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Chapter 1

Introduction

This dissertation is about Bayesian learning from data. How can humans and computers learn
from data? This question is at the core of both statistics and — as its name already suggests
— machine learning. Bayesian methods are widely used in these fields, yet they have certain
limitations and problems of interpretation. In two chapters of this dissertation, we examine
such a limitation, and overcome it by extending the standard Bayesian framework. In two
other chapters, we discuss how different philosophical interpretations of Bayesianism affect
mathematical definitions and theorems about Bayesian methods and their use in practise. While
some researchers see the Bayesian framework as normative (all statistics should be based on
Bayesian methods), in the two remaining chapters, we apply Bayesian methods in a pragmatic
way: merely as tool for interesting learning problems (that could also have been addressed by
non-Bayesian methods). In this introductory chapter, I first explain Bayesian learning by means
of a coin tossing example. Thereafter, I review how different scientists view Bayesian learning,
and in Section[.3|the limitations and challenges of Bayesian inference that are addressed in this
dissertation are discussed. In Sections|14]through[r.7, I give a brief introduction to the topics
of this dissertation.

1.1 Bayesian learning

Learning A learner, which can be a human or a computer, interacts with the world she wants
to learn about via data, also called observations, examples or samples. We can view the data as
finite initial segments Z' := Z;, ..., Z, of an infinite data stream, denoted with Z*. The learner’s
task is inductive inference: inference that progresses from given examples to hitherto unknown
examples and to general observational statements. The learner needs to start with background
assumptions that restrict the space of possible outcomes. This is called prior knowledge or
inductive bias. We assume that there is some collection of hypotheses that the learner can
propose or investigate. We can view an hypothesis as a general statement about the world. In
our context, the fields of machine learning and statistics, hypotheses are often expressed by
a probability distribution over a sample space. We call those statistical hypotheses. A set of
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statistical hypotheses is a (statistical) model. A model captures the background assumptions
mathematically: It is a simplified description of the part of the world we consider relevant.
In some chapters of this dissertation, we examine the behaviour of standard methods under
misspecification, which means that the true world is not in the set of ways the world could be
that would make the assumptions true. In other words: the model is wrong.

Example 1.1 (Coin tossing). Suppose we toss a coin with unknown bias. If it lands heads, we
denote a one, if it lands tails, we denote a zero. The learner sees a finite string z! of zeros and
ones. We can model the coin tosses by Bernoulli random variables with parameter 6 € [0,1]. A
possible hypothesis is: “The coin is fair, and the corresponding statistical hypothesis is that the
data, i.e. the outcomes z' = zj, .. ., z;, are independently distributed according to a Bernoulli
distribution with parameter 6 = 1/2.

Learning objectives The task of the learner is inductive inference, which can have three dis-
tinct objectives. The first objective is estimation, for example: estimating a regression coefficient.
Another objective is to predict or classify future data, e.g. predicting how well a patient will
respond to a certain medicine, given patient characteristics such as white blood cell count,
age, gender, etc. A third objective, which is the focus of several chapters of this dissertation, is
testing. The learner is handed an hypothesis and some finite data sequence, and is requested to
conjecture an assessment, often binary valued: {true, false} or {accept, reject}. There is also a
dichotomy between exploratory and confirmatory research. In exploratory research the learner
is given some data, and asked to produce an hypothesis about the origin of the data. We might
for example be interested in understanding a possible genetic basis for a disease. Paraphrasing
Tukey (1980): Exploratory research is about finding the question. In confirmatory research the
validity of an existing hypothesis is tested.

Example 1.1 (continued). In the coin tossing example, we can estimate the bias of the coin, or
we can predict the next outcome, or we can test whether the coin is fair or not.

Bayesian inference With the model in place and the data to our disposal, we need one
more ingredient for induction: a method, or rule for inference. In this dissertation, the focus
is on (variations on) Bayesian inference. The essence of Bayesian inference is that it employs
probability distributions both over statistical hypotheses as well as over data. Following Ghosh,
Delampady and Samanta (2007)), we denote with 6 a quantity of interest. The learner starts with
specifying a prior distribution 7(0), which quantifies her uncertainty about 6 before seeing the
data Z . Then she calculates the posterior (6 | z), the conditional density of 0 given Z = z, by
Bayes theorem

onan
O sy

The numerator consists of the prior 77(0) and the likelihood f(z | ), the denominator is the
marginal density of Z, also called Bayes marginal (likelihood) or model evidence. The posterior
distribution represents the learner’s uncertainty regarding 6 conditioned on the data. It is a
trade-off between the prior and data distributions, determined by the strength of the prior
information and the amount of data available.

(11)
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A property that many find attractive of Bayesian methods, is that all inference goes via the
posterior distribution. In the situation of parameter estimation the learner could for example
report the posterior mean and variance

E(0|z):[:9ﬂ(0|z)d9 : Var(0|z):[:(B—E(9|z))2n(0|z)d9. (1.2)

In case of hypothesis testing, she could compute the posterior odds or Bayes factor, see Sec-

tion

Computation For a long time Bayesian inference was mostly limited to conjugate families
of distributions: specific choices of the model and prior distribution that give a closed-form
expression for the posterior. The development of Markov Chain Monte Carlo (MCMC) methods
in the 1990s (Gelfand and Smith, 1990) revolutionised Bayesian statistics. MCMC methods are
algorithms that generate samples from a probability distribution, by constructing a reversible
Markov chain that has the target distribution as its equilibrium distribution. In Chapter[6|we
develop some MCMC algorithms.

Let us return to our coin tossing example.

Example 1.1 (continued). Suppose alearner wants to learn the bias of the coin, i.e. the parameter
0 of a Bernoulli distribution. She first needs to specify a prior distribution on the parameter
space: the interval [0,1]. At this point, it is unclear how she should choose the prior; we will get
back on this issue in Section[r.2.1} Already back in 1814, Laplace suggested that, if one is ignorant
about the bias of the coin, one should choose a uniform distribution over the parameter space
(Laplace, [1814)), although the idea to translate ignorance to uniform was later challenged (see
Section [L.2.1). Let us follow Laplace for now: the learner chooses a uniform distribution, which
corresponds to a Beta(1,1) distribution. As the Beta distribution is conjugate to the Bernoulli
family, quantities such as in (.2) can be easily computed analytically. Specifically, the coin is
tossed ¢ times and she observes the sequence z* consisting of n; ones and ng zeros. The likelihood
is f(z| 0) = 6™ (1- 0)"™. Due to the Beta-Bernoulli conjugacy, she can easily compute the
posterior distribution (L.1), which has the form of a Beta(1 + n;, 1 + 1) distribution. To give an
estimate of the parameter 0, she can take the posterior mean E(6 | z) = (n; +1)/(n; + ng + 2).
Alternatively, she can report the posterior mode: argmax, (6 | z') = ny/(n; + ny).

With modern MCMC methods, Bayesian analyses are not restricted to conjugate families
anymore, and models with many parameters can be handled, even non-parametric (roughly:
infinite-dimensional) models. These problems can also be addressed with non-Bayesian, often
called classical methods, see Section|r.2.3] There exist however philosophers and statisticians
who believe that all learning problems should be addressed in a Bayesian way, I will loosely call
them Bayesians.

In the example, we saw how Bayesian inference is done in practise. However, we already
encountered a potential problem: How should the learner choose the prior? There are different
views on this, and choice of prior is only one of many quarrels among Bayesians. To cite the
famous mathematician I.]. Good: “There are 46656 varieties of Bayesians” (Good, [1971); in other
words, there is no unique Bayesian theory of inference. Bayesianism extends far beyond the
field of statistics: There is Bayesian epistemology, Bayesian confirmation theory (in philosophy
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of science), Bayesian learning theory (in psychology), Bayesian decision theory, and more.
Discussions about the foundations of Bayesianism are mostly held by philosophers, yet these
certainly affect (statistical) practise: Adherents to different varieties of Bayesianism choose
different priors, and present different mathematical definitions and theorems. The implications
of the philosophical discussions about Bayesianism for statistical practise are the subject of

Chapters[s and

In the next section I explain the common ground of most of the varieties of Bayesianism. This is
followed by an exposition of the main differences and disputes between Bayesians, in particular,
the subjectivists and the objectivists, yet I also introduce a third category that encompasses many
Bayesian statisticians: the pragmatists.

Since this dissertation is about Bayesian methods, an obvious question is: Why do people use a
Bayesian approach? For some (who perhaps may be called the true Bayesians) the main reasons
are philosophical, for others the fact that all inference is based on the posterior distributions is
attractive, and many find it intuitively appealing. Others have a more pragmatic view: There
exists an interesting problem, and Bayesian inference is a good way to solve it. In Section 1.2.2]1
discuss some of those arguments for the use of Bayesian methods, and also some against.

Sectionft.2.3 briefly describes ‘the other’ main theory of statistics: classical or frequentist statistics.
In Chapters[s and[7, we use Bayesian methods, but we want them to have certain frequentist
properties and guarantees.

1.2 Views on Bayesianism

As I mentioned above quoting I.]. Good, there is no unified Bayesian movement, or theory of
inference, yet, there are some common foundations. Notable Bayesians and texts presenting
some influential interpretations are: Ramsey (1926)), Savage (1954), Jeffreys (1961), De Finetti
e.g. (1974), Jeftrey (1992), Howson and Urbach (2006), and, from a more statistical perspect-
ive: Bernardo and Smith (1994), Gelman et al. (2003), and Ghosh, Delampady and Samanta
(2007).

Central to Bayesian statistics, epistemology and confirmation theory — the interests of this
dissertation — is the epistemic interpretation| of probability as degrees of belief. Most Bayesians
further agree (Romeijn, [2005a; Easwaran, [2011) that these degrees of belief should obey ra-
tionality conditions in two respects. In the first place, these concern the degrees of belief at a
certain point in time: Kolmogorov’s1933 axioms of probability theory. Secondly, these concern
how degrees of belief should change over time: this should be done by conditionalisation. We
have seen in the previous section and Example 1.1 how this is done: Formally, let S be some
statement, then we start with a prior probability P,14(S) — our prior belief in S. Upon acquir-
ing new evidence’| E, we transform our prior probability to generate a posterior probability by

'One can also interpret a (mathematical) probability as physical probability: a relative frequency or propensity,
often termed chance. Some also called this objective probability, however, I find that an unfortunate wording, because of
possible confusion with what follows next in the main text: subjective and objective probability, which can both apply
to physical and epistemic probabilities. See also Hacking (2006), who discusses the concept of probability historically
and philosophically.

> Assume for simplicity here that E comprises every statement we became certain of and had positive prior probability.
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conditionalising on E, that is, Pyew (S) = Poia(S|E). This is called Bayes’ rule.

But this is where the agreement among Bayesians ends. The first issue that is at the heart of
many disputes among Bayesians — the interpretation of epistemic probability — is closely
related to the issue of the origin of priors. I now describe the views on these two issues held
by two central categories of Bayesians: the subjectivists and the objectivists. After that, I add a
third category: the pragmatists.

1.2.1  The origin of priors

Subjectivism At one end of the spectrum of Bayesians, the subjectivists (Ramsey, De Finetti,
Savage) take probability to be the expression of personal opinion. Probabilities can be related
to betting contracts (see Section [.2.2)), and the most extreme subjectivists impose no ra-
tionality constraints on prior probabilities other than probabilistic coherence, i.e. respecting
Kolmogorov’s probability axioms (De Finetti, 1937; Savage, 1954). For some subjectivists (e.g. Jef-
frey (1965)), there can be some further constraints, but they exclude little, and in general, the
prior probability assignments may originate from non-rational factors.

Objectivism At the other tail of the spectrum, the objectivists (Jeffreys, Jaynes) feel that prior
probabilities should be rationally constrained, for example by physical probabilities or sym-
metry principles. Ideally such rationality constraints would uniquely determine a prior for
every specific case, making prior probabilities logical probabilities. The objective program was
already started by Sir Harold Jeftreys in 1939 (Jeffreys, 1939), and he advanced his theory of
invariants in 1948 (Jeffreys, [1946; Jeffreys, 1948). His invariance principle leads to a rule to
identify distributions that represent ‘ignorance’ about a quantity of interest, considering the
statistical model. This distribution is now known as Jeffreys’ prioif| Assuming regularity condi-
tions (see Griinwald (2007), p.2341L.), it is proportional to the square root of the determinant
of the Fisher information, and it is invariant under 1-1 differentiable transformations of the
parameter space. Jeftreys’ invariance principle is modified by Jaynes into his maximum entropy
principle (Jaynes, 1957). However, no principles exist that uniquely determine rational priors in
all cases (which is, besides, not claimed by any self-declared objective Bayesian either). This
is by no means the only problem with objectivism, see Seidenfeld (1979). Still, some authors
advocate its use in practice (Berger, 2006).

Example 1.1 (continued). Jeftreys’ prior for the coin tossing example is

72(8) o \/1(8)

- J E[(ddelogf(z | e))z]

1
Vo(1-0)

which corresponds to a Beta(1/2,1/2) distribution.

3Related are reference priors for higher dimensional models (Bernardo,[1979), Jaynes’ maximum entropy priors (see
the main text), and MDL-type priors (Griinwald, 2007).
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Pragmatism Nowadays, many if not most statisticians using Bayesian methods do not adhere
to a particular philosophy, but choose their priors for pragmatic reasons: for mathematical
or computational convenience, because of their effects (e.g. shrinkage priors, see Chapter[6),
to provide applied researchers with a default Bayesian method (see Chapter [3/and [4), or to
construct methods that satisfy specific criteria (such as the GROW in Chapter|s). Often, these
priors exhibit a mix of subjective and objective elements, but the reasons for using these priors
and Bayesian methods in general are practical rather than philosophical. This is what I call
pragmatic Bayesianism. Pragmatic Bayesians do not view probabilities as degrees of belief;
they call them for example weights. This view is eloquently described by Gelman and Shalizi
(2012).

Besides the interpretation of degrees of belief and the origin of priors, philosophers disagree
about many other aspects of Bayesianism, such as whether probability should be treated as
countably or finitely additive (see Seidenfeld and Schervish (1983), Kadane, Schervish and
Seidenfeld (1999), Williamson (1999) and Elliot (2014))), whether conditionalisation can be
generalised to situations in which the observations are themselves probabilistic statements (see
Jeffrey (1965)), and more.

1.2.2 Arguments for Bayesianism and criticism

There are various arguments for (types of) Bayesianism. The most well-known are probably
the Dutch Book arguments, introduced by Ramsey (1926)) and De Finetti (1937). They relate
probability, as degrees of belief, to a willingness to bet. If a bookmaker does not respect the
axioms of probability theory, a clever gambler can make a Dutch book: He can propose a set
of bets that wins him some amount of money no matter what the outcomes may be. There
exist versions with finite and countable additivity, see e.g. Freedman (2003). Related arguments
are exchangeability and De Finetti’s (1937)) representation theorem, see e.g. Bernardo (1996),
Easwaran (2011) and Romeijn (2017).

In Bayesian decision theory, there are complete class theorems, originally due to Wald (1947) (see
e.g. Robert (2007)), which provide a very pragmatic argument for Bayesianism. They basically
state that for every method for learning from data, there exists a method that is at least as good,
and that is Bayesian in the sense that it is based on updating beliefs using Bayes’ theorem with
a particular prior. A drawback of this argument is the limited applicability of these theorems, it
holds for compact parameter spaces and convex loss functions, and besides that, there is still
considerable room for manoeuvre in the choice of the prior. In particular, the choice of prior
may depend on e.g. the sample size and the choice of loss function, which may be unnatural to
many non-pragmatists.

Bayesian statistics can be justified in other ‘non-Bayesian’ ways too. Some find Bayesian analysis
attractive because it does not rely on counterfactuals, whereas some non-Bayesian methods
do: they rely on integration over the sample space, hence on data that could have but have not
realised (Dawid and Vovk,1999). Others like Bayesian methods because all inference is based
on the posterior only, which leads to straightforward uncertainty quantification — for example,
separate ‘confidence intervals’ are not needed. Other reasons are more practical. Bayesian
inference often works very well in practise. For example in clinical trials, researchers often
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have to deal with missing data because of the intention-to-treat policy. Here Bayesian ways of
dealing with the missing data because of drop-outs often outperform other, classical methods
(Asendorpf et al.,|2014). Another example of a practical motivation is the success of shrinkage
priors, which are chosen to produce a sparse estimate of a regression parameter vector; these
are discussed in Chapter|[6]

Criticism

How to specify the prior? This question both divides subjective and objective Bayesians, and
lies at the root of the main criticisms from non-Bayesians. Several issues can be filed under
the problem of priors. Subjectivists and objectivists debate whether there should be constraints
on prior probabilities, other than the laws of probability theory. In the case of objective Bayes,
there are no principles that uniquely determine objective priors in all cases. In particular, it is
unclear how a prior should represent ignorance. Subjective Bayesianism is criticised for the idea
that prior and posterior represent the learner’s subjective belief, while scientists are expected to
be concerned with objective knowledge (Gelman, [2008).

Another objection to Bayesianism is the problem of old evidence (Glymour, 1981): suppose a
new hypothesis is proposed, and it turns out to explain old evidence very well. How can the old
evidence be used to confirm this hypothesis? Related is the problem of new theories (Earman,
1992): the standard Bayesian framework does not provide a way to incorporate new hypotheses
in course of the learning process. This problem is addressed in Chapter 2]

1.2.3 Classical statistics and frequentism

The major alternative to Bayesian statistics is classical statistics. It is really a hotchpotch of many
different methods, philosophical views, and interpretations of probability (see e.g. Section 15|
and Hajek (2019)). The common factor is that it only considers probability assignments over
the sample space and not over parameters that themselves represent probability distributions.
The most important interpretation of the concept of probability in classical statistics, developed
by Von Mises (1939), is that it can be identified with a relative frequency: we can describe
the probability of a coin landing ‘tails, with the number of tails in a (very long) sequence of
coin tosses, divided by the total number of tosses. This is called frequentism. Since this is the
predominant view, classical statistics is often called frequentist statistics, but methods based on
other physical interpretations of probability, such as propensity, are considered classical as well.

1.3 Thetopics of this dissertation: challenges, limitations, and
pragmatics

I now give a high-level description of the main topics of this dissertation. This is followed by a
brief, specific introduction for every chapter.
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Bayesian inference under model misspecification

The Bayesian framework as described above provides us with a way to change our degrees
of belief over time when new evidence obtains. A Bayesian learner starts with specifying a
model, and assigning prior probabilities to its elements. If the model is appropriate, i.e. if the
true data generating process is in the model and the prior does not exclude it from the start,
consistency is guaranteed: the learner will converge on the truth as more and more data are
obtained. However, it might happen that the model is misspecified: the true data generating
process is not part of the model (or is assigned zero prior probability), which can be problematic
in different ways, and in this dissertation, Bayesianism is extended in two different ways to face
the problem.

First, it might happen that in the course of the learning process, the learner wants to incorporate
an hypothesis that did not occur to her before. The standard Bayesian framework does not
offer a way how to incorporate new hypotheses, it seems that the learner has to throw away her
data and start from scratch by specifying the larger model and assigning prior probabilities
to its elements. In Chapter 2} further introduced in Section|1.4] we consider an open-minded
Bayesian logic, to allow for dynamically incorporating new hypotheses.

Secondly, it could be that we want Bayes to concentrate on the best element in the model, instead
of the truth, which is outside the model, where the best is the element that is closest to the truth.
In Chapter [6, we show that standard Bayesian inference can fail to concentrate on this best
element in the model. We subsequently modify Bayes theorem (f.1) by equipping the likelihood
with an exponent, called the learning rate, and call this generalised Bayes. When the learning
rate is chosen appropriately, generalised Bayes concentrates on the best element in the model.
In Section|[1.6|this problem is presented further.

Bayes factor hypothesis testing under optional stopping

Bayes factor hypothesis testing is a Bayesian approach to hypothesis testing based on the ratio of
two Bayes marginal likelihoods. In Chapters[3|and 4} we study optional stopping, which inform-
ally means ‘looking at the results so far to decide whether or not to gather more data’ Different
authors make claims about whether or not Bayes factor hypothesis testing is robust under
optional stopping, but it turns out that one can give three different mathematical definitions
of what robustness under optional stopping actually means. We see in Chapters[3 and [4] that
adhering to one of the varieties of Bayesianism has implications for the claims one can make
in practise. For example, in Chapter s we elucidate claims about optional stopping which are
only meaningful from a purely subjective Bayesian perspective, yet the suggestion is made as if
those claims apply to pragmatic inference. In Section|r.5|I give an overview of current practise
in hypothesis testing, with p-values, and with Bayes factors.

A new theory for hypothesis testing with a Bayesian interpretation

In Chapter |5 we introduce a new theory for hypothesis testing. The central concept of this
theory is the E-variable, a random variable similar to, but in many cases an improvement of
the p-value. We introduce an optimality criterion, called GROW, for designing E-variables,
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and it turns out that these GROW E-variables have an interpretation as a Bayes factor, yet
with special priors, which are very different from those currently used by Bayesians. This is
an example of radical pragmatism: we do not choose these priors based on any philosophical
considerations, but these special priors are designed so that the resulting method satisfies some
practically motivated criterion — namely, the GROW. One could even state that the Bayesian
interpretation of GROW E-variables is merely a by-product, yet a convenient one, because
it provides a common language for adherents of different frequentist and Bayesian testing
philosophies. In Section|r.5|these schools of hypothesis testing (Fisherian, Neyman-Pearsonian,
the commonly used hybrid form with p-values, and Bayesian) are briefly discussed.

Best-arm identification with a Bayesian-flavoured algorithm

Another example of radical pragmatic Bayesianism can be found in Chapter 7, There, we want
to identify from a sequence of probability distributions the one with the highest mean. We
can assign prior probabilities to distributions v;, j = 1,..., K of having the highest mean, and
update these with Bayes’ theorem when we obtain a sample. We can construct a rule which
distribution to sample at time ¢ based on the posterior distribution, but in order to meet certain
frequentist (and Bayesian) criteria, we do not always pick the distribution with the highest
posterior probability of having the highest mean. The setting of Chapter [7} which is called
Best-arm identification, is introduced in Section[r.7,

1.4 Chapter 2} Merging

In Chapter 2} we consider the problem of dynamically incorporating hypotheses during the
Bayesian learning process. Here, successful learning means that if the true data generating
process is added to our model at some point, the learner almost-surely converges to the truth
as more and more data becomes available.

Setting Let the sample space be the set of all infinite sequences, denoted by ' *°, and consider
a o-algebra F,, containing all Borel set§’. We can for example look at the space of all binary
infinite sequences, 2* (Cantor space). Now let H* and P be two probability measures over this
measurable space (X', Fo, ) of infinite sequences, and denote with A € Fo, a propositiorf| An
example of such a proposition is: ‘the frequency of ones is equal to 0.4} or ‘every other bit is the
next bit of 7. We think of H* as the truth, i.e. the distribution generating the data, and we can
view P as the learner’s belief distribution.

The learner starts with a number of propositions A;, i € N, to which she assigns a prior belief
P(A;). At each time step ¢ she observes an evidence item x; € X, and she updates her belief in
the Bayesian way: her posterior belief in proposition A; is

P(A, ﬁxt)

P(A,-|xt): P(x)

4For a more detailed exposition, see Chapter
>Many authors call this an hypothesis, but to keep the introduction simple and to avoid confusion with statistical
hypotheses, I call it a proposition here, following e.g. Huttegger (2015).



10 Chapter 1. Introduction

The learning goal If H” is the true distribution that governs the generation of the data, the
learner should use the data coming from H* to change her beliefs P towards H*. Eventually, if
she sees enough data, we want P to come close to H*. There are many notions for this closeness,
and an obvious one would be concentration of the learner’s posterior distribution on the true
distribution. However, this is too strong for our purposes, as we do not want to exclude the
possibility of different distributions that are from some point on empirically equivalent (see
Lehrer and Smorodinsky (1996)). Thus, we will use the notion of truth-merger, which comes in
two variants. The first is called strong merger (Kalai and Lehrer,1993; Lehrer and Smorodinsky,
1996; Leike, |2016)), which is still reasonably strong, as discussed in Chapter

Definition 1.1 (Strong truth-merger). P merges with the truth H* if H*-almost surely

sup |P(A|xt) - H*(A|xt)| -0 as - oo.
AeF oo

In words, with true probability 1, the learner’s probabilities conditional on the past will asymp-
totically coincide with the true probabilities. Truth-merger is thus concerned with learning the
probabilities of future outcomes. In Chapter |2} we are mainly concerned with the predictive
probabilities up to a finite point in time, which is captured in the notion of weak merger (Lehrer
and Smorodinsky, 1996):

Definition 1.2 (Weak truth-merger). We say that P weakly merges with the truth H* if and
only if for £ € N we have H*-almost surely

sup |[P(Alx') - H*(Alx")| >0 as t— oo,

AeFipg

where F;., denotes the o-algebra generated by the first ¢ + £ outcomes.

Strong merger implies weak merger, as follows directly from the definitions.

Contribution In the standard form, a Bayesian learner starts with specifying her prior distri-
bution P, and learns by conditionalisation on the data. The prior specifies a particular model (set
of hypotheses to which positive probability is assigned), and if the truth H* is in this model and
H” is absolutely continuous with respect to P, then she will almost surely merge with the truth
(Blackwell and Dubins, 1962). However, she cannot include every hypothesis from the start (see
Chapter|[2), she needs to commit to restrictions on her model (inductive assumptions), and
there is no room to adapt the model later on in the standard form of Bayesianism as described
in Section 1.2} In particular, she can not expand the model to incorporate new hypotheses
(the Bayesian problem of new theory) that might be more in accordance with the data than
the hypotheses in the initially formulated model. For example, somebody might come along
and tell her about a new hypothesis that is eminently reasonable but which she simply did
not think of. Thus, the challenge is to come up with an open-minded Bayesian inductive logic
that can dynamically incorporate new hypotheses. Wenmackers and Romeijn (2016) formalise
this idea, but in Chapter [2| we show that their proposal does not preserve merger with the
true hypothesis. We then diagnose the problem, and offer two versions of a forward-looking
open-minded Bayesian that do weakly merge with the truth when it is formulated.
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1.5 Chapters[3}[4 and s} Hypothesis testing

A large part of this dissertation is about hypothesis testing. Here I first introduce this topic in a
simplified setting; for a more general treatment, see Chapter[4] Section[4.4} I then summarise
our contributions of Chapters[s, [4]and|s.

Setting Let the null hypothesis H, and the alternative hypothesis H, be statistical hypotheses,
i.e. sets of probability distributions on a measurable space (Q,F). Let X" = Xj,..., X, be
random variables taking values in the outcome space Q.

The learning goal We wish to test the veracity of o, possibly in contrast with some altern-
ative #,;, based on a sample X" that may or may not be generated according to an element of
Ho or H;. There are several paradigms for testing, based on different philosophies and also
with different objectives. The most commonly used framework for hypothesis testing in the
applied sciences, often referred to as classical or frequentist, is that of the p-value based null
hypothesis significance testing (NHST).

Definition 1.3 (P-value). A p-value is a random variable P such that for all 0 < « < 1and all
Py € Ho, we have Py(P < ) = a.

P-values were advocated by Sir Ronald Fisher to measure the strength of evidence against the
null hypothesis, a smaller p-value indicating greater evidence (Fisher, [1934). In his framework
of significance testing, the learner comes up with a null hypothesis that the sample comes from
an infinite population with known (hypothetical) distribution, so if the data are unusual under
Ho, it constitutes evidence against the null. The level of significance is simply a conventiorE to
use as a cut-oft level for rejecting 7. In his later work (Fisher, 1955; Fisher, 1956), he refined
this and prescribed to report the exact level of significance, which is thus a property of the
data.

Jerzy Neyman and Egon Pearson developed an alternative theory of null hypothesis testing
where the main concern is to limit the false positive rate of the test, and a second hypothesis, the
alternative hypothesis needs to be specified. As opposed to the Fisherian framework in which
the p-value is a measure of evidence, the outcome of the Neyman-Pearson test is acceptance or
rejection of the null hypothesis. The probability « of falsely rejecting the null hypothesis when it
is true is called the Type I error, the probability /3 of falsely accepting the null hypothesis is called
the Type II error, and the complement 1 - j3 is called the power of a test. If we fix the significance
level «, a most powerful test is the one that minimises the Type II error 8, and Neyman and
Pearson proved in the famous lemma named after them, that such a most powerful test for
simple H, and H; has the form of a likelihood ratio threshold test. Note that in this framework
the significance level is a property of the test. Whereas in Fisher’s framework, p-values from
single experiments provide evidence against H, in the Neyman-Pearsonian framework the
behaviour of the test in the long run is considered, and we can view the significance level « as a
relative frequency of the Type I errors over many repeated experiments. As such, a test does not

6 According to some authors (Hubbard,|2004; Gigerenzer and Marewski, |2014), the 5% level was taken just because
5% tables were available to Fisher at the time he wrote his earlier works.
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provide evidence for the truth or falsehood of a particular hypothesis (Neyman and Pearson,
1933).

The current practise of the p-value based NHST is, remarkably, a hybrid of the methods
proposed by Fisher on the one hand, and Neyman and Pearson on the other hand, despite their
utter disagreement about hypothesis testing (see Hubbard (2004) who quotes their reciprocal
reproaches), and the conflicting aspects of their theories of inference. Typically, a significance
level « is pre-specified (often 0.05), then an experiment is designed so that it achieves a certain
power 1 — f3, and after the data are obtained a p-value is calculated. When the p-value is smaller
than «, the null hypothesis is rejected, and in many journals, the p-value is reported as well, often
with a superscript of one or more star{|indicating whether p < 0.05, p < 0.01, or p < 0.001.
As early as the 1960s (e.g. Edwards, Lindman and Savage (1963)), many papers have been
published in which the p-value based NHST is criticised. Besides that it is a combination of
the two (incompatible) frameworks described above, it is criticised because of the widespread
misinterpretations of p-values (for example, they are thought to be equal to the Type I error
rate, or to the probability of an hypothesis being true given the data), their dependence on
counterfactuals and the need of the full experimental protocol to be determined upfront. For
articles debating the use of p-value based NHST, see e.g. Berger and Sellke (1987), Wagenmakers
(2007), Gigerenzer and Marewski (2014), Griinwald (2016), Wasserstein, Lazar et al. (2016)
and Benjamin et al. (2018). For work on Fisherian versus Neyman-Pearsonian views, see e.g.
Gigerenzer et al. (1990), Gigerenzer (1993) and Hubbard (2004), and an interesting investigation
into why many are unaware of these different views and their incompatibility is Huberty
(1993).

Another framework for hypothesis testing is based on Bayes factors (Jeffreys,1961; Kass and
Raftery, 1995)). Since the last decade this framework has been advocated by several researchers
as an alternative for the p-value based NHST (see e.g. Wagenmakers (2007)). Here, H, and
‘H, are represented by measures Py and P, that are taken to be Bayesian marginal distributions.
Denote H; = {Py);; 0 € ©;}, with (possibly infinite) parameter spaces ® ;, and define prior
distributions 7 and m; on ®, and ©; respectively. The Bayes marginals then are, for any set
AcQ

PA) = [ Poo(A)dm(8) 5 Pi(4) = [ Poy(A)dm(6). (13)

The Bayes factor is defined as the ratio of these Bayes marginals (for simple H, and H, this
is simply a likelihood ratio). Sometimes we want to allow for improper prior distributions
(integrating to infinity). For this case, we give a more general definition in Chapter[4} in terms
of versions of the Radon-Nikodym derivatives of P, and P, w.r.t. some underlying measure. A
large Bayes factor corresponds to evidence against the null hypothesis. Sometimes, one can
also obtain frequentist Type-I error guarantees with Bayes factors. The probability under (an
element of) the null hypothesis that a Bayes factor based on a sample with a fixed size # is larger
than 1/« for « € (0,1) is by Markov’s inequality bounded by «. Thus, one can use Bayes factors
together with a frequentist Type I error guarantee by choosing a threshold of 1/«, and rejecting
the null if the Bayes factor exceeds that threshold.

7See Gigerenzer and Marewski (2014) for an excellent critique of, as they call it, the null ritual.
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Contribution (1) When a researcher wants to use p-value based NHST, the experimental
protocol must be completely determined upfront. In practise, researchers often adjust the
protocol due to unforeseen circumstances, or collect data until a point has been proven. This
is often referred to as optional stopping. Informally, this means: ‘looking at the results so far
to decide whether or not to gather more data’ With (standard) p-value based NHST (aiming
to control the Type I error) this is not possible: one can prove that even if the null hypothesis
is the true data generating process, one is guaranteed to reject it upon collecting and testing
more and more data. Bayes factor hypothesis testing on the other hand has been claimed
by several authors to continue to be valid under optional stopping. But what does it mean
for a test to remain valid under optional stopping? It turns out that different authors mean
quite different things by ‘Bayesian methods can handle optional stopping), and such claims are
often only made informally, or in restricted settings. We can discern three main mathematical
concepts of handling optional stopping, which we identify and formally define in Chapter [4}
T-independence, calibration and (semi-)frequentist. We also mathematically prove that Bayesian
methods can indeed handle optional stopping in many (but not all!) ways, in many (but not
all!) settings. While Chapter [4]is written to untangle the optional stopping confusion by giving
rigorous mathematical definitions and theorems, Chapter [3/is written for practitioners and
methodologists who want to work with default Bayes factors introduced by the self-named
Bayesian psychology community (Rouder et al.,, [2009; Jamil et al., |2016; Ly, Verhagen and
Wagenmakers, [2016). That chapter is mainly a response to the paper Optional stopping: no
problem for Bayesians (Rouder, 2014), and we explain for a non-mathematical audience why
there is more nuance to this issue than Rouder’s title suggests, and why his claims (which are
actually about calibration, which we formally define in Chapter [4.4.2, and not about Type I
error control) are relevant only under a subjective interpretation of priors. Default priors do
not have such an interpretation, making the relevance of Rouder’s claims for practise doubtful.
In Chapter[qwe prove that Rouder’s intuitions about calibration are correct, but they do not
carry over to other notions of optional stopping than calibration; and therefore they do not
apply to most practically relevant issues with optional stopping with Bayes factor hypothesis
testing.

Contribution (2) Many agree that the p-value based NHST paradigm is inappropriate (or
at least suboptimal) for scientific research, yet the dispute about its replacement continues to
be unresolved. Some propose a Bayesian revolution (yet sometimes overlook the limitations
of Bayesian approaches, see Chapter [3 and[4), others adhere to more Fisherian or Neyman-
Pearsonian views. Finally, some are more pragmatic and just want to use an appropriate test
for their situation that gives them certain guarantees. Wouldn't it be nice to have a common
language for adherents to those different testing schools that expresses strength of evidence, that
allows for evidence from experiments originating from those different paradigms to be freely
combined, and that resolves some of the main problems with p-values, such as interpretability
issues for practitioners? In Chapter |5 we introduce a theory for hypothesis testing based on
E-test statistics (we call them E-variables) that achieve just that. The definition of an E-variable
is simple:
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Definition 1.4 (E-test statistic). An E-test statistic is a non-negative random variable E satisfying

forall P e Ho: Ep[E] < 1.

E-variables are flexible: they can be based on Fisherian, Neyman-Pearsonian and Bayesian test-
ing philosophies; E-variables resultant from those different paradigms can be freely combined
while preserving Type I error guarantees, and they allow for a clear interpretation in terms
of money or gambling. In Chapter[s we develop this theory of &-variables; this includes the
development of optimal, ‘GROW’ E-variables.

1.6 Chapter|[6; Generalised linear regression

In Chapter[6] we consider Bayesian generalised linear regression under model misspecification.
Here, successful learning means that the (generalised) posterior distribution concentrates
on an element in the model that is in some sense optimal, although it is not the true data
generating distribution (which is not in the model). I start by explaining linear regression in
the well-specified case. I then introduce the (more general) learning goal and summarise our
contributions.

Setup In linear regression, we wish to find a relationship between a regressor variable X € X
and a regression variable Y € R, where X is some set. We want to learn a function g: X - R
from the data, and we assume Gaussian noise on Y, thatis Y; = g*(X;) + ¢;, where ¢; i
N(0,0%), and g* is the true function we want to learn. We can thus formulate the conditional

density of Y” given X" as

)n exp (_Z?:l(Yi - g(Xi))? ) '

202

1

2(Y"X") =
Pe (Y'IXT) ( V2no?
In linear regression, we search for a function g for our problem among linear combinations
of basis functions: gg(X) = Zle B;g;i(X). This can be further extended to generalised linear
models (GLMs), where the dependent variable Y is not necessarily continuous-valued any more
(but from some set )'), and the noise is not necessarily Gaussian. An example that we encounter
in ChapterEis the logistic regression model { fz : B € RP}, where the outcomes Y; € {0,1} are
binary random variables, the independent variables are p-dimensional vectors X; € R?, with
the conditional density

xT
)/,_1|X4)-_67x
P (Yi=11X) =

Learning goal We are given an ii.d. sample Z" ~ P from a distribution P on the sample
space Z = X x ), and we want to do inference with the generalised Bayesian posterior I1, on
our model F, defined by its density

exp (- X0y 45 (2:)) - o (f)

[rexp (=S L(21)) - mo(f) dp(f) (1.4)

ma(f) =
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Here /¢(z;) is the loss of f, an element of our model F, on outcome z; € Z, and 7, is the
density of a prior distribution on F relative to some underlying measure p. For GLMs, can
equivalently be interpreted in terms of the standard Bayesian posterior based on the conditional
likelihood pf(y|x), i.e.

7a(f) o ﬁ(pm,wxi))no ). (1)

For example, consider standard linear regression with square loss £;(x, y) = (y - f(x))? and
fixed learning rate 7. Then induces the same posterior 7, (f) over F as does with
pr(yx) o< exp(—(y — f(x))?), which is the same as with /¢ replaced by the conditional
log-loss E}(x, y) = —log ps(y|x). All examples of GLMs in ChapterlEcan be interpreted in
terms of for a misspecified model, that is, the density P(Y|X) is not equal to p for any
feF.

We do not assume that the model is well-specified, however, we do assume that there ex-
ists an optimal element in our model f* € F that achieves the smallest risk (expected loss)
E[{f+(Z)] = inf s E[££(Z)]. For GLMs this has additional interpretations: it means that if 7
contains the true regression function g*, then f* = ¢*, and also, f~ is the element in F closest
to P in KL divergence inf s+ Ex,y~p[log(p(Y|X)/ps(Y|X)]. As more and more data becomes
available, we want the Bayesian posterior to concentrate in neighbourhoods of f*.

Contribution In the last decade it has become clear that standard Bayesian inference can
behave badly under model misspecification, that is, when the true distribution P is not in
the model F. Griinwald and Van Ommen (2017) give a simple linear regression example in
which Bayesian model selection, model averaging and ridge regression severely overfit: Bayes
learns the noise of the sample in stead of (or in addition to) the signal. For small sample sizes,
the posterior does not concentrate on element f* € F closest in KL divergence to the true
distribution P, even if the true regression function is in the model (in their example, only the
noise is misspecified). They also provide a remedy for this problem: using the appropriate
generalised Bayesian posterior, defined analogously to by its density

exp (-n X1y £4(z1)) - mo(f)
Jrexp(-n 2 bp(zi)) - mo(f) dp(f)’

where # > 0 is the learning rate, and # = 1 corresponds to standard Bayesian inference. They
show with simulations that for small enough 1 (which can be found by the Safe-Bayesian
algorithm), this results in excellent performance. In Chapter|[6|we show that failure of standard
Bayes (# = 1) and empirical success of generalised Bayes (with small enough #) on similar
toy problems extends to more general priors (lasso, horseshoe) than considered by Griinwald
and Van Ommen (2017) and more general models (GLMs). Additionally, we show real-world
examples on which generalised Bayes outperforms standard Bayes. Griinwald and Mehta
(2019) showed concentration with high probability of generalised Bayes with learning rate
77 in the neighbourhood of f* under the 7-central condition. In Chapter [6 we show under
what circumstances this central condition holds for GLMs. Furthermore, we providle MCMC
algorithms for generalised Bayesian lasso and logistic regression.

ma(f) =
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1.7 Chapter |7} Best-arm identification

In this chapter we consider a Bayesian-flavoured anytime best-arm identification strategy. We
show that it is in some sense optimal, meaning that it (asymptotically) uses as few samples as
possible to indicate with a certain confidence which of a sequence of probability distributions
has the highest mean.

Setup A finite stochastic multi-armed bandit model is a sequence of K probability distribu-
tions v = (v1,. .., vk ), which we call arms. With y; we denote the expectation of distribution
v; of arm i (assumed it exists), and we denote the optimal arm I* to be the arm with mean
§” = maX;e[] pi> assuming it to be unique. The learner, who does not know about the distribu-
tions v, interacts with the model by choosing at each time t = 1,2, ... an arm I, to sample, and
she observes an evidence item, called reward, Y; 1, ~ v;,. The learner chooses arm I; based on the
history (I, Yi1,, .. .» It-1, Yi-1,1,_, )> and possibly some side information or exogenous random-
ness, denoted by U,_,. Let F; be the g-algebra generated by (Uy, I, Y1,1,, Us, ..., It, Yo 1,, Ur),
then I, is F;_;-measurable. The sequence of random variables (I;) N is called the strategy of
the learner or a bandit algorithm.

Learning goal We consider a setting called best-arm identification (BAI), the name says it
all: we want to explore the arms to make an informed guess which one has the highest mean.
A BALI strategy consists of three components. The sampling rule selects an arm I; at round
t. The recommendation rule returns a guess for the best arm at time ¢ (it is F;-measurable),
and thirdly, the stopping rule 7, a stopping time with respect to (F;) N, decides when the
exploration is over. Two main mathematical frameworks for BAI exist. One is the fixed-budget
setting, where the stopping time 7 is fixed to some (known) maximal budget, and the goal is
to minimise the probability of returning a suboptimal arm (Audibert and Bubeck, |2010)). The
other, which we consider in Chapter 7} is the fixed-confidence setting, in which given a risk
parameter 6, the goal is to ensure that the probability to stop and recommend a suboptimal arm
is smaller than &, while minimizing the total number of samples E[ 7] to make this §-correct
recommendation (Even-dar, Mannor and Mansour, |2003)). There exist several sampling rules
for the fixed-confidence setting, most of them depend on the risk parameter J, but one that does
not is the tracking rule of Garivier and Kaufmann (2016), which also asymptotically achieves the
minimal sample complexity combined with the Chernoff stopping rule (see ibid. and Chapter[y).
A sampling rule that does not depend on the risk parameter & or a budget is called anytime by
Jun and Nowak (2016), and is appealing for many (future) applications in machine learning,
such as hyper-parameter optimisation.

Contribution We consider a Bayesian-flavoured anytime sampling rule introduced by Russo
(2016), called Top-Two Thompson Sampling (TTTS). So far, there has been no theoretical sup-
port for the employment of TTTS for fixed-confidence BAI, and Russo (2016) proves posterior
consistency (with optimal rates) under restrictive assumptions on the models and priors, ex-
cluding two settings mostly used in practise: Gaussian and Beta-Bernoulli bandits. In Chapter 7|
we address the following: We (1) propose a new Bayesian sampling rule (T3C), computationally
superior to TTTS; (2) establish §-correctness of two new Bayesian stopping and recommend-
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ation rules; (3) provide sample complexity analyses of TTTS and T3C under our proposed
stopping rule; (4) prove optimal posterior convergence rates for Gaussian and Beta-Bernoulli
bandits.

1.8 This dissertation

Each of the chapters of this dissertation corresponds to one of the papers listed on page i}
therefore, the chapters are self-contained. However, they are written for different audiences,
hence they differ greatly in style, in technical level, and in background knowledge required to
be able to read them.

Chapter 2] (Sterkenburg and De Heide, 2019) is written for a readership of mathematical philo-
sophers. Mathematical philosophy is a field in which philosophical questions are treated with
tools and methodology from mathematics: with definitions, theorems and proofs, and with pre-
cision and rigour. Mathematical philosophers often have a strong understanding of some fields
in mathematics, such as measure theoretic probability, set theory, and of course logic.

Chapter (De Heide and Griinwald, |2018) is written for statisticians and methodologists. These
are often researchers in a methodology department associated to a faculty of applied research
(psychology, biology, etc.), who study and develop statistical methods for their field. Only
elementary probability theory and statistics is needed to read this chapter.

The subsequent four chapters (Hendriksen, De Heide and Griinwald, 2020} Griinwald, De
Heide and Koolen, 2019; De Heide et al., 2020; Shang et al.,|2020) are aimed at mathematical
statisticians and machine learning theorists with a solid mathematical background (in particu-
lar, obviously, mathematical statistics and probability theory). For Chapter[4]some familiarity
with group theory is useful to fully appreciate it, and for Chapter|[6 the same holds for stat-
istical learning theory, although in both chapters all necessary preliminaries are (concisely)
provided.
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Chapter 2

On the Truth-Convergence of
Open-Minded Bayesianism

Abstract

Wenmackers and Romeijn (2016) formalize ideas going back to Shimony (1970) and Putnam
(1963) into an open-minded Bayesian inductive logic, that can dynamically incorporate stat-
istical hypotheses proposed in the course of the learning process. In this paper, we show that
Wenmackers and Romeijn’s proposal does not preserve the classical Bayesian consistency guar-
antee of almost-sure merger with the true hypothesis. We diagnose the problem, and offer a
forward-looking open-minded Bayesians that does preserve a version of this guarantee.

2.1 Introduction

On the standard philosophical conception of Bayesian learning, an agent starts out with a
particular prior distribution and learns by conditionalizing on the data it receives. Well-known
results on the merger of opinion show that the specific prior does not matter too much, as long
as there is agreement on what is possible at all. These same results can also be taken to show
that the agent converges to the truth, as long as its prior does not exclude this truth from the
start (Earman, 1992, 141ff; Huttegger, [2015).

However, a Bayesian agent cannot include in its prior every possible truth from the start; not in
practice, and not even in theory (Putnam, 1963; Dawid, 1985; Belot, |2013; Sterkenburg, 2019). A
Bayesian agent must commit to restrictive inductive assumptions in its initial choice of prior
(Howson, [2000; Romeijn, [2004). Standard results about convergence to the truth only apply
if these initial assumptions are actually valid in the learning situation at hand. But there is,
on the standard conception, no room for the agent to readjust (Levi,[1980); not even if these
assumptions start looking faulty.

19
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In more explicitly statistical terms, a Bayesian agent’s prior can be seen to specify a particular
model, or set of hypotheses. If the model is appropriate, if one of the hypotheses is true, there
is—at least for a countable model—a guarantee of consistency that the agent with probability 1
(almost surely, a.s.) converges on this truth. But if it is not, the agent’s beliefs can with positive
probability always and forever remain off the mark. On the standard conception, there is, again,
no room for the agent to later adapt this model (Dawid, 1982)); there is, in particular, no room
to expand the model, to incorporate new hypotheses that might be more in accord with the
data (Gillies, |2001; Gelman and Shalizi, 2013).

The question of how to open up the standard conception to make room for incorporating
new hypotheses is the Bayesian problem of new theory (Chihara, 1987, 5561F; Earman, [1992, 132f;
Romeijn, 2005b). An early account that engages with the problem of new theory is the tempered
personalism due to Shimony (1970). Central to Shimony’s account is an idea he traces back to
Putnam (1963; see Shimony, [1970, p. 89;1969), and in more veiled form to Jeffreys (1961 see
Shimony, 1970, 971%; also see Howson, 1988). This is the idea that, rather than taking as starting
point an hypothesis set that is as wide as possible, Bayesian inference is relative to a limited set
of “seriously proposed hypotheses,” that is dynamically expanded as new such hypotheses are
proposed. In this context Shimony introduced the notion of a catch-all hypothesis that is the
complement of all seriously proposed hypotheses at any given time.

Recently, Wenmackers and Romeijn (2016) have worked out these ideas in a statistical setting,
into what they brand an open-minded Bayesianism. In a number of different versions they
propose a Bayesian inductive logic that allows for an agent to adopt newly formulated statistical
hypotheses during the learning process.

One important question that they leave untouched, however, is whether these formalizations
actually preserve the consistency guarantee of truth-convergence. That is, if the true hypothesis
is one of the actually formulated hypotheses, thus becomes part of the open-minded Bayesian’s
hypothesis set, is the agent from that point on still guaranteed to almost surely converge on this
truth? That is the question we investigate in this paper.

We proceed as follows. First, in section [7.5) we introduce the statistical framework of Bayesian
learning that Wenmackers and Romeijn employ, and discuss their different versions of open-
minded Bayesians. Then, in section [2.3} we investigate the guarantee of convergence to the
truth. We focus on the property of weak merger with the true hypothesis, whenever part of the
hypothesis set, and show that all the proposed versions of open-minded Bayesianism, unlike the
standard Bayesian, fail to guarantee this property. In section [2.4/we diagnose the problem and
the exact nature of the convergence we could possibly attain, in the course of which we introduce
the notions of an hypothesis and posterior scheme and that of a completed agent measure. We
then set out for a version of open-minded Bayesianism for which we can show, for every
hypothesis and posterior scheme, strong merger of the completed agent function, from which
weak merger of the agent follows. This leads us, finally, to our proposal of a forward-looking
open-minded Bayesian. The general threat to truth-convergence lies in the possibility of an
endless stream of overfitting hypotheses: our forward-looking proposal meets this threat by
neutralizing the role of old evidence. In an initial proto-version this is achieved by a constraint
on the posteriors assigned to new hypotheses; in the final version this is achieved by combining a
constraint on new hypotheses’ priors (instantiating the idea of the catch-all) with the stipulation
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that new hypotheses’ likelihoods on old evidence are equal to the agent’s own past probability
assignment.

We should emphasize that Wenmackers and Romeijn in their paper (and we in this paper)
are concerned with the question of how to incorporate externally proposed new hypotheses:
their proposals are attempts to make this aspect part of a Bayesian logic of inductive inference.
They are in their paper (and we are here) not concerned with when new hypotheses should
be taken into consideration, let alone with how new hypotheses are conceived. To paraphrase
Lindley (2000, p. 303) paraphrasing de Finetti: if you have your statistical model, reasoning
is mere calculation, but constructing your model actually requires thinking. We are here only
concerned with the former, but presume, with Wenmackers and Romeijn, that the scope of mere
calculation may be slightly extended, to the procedure of incorporating given new hypotheses
into your model.

2.2 The open-minded Bayesians

In this section, we first set out the presupposed formal framework (sect. o.2.1), and then discuss
the standard Bayesian (sect. [2.2.2), the vocal open-minded Bayesian (sect. [2.2.3), the silent
open-minded Bayesian (sect. 2.2.4) as well as its retroactive variant (sect. [2.2.5), and finally the
hybrid open-minded Bayesian (sect.|[2.2.6).

2.2.1 Formal framework: outcomes and hypotheses

In the statistical set-up employed by Wenmackers and Romeijn[" the domain of a Bayesian
agent’s probability function is the Cartesian product Q2 x ® of an outcome space Q2 and a statistical
hypothesis space ©.

The outcome space

In all of the following, we assume the simple scenario of repeatedly sampling from two possible
elementary outcomes, o and 1. Formally, the outcome space () is the space {0,1}* of all infinite
binary sequences E“. It is convenient for our purposes to treat a probability measure over this
space as a function P over the finite sequences, that satisfies P(@) = 1, where & is the empty
outcome sequence, and P(E") = P(E'0) + P(E'1) for all finite outcome sequences E', where
E'E denotes outcome sequence E' of length ¢ followed by elementary outcome E € {0,1}.
Formally, the set of cones [E'] := {E® € Q : E“ extends E'} for all finite sequences E' generates
a o-algebra § over Q) containing all the Borel sets, and an assignment P as above induces a
unique measure y on (Q, ) with u([E']) = P(E") for all finite E".

The hypothesis space

We consider statistical hypotheses that are given by likelihood functions over the possible
outcomes. That is, we take hypotheses H to be themselves probability measures over the

'For a recent alternative proposal for open-minded Bayesianism in a framework that does not explicitly deal with
statistical hypotheses, see Raidl (2020).
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outcome space.

As a basic example, the i.i.d. or Bernoulli hypothesis Hy with parameter 6 € [0,1] assigns each
length-t data sequence E' a probability Hp(E*) = 6" - (1- 6)"~" with t; the number of 1’s in
E'. This induces one-step conditional probabilities Hg(1 | E') = 6 at each time point ¢, i.e., no
matter the past sequence E’. Thus Hy formalizes the data-generating process where the same
elementary outcome is always produced with the same probability; for instance, the process of
repeatedly tossing a coin (heads is 1, tails is o) with bias 0.

Other hypotheses can express various dependencies of current probabilities on the structure of
the past data. At the extreme end are deterministic hypotheses, that at each point in time only
allow for one particular next outcome. This corresponds to a function assigning probability 1 to
each initial segment of one particular infinite outcome stream E“.

We will assume that at any time there are only a finite number of explicitly formulated hypothesis.
These N hypotheses Hy, ..., Hy_ are collected in a hypothesis set ® y := {H; };<n-

Below we will consider expanding sequences of hypotheses sets, for which the following notation
will be useful. Let N(#) denote the number of hypotheses formulated before time ¢, so that the
hypothesis formulated at time ¢ (if it exists) is Hy ). We often write ¢y < t; < f, <... for the
time points at which new hypotheses are formulated. In that case we abbreviate N; := N(¢;) =
N(to) +1i, so that Hy, is the hypothesis formulated at ¢; and ®y, 41 = {H; } i<, is the hypothesis
set right after the formulation of Hy;,. Note, again, that we do not make any assumptions on
the origin of the new hypotheses; all we suppose is that the inquiry prompts some (plausibly
data-dependent!) stream of incoming hypotheses. We will say more about this in our analysis

in sect.

Full probability functions from marginal over ® y
Choose some distribution over @ y for an agent’s marginal probability function over the formu-

lated hypotheses. Since hypotheses are likelihood functions, we can define the agent’s marginal
likelihood function over the outcomes, conditional on hypothesis H;, by

P(E | H;) := H;(E).

Then by the law of total probability we obtain the unconditional marginal likelihood over the
outcomes by

P(E) =)’ P(H;)-Hi(E). (21)

i<N
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Thus stipulating the marginal over © y defines a probability function P over all of Qx® y ]

2.2.2 The standard Bayesian

A Bayesian agent starts with a set ® y of N hypotheses, and a probability function Py, or prior,
over ®y and hence over () x ® NWhen the agent receives a new outcome E; at time ¢ > 0, it
must update its probability function P;_; to a new probability function or posterior P;.

The orthodox Bayesian way of updating on the evidence is by use of Bayes’s rule,
Pi(-) = Po(-| Et)>

with E* the outcome sequence up to time #. In particular, for the agent’s predictive probabilities,
or its marginal probability function over finite-length future outcomes,

Py(E'E®)

P(E’) =Py(E° |E') = ———2

(B) = BB | E) = 7 s

Equivalently but more in line with the procedure in sect. |2.2.1, the agent first updates the
marginal posterior over the hypotheses, again by Bayes’s rule and by Bayes’s theorem:

Py(H;) - H;(E")

P,(H;) = Py(H; | E') = Po(EY)

(2.2)

Then, by the law of total probability on the conditional marginal likelihood,
P(E*) = Py(E° | E') = Y Po(H; | E') - Hi(E° | EY)
i<N

= Z;]Pt(Hi)~Hi(E5|Et).

In summary, the standard Bayesian proceeds as follows.

(t =0) N hypotheses

At the start each explicitly formulated hypothesis H; in @y receives a prior Py(H;) > 0,
such that ;v Po(H;) = L.

>QOur account of hypotheses is a slightly simplified version of Wenmackers and Romeijn’s. They take as hypotheses
sets of probability functions, so that there is a difference between the “theoretical context” Ty = {H; }i<n, the set
of hypotheses, and @y = U;<NH;, the set of all probability functions that constitute the hypotheses. Furthermore,
an hypothesis’s likelihood is then only settled with the aid of a subprior over the hypothesis’s elements. While this
additional complexity arguably does more justice to the actual shape of hypotheses in scientific or statistical inference,
nothing in the following should hinge on the simpler formulation we have chosen to adopt. (Also note that Wenmackers
and Romeijn’s running example of the food inspection only figures “elementary” hypotheses that are singleton sets, i.e.,
single probability functions as in our framework.) That said, a natural further development of the current work would
allow for representing ‘hypotheses’ as models in the form of continuous distributions over parametric hypothesis
spaces, so at to be able to explicitly analyze, for instance, adding (continuously many) new parameters to an already
included model.

3We always assume that the prior for given hypothesis set ® y is regular, meaning that it assigns nonzero probability
to each element in @ y.
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(t > 0) Evidence E’
Updating on evidence at a later point in time proceeds by

Py(H;) - Hi(E')

P(H;):=Py(H; | E') = Po(E")

(t > 0) New hypothesis Hy

An hypothesis formulated at a later point in time is not an element of the set @y of
hypotheses. This hypothesis’s prior and posterior probability is and will always remain
o.

2.2.3 The vocal open-minded Bayesian

Wenmackers and Romeijn’s proposal of an open-minded Bayesianism starts with postulating,
alongside the set @y of explicitly formulated hypotheses, a catch-all hypothesis (2016; an idea
presented in but preceding Shimony, 1970, p. 95; e.g., Savage in a discussion edited by Barnard
and Cox, 1962, p. 70). This catch-all hypothesis Oy comprises all (yet) unformulated hypotheses;
Wenmackers and Romeijn explicitly define it as the complement of ® 5 within the class of all
possible hypotheses.

Their vocal variant of open-minded Bayesianism (Wenmackers and Romeijn, 2016, 1234f, 12381})
derives its name from the fact that the catch-all hypothesis comes with a symbolic prior and
likelihood function that figures in all calculations. This in contrast to the silent version (sect.
[2.2.4/below), where no such prior or likelihood is formulated.

Specification

Thus the vocal open-minded Bayesian starts with an hypothesis set ® y of N explicitly for-
mulated hypotheses, and in addition a catch-all hypothesis ®y. Each explicit hypothesis is
assigned a numerical prior probability, summing to 1; and in addition the catch-all hypothesis is
assigned an “indefinite” or “merely symbolic” prior 7y. The numerical probability assigned to an
H € Oy specifies the prior probability value Py(H | ®y ), conditional on the hypothesis set; the
unconditional or absolute prior is given by the normalization Py(H) := (1- 7y) - Po(H | On),
which is also indefinite because it involves 7y. While the catch-all thus receives an explicit yet in-
definite prior value Py(®y) = 7y, the prior probability values Py (H') of the (yet) unformulated
hypotheses H' € @y are left fully unspecified.

In addition to the indefinite prior, the catch-all comes with a symbolic likelihood function
xn(*) := Py(- | ®x). Thus the unconditional marginal likelihood function, analogous to (2.1)
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but now not even conditional on @y, is given by the indefinite term

Py(E) = Z Py(H;) -H;(E) + 1y - xn(E)

=(1-1n) Z Py(H; | ®n) Hi(E) + 7y - xn(E).

The calculation of an explicit hypothesis’s posterior on receiving evidence E proceeds by Bayes’s
rule and theorem in accordance with (2.2), but now also results in an indefinite term because it
involves Py (E).

Finally and crucially, at each point in time the open-minded Bayesian may receive a newly
formulated hypothesis. This new hypothesis, in terminology due to Earman (1992, p. 196), is
shaved off from the catch-all. Formally, the vocal agent extends its current hypothesis set ® 5
to the new set @y, = @y U {Hy} to include the newly formulated hypothesis Hy, leaving a
cleanly shaven catch-all @ y,; = @y ~ {Hy}. To specify the new hypothesis’s prior Py(Hy)
the agent then chooses a prior probability value p that it takes from the prior 7y, leaving the
indefinite remainder 7y, := Ty — p for the new catch-all Onat. Writing xx.1(+) = Po(- | Oni1)
for the new catch-all’s indefinite likelihood function, expressions for the marginal likelihoods
and posteriors that explicitly contain Hy can be calculated as above.

In summary, the vocal open-minded Bayesian proceeds as follows.

(t=0) N explicit hypotheses

Each explicit hypothesis H; in ®y receives a prior Py(H; | ®y) > 0 conditional on Gy,
such that 3>, .y Po(H; | ®x) = 1. Moreover, the catch-all hypothesis @Oy = O\ Oy receives
an indefinite unconditional prior P, (®y) := 1y, and the unconditional priors of the
explicit hypothesis are given by Py(H;) := (1-7n) - Po(H; | On).

(t > 0) Evidence E!

Updating proceeds in the standard fashion, although involving an indefinite prior and
likelihood of the catch-all:

Py(H;) - Hi(E")
] 0 Po(H) H; (Et) + TN XN(Et)

P, (H;) = Py(H; | E') =

(t > 0) New hypothesis Hy

When a new explicit hypothesis Hy is formulated, extending the hypothesis set to @y, =
Oy U {Hy}, the prior 7y of the earlier catch-all is decomposed into a value p < 7y for
the prior Py(Hy) of the new hypothesis and a remainder 7y4; = Ty — p for the prior
Py(@y41) of the new catch-all.
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Discussion

The obvious drawback of this proposal is the introduction of purely symbolic terms for the
priors and likelihoods of the catch-alls. Apart from the pain of doing actual calculations with
these terms, it is quite unclear how to understand them.

» s

Wenmackers and Romeijn variously refer to these terms as “unknown,” “undefined,” “indefinite,”
or “unspecified” But even if we grant that these terms can be considered unknown to the agent
(leaving aside worries about the notion, not just of an unknown probability, but of an unknown
epistemic probability), it seems to us that there is a difference between terms that are unknown
yet definite, and terms that are not. Only in the first case is there an actual matter to the fact of,
say, Ty < ¢ for a numerical constant c. Thus it is only in the first case that it is clear that the
shaving off from the catch-all actually imposes a limitation on how much prior the agent can
still assign to a newly formulated hypothesis[* In contrast, it is less clear whether an indefinite
probability value allows for shaving off any desired definite prior. This might not be a problem
to Wenmackers and Romeijn; indeed this would fit their suggestion that the unconditional
probability of the catch-all's complement is always infinitesimally small (ibid., 1248). However,
for our purposes it will prove to be important to impose such constraints on the agent, which is
why we will not further pursue the idea of indefinite or infinitesimal priors.

2.2.4 The silent open-minded Bayesian

The motivation for the silent version of open-minded Bayesianism (Wenmackers and Romeijn,
2016, 12341, 1241f) is to evade the difficulties surrounding a symbolic assignment of prior and
likelihood to the catch-all. This is achieved by doing away with this assignment altogether,
namely, by always only considering conditional probability evaluations, conditional on the
current hypothesis set. The corresponding Bayesian agent is simply silent about the absolute
probability values.

Specification

The silent open-minded Bayesian starts out, as before, with an hypothesis set ® y of explicitly
formulated hypotheses, assigning each H € © y a conditional probability value Po(H | O ). As
opposed to the vocal Bayesian, there is no bookkeeping of the catch-all or the unconditional
prior Py.

Since all probability terms are conditional on the current hypothesis set, updating on evidence
proceeds fully conditional on @y. That is, the term P;(H; | ®y) is evaluated via the usual
Bayesian updating (2.2), conditional on @y.

If a new hypothesis Hy is formulated, the silent open-minded Bayesian again extends its
current hypothesis set @ y to the new set @y, = O U {Hy } to include the newly formulated
hypothesis Hy. It then assigns the new hypothesis conditional on the new hypothesis set a

4For instance, Wenmackers and Romeijn (2016, p. 1240) mention the possibility of assigning a uniform prior to
a new hypothesis. If 7y has an (unknown yet) definite value, then that would only be possible if this value is in fact

1
greater than .
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posterior value of choice, i.e., a value for P;(Hy | ®n+1). The new posterior values of the earlier
hypotheses are calculated by renormalization, thus preserving the probability ratios.

In summary, the silent open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses

Each explicit hypothesis in @y receives a prior Py(H; | ®y) conditional on the initial
hypothesis set.

(t > 0) Evidence E’

Updating proceeds in the usual way, conditional on the current context © y:

Py(H; | ®y) - H;(E")
Py(E' | ON)

P(H; | ©y) :=Py(H; | E',Oy) =

(t > 0) New hypothesis Hy

When a new hypothesis Hy is formulated, extending the hypothesis set to @y, = Oy U
{Hy}, the posterior P;(Hy | ©y41) is set to a value p € (0,1), and the posteriors of the
remaining explicit hypotheses conditional on the new hypothesis set are renormalized
by

P,(H;|®ys1) = (1-p)- P (H; | On).

Discussion

In the silent version Wenmackers and Romeijn do away with the explicit monitoring of the catch-
all hypothesis by simply always “hiding behind the conditionalization stroke” (2016, p. 1243). As
they themselves point out, one might feel uneasy about thus still leaving unspecified the agent’s
unconditional, absolute convictions. One might indeed feel that this threatens to sufficiently
compromise coherence that this is no Bayesian account anymore (cf. Glymour, 2016, p. 1282).
What is certainly lost, in moving to larger models, is the guarantee of dynamic coherence (see
sect.[2.4.1 below for more details).

However, it is surely more in line with statistical practice that probabilities are always evaluated
under the tentative assumption of a particular model, without any pledge to the truth of this
model. The discussion by Sprenger (2020)) (also see Sprenger and Hartmann, |2019, ch. 12,
Vassend, 2019) is a recent example of several earlier expressions of this view in the Bayesian
literature (e.g., Lindley, 2000, p. 334;1982), that tends to go together with a commitment to
coherence only for as long as the model does not change (see indeed Shimony, 1970, 103f).
Perhaps most outspoken in this latter respect is Howson’s account of Bayesianism, “a theory of
valid inductive inference from pre-test to post-test distributions,” that offers the worry of an
“inconsistent assignment over time” a simple reply: “so what?” (1988, p. 81).
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Moreover, Wenmackers and Romeijn stay far from the latter extreme: both versions of their
open-minded Bayesian are “conservative extensions” where the probabilities conditional on
an expanded model cohere with those conditional on the original model (2016, 1235f). Bayes’s
rule amounts to restricting the subalgebra on the outcome space (to the subtree of the outcome
space that extends the evidence) while preserving all probability ratios within; the rule for
incorporating new hypotheses enlarges the subalgebra on the hypothesis space (to the larger
hypothesis set) while likewise preserving all probability ratios within the original (ibid.).

We conclude that the silent version holds a conceptual advantage over the vocal version. The
main formal difference, for our purposes, is that in the vocal version, a new hypothesis is assigned
a certain prior value that is constrained by the catch-all’s prior; whereas in the silent version, a
new hypothesis is assigned a posterior value, the choice of which is unconstrained.

Wenmackers and Romeijn indeed worry that “[t]he silent proposal allows too much freedom in
the assignment of a posterior to the new hypothesis—so much freedom, that it is not clear that
the old evidence has any impact” (ibid., 1245). This prompts them to propose a hybrid variant of
the vocal and the silent versions (sect.[2.2.6 below). Before we turn to this version, we will take
a quick look at a more direct tweak of the silent version that replaces the choice of posterior by
the choice of prior, so that the calculation of the former requires some “reconstructive work”
that does take old evidence into account (ibid., 1242).

2.2.5 The silent open-minded Bayesian: retroactive variant

Thus the alternative variant of the silent version is where we ‘retroactively’ assign a prior to a
new hypothesis, i.e., a value py to Py(Hy | ®n41). After renormalizing the priors of the other
hypotheses,

Po(H;i | On41) := (1-po) - Po(H; | On) (2.3)

for all H € ®y, we can with the help of Bayes’s rule (using the the new likelihood Hy(E")),
calculate P;(Hy | ®y41) from there.

Formally, however, it does not make a difference whether we choose a prior and then calculate
the posterior, or the other way around. (Provided, that is, that Hy’s likelihood on E! is positive,
or its posterior can only be o.) For any desired posterior p; for a new hypothesis, we can
uniquely reconstruct a prior p, that in combination with the new hypothesis’s likelihood, will
result at time ¢ in that posterior. After all, there are, unlike in the vocal version, no constraints
on choosing a prior py.

2.2.6 The hybrid open-minded Bayesian

The vocal and the silent version are combined in the hybrid version (Wenmackers and Romeijn,
2016, 1245f) as follows. The agent starts out, as in the vocal version, with an explicit yet symbolic
assignment to the catch-all hypothesis. During the normal learning process of updating on the
evidence, it stays in the “silent phase,” in which it evaluates all probabilities conditional on the
current hypothesis set. Only when a new hypothesis is formulated does it enter the “vocal phase,”
in which it, like in the vocal version, retroactively shaves oft a prior for the new hypothesis
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from the catch-all’s prior, after which it, like in the retroactive silent version, recalculates the
priors and posteriors (again conditional, but on the new hypothesis set) from there.

In summary, the hybrid open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses

Each explicit hypothesis H; in ®y receives a prior Py(H; | ®y) > 0 conditional on @y,
such that 3, .y Po(H; | ®n) = 1. Moreover, as in the vocal version, the catch-all hypothesis
Oy = O\ Oy receives an unconditional prior P, (@N) := Ty, and the unconditional priors
of the explicit hypothesis are given by Py(H;) := (1-7n) - Po(H; | On).

(t > 0) Evidence E’

Updating proceeds as in the silent version, conditional on the current context ® y:

Py(H; | ®n) - H;(E")
Py(E" [ Oy)

P(H;|®y) :=Py(H; | E',Oy) =

(t > 0) New hypothesis Hy

When a new explicit hypothesis Hy is formulated, extending the hypothesis set to @y, =
O®y U {Hy}, as in the vocal version the unconditional prior 7y of the earlier catch-all is
decomposed into a value p < 7y for the unconditional prior Py(Hy) of the new hypothesis
and a remainder 7y, = 7y — p for the unconditional prior Py(@ ;) of the new catch-all.
The priors conditional on the new hypothesis set are obtained by renormalization,

Po(H; | Oyn) = (1- =L ) - Bo( | 0),

— TN+l
from which the conditional posteriors are obtained by the usual updating,

Py(H; | Ony1) - Hi(E")
Py(E! | Ona1)

Pi(H; | Ony1) = Po(H; | E',Onp1) =

Thus the hybrid version combines the conceptually more pleasing conditional reasoning of
the silent version with the constraint on new priors introduced by the catch-all in the vocal
version. This constraint proves important for our concern in this paper, the guarantee of truth-
merging.

2.3 The open-minded Bayesians’ truth-convergence

We start by introducing the formal property of convergence to the truth, as satisfied by the
standard Bayesian (sect. [2.3.1). After some preliminary remarks about the meaning and the
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promise of this property in the open-minded case (sect. [2.3.2), we demonstrate and diagnose
its failure for the silent (sect.2.3.3) and the hybrid (sect. 2.3.4) version.

2.3.1 The standard Bayesian

Suppose the standard, ‘closed-minded’ Bayesian starts with a hypothesis set that includes the
hypothesis H* that is actually true, meaning that the probabilities given by H* are the true
probabilities that govern the generation of the data. In that case, one can prove a strong statement
about the agent’s convergence to this truth. Namely, one can prove that, H*-almost surely, the
total variational distance
iug |P,(A) - H*(A| E")| (2.4)
€38

between the agent’s probabilities and the H*-probabilities on future events goes to o as t — oo.
That is, with true probability 1 (as given by H), the agent’s probabilities conditional on the past
will convergence on all events’ true probabilities. We say that the agent strongly merges with the
truth.

Definition 1. For probability measures P and Q on (2, §), we say that P strongly merges with
Qif Q-as.

t—oo

sup [P(A| E") - Q(A|E")| — 0. (255)
AeF

A standard Bayesian’s strong merger with the truth follows directly from a fundamental result
due to Blackwell and Dubins.

Theorem 1 (Blackwell and Dubins,[1962). For probability measures P and Q on (Q, §) such that
the latter is absolutely continuous with respect to the former, i.e., Q(A) > 0 implies P(A) > 0 for
all events A in the o-algebra § on Q, it holds that Q-a.s. P strongly merges with Q.

Namely, if the Bayesian agent’s hypothesis set contains H*, meaning that its regular prior
probability P(H*) > 0, then, in terminology due to Kalai and Lehrer (1993, p. 1037), P holds
a grain of H*, or P holds a grain of the truth. That is to say, there is an a € (0,1), namely
a = P(H"), such that the marginal prior P on the outcome space equals a- H* + (1-a) - P', for
some probability measure P’. More precisely still, from the fact that P(H*) > 0, we have that P
dominates H*, meaning that P(E') > a - H*(E") for all finite outcome sequences E’, but that
implies that also P(A) > a - H*(A) for all events A € § generated from the finite sequences.
But that means that H* is absolutely continuous with respect to P.

Corollary 2. If P holds a grain of the truth H*, then P strongly merges with H*.

Strong merger is indeed a very strong notion, as it includes all tail events A, the occurrence of
which cannot be verified in finite time. A more down-to-earth notion of truth-convergence is
weak merger (Kalai and Lehrer, 1994)), that only concerns the special case of the next outcome.
This is the notion we will be focusing on in this paper.
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Definition 2. For probability measures P and Q on (Q, §), we say that P weakly merges with
Qif Q-as.
* t—o0
sup |P;(Es) — H*(Eq | EY)| — 0. (2.6)
Ern€{0,1}

In fact, weak merger of two probability measures is equivalent, for every d € N, to merger
where the supremum ranges over all future outcomes of length up to d (ibid.). Nevertheless,
as we will explain in more detail in our analysis in sect. we will in this paper focus on the
case d = 1. Moreover, as we will still explain too, despite the fact that this is already a sufficient
condition for strong merger, the notion of holding a grain of the truth will be central to our
analysis. When in the following we refer to “truth-convergence” without further qualification,
we mean weak merger as in definition

2.3.2 The open-minded Bayesians

The question we shall investigate is whether Wenmackers and Romeijn’s proposals can retain
this conception of convergence to the truth, whenever the true hypothesis H* is formulated.
More precisely, the question is whether we can show that, if H* is indeed formulated at some
time to, the agent function P;(- | @ (), as t > ty goes to infinity, weakly merges with H*. The
question is whether we can show that, after H* has been formulated,

sup  |Pi(Eis1 | Onry) — H* (Ersr | E')| == 0 with H*-probability 1.~ (2.7)
Ern€{0,1}

One might already object here that we should rather consider merging of the unconditional
agent function P;(-) = P;(- | ® () U Oyys)- For an adherent to the vocal variant, the agent’s
beliefs are constituted by a function over all hypotheses, including those in the catch-all, and
so, from this perspective, an agent’s truth-merging should be taken to mean merging of that
function. However, we already argued in favour of the conditional perspective of the silent
or hybrid version; and the question of convergence of a measure that is partly unspecified
introduces problems of interpretation that look unsurmountable.

This is not to say that the truth-merging of P;(- | ® y(¢)) is unproblematic in its interpretation.
Indeed, we will below be much concerned with meeting two challenges in squaring the semi-
formal expression (2.7) with our intuitive demand of truth-convergence. Semi-formal, because

>There exist other notions of truth-convergence one could consider. Note, first of all, that the presupposition of a true
statistical hypothesis can be distinguished from what is perhaps the more usual setting in philosophy, where truth-values
are attached to events or elements of the outcome space (Gaifman and Snir, 1982; Earman, 1992). Note, further, that
the notion of merging is concerned with learning the probabilities of future outcomes. This can be distinguished from
learning the correct hypothesis (‘learning the parameter’ in a statistical model), which would correspond to the agent’s
posterior concentrating on the correct element in the hypothesis set. One reason why we do not consider this notion
here is that such posterior-concentration is rather trivially impossible unless we exclude the possibility of different
hypotheses that nevertheless from some point on are ‘empirically equivalent’ in that they give the same predictive
probabilities (cf. Lehrer and Smorodinsky, 1996} 148f). Finally, there are still less powerful notions of truth-merging,
including almost weak merging. See Lehrer and Smorodinsky (1996), Leike (2016} ch. 3) for overviews of learning
notions and necessary and sufficient conditions.
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we are not yet clear, first of all, about the exact nature of the probability-1 qualification. Second,
we are not yet fully clear, certainly not until the first is resolved, about the exact nature of the
agent measure that we seek merging for.

Nevertheless, the intuitive demand that (2.7) is supposed to capture is already sufficiently precise
to isolate a straightforward case in which truth-convergence is guaranteed (sect.[2.3.2). This
will then also already point us to the general case that might be problematic (sect.[2.3.2). In fact,
this is already enough to show that this case is problematic: all the variants of open-minded
Bayesianism are not in general guaranteed to preserve truth-convergence (sects. @42.3.4).
Only in the discussion leading up to our diagnosis of this failure and our proposal of a forward-
looking open-minded Bayesian, in sect. [2.4} will we finally face the aforementioned challenges
head-on.

Finitely many new hypotheses

The answer to our question is a clear yes if we can be sure that, after H* is formulated, no further
new hypotheses will ever be formulated. For each of the different versions of open-minded
Bayesianism, the agent with function P;(- | @ y(,)) after formulation of H* can then be treated
as a standard Bayesian that starts its investigation at ¢ with a fixed hypothesis set ® y ;). Thus,
as H* € @yyy), the agent then holds a grain of the truth and we can simply apply corollaryto
Pi(- | ®n(r)) to indeed obtain not just weak but strong merger with the truth from there.

This observation easily extends to the more general case where we can be sure that after some
finite point in time there will no longer be new hypotheses formulated. So suppose H* is
formulated at t, < ¢, say in response to data E”. Then, to put it graphically, from each of the
possible nodes E’ in the outcome tree extending E*, we can run corollary on the fixed agent
function to obtain, with probability 1, truth-merger from there; but that means we already have
the guarantee of truth-merger from here, at E". Hence, under the assumption that no more
hypotheses are formulated after some finite time ¢, we have strong merger whenever the truth
H* is formulated. This assumption can be reformulated as saying that, on any infinite outcome
stream, only a finite number of new hypotheses will ever be formulated.

Fact 1. All open-minded Bayesians are guaranteed to strongly merge with the truth whenever
the truth is formulated, if there is a finite bound on the number of new hypotheses that will be
formulated.

Infinitely many new hypotheses

The previous assumption, in entailing that from some point on the open-minded Bayesian
reduces to a standard, fixed-minded, Bayesian, thereby also neutralizes a good part of the
distinctive interest of the former. It is, more importantly, an assumption that we do not generally
want to make: we certainly do not want to assume that, when the true hypothesis is formulated,
who or whatever is responsible for designing new hypotheses knows that it can stop now.

On the other hand, it also sounds unrealistic that in an actual scientific inquiry, certainly after
the true hypothesis has already been found, one would mindlessly keep incorporating newly
arriving hypotheses indefinitely. One would presumably only look out for new hypotheses if
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the currently available ones do not seem to do: if there is some misfit between the data and
the current hypotheses. Incorporating this element, possibly in the shape of a formal model
verification procedure, would still not render the scenario of an unending stream of false
hypotheses insignificant: there is now a tension to be resolved between risking sticking to
suboptimal hypotheses and risking incorporating false ones.

Important as this element is, it is beyond the scope of the current paper. We are here first
concerned with the consistency requirement of truth-convergence in the most general case
where the agent might forever keep receiving new (and false) hypotheses, which it has to
incorporate irrespective of the past outcomes and current hypothesis set.

This general case is potentially problematic because if the agent keeps having to distribute
some of its posterior to these new and false hypotheses (and so keeps having to incorporate
these in its predictions), this could get in the way of its converging on the true hypothesis’s
true predictive probabilities. In fact, this is problematic, for all the versions of open-minded
Bayesianism. We now first look at the silent variants (sect.[2.3.3), where this shows very directly;
and then at the more interesting hybrid variant (sect.[2.3.4).

2.3.3 The silent open-minded Bayesian

This version is the least constrained of the open-minded Bayesianisms, which makes it most
straightforwardly fail to guarantee truth-convergence. We first show this for the standard
open-minded version of sect. [2.2.4, and then for the retroactive variant of sect.

The silent open-minded version: original variant

The reason for the failure of truth-convergence is that we cannot exclude infinite streams of
false hypotheses that keep occupying a specific share of the posterior probability and in this
way keep distorting the predictive probabilities.

Fact 2. The original variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example 2.1. Consider the scenario where the data is generated by some Bernoulli distribution
Hy-. Suppose for concreteness that 8% = 9/10, and that this correct hypothesis H* = Hyx
is indeed formulated at some stage t,. Now consider the possibility that infinitely often (i.e.,
for each stage t' > t, there is a still later stage t > ¢’ at which) a new hypothesis Hy ) is
formulated that issues a predictive probability Hy,) (1] E*) = 0. Since there are no restrictions
on the posterior which the silent open-minded Bayesian can assign to these newly formulated
hypotheses, it can choose to keep assigning a value P;(Hy ) | @ n(s)+1) 2 1/10 + & for positive
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¢. In that case there will be infinitely many stages ¢ at which the predictive probability

Pi(0| ®n(r)+1) > P(H|®y(yx) -H(O|E")

He®p(r)+1

1
(E+s)-HN(t)(O\E’)

1
—+¢
10

\

blocking convergence to the correct predictive probability H*(0 | -) = 1/10. &

This example can be adapted at will to show that for any true H* there are hypothesis streams and
posterior assignments that block convergence. The essential trait is that the newly formulated
hypotheses receive—keep receiving—too much posterior. This leads us to an obvious diagnosis:
the silent open-minded Bayesian is allowed too much freedom in assigning posteriors to newly
formulated hypotheses.

The silent open-minded version: retroactive variant

Following up on the previous diagnosis, one way in which it might seem we can constrain the
freedom of the open-minded Bayesian is to insist that the posterior must be informed by the old
evidence. This is the retroactive variant of the silent open-minded Bayesian, sect.[2.2.5 above; but
as we explained there already, there is, barring the case where the new hypothesis’s likelihood is
0, actually no formal difference between the two versions. That is, any choice of posterior can
be modeled as a retroactive choice of prior. This means that any counterexample to the silent
open-minded version also yields a counterexample to the retroactive variant, including the
previous exampleo.1.

Fact 3. The retroactive variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example 2.2. Recall from the reconstruction of po from p; in sect. [2.2.5|that the exact calcu-
lations now do depend on the likelihoods of all hypotheses on the past data, something that
was not specified in example 2.1, The most straightforward circumstance is where the new
hypothesis’s likelihood on E* actually equals the probability of E* on @y,

Hy(E") = Po(E' | Oy), (2.8)

in which case a prior assignment Py(Hy | ®y41) := p translates into a posterior P;(Hy |
O®n+1) = p. In that case, a prior choice of p > 1/10 + ¢ recovers the previous example. If the
new hypothesis’s likelihood on the past data is lower than Py(E' | ®y), the prior must be set
higher to retrieve the same posterior. As an illustration, if Hy(E') =1/3- Py(E' | Oy ), then a
posterior p; > 1/10 requires a choice of prior py > 1/4.

Arguably, however, the more plausible circumstance is for newly proposed hypotheses to have
higher likelihood than the earlier hypotheses. Plausibly, new hypotheses (formulated after we
have already seen the past data) rather overfit the data: in the most extreme case, actually have
a likelihood 1. In that case, of course, the same posterior p, requires a smaller prior po. To
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illustrate again, suppose indeed Hy (E") = 1; then in general to obtain posterior p; we need to
set

t
po=—E1O0) (29)
Po(Et | ®N) + o -1
But if the data is actually generated by Hg+ with 6* = 0.9, then Py(E’ | ®y), with high
probability, will not exceed Hyg-’s likelihood on the past data E*, which for typical data is about
0.9%" . 0.1°!" In that case, the same posterior only requires an exponentially smaller prior:
already for ¢ = 10, for instance, it suffices for posterior p; > 1/10 to set po > 1/200. O

The arguably most natural circumstance of new hypotheses that overfit is thus also the most
difficult case for our purposes. An extremely modest choice of prior here already suffices for a
substantial posterior, and the threat to truth-convergence is precisely such substantial posterior
assignments to new and false hypotheses.

One can defend the retroactive approach on the grounds that it accommodates how old evidence
confirms new theories (Wenmackers and Romeijn, [2016, 1244f); or one can disown it on the
grounds that it involves a “double counting” of the old evidence, since the hypothesis and
presumably its prior was already formulated in response to the evidence (cf. Earman, 1992, 132f).
We point out here that for the above reason of overfitting hypotheses, a retroactive procedure
appears more challenging for the aim of truth-convergence. Of course, in the silent version, this
cannot make an essential difference: both variants are formally equivalent, and the challenge
above is limited to a moderate choice of prior in the retroactive variant that does not correspond
to a moderate choice of posterior in the original variant. But our analysis below reveals that in
the hybrid case, the difference between prior and posterior assignments will be crucial for the
guarantee of truth-convergence.

2.3.4 The hybrid open-minded Bayesian

The diagnosis from the previous section was clear: the (retroactive) silent open-minded Bayesian
is allowed too much freedom in assigning posteriors (priors) to newly formulated hypotheses.
Given this diagnosis, one might expect the hybrid version to do better. After all, here there
is an explicit constraint on priors: there is only so much the agent can shave off from the
catch-all!

Again, this is only so because we interpret the catch-all’s prior as at least having some determinate
value. This does not quite exclude that this is “a number extremely close to unity;” but it does
exclude a conception where it is some indeterminate value arbitrarily close to 1, perhaps made
precise as “unity minus an infinitesimal” (Wenmackers and Romeijn, 2016, p. 1244). Perhaps
the latter is the more natural conception. When it comes to truth-convergence, however, this
renders the hybrid version on a par with the silent version: both put no constraints on the
choice of prior (posterior), wherefore convergence cannot be guaranteedE

SWenmackers and Romeijn (ibid.) evoke Earman’s worry that the procedure of shaving-off from the catch-all “leads
to the assignment of ever smaller initial probabilities to successive waves of new theories until a point is reached where
the new theory has such a low initial probability as to stand not much of a fighting chance” (1992, p. 196). On our
analysis, the danger is rather that new theories keep amassing too much probability.
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We will for this reason proceed with supposing that the hybrid version is characterized by
putting definite constraints on the choices of priors. Specifically, we imagine that there is a
certain limited reservoir of prior probability, from which the probability for new hypotheses
must be taken. We can think of this constraint as simply that, a constraint; we are not committed
to understanding this constraint in terms of a catch-all. Nevertheless, we see it as a conceptual
plus that it can be understood in this way, and this carries over to our own proposal in sect.

Failure of truth-convergence

Unfortunately, the constraint introduced in the hybrid version does not suffice: we can even
produce a scenario where convergence to the true predictive probabilities is guaranteed to fail.
This scenario again exploits the possibility of a stream of overfitting hypotheses, that despite the
constraint on new prior assignments still keep taking up too much posterior. More precisely, on
every possible outcome stream we can repeat the following: wait while all current probabilistic
hypotheses have lower and lower likelihood on the unfolding sequence of outcomes, until the
difference with the maximal likelihood of a new overfitting hypothesis is large enough for such
a new hypothesis to have a sufficient impact, despite its necessarily constrained prior, on the
agent’s predictive probabilities.

Proposition 3. The hybrid open-minded Bayesian is not guaranteed to weakly merge with the
truth whenever the truth is formulated.

Example 2.3. Suppose that the true hypothesis is the Bernoulli H* = Hy« with 8* = 1/2,
and that this hypothesis is indeed formulated at a point in time t,. Thus H” is assigned some
unconditional prior value p* =: Py(H*), leaving the catch-all @y, ,; with some unconditional
prior Tn,+1 = Tn, — P~

Consider a history with ¢y < #; < t; <... infinitely many later points in time at which a new
hypothesis is formulated. The vocal open-minded Bayesian is restricted by the prior held by
the catch-all in how much prior it can shave off and assign to these new hypotheses; but it can
choose to assign each Hy, an unconditional prior

PO(HNi) = 2_i * TNy+1> (2.10)

: 00 H—i _
since 35127 - TNg+1 = TNg+1-

Now consider such a history where the newly proposed hypotheses all maximally overfit the
past data at their time of formulation, i.e., Hy, (E") = 1 for each i, and then make some biased
prediction Hy, (0 | E") = p;, with [p; —1/2| > & for some pre-set & > 0.

Suppose, further, that all hypotheses formulated before the true hypothesis, and all the new
hypotheses after their formulation, issue predictive probabilities that are bounded away from 1:
there is some § > 0 such that all predictive probabilities are smaller than 1 — § (equivalently, all
predictive probabilities are greater than §). The idea is that, whatever the subsequent data, the
hypotheses in play will each point in time leak some of their likelihood, so that, when a new
overfitting hypotheses Hy, comes in, after the stretch of time between t;_y and t; has been large
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enough, its relative likelihood is so large that its biased prediction will sufficiently distort the
overall predictive probability.

Specifically, fix some ¢’ < ¢, and let

J+E
r=% , (2.11)
2 + &
which itself lies in the interval (%, 1). Now if at each t; we have
P (Hy, | On,41) > 1, (2.12)
then we have for E with Hy, (E | E") > 1 + ¢ that
Py (E|®Ons)= ), Pi(H|®Oyun) H(E|E")
He®N, 1
> Pti(HNt | ®Ni+1) . HN;‘(E | Eti)
T+e (1
> —. (7 + e)
2 + & 2
1
=-+¢,
blocking convergence.
As worked out in appendix|2.A.2, inequality is guaranteed if each
—log(1-r) - (-1 +i-logt
Lo ~log(1-n) = (<logr) +i-log o)

—log(1-96)

To break (2.13) down a little, note that if ¢ is reasonably large, and ¢’ chosen very small, then r
is relatively close to 1/2 and has a minor influence on the bound. For instance, if r < 2/3, which
would follow from & > 1/4 and &’ ~ 0, then —log (1-r) — (=logr) < 1, so that (2.14) is already
implied by

1+i-logtn,+

t:—ti1> 2.1

i i—1 _ log(l _ 8) ( 4)
Furthermore, we have & = 1/2 and (2.14) reduces to

ti—tioy>1+i-log T, (2.15)

in the extreme case where all hypotheses except Hy, after t;_; always give predictive probabilities

(1/2,1/2). o

Discussion

The failure of truth-convergence of the hybrid open-minded agent may strike one as surprising.
It is, after all, characteristic of the hybrid procedure that the true hypothesis, once formulated,
holds an explicitly assigned share p* > 0 of the absolute prior. As soon as the true hypothesis
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is formulated, the unconditional agent function P, holds a grain p* of this truth, no matter
what hypotheses with what priors are still added later. This carries over to the retroactive prior
measures conditional on any hypothesis set after the truth is formulated: Py(H* | ®y) > p*
for all hypothesis sets @y after the formulation of H*. But does this not suggest that the
agent function holds a grain of the truth, and was this not already enough for strong truth-
merger?

A complete answer to what is wrong with this intuition requires us to make perfectly precise
the desideratum of an open-minded agent’s truth-convergence. We will here first briefly make
the above intuition precise in a particular way, a way that is clearly faulty, but that allows us to
highlight the challenges we face in formalizing our desideratum of an open-minded agent’s
truth-convergence. In the next section we proceed to meet these challenges and formalize our
desideratum, to subsequently propose a version of an open-minded Bayesian that does satisfy a
version of truth-convergence.

Thus let us for a moment consider the measure Py (- | ® ), induced by the actually generated
hypotheses and prior assignments in the limit. This measure must also hold a grain p* of the
truth. What, exactly, is unsatisfying about proclaiming truth-convergence of the open-minded
agent, from the fact that we can always derive, with corollary 2} strong truth-merger of this
measure?

The straightforward answer is that this formal almost-sure strong merger must be unsatisfying
because, as we already know from example it can go together with a guaranteed failure
of weak merger. But how can this be? Here it is important to note that, in example the
hypothesis stream emphatically depends on the actually generated data stream. While the agent
function Py (- | @ ) induced by this particular data and hence hypotheses stream can be shown
to a.s. merge with H* (as it contains a grain of H”), this is still consistent with it failing to merge
on the actual data stream that induced it. (The latter is consistent with truth-merger, because,
in our example, any particular outcome stream that is actually generated is an H*-probability-o
event.)

This provides an illustration of the two challenges we already identified in sect. First,
since we have an hypothesis stream as a moving part, we have to be very careful with the
interpretation of probability-1 statements on the data space. The agent function Py (- | @ ) was
only put in place, so to speak, after already fixing the actually generated data stream, and the
a.s. merger only derived after that. In contrast, intuitively, the ‘almost sure’ should range over
the possible data and all that depends on it, including the possible hypotheses (hence possible
shapes of the agent function) that are formulated in response to it. The challenge is to attain
a formal a.s. merger that is also still meaningful in this sense. This is intertwined with the
second challenge, which is to make precise which agent function we actually seek merger for.
The obvious diagnosis is that the functions Py (- | @« ), having this “after the fact” quality of
being dependent on a particular data and hence hypothesis stream, and indeed of then having
available this hypothesis set from the start, are not what we are after.

We now proceed to look for an answer to these two challenges, towards reclaiming a property
of truth-convergence.
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2.4 The forward-looking Bayesians and their truth-
convergence

We further analyze the goal of truth-convergence, introducing the assumption of a scheme
for hypothesis and posterior generation and the notion of a completed agent measure (sect.
[2.4.1). We then propose a forward-looking open-minded Bayesian, the competed agent measure
of which does retain a grain of the truth, from which weak merger follows. We first propose
a proto-variant of this version, which is a variant of the silent open-minded Bayesian with a
limited posterior reservoir (sect. [2.4.2), before we introduce the final version, that is a variant
of the hybrid open-minded Bayesian with a restriction on new hypotheses’ likelihoods (sect.

2.4.3).

2.4.1 Towards regaining truth-convergence
Fixing the hypothesis scheme

We start with the first challenge in drawing up the desired convergence statement: how should
we think about the ‘almost surely’? In the following, we suppose for simplicity of presentation
that the agent possesses the true hypothesis H* from the start, H* € @[]

We first observe that it is impossible to derive a statement of the following form.

(i) For every H”, there is an H*-measure-1 class of infinite output streams on which the
open-minded agent converges to H*, independent of the stream of newly formulated
hypotheses.

Already in the case of the standard Bayesian agent, the H*-measure-1 class of output streams
on which the agent converges cannot generally be independent of the other elements in the
agent’s hypothesis class. Consider for the true H* again the Bernoulli-1/2 measure: it is not hard
to see that for each possible infinite outcome stream, there exist hypothesis sets that contain
H” yet are such that the agent does not converge on this outcome stream. As an extreme case,
the agent will not converge on outcome stream E® if the hypothesis set contains an hypothesis
that assigns probability 1 to this exact sequence E“: the agent will converge, not on the true
predictive probabilities 1/2, but on predictive probabilities 1 for the correct next outcomes. This
example concerns the initial hypothesis set of a standard (or indeed open-minded) agent, but
easily transfers to the streams of newly formulated hypotheses given to any plausible version of
an open-minded agent Thus a statement of formis too strong.

This leads us to the following statement, where we have shifted the quantifiers to allow the exact
measure-1 class to depend on the hypothesis stream.

7For the general case where the truth is formulated after some finite time ¢, or more specifically, after some finite
sequence E!, mentions of ‘an H*-measure-1 class of infinite outcome streams’ should be replaced by ‘an H* (- | E*)-
measure-1 class of infinite outcome streams extending E’; and the ‘stream (scheme) of newly formulated hypotheses’
by the ‘stream (scheme) of newly formulated hypotheses after E*’

8We only need to assume that the agent’s posteriors will indeed converge on the predictions of hypotheses that
perform perfectly, which is a minimal condition for a version that will in fact have the capacity to converge to the truth.
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(if) Forevery H*, every hypothesis stream, there is an H*-measure-1 class of infinite outcome
streams on which the open-minded agent converges to H*.

In order to demonstrate a statement of the form|(ii)} we must prove, for any given hypothesis
stream, a.s. convergence on the presupposition of this stream. Formally, we conceive of ® y.)
as a function that maps each time ¢ to an hypothesis set ®. Of course, this function must
also return hypothesis sets that actually correspond to some possible open-minded agent. For
instance, for each ¢ there can be at most one hypothesis in @y (;11) N On(y)-

There is a clear sense, however, in which a statement of form((ii)]is too weak. The main challenge
for establishing truth-convergence is, recall example 2.3} the possibility of overfitting hypotheses
in reaction to each possible outcome stream. In light of such scenarios, presupposing a particular
hypothesis stream, irrespective of the generated data, is obviously unsatisfying.

But we can just as well assume that the generation of hypotheses is given by a function that
links hypothesis sets, not simply to the possible points in time, but to all possible finite outcome
sequences. That is, we presuppose some data-dependent (what we shall call) scheme for generat-
ing hypotheses, or simply hypothesis scheme, that is a function © .y that maps each finite data
sequence E’ to an hypothesis set @ . Again, this function must also be constrained by the
open-minded agent’s specification.

This then leads us to aim for a convergence statement of the following form.

(iii) Forevery H*, every hypothesis scheme, there is an H* -measure-1 class of infinite outcome
streams on which the open-minded agent converges to H*.

Note that the assumption of a particular H* in conjunction with an hypothesis scheme comes
down to treating hypothesis streams as random quantities, as they are given by a function on
the outcome streams governed by probability measure H*. One could take this further and
consider for the true measure more elaborate probabilistic models that also directly range over
the class of possible hypothesis streams. We do not go this way here: we stick here to a true
measure H* that is a function over outcome sequences only, and work towards a convergence
statement where the H* measure-1 class can depend on the hypothesis scheme. Of course, there
is more to say about the conceptual status of a convergence statement of the form|(iii)} and we
will say a bit more below.

We first observe, however, that there is still something left implicit in statement|(iii)} This is the
agent’s actual choice of posteriors (or, depending on the version, retroactive choice of priors
resulting in posteriors) for the incoming hypotheses.

Fixing the posterior scheme

But given a particular hypothesis scheme, perhaps we could always derive convergence for a
particular H*-measure-1 class of outcome streams, that is independent of the exact (positive)
posterior values the agent chooses to assign to these incoming hypotheses?

Unfortunately, this is again not attainable in general. Again we indeed already have for the stand-
ard Bayesian agent that a different choice of prior distribution over the exact same hypothesis
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set (more exactly, a different regular prior distribution that assigns each element positive prob-
ability) can result in a different H* -measure-1 class of outcome sequences on which it converges
to H”. In fact, we can show that there are single hypotheses sets such that for every individual
stream we can tweak the priors in such a way that convergence fails on this stream.

Proposition 4. There exist countable hypothesis sets ® and hypotheses H* € © such that for
every infinite outcome stream E®, there is a regular prior distribution P over © such that the
Bayesian agent P’s predictive probabilities do not converge to H* on E®.

Proof. See Appendix|[2.A.3] O

This result pertains to the initial hypothesis set of a standard (or indeed open-minded) agent,
but the initial set is already part of an open-minded agent’s hypothesis scheme, and the result
could also again readily be modified to pertain to the posterior assignments to a scheme’s newly
formulated hypotheses. Thus the result implies that we must allow the measure-1 class to also
depend on the posterior scheme, that specifies what numerical posterior values are assigned to
each (incoming) hypothesis. Formally, the combination of the hypothesis and the posterior
scheme is now codified in a function P(.y that maps each finite data sequence E* to a posterior
distribution Pg: over the hypothesis set @:. Again, this function must also return distributions
that actually correspond to some possible open-minded agent; that is to say, these distributions
must be consistent with the specifications of the version of the open-minded agent in question.
For instance, in case of the hybrid agent (sec. @above), the distribution Pg: is the distribution
P,(- | ®y) after having observed E' and with @y = ®@f:. By the specification of the hybrid
agent, this distribution P;(- | ®x) = Py(- | E, @) is derived from some prior distribution P,
over @y. This latter distribution must cohere with the priors Py (- | ®y-) for earlier and later
hypothesis sets ® y-, which likewise constrain the distributions Pg:(-) = Ps(- | ® ) for E° that
extend or are extended by E'. Whenever we invoke hypothesis and posterior schemes in the
following, we implicitly limit our attention to schemes that actually correspond to open-minded
agents of the version we are then considering[’

This then leads us, finally, to aim for a convergence statement of the following form.

(iv) For every H*, every hypothesis and posterior scheme, there is an H*-measure-1 class of
infinite outcome streams on which the open-minded agent converges to H*.

Having thus derived the formal structure of the strongest convergence statement we can hope
for, let us expand a little bit on its conceptual status. One possible interpretation is that this
statement corresponds to an assumption that prior to the inquiry, both the future hypotheses
and the posteriors that will be assigned to them are, albeit still dependent on the random data
and unknown the agent, already fixed. There is at least a superficial tension between such an
interpretation and a crucial motivation for investigating open-minded agents, namely that

9Some care is required in deriving relations between the functions Pg: (- | ®¢) from the agent specifications,
which also involves matching the original notation for agent functions (“P;(- | ®y)”) with the Pg: (- | @ ). The
former notation leaves implicit what exactly are the past data that have resulted in the posteriors and hypothesis sets,
which becomes especially risky when analyzing retroactive assignments (what future hypothesis set and posteriors is
Py (- | ®n) actually reconstrued from?). This will mostly matter for the proofs to follow: see appendix|2.A.1 on notation
used there for details.
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hypotheses and their priors are not forever fixed in advance, and the agent has the freedom to
change its mind. How problematic this is, would then conceivably depend on one’s view on the
external process where the hypotheses and posteriors come from: is there some mechanical
procedure that delivers them, or is this rather some process of creative and fundamentally
unalgorithmic scientific discovery? On the other hand, we think it is actually not so clear that the
mathematical structure of (proving) a statement of form|(iv)} “fix arbitrary x, we now show...,
commits one to a conceptual view of the kind, “assuming that x is fixed in advance, we have
that...,” let alone what it exactly means for an hypothesis scheme to be (unknown to the agent
but) determined in advance. These are philosophically murky waters, and we will here limit
ourselves to noting that mathematically, this is the best we can aim for. Indeed, if already for
the standard Bayesian agent the precise measure-1 class must depend on the other hypotheses
and exact priors, it is only natural to aim for the analogous statement for the open-minded
agent—in general. This does not exclude the possibility of deriving statements of form (i)|with
certain restrictions on the possible hypotheses, say a restriction of effective computability. But
this lies out of the scope of the current paper.

With this conceptual provision, we are now clear on the nature of the ‘a.s’ qualification. In fact,
we have also already touched on the second challenge: what, exactly, is the agent function that
we seek convergence for? We will now make this precise.

The completed agent measure

Given an hypothesis and a posterior scheme, an open-minded Bayesian’s probability assign-
ments after each possible finite outcome sequence are fully determined. For all finite E*, the
agent’s assignment to any event A is fixed and given by

PEL (A) = PEI (A | ®E‘ ) (2.16)

The corresponding convergence statement of form |(iii), for strong merger, is that for each
hypothesis and posterior scheme, we have for an H*-measure-1 class of infinite outcome
sequences that

t—o0

sup |PEr(A) -H*(A] Et)| —— 0. (2.17)
AeF

Here we still adhered to the simplifying assumption made at the beginning of sect.[2.4.1, that
the truth H* is contained in the initial hypothesis class. The general case is covered by adding
the formulation of H* on the outcome stream as an condition for the convergence. That is, for
an H*-measure-1 class of infinite outcome sequences,

H* is formulated == sup |Pg: (A) - H*(A | E")| 20, (2.18)
Aeg
For weak merger, this comes down to
H* is formulated =  sup |PE:(EH1) - H*(Es | E[)‘ 0. (2.19)

Ein1€{0,1}
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A circumstance that makes convergence of the terms (2.16) hard to analyze is that, even under
the assumption of a given hypothesis and posterior scheme, they may not correspond to a single
probability measure. That is to say, the assignments Pg: () cannot in general be reconstrued
as the conditional probabilities of a particular measure: there need not be a single measure P
such that P(- | E') = Pg:(-) for each E’. This stems from the fact that an open-minded agent’s
assignments can be dynamically incoherent, in the sense that for finite sequences E", E™, the
second extending the first,

Py (A|E™) # Py, (A). (2.20)

In words, the agent’s assignment to event A at time #;, conditional on the extended outcome
sequence E"2, may not equal the agent’s assignment to A at time f,, after having in fact seen
E". To make this slightly more concrete, consider again the hybrid open-minded agent. From
its specification, there is some prior distribution Py such that Pz, (A | E?) = Py(A | E®2,@py)
and Pg, (A) = Py(A | E™, @, ). But there is no reason why the terms Py(A | @ ) and
Py(A| O ), conditional on different hypotheses, should be equal.

Nevertheless, the agent’s one-step predictive probabilities, given a particular hypothesis and pos-
terior scheme, do induce a coherent set of probability assignments. The predictive probabilities
Ppi(E;41) induce a probability assignment P on all finite evidence sequences, by

t—1
P¥(E") =[] Pei(Ein1), (2.21)
i=0

and this induces a measure on all outcome streams. We will call this measure P the completed
agent measure.

If we are able to show that, for any given hypothesis and posterior scheme, this measure
retains a grain of the truth H*, then a statement of form (iii), for strong merger, follows from
corollary 2. That is, for any given hypothesis and posterior scheme, we can conclude that for an
H”-measure-1 class of outcome streams,
t—o0
H* is formulated == sup |P* (A | E') - H*(A| E")] — 0. (2.22)
AeF

However, this statement concerns the completed agent measure P*°, and not the open-minded
agent’s actual assignments at each time, given by (2.16). These assignments P (A | E') and
Pr: (A) may not coincide. The potential disagreement lies in the fact that P*° (A | E*) is already
influenced by what future hypotheses, formulated after E* but before A, say about A; whereas
Pr:(A) only depends on the hypothesis set @f:.

Still, we do have by definition that these functions coincide on the one-step predictive probabilit-
ies. We have that P (E;y; | E') = Pt (E¢41) for each outcome sequence E* and single outcome
E;41, so that convergence statement does imply convergence statement

1°]n fact, for any t, measures P (- | E') and Py coincide up to the smallest time ahead at which a new hypothesis
will be formulated; though this only implies weak convergence of the latter for d > 1 if this time horizon will eventually
always be at least d.
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Thus, if we can show, for any given hypothesis and posterior scheme, that the open-minded
agent’s completed agent measure holds a grain of the truth, then we can derive a convergence
statement of form (iii)| for weak merger of the agent functions. Consequently, in the following,
we will work towards ensuring this property, that the completed agent measure holds a grain of
the truth, whenever the truth is formulated.

The failure of holding a truth-grain

Consider again the hybrid open-minded agent. Connecting back to the discussion of sect.|2.3.4}
it might seem that the completed agent measure should hold a grain of the truth as soon as
for every single E', the retroactive prior function Py(- | ®:) holds at least a grain p* of H*;
that is, whenever all these Py (- | @g: ) uniformly retain at least the same grain of the truth. This,
however, is not so.

That this cannot be so is again already implied by example 2.3 This example in fact features
a (partially specified) hypothesis and posterior scheme for overfitting hypothesis generation,
where every Py(- | @) for t > t* holds at least a grain p* of the truth. Yet we saw that the
agent (the completed agent measure) in that example fails to merge with H*, which by the
contraposition of corollary 2]entails that the completed agent measure cannot hold a grain of
H*.

Proposition 5. For the hybrid open-minded Bayesian, there are hypothesis schemes with H* €
O such that nevertheless the completed agent measure fails to hold a grain of the truth: there is
no a € (0,1) with P°(E') > a- H*(E") for all E".

Proof. Such a scheme is given by example|2.3} see appendix[2.A.4]for details. O

What, intuitively, explains this fact, that each Py(- | ®g:) can uniformly hold a grain of the
truth, yet P> does not? The difference between each of the former functions and P is that in
the latter, overfitting hypotheses are not represented in the predictive probabilities issued by
the agent until this hypothesis actually comes in. But by definition these overfitting hypotheses
have high likelihood (and thus issue high predictive probabilities) on these initial segments;
so taking them out will deflate the agents’ predictive probabilities on these initial segments.
The counterexample shows that this effect can be so strong that it destroys the grain of the
truth.

In our proposal of a forward-looking open-minded Bayesian, that we turn to now, we focus on
making sure that the completed agent measure does retain a grain of the truth, whenever the
truth is formulated, in order to derive a guarantee of truth-convergence.

2.4.2 The forward-looking open-minded Bayesian, proto-version

We first consider a version of an open-minded Bayesian, a proto-version of the forward-looking
open-minded Bayesian that we propose in sect. [2.4.3below, that rests on the following simple
idea. Instead of a limited reservoir of probability for assigning priors to new hypotheses, the
agent has a limited reservoir of posterior mass to assign to new hypotheses.
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Specification

The forward-looking open-minded agent, in this proto-version, is like the silent open-minded
agent, in that we do not stipulate a catch-all or a limited absolute reservoir of prior probability.
However, we do stipulate a limited absolute reservoir of posterior probability: unlike the silent
open-minded Bayesian, that can assign any posterior to a new hypothesis, the agent must
shave off a new posterior from this reservoir, thereby shrinking the reservoir for posterior
assignments to future new hypotheses. We assume that the starting reservoir holds a certain
real-valued mass d > 0 (we do not need to assume that this mass is bounded by 1). In addition,
as a minimal restriction that facilitates the proof of truth-convergence, we assume that there is
a constant ¢ < 1 such that agent is not allowed to assign a posterior greater than c to any single
new hypothesis.

In summary, the proto-version of the forward-looking open-minded Bayesian proceeds
as follows.

(t=0) N explicit hypotheses

As in the silent version, each explicit hypothesis H; in ® y receives a prior Py(H; | Oy ) >
0 conditional on @y, such that ¥, .y Po(H; | ®y) = L In addition, there is assumed
a reservoir 7y = d > 0 of posterior probability, and a maximal one-time probability
c<L

(t > 0) Evidence E!

Updating proceeds in the usual way, conditional on the current hypothesis set O .

(t > 0) New hypothesis Hy

As in the silent version, when a new hypothesis Hy is formulated, extending the hypothesis
setto Oy = Oy U {Hy}, the posterior P;(Hy | ®y41) is directly set to a value py; but
now this value py < ¢ must be obtained from decomposing the posterior reservoir 7 into
pn and a remainder Ty,41 = Ty — py that is the new posterior reservoir.

Verification

The forward-looking open-minded Bayesian’s constraints in attributing posterior mass to
newly formulated hypotheses rules out a scenario like example 2.3} where constrained prior
assignments still lead to high posterior values. As a matter of fact, the restriction on posterior
values results in a completed agent measure that does retain a grain of the truth, whenever it is
proposed.

Theorem 6. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, the completed agent measure conditional on any E' with H* € O
holds a grain of H*.
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Proof. See appendix[2.A.5| O

Corollary 7. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, we have that H*-a.s.

t—oo

H* is formulated —>  sup |PEf(Et+1) -H"(Etn | Et)| —0.
En1€{0,1}

Discussion

As mentioned, this proto-version of a forward-looking Bayesian is a constrained version of the
silent open-minded Bayesian. More precisely, it is a constrained version, not of the retroactive,
but of the standard variant of the silent Bayesian. The posteriors of new hypotheses are chosen
directly; and however this is done (within the constraint of the posterior reservoir), it is not
required to be (not part of the agent’s specification to be) an explicit calculation of the posterior
from a chosen prior and the hypothesis’s likelihood on the past outcome sequence.

Again, the choice of posterior can always proceed like this: formally, any choice of posterior
corresponds, via the likelihood on the past data, to a choice of prior. But the constraint on the
posteriors does not translate into a simple constraint on the priors, depending as it does on the
contingent fact of the actually formulated hypotheses’ likelihoods, and so a retroactive variant
of the forward-looking Bayesian does not appear a natural option—as, of course, its name is
intended to suggest.

That said, the idea of an absolute reservoir of posterior probability is not a terribly natural
conception. Unlike the idea of an absolute reservoir of prior probability, it cannot be coupled
to a conception of a prior assignment to a catch-all hypothesis, from which new hypotheses
may be shaven off. Perhaps the best way to understand this is simply as a pragmatic device, that
is easy to understand and does the job of regaining the guarantee of truth-convergence.

However, we think there is yet a conceptually more pleasing option, that is formally very similar
to the current version but that has a more natural interpretation. In fact, this version, our actual
forward-looking Bayesian, does regain the idea of shaving prior mass from a catch-all, while
still looking forward.

2.4.3 'The forward-looking open-minded Bayesian

An alternative way of defusing the threat of extreme posteriors of incoming hypotheses is to
place restrictions, not directly on the posteriors, but on the likelihoods of new hypotheses. Our
proposal is to introduce the stipulation that new hypotheses have some default likelihood on
past outcomes.

We will focus on an idea that we borrowed from the theory of competitive online learning'} and
that has important technical and conceptual advantages. This idea is to identify the likelihood of

'See Cesa-Bianchi and Lugosi,[2006|for a general account of competitive online learning or prediction with expert
advice. The idea that we refer to, first proposed, within the setting of specialists (Freund et al.,1997), by Chernov and
Vovk (2009), is known as the specialist or abstention trick; also see Koolen, Adamskiy and Warmuth, |2012; Mourtada
and Maillard, 2017} An instance of this idea also appears in Romeijn (2004} p. 349).
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new hypotheses on past data with the agent’s probability assignment to this data, induced from
its past predictive probabilities. That is, a new hypothesis Hy’s likelihood Hy (E*) on the data
sequence E' generated by its time ¢ of formulation is set equal to the product [T’ Po(Es41 |
E*, ®y(s)) of predictive probabilities. Note that this is precisely the completed agent measure’s
assignment P°(E").

This is a natural way of modeling that a new hypothesis is only evaluated after its formulation; or
that with respect to this new hypotheses, the old evidence does not count. The new hypotheses
is, to put it differently, at its time of formulation treated in a neutral fashion, in that it is supposed
to have had the same predictive success on the past data as the agent itself. This also translates
in this new hypothesis having, for any chosen prior Po(Hy | @ n+1), at its time of formulation
t a posterior Py(Hy | E', @ n+1) that simply equals the prior.

Moreover, this allows us to recover the picture of a catch-all, or more precisely, the fixed well
of prior probability from which the agent must draw in its assignment to (new) hypotheses.
In combination with the restriction on prior assignments that this entails, this version of a
forward-looking Bayesian indeed regains truth-convergence.

Specification

The forward-looking open-minded Bayesian, in its current version, proceeds exactly as the
hybrid-open minded Bayesian, except for the crucial stipulation that each new hypothesis N;
formulated at time t; satisfies

Hy,(E") := P> (E") forall t < ¢;. (2.23)

In summary, the forward-looking open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses

As in the hybrid version, each explicit hypothesis H; in @y receives a prior Py(H; |
®y) > 0 conditional on @y, such that 3°; y Po(H; | ®x) = 1; and the catch-all hypothesis
Oy = O \ Oy receives an unconditional prior P, (61\,) = Ty, so that the unconditional
priors of the explicit hypothesis are given by Py(H;) := (1- 1) - Py(H; | On).

(t > 0) Evidence E'

Updating proceeds in the usual way, conditional on the current hypothesis set © .

(t > 0) New hypothesis Hy

As in the hybrid version, when a new explicit hypothesis Hy is formulated, extending the
hypothesis set to ® y.; = Oy U { Hy }, the unconditional prior 7y of the earlier catch-all is
decomposed into a value p < 7y for the unconditional prior Py (Hy ) of the new hypothesis
and a remainder 7y, = Ty — p for the unconditional prior Py (®n+1) of the new catch-all.
The priors conditional on the new hypothesis set are obtained by renormalization, from
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which the conditional posteriors are obtained by the usual updating on their likelihoods,
where the new hypothesis’s likelihood Hy (E") is stipulated to equal P*°(E").

Verification

Although they differ in their interpretation and also slightly in the precise shape of the con-
straints they impose, the forward-looking Bayesian and its proto-version share the formal
property of a constraint on new posterior assignments. In appendix@we give a general
proof that for both types of constraints shows that a completed agent measure will hold a grain
of the truth, whenever it is formulated, from which weak merger of the agent follows/[”]

Theorem 8. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, the completed agent measure conditional on any E' with H* € @ holds a grain of H*.

Proof. See appendix|[2.A.5| O

Corollary 9. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, we have that H*-a.s.

t—oo

H* is formulated —>  sup |PEr(Et+1) - H*(E4 | Et)| — 0.
Ene{0,1}

Beyond weak merger

Corollary g states, for the forward-looking agent, and as a consequence of the strong truth-
merger of the completed agent measure, the weak truth-merger (with d = 1) of the agent
measures Pg:. The obvious further question is whether we also have strong merger, or at
least weak merger for any finite d, for the agent measures Pg:. We conjecture that already
strong merger does hold, but unfortunately we have no proof, and must leave this as an open

' An alternative proof proceeds by deriving from the abstention stipulation that the forward-looking agent’s
probability P (E") must coincide with the retroactive prior probability Py (E’ | @y, ) for every Oy, with t41 > &.
The additional stipulation of a fixed amount of prior mass guarantees again that these Py (E' | @y, ) indeed uniformly
retain a grain of the truth, so that truth-merger follows. Recall from sect.[2.4.1]that the hybrid open-minded Bayesian's
completed agent measure can fail to retain a grain of the truth even if every Py(- | ©y;, ) for i > i* uniformly does so:
stipulation thus rules out this possibility.
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question[?

2.5 Conclusion

We investigated the failure of truth-convergence for Wenmackers and Romeijn’s versions of
open-minded Bayesianism, and, towards reclaiming this property, proposed a forward-looking
open-minded Bayesian. The general threat to convergence to the truth is the possibility of new
and false hypotheses that keep receiving too much posterior: either by direct assignment or by
retroactive calculation from a high likelihood on the past evidence. The proto-version and the
final version of our forward-looking Bayesian implement the two respective ways of meeting
this threat: by restricting the posteriors, or by restricting the priors and likelihoods.

We think that the final version of our forward-looking agent, which is based on an idea from the
theory of competitive online learning, indeed provides an elegant account of how a Bayesian
agent should deal with newly formulated hypotheses. The idea of identifying a new hypothesis’s
likelihood with the agent’s probability assignment on the past data is a graceful way of neut-
ralizing the impact of old evidence. Moreover, this idea has the pleasant consequence that the
stipulation of a limited reservoir of prior probability (with the associated interpretation of a
catch-all hypothesis) is sufficient to guarantee truth-convergence. Unlike the proto-version,
that we ourselves feel is mainly a technical device geared towards the aim of truth-convergence,
we think the final version makes intuitive sense quite independent of this aim.

There are a number of avenues for further investigation. Firstly, we proved, more precisely, the
forward-looking agent’s weak truth-merger, or convergence to the true one-step predictive
probabilities. We leave as an open question whether this may be extended to an arbitrary
finite-length horizon, or even to strong merger, that includes all tail events. Secondly, a possible
lingering doubt is that in our convergence statement the measure-1 class of sequences is depend-
ent on the hypothesis and posterior scheme. This at least suggests an interpretation where the
latter quantities are somehow fixed prior to the inquiry, which, one might feel, does not sit well
with the original motivation for investigating an open-minded agent. Whether or not this is so,
we showed that in general we cannot avoid this dependence, as an analogue in fact already holds
in the case of the standard Bayesian. Nevertheless, it might be avoided as further refinements
are added to our proposal. Perhaps, finally, the main peculiarity about our approach is that in
the course of an inquiry hypotheses are not (should not be) introduced haphazardly. There will

3For any infinite E“ in the measure-1 class of infinite streams on which we, for given hypothesis and posterior
scheme, have strong merger with H* of the completed agent measure, it might seem that strong truth-merger of
the agent functions Pg: (- | ®:) on this E“ should follow, too: as the posterior reservoir is used up the measures
P (-| E') and Pg: (- | @) can differ less and less. However, on any individual E¥, it is possible that the posterior
reservoir is not fully used up: this allows for a counterexample, on this particular stream, where the same constant
posterior keeps being assigned to new hypotheses on side-branches of E“ to force a difference between P*° (- | E*)
and Pg: (- | ¢ ). Now one could push further and consider the measure-1 class that is the countable intersection of
the previous class and, for every length s, the measure-1 class of streams on which every measure Pgs (- | E*), from
that point treated as a standard Bayesian, strongly merges with H*. But even for a stream E“ in this class, it is still
consistent that the agent measures P:(- | E') do not strongly merge with H* on this particular E“; at the same time,
such a scenario is now so bizarre that it does not seem feasible to turn it into an actual counterexample, for which
this must actually happen with positive probability. This invites the hope for some (martingale) argument that such
scenarios must indeed have probability o.
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normally only arise a need for formulating a new hypothesis if some misfit between the data and
the current model is observed, which may indeed be regulated via a formal model verification
procedure. This raises the question how (our version of) an open-minded Bayesian inductive
logic may be extended beyond just how to incorporate externally proposed hypotheses, to also
include when to accept such new hypotheses, and how this interacts with the guarantee of
truth-convergence.
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2.A Calculations and proofs

2.A.1 Notation
We introduce additional notation for use in the appendices.

For sequences E' and E° we write E' < E® if E' is an initial segment of E’, and E! < E*if E' < E®
and E' # E°. We write E' | E* if neither E' < E* nor E* < E'. For the concatenation of sequences
E' and E® we write E'** = E'E®. For sequences E' < E* we write E™* for the sequence E* minus
its initial segment E°.

Recall that an hypothesis and posterior scheme are given by a function P,y that for given
sequence E' returns a distribution Pg: = Pg: (- | ®:) over hypothesis set @ :. This induces the
distribution Pg:(-) = X peo,, Pee(H) - H(- | E ') over events in the outcome space.

The conditional distributions P« (- | @) for ® € Op: are clearly well-defined. One can also derive
from the specifications of any of the open-minded versions we discussed that for E* > E'

Pes(-| ®pt) = Pgi(- | E™, @), (2.24)
a fact that we will rely on in the proofs of lemmal4]and corollary 10} in 2.A.5|below.

The conditional distributions Pg: (- | ©) for ® o @f: are not well-defined, because the posteriors
of the elements in ® \ O are not defined. Nevertheless, for the purpose of analyzing an open-
minded agent’s procedure of retro-actively setting a prior (as in the proof of lemmal6]in
below), it will be useful to agree on the following. For E* > E’, the probability Pg:(H | @)
is the posterior probability of H € @ after E', retroactively calculated from the posterior
probability Pg: (H | ®:) after E°. More precisely, we can define for all H € s,

Pyi(H | E®, @) := Pgs(H | Op:), (2.25)

from which the function Pg: (- | ®g:), by using the likelihoods of all H € ®g: on E*, can
unambiguously be retrieved.

2.A.2 Calculations for example]2.3|

We want to ensure (2.12), that is,
Py(Hy, | O,+1) - Hy, (E")

(2.26)
ZHeG)NiH Py(H | ®n,+1) - H(E")
Write g := Py(Hy, | ©®n,+1) for the conditional prior, that by equals
Py(H;) 27 Ty 27 TN (2.27)

1= 7N ) 1_(1_Z;=12_j)'TN0+1 B =277y,

Since Hy, (E"") =1, (2.26) translates into

q>r~(q+ > Po(H|®Ni+1)-H(E‘f)), (2.28)

He®y, 1N {Hy, }
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that is,

1-r
—q> Z Py(H | On,41) - H(E"). (2.29)
r He®y, 1N {Hy, }

Now assuming that there is positive § such that all other hypotheses’ predictive probabilities
are no more than 1 - § for each possible outcome from #;_; up to ¢;, so that

3 Py(H|Oy,41)-HE") < (1-¢q)-(1-8)""", (2.30)
He®y,+1N{Hx,}
it suffices for that
1- _
—r.4 (1- 8)“ e (2.31)
r 1l-gq
Writing out
( 27!"71\70+] ) ( 27" TNy 41
q 1=27F7x 11 B 1-27"1Np 41 =i
l_q - (1_ 27Ty 11 ) B ( 1 ) =2 " TNo+1> (2.32)
1-27F7y 11 1-270TNg 41
we thus require
1-r ; -
— 2> (10T, (233)

that is,

—log(1-r) - (-logr) +i—logTn,+1

—log(1-19) (234)

ti—tiog >

2.A.3 Proof of proposition|4|

Let the truth H* € ® be Bernoulli-1/2, and put P(H*) = 1/2. Define an infinite series of
times tg, f1, t2,... by to = 0, t;+1 = t; + i + 3. For each time t;, let E'i be the j-th (0 < j<2%)
outcome sequence of length ¢;. We will now define a countable collection of hypotheses H; ; that
each overfit one particular sequence between two successive times t;_; and ¢;, and follow H*
elsewhere. More precisely, we define for each i, for each positive j < 2" and the corresponding
j' such that E]t.}"1 < E;", the hypothesis H; ; by

27t if B, < E° < B
0 if ' < ES but E* | EY
H, :(E°) = ] ] 2.
w(E) H*(E®) -2 ifEf <E* (35
H*(E®) otherwise.

Given an infinite outcome stream E“. We can now assign positive prior to each of these
hypotheses as follows. Denote by (E;‘ )€ the sequence E]t with the very last outcome inverted,

0 for 1 or vice versa. For each i, for each j < 2", let
2—1'—2 if (E]f,)C < Ev

A (2.36)
2772, (2 ~1)7!  otherwise.

P(H; ;) = {
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This is a valid prior assignment because " ;.o P(H) =27 + ¥ ,50(27771) = L.

Now we consider, on the stream E“, for arbitrary i and the j such that EJ‘I' < E®, the error in

the agent’s predictive probability P(0 | E]t."_l) after having observed all of E; but the very last
outcome. That is, we consider the distance

|PO] E;™) -~ H* (0| E{ 7). (237)

To this end, write ® := @ \ {H, ;} and first consider the posterior ratio of P(H; ; | E;’fl),
write &, and P(@" | E]t,"’l) =l-a,
a  P(Hijl E;™) _ P(Hyj) “Hi (™)
=« PO|E)  P(6) P(E |0

(2.38)

It follows from specification that all hypotheses in ® assign true probability H* (E;"_l)

to EJ’f’_l, except for the overfitting hypotheses Hys j for i’ < i and j’ such that there is j with

ty-1
E i
does not give probability o to E]t."fl, and with assignment each member of the majority
already holds at least as much prior as the single exception H;: x-. Similarly, for i, it is, among
these H; j and apart from H; j, only the hypothesis H; x for E;’ < E“ that does not assign
probability o to E;"_l, and each other H; j already holds at least as much prior as H; ;. We thus

have that the likelihood of hypothesis set ®' satisfies

< Ejt.}" , E“. But for each i’ < i, among these hypotheses Hy j: there is only one H; ;- that

PE|©) = 3 P(H| O HE™) <H(E/) =27, ()
He®’
wherefore
o 2772 gt

> -

1-—a  (1-277"2).2-64

2—i—3
- (1-2-12) . 2-(tti)
27i73

= (1 _ 2—1’—2) .p—i=3
>1,

meaning that o > 1/2.

Finally, apart from H; j, it is only the hypothesis H; ; for E;{" < E® that is still included in
the posterior over ® conditional on E]t."_1 (that did not assign probability o to E;i_l) and
that gives a predictive probability H; ; (0 | E]‘.‘_l) different from H*(0 | E;"_l) = 1/2. Write
o' = P(H; | E;"_l) for the posterior of H; , and abbreviate ®;;x = {H, j, H;x}. Since
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indeed H; (0 | E;f“) =1-H,;;(0| E;i‘l)’

/

_ « -~ o -
P(0] E;’ LOk) = P -H; ;(0 | E;‘ N+ o -H; (0] E;’ N (2.40)

(X’

evaluates to either

I =1- —— or 4—. Using a’ <1/2 < a, it follows that

o+
1 1 o
ti— _ * ti— _ _
PO | B, 050) - H (0] Ef )| =172 . (2.41)
We can then rewrite (2.37) as
(s a)- PO 0,0+ (1- (a+ @) - H (0| ES) = H* (O | BV, (2a2)

which simplifies to

/
(a+a')- |P(0 | Ey ™, @54) —H* (0] E]'."l)‘ =(a+a')- (1/2 S )

a+af
a+a
= -«
2
>1/4-1/2-a'.

But note that H; j and H; ; have the same likelihood Hi,j(E]t.f_l) = H,-,k(E;’_l), so that by
assignment (2.36) the ratio
a P(H, ;) B

— 2fi -, 2.
w " P(H, 1) (2.43)

which implies that &’ < (2" —1) " is arbitrarily small for large enough i. That means that indeed
for any choice of € > 0, we have for infinitely many i that

|P(0 | EvY) - H*(0] E;fl)\ >1/4-¢,

blocking convergence on the stream E“. O

2.A.4 Proof of proposition/s|

Consider examplewith to = 0, ¢’ >1/4, and where after each ¢; all hypotheses Hy; for j < i
always give predictive probabilities (1/2,1/2). Let the sequence of time points ¢y < t; < t, . ..
at which overfitting hypotheses are introduced satisfy (2.13), with prior assignments given by
(2.10). This defines a hypothesis and posterior scheme, and thus induces a completed agent
measure.

Next, take an infinite outcome stream E® that is constructed as follows. For any i > 0, take for
the subsequence E'*#!i+! any sequence of length t;,; — t; — 1, and let E,,,; be the outcome with
Py, (Et41| Opn ) <1/2— €' =1/4 (for E, take either o or 1). Now the completed agent measure
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P fails to hold a grain of H* on any such sequence E“. Namely, for such a sequence E* we
have by construction that for each ¢, with j maximal such that tj < t, that

P=(E") < (Z_I)t_j : (2‘2)j =27", (2.44)

But since 277/ /27" = 27/ goes to o as t hence j goes to infinity, there is no positive a such that
P*(E')>a-H*(E") forall t. i

2.A.5 Proof of theorems|6 and

We show for both the forward-looking open-minded Bayesian agent and its proto-version that
for any hypothesis and posterior scheme, any finite outcome sequence E™, for any hypothesis
H € Oy, there is a constant a € (0,1) such that for every outcome sequence E t > E" it holds
that

P (E""|E")>a-H(E""|E"). (2.45)

In words, for any outcome sequence E", the completed agent measure conditional on E* holds
a positive grain of every hypothesis H in the hypothesis set @z« . In particular, the completed
agent measure conditional on E” holds a grain of the truth H*, if H* is in © gs,.

Our proof consists of two main steps. First, we show that for any open-minded agent the
completed agent measure conditional on E® dominates the agent function Pg:, with a factor
that involves the posteriors assigned to new hypotheses (lemma|g|and corollary[10). Second,
we show for (the proto-version of) the forward-looking open-minded Bayesian that this latter
factor is indeed at least a positive constant (lemmals and|6] respectively).

In all of the following statements we quantify over all E” and E' > E", and in the accompanying
proofs we start by presupposing any such two sequences. This allows for the following simplified
notation, that unambiguously pertains to a particular instantiated E’ and initial segment E.
We abbreviate P, := Pg: and O := @ for all E* < E'. Moreover, we always let i > 0 denote
the number of new hypotheses that are formulated along the sequence E"*'!, and we write
pj = Pi,(Hgy, | @) for the conditional posterior assigned to the j-th (j < i) such hypothesis
HErJ € G)tj N ®fj—1’ incoming at time ¢;.

Lemma 4. For an open-minded agent, we have that for any hypothesis and posterior scheme, for
every E", every E' > E", every 0 < j < i,

2 (1- prat) - Py (B0 | ©4,)

— (2.46)
H‘]](:I() Ptk (Etk3tk+1 ‘ ®tk)

P (EV" | @) 2

Proof. We proceed by induction. The base case, j = 0, follows trivially from empty products.
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Next, assuming as induction hypothesis that (2.46) holds for given j < i, we derive for j +1 that

Pt}'+1(EtJ+1:t | ®fj+1) = Z Ptj+1(H | ®tj+1) : H(Eth:t | Etj“)
He®,.
j+1

> (I_Pj+1) Z Ptj (H | Etj:t}+]’®tj) ‘H(Etj-H:t | Et1+1)
He®,,
J

(- p) Z P, (H|©) ;I‘-I(Eti:‘jﬂ | EY)
He®,, Py (EY+ | @)
Yneo, Pi;(H|©) -H(E"™" | EY)
P, (B | ©,)
B (1= pjn) - P (E"" | ©4))
P, (EV' | @)
. (1-pja)- H;:o(l = Pr+1) - P (E™ | ©4,)
P (EY | @) - H{:O Py, (Eten | @y,)
~ IT)_y (1= pist) - Pro (E™* | ©4,)
D Py (Evt | @)

. H(Efj+1=t | Efj+1)

=(1-pju)-

Corollary 10. For an open-minded agent, we have that for any hypothesis and posterior scheme,
for every E', every E' > E",

i—1
Pe(E! | E) > [[(1- pro) - Py (B | ©,,). (2.47)
j=0

Proof. We write out

-1
Poo(Eto:t | Eto) — H Ps(Es+1 | @S)

s=tgy
i—1 -1 t—1
= H H PS(ES+1|®S) HPS(ES+1|®ti)
j=0 s=t; s=t;

i-1
i (ITPU(Etj:thrl | ®fj)) -P’I(Eti:t | ©4,),
=0
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where the latter equality follows from the fact that for each jand f; < t} < ., we have

’

t t

Jj J
H Ps(Es+l | ®s) = H Ptj(Es+1 | Etj:sa ®tj)

s=t;j s=t;

£ Ptj(EtJ:sH ‘ G)tj)

s=tj Pl‘j(Etj:S ‘ ®fj)

— Pfj(Ezj:tj“ | ®tj)
Pt](Etj:tj | ®t])

= P (EV57 [ @)).

But applying lemma for i = j then yields

i—-1
Poo(Et | Efn) > (H PtJ(EtJ:tj+l | ®tj)
j=0

) ) H;;g)(l_p]*'l) 'Pfo(Et | ®t0)
H;;(l) Ptj(Etj+1 | ®tj)

i-1

= L (l_pj+1)'Pto(Et|®f0)' O

J

Il
(=}

Lemma 5. For the proto-version of the forward-looking open-minded agent, we have that for
every hypothesis and posterior scheme, there is a constant b € (0,1) such that for every E™, every
E' > EP,

H(l -pj)2b. (2.48)
=1

Proof. We have by specification that 0 < p; < ¢ for each j and a positive constant ¢ < 1, and that
Y51 pj < d for some positive constant d. Using the standard inequality XT_l <Inx forx > 0,
this allows us to derive

—lnﬁ(l—p]) = i—ln(l—p]’)
j=1 j=1

where the second inequality follows from the fact that 1 - ¢ <1~ p; for all j. Thus we have

i d
g(l_Pj) ZCXP(—:)> (2.49)
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yielding the desired statement with constant b = exp (—%) independent of E*. O

Lemma 6. For the forward-looking open-minded agent, we have that for every hypothesis and
posterior scheme, there is a constant b € (0,1) such that for every E, every E' > E",

[Ta-pj) >0 (2.50)
j=1

Proof. By specification, and in particular the abstention trick (2.23), for each j the posterior
pj = Pi,(Hy; | ©4;) conditional on @, equals the prior Py(Hy, | ®;,) conditional on ®,,. But
the latter is calculated from a choice of absolute prior, denoted p’, by

L p.ll _Tj_l_Tj (2 1)
p] 1- Tj 1- Tj ’ >
where 7; is the probability of the catch-all after formulation of H;,. We thus have
[T6-p)-T1(1- 5=7)
j=1 ! j=1 1- Tj
) | ( T Tj_l )
=\ 1-7;
_ 1- To
N 1-1;
>1- To»
yielding the desired statement with constant b = 1 — 7 independent of E. O

Finally, combining the previous results, we obtain that for the (proto-version of) the forward-
looking open-minded Bayesian, for any hypothesis and posterior scheme, any E”, any hypo-
thesis H € @y, any E* > E", it holds that

i-1
PE(EY [E") > TT(1= pjnr) - P (E™ | ©4,)
j=0

>b-P,(E"" | ©,,)
> b Py, (H|©,,)-H(E™ | E),

yielding the desired statement with constant a = b - P,,(H | ®,,) independent of E"*.
O



Chapter 3

Why optional stopping is a problem
for Bayesians

Abstract

Recently, optional stopping has been a subject of debate in the Bayesian psychology community.
Rouder (2014) argues that optional stopping is no problem for Bayesians, and even recommends
the use of optional stopping in practice, as do Wagenmakers et al. (2012). This article addresses
the question whether optional stopping is problematic for Bayesian methods, and specifies
under which circumstances and in which sense it is and is not. By slightly varying and extending
Rouder’s (2014) experiments, we illustrate that, as soon as the parameters of interest are equipped
with default or pragmatic priors — which means, in most practical applications of Bayes factor
hypothesis testing — resilience to optional stopping can break down. We distinguish between
three types of default priors, each having their own specific issues with optional stopping,
ranging from no-problem-at-all (Type o priors) to quite severe (Type II priors).

3.1 Introduction

P-value based null-hypothesis significance testing (NHST) is widely used in the life and behavi-
oral sciences, even though the use of p-values has been severely criticized for at least the last 50
years. During the last decade, within the field of psychology, several authors have advocated
the Bayes factor as the most principled alternative to resolve the problems with p-values. Sub-
sequently, these authors have made an admirable effort to provide practitioners with default
Bayes factors for common hypothesis tests (Rouder et al. (2009), Jamil et al. (2016|) and Rouder
et al. (2012) and many others).

We agree with the objections against the use of p-value based NHST and the view that this
paradigm is inappropriate (or at least far from optimal) for scientific research, and we agree
that the Bayes factor has many advantages. However, as also noted by Gigerenzer and Marewski,
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2014, it is not the panacea for hypothesis testing that a lot of articles make it appear. The Bayes
factor has its limitations (cf. also (Tendeiro and Kiers, |2019)), and it seems that the subtleties
of when those limitations apply sometimes get lost in the overwhelming effort to provide a
solution to the pervasive problems of p-values.

In this article we elucidate the intricacies of handling optional stopping with Bayes factors,
primarily in response to Rouder (2014). Optional stopping refers to ‘looking at the results so far
to decide whether or not to gather more data) and it is a desirable property of a hypothesis test
to be able to handle optional stopping. The key question is whether Bayes factors can or cannot
handle optional stopping. Yu et al. (2014), Sanborn and Hills (2014) and Rouder (2014) tried
to answer this question from different perspectives and with different interpretations of the
notion of handling optional stopping. Rouder (2014) illustrates, using computer simulations,
that optional stopping is not a problem for Bayesians, also citing Lindley (1957) and Edwards,
Lindman and Savage (1963) who provide mathematical results to a similar (but not exactly the
same) effect. Rouder used the simulations to concretely illustrate more abstract mathematical
theorems; these theorems are indeed formally proven by Deng, Lu and Chen (2016) and, in
a more general setting, by Hendriksen, De Heide and Griinwald (2020). Other early work
indicating that optional stopping is not a problem for Bayesians includes Savage (1954) and
Good (1991). We briefly return to all of these in Section [33

All this earlier work notwithstanding, we maintain that optional stopping can be a problem
for Bayesians — at least for pragmatic Bayesians who are either willing to use so-called ‘default,
or ‘convenience’ priors, or otherwise are willing to admit that their priors are imperfect and
are willing to subject them to robustness analyses. In practice, nearly all statisticians who use
Bayesian methods are ‘pragmatic’ in this sense.

Rouder (2014) was written mainly in response to Yu et al. (2014), and his main goal was to show
that Bayesian procedures retain a clear interpretation under optional stopping. He presents a
criterion which, if it holds for a given Bayesian method, indicates that, in some specific sense,
it performs as one would hope under optional stopping. The main content of this article is
to investigate this criterion, which one may call prior-based calibration, for common testing
scenarios involving default priors. We shall encounter two types of default priors, and we
shall see that Rouder’s calibration criterion — while indeed providing a clear interpretation to
Bayesian optional stopping whenever defined — is in many cases either of limited relevance
(Type I priors) or undefined (Type II priors).

We consider a strengthening of Rouder’s check which we call strong calibration, and which
remains meaningful for all default priors. Then, however, we shall see that strong calibration
fails to hold under optional stopping for all default priors except, interestingly, for a special
type of priors (which we call “Type o priors”) on a special (but common) type of nuisance
parameters. Since these are rarely the only parameters incurring in one’s models, one has
to conclude that optional stopping is usually a problem for pragmatic Bayesians — at least
under Rouder’s calibration criterion of handling optional stopping. There exist (at least) two
other reasonable definitions of ‘handling optional stopping, which we provide in Section|3.5]
There we also discuss how, under these alternative definitions, Type I priors are sometimes less
problematic, but Type II priors still are. As explained in the conclusion (Section|[3.6), the overall
crux is that default and pragmatic priors represent tools for inference just as much or even more
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than beliefs about the world, and should thus be equipped with a precise prescription as to
what type of inferences they can and cannot be used for. A first step towards implementing this
radical idea is given by one of us in the recent paper Safe Probability (Griinwald, [2018).

Readers who are familiar with Bayesian theory will not be too surprised by our conclusions:
It is well-known that what we call Type II priors violate the likelihood principle (Berger and
Wolpert, 1988) and/or lead to (mild) forms of incoherence (Seidenfeld, 1979) and, because of
the close connection between these two concepts and optional stopping, it should not be too
surprising that issues arise. Yet it is still useful to show how these issues pan out in simple
computer simulations, especially given the apparently common belief that optional stopping
is never a problem for Bayesians. The simulations will also serve to illustrate the difference
between the subjective, pragmatic and objective views of Bayesian inference, a distinction
which matters a lot and which, we feel, has been underemphasized in the psychology literature
— our simulations may in fact serve to help the reader decide what viewpoint he or she likes
best.

In Section [3.2] we explain important concepts of Bayesianism and Bayes factors. Section 3.3
explains Rouder’s calibration criterion and repeats and extends Rouder’s illustrative experiments,
showing the sense in which optional stopping is indeed not a problem for Bayesians. Section|s.4]
then contains additional simulations indicating the problems with default priors as summarized
above. In Section [3.5]we discuss conceptualizations of ‘handling optional stopping’ that are
different from Rouder’s; this includes an explication of the purely subjective Bayesian viewpoint
as well as an explication of a frequentist treatment of handling optional stopping, which only
concerns sampling under the null hypothesis. We illustrate that some (not all!) Bayes factor
methods can handle optional stopping in this frequentist sense. We conclude with a discussion
of our findings in Section 3.6,

3.2 Bayesian probability and Bayes factors

Bayesianism is about a certain interpretation of the concept probability: as degrees of belief.
Wagenmakers (2007) and Rouder (2014) give an intuitive explanation for the different views
of frequentists and Bayesians in statistics, on the basis of coin flips. The frequentists interpret
probability as a limiting frequency. Suppose we flip a coin many times, if the probability of
heads is 3/4, we see a proportion of 3/4 of all those coin flips with heads up. Bayesians interpret
probability as a degree of belief. If an agent believes the probability of heads is 3/4, she believes
that it will be 3 times more likely that the next coin flip will result in heads than tails; we return
to the operational meaning of such a ‘belief” in terms of betting in Section 3.5

A Bayesian first expresses this belief as a probability function. In our coin flipping example,
it might be that the agent believes that it is more likely that the coin is biased towards heads,
which the probability function thus reflects. We call this the prior distribution, and we denotd”
it by P(8), where 0 is the parameter (or several parameters) of the model. In our example, 0

'With some abuse of notation, we use P both to denote a generic probability distribution (defined on sets), and
to denote its associated probability mass function and a probability density function (defined on elements of sets);
whenever in this article we write P(z) where z takes values in a real-valued scalar or vector space, this should be read
as f(z) where f is the density of P.
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expresses the bias of the coin, and is a real number between 0 and 1. After the specification of
the prior, we conduct the experiment and obtain the data D and the likelihood P(D|6). Now
we can compute the posterior distribution P(6|D) with the help of Bayes’ theorem:

P(0|D) = P(Il):l(eg)’(@ (3.1)

Rouder (2014) and Wagenmakers (2007) provide a clear explanation of Bayesian hypothesis
testing with Bayes factors (Jeffreys, 1961; Kass and Raftery, [1995), which we repeat here for
completeness. Suppose we want to test a null hypothesis 7, against an alternative hypothesis
‘H;. A hypothesis can consist of a single distribution, for example: ‘the coin is fair. We call
this a simple hypothesis. A hypothesis can also consist of two or more, or even infinitely many
hypotheses, which we call a composite hypothesis. An example is: ‘the coin is biased towards
heads; so the probability of heads can be any number between 0.5 and 1, and there are infinitely
many of those numbers. Suppose again that we want to test #, against 7{;. We start with the
so called prior odds: P(H,)/P(#Ho), our belief before seeing the data. Let’s say we believe that
both hypotheses are equally probable, then our prior odds are 1-to-1. Next we gather data D,
and update our odds with the new knowledge, using Bayes’ theorem (Eq.[3.1):

P(H,|D) _ P(#1) P(D[H1)
P(HolD) ~ P(Ho) P(D[Ho)’

post-odds|D = (3.2)

The left term is called posterior odds, it is our updated belief about which hypothesis is more
likely. Right of the prior odds, we see the Bayes factor, the term that describes how the beliefs
(prior odds) are updated via the data. If we have no preference for one hypothesis and set
the prior odds to 1-to-1, we see that the posterior odds are just the Bayes factor. If we test a
composite H, against a composite #;, the Bayes factor is a ratio of two likelihoods in which
we have two or more possible values of our parameter 8. Bayesian inference tells us how to
calculate P(D | H;): we integrate out the parameter with help of a prior distribution P(6), and

we write Eq. as:

P(H,|D) P(H,) Jo, P(DI61)P(6:) d6
P(HolD)  P(Ho) Jo, P(D]0)P(6) dbo

post-odds|D = (3.3)

where 0, denotes the parameter of the null hypothesis 7, and similarly, 6, is the parameter of
the alternative hypothesis #,. If we observe a Bayes factor of 10, it means that the change in
odds from prior to posterior in favor of the alternative hypothesis #, is a factor 10. Intuitively,
the Bayes factor provides a measure of whether the data have increased or decreased the odds
on H, relative to H,.

3.3 Handling Optional stopping in the Calibration Sense
Validity under optional stopping is a desirable property of hypothesis testing: we gather some

data, look at the results, and decide whether we stop or gather some additional data. Informally
we call ‘peeking at the results to decide whether to collect more data’ optional stopping, but if
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we want to make more precise what it means if we say that a test can handle optional stopping,
it turns out that different approaches (frequentist, subjective Bayