introduced by the self-named
Bayesian psychology community (Rouder et al., ����; Jamil et al., ����; Ly, Verhagen and
Wagenmakers, ����). �at chapter is mainly a response to the paper Optional stopping: no
problem for Bayesians (Rouder, ����), and we explain for a non-mathematical audience why
there is more nuance to this issue than Rouder’s title suggests, and why his claims (which are
actually about calibration, which we formally de�ne in Chapter �.�.�, and not about Type I
error control) are relevant only under a subjective interpretation of priors. Default priors do
not have such an interpretation, making the relevance of Rouder’s claims for practise doubtful.
In Chapter � we prove that Rouder’s intuitions about calibration are correct, but they do not
carry over to other notions of optional stopping than calibration; and therefore they do not
apply to most practically relevant issues with optional stopping with Bayes factor hypothesis
testing.

Contribution (�) Many agree that the p-value based NHST paradigm is inappropriate (or
at least suboptimal) for scienti�c research, yet the dispute about its replacement continues to
be unresolved. Some propose a Bayesian revolution (yet sometimes overlook the limitations
of Bayesian approaches, see Chapter � and �), others adhere to more Fisherian or Neyman-
Pearsonian views. Finally, some are more pragmatic and just want to use an appropriate test
for their situation that gives them certain guarantees. Wouldn’t it be nice to have a common
language for adherents to those di�erent testing schools that expresses strength of evidence, that
allows for evidence from experiments originating from those di�erent paradigms to be freely
combined, and that resolves some of the main problems with p-values, such as interpretability
issues for practitioners? In Chapter � we introduce a theory for hypothesis testing based on
�-test statistics (we call them �-variables) that achieve just that.�e de�nition of an �-variable
is simple:
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De�nition �.� (�-test statistic). An �-test statistic is a non-negative randomvariable E satisfying

for all P ∈H�: EP[E] ≤ �.

�-variables are �exible: they can be based on Fisherian, Neyman-Pearsonian and Bayesian test-
ing philosophies; �-variables resultant from those di�erent paradigms can be freely combined
while preserving Type I error guarantees, and they allow for a clear interpretation in terms
of money or gambling. In Chapter � we develop this theory of �-variables; this includes the
development of optimal, ‘GROW’ �-variables.

�.� Chapter �: Generalised linear regression
In Chapter �, we consider Bayesian generalised linear regression under model misspeci�cation.
Here, successful learning means that the (generalised) posterior distribution concentrates
on an element in the model that is in some sense optimal, although it is not the true data
generating distribution (which is not in the model). I start by explaining linear regression in
the well-speci�ed case. I then introduce the (more general) learning goal and summarise our
contributions.

Setup In linear regression, we wish to �nd a relationship between a regressor variable X ∈ X
and a regression variable Y ∈ R, where X is some set. We want to learn a function g ∶ X → R

from the data, and we assume Gaussian noise on Y , that is Yi = g∗(Xi) + ε i , where ε i
i . i .d .∼

N (�, σ �), and g∗ is the true function we want to learn. We can thus formulate the conditional
density of Yn given Xn as

pg ,σ �(Yn �Xn) = � �√
�πσ �

�
n

exp�−∑
n
i=�(Yi − g(Xi))�

�σ � � .

In linear regression, we search for a function g for our problem among linear combinations
of basis functions: gβ(X) = ∑p

j=� β j g j(X). �is can be further extended to generalised linear
models (GLMs), where the dependent variable Y is not necessarily continuous-valued any more
(but from some set Y), and the noise is not necessarily Gaussian. An example that we encounter
in Chapter � is the logistic regression model { fβ ∶ β ∈ Rp}, where the outcomes Yi ∈ {�, �} are
binary random variables, the independent variables are p-dimensional vectors Xi ∈ Rp , with
the conditional density

p fβ(Yi = ��Xi) ∶=
eX

T
i β

� + eXT
i β

.

Learning goal We are given an i.i.d. sample Zn ∼ P from a distribution P on the sample
space Z = X ×Y , and we want to do inference with the generalised Bayesian posterior Πn on
our model F , de�ned by its density

πn( f ) ∶=
exp �−∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

. (�.�)
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Here ` f (zi) is the loss of f , an element of our model F , on outcome zi ∈ Z , and π� is the
density of a prior distribution onF relative to some underlying measure ρ. For GLMs, (�.�) can
equivalently be interpreted in terms of the standard Bayesian posterior based on the conditional
likelihood p f (y�x), i.e.

πn( f )∝
n
�
i=�
(p f (yi �xi))π�( f ). (�.�)

For example, consider standard linear regression with square loss ` f (x , y) = (y − f (x))� and
�xed learning rate η.�en (�.�) induces the same posterior πn( f ) over F as does (�.�) with
p f (y�x)∝ exp(−(y − f (x))�), which is the same as (�.�) with ` f replaced by the conditional
log-loss `′f (x , y) ∶= − log p f (y�x). All examples of GLMs in Chapter � can be interpreted in
terms of (�.�) for a misspeci�ed model, that is, the density P(Y �X) is not equal to p f for any
f ∈ F .

We do not assume that the model is well-speci�ed, however, we do assume that there ex-
ists an optimal element in our model f ∗ ∈ F that achieves the smallest risk (expected loss)
E[` f ∗(Z)] = inf f ∈F E[` f (Z)]. For GLMs this has additional interpretations: it means that ifF
contains the true regression function g∗, then f ∗ = g∗, and also, f ∗ is the element in F closest
to P in KL divergence inf f ∈F EX ,Y∼P[log(p(Y �X)�p f (Y �X)]. As more and more data becomes
available, we want the Bayesian posterior (�.�) to concentrate in neighbourhoods of f ∗.

Contribution In the last decade it has become clear that standard Bayesian inference can
behave badly under model misspeci�cation, that is, when the true distribution P is not in
the model F . Grünwald and Van Ommen (����) give a simple linear regression example in
which Bayesian model selection, model averaging and ridge regression severely over�t: Bayes
learns the noise of the sample in stead of (or in addition to) the signal. For small sample sizes,
the posterior does not concentrate on element f ∗ ∈ F closest in KL divergence to the true
distribution P, even if the true regression function is in the model (in their example, only the
noise is misspeci�ed). �ey also provide a remedy for this problem: using the appropriate
generalised Bayesian posterior, de�ned analogously to (�.�) by its density

πn( f ) ∶=
exp �−η∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−η∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

,

where η > � is the learning rate, and η = � corresponds to standard Bayesian inference.�ey
show with simulations that for small enough η (which can be found by the Safe-Bayesian
algorithm), this results in excellent performance. In Chapter � we show that failure of standard
Bayes (η = �) and empirical success of generalised Bayes (with small enough η) on similar
toy problems extends to more general priors (lasso, horseshoe) than considered by Grünwald
and Van Ommen (����) and more general models (GLMs). Additionally, we show real-world
examples on which generalised Bayes outperforms standard Bayes. Grünwald and Mehta
(����) showed concentration with high probability of generalised Bayes with learning rate
η in the neighbourhood of f ∗ under the η-central condition. In Chapter � we show under
what circumstances this central condition holds for GLMs. Furthermore, we provide MCMC
algorithms for generalised Bayesian lasso and logistic regression.
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�.� Chapter �: Best-arm identi�cation
In this chapter we consider a Bayesian-�avoured anytime best-arm identi�cation strategy. We
show that it is in some sense optimal, meaning that it (asymptotically) uses as few samples as
possible to indicate with a certain con�dence which of a sequence of probability distributions
has the highest mean.

Setup A �nite stochasticmulti-armed bandit model is a sequence of K probability distribu-
tions ν = (ν� , . . . , νK), which we call arms. With µi we denote the expectation of distribution
ν i of arm i (assumed it exists), and we denote the optimal arm I� to be the arm with mean
µ� ∶=maxi∈[K] µi , assuming it to be unique.�e learner, who does not know about the distribu-
tions ν, interacts with the model by choosing at each time t = �, �, . . . an arm It to sample, and
she observes an evidence item, called reward,Yt ,It ∼ νIt .�e learner chooses arm It based on the
history (I� ,Y�,I� , . . . , It−� ,Yt−�,It−�), and possibly some side information or exogenous random-
ness, denoted by Ut−�. Let Ft be the σ-algebra generated by (U� , I� ,Y�,I� ,U� , . . . , It ,Yt ,It ,Ut),
then It is Ft−�-measurable.�e sequence of random variables (It)t∈N is called the strategy of
the learner or a bandit algorithm.

Learning goal We consider a setting called best-arm identi�cation (BAI), the name says it
all: we want to explore the arms to make an informed guess which one has the highest mean.
A BAI strategy consists of three components. �e sampling rule selects an arm It at round
t. �e recommendation rule returns a guess for the best arm at time t (it is Ft-measurable),
and thirdly, the stopping rule τ, a stopping time with respect to (Ft)t∈N, decides when the
exploration is over. Two main mathematical frameworks for BAI exist. One is the �xed-budget
setting, where the stopping time τ is �xed to some (known) maximal budget, and the goal is
to minimise the probability of returning a suboptimal arm (Audibert and Bubeck, ����).�e
other, which we consider in Chapter �, is the �xed-con�dence setting, in which given a risk
parameter δ, the goal is to ensure that the probability to stop and recommend a suboptimal arm
is smaller than δ, while minimizing the total number of samples E[τ] to make this δ-correct
recommendation (Even-dar, Mannor and Mansour, ����).�ere exist several sampling rules
for the �xed-con�dence setting, most of them depend on the risk parameter δ, but one that does
not is the tracking rule of Garivier and Kaufmann (����), which also asymptotically achieves the
minimal sample complexity combined with the Cherno� stopping rule (see ibid. and Chapter �).
A sampling rule that does not depend on the risk parameter δ or a budget is called anytime by
Jun and Nowak (����), and is appealing for many (future) applications in machine learning,
such as hyper-parameter optimisation.

Contribution We consider a Bayesian-�avoured anytime sampling rule introduced by Russo
(����), called Top-Two�ompson Sampling (TTTS). So far, there has been no theoretical sup-
port for the employment of TTTS for �xed-con�dence BAI, and Russo (����) proves posterior
consistency (with optimal rates) under restrictive assumptions on the models and priors, ex-
cluding two settings mostly used in practise: Gaussian and Beta-Bernoulli bandits. In Chapter �
we address the following: We (�) propose a new Bayesian sampling rule (T3C), computationally
superior to TTTS; (�) establish δ-correctness of two new Bayesian stopping and recommend-
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ation rules; (�) provide sample complexity analyses of TTTS and T3C under our proposed
stopping rule; (�) prove optimal posterior convergence rates for Gaussian and Beta-Bernoulli
bandits.

�.� �is dissertation
Each of the chapters of this dissertation corresponds to one of the papers listed on page i,
therefore, the chapters are self-contained. However, they are written for di�erent audiences,
hence they di�er greatly in style, in technical level, and in background knowledge required to
be able to read them.

Chapter � (Sterkenburg and De Heide, ����) is written for a readership of mathematical philo-
sophers. Mathematical philosophy is a �eld in which philosophical questions are treated with
tools and methodology from mathematics: with de�nitions, theorems and proofs, and with pre-
cision and rigour. Mathematical philosophers o�en have a strong understanding of some �elds
in mathematics, such as measure theoretic probability, set theory, and of course logic.

Chapter � (De Heide and Grünwald, ����) is written for statisticians and methodologists.�ese
are o�en researchers in a methodology department associated to a faculty of applied research
(psychology, biology, etc.), who study and develop statistical methods for their �eld. Only
elementary probability theory and statistics is needed to read this chapter.

�e subsequent four chapters (Hendriksen, De Heide and Grünwald, ����; Grünwald, De
Heide and Koolen, ����; De Heide et al., ����; Shang et al., ����) are aimed at mathematical
statisticians and machine learning theorists with a solid mathematical background (in particu-
lar, obviously, mathematical statistics and probability theory). For Chapter � some familiarity
with group theory is useful to fully appreciate it, and for Chapter � the same holds for stat-
istical learning theory, although in both chapters all necessary preliminaries are (concisely)
provided.
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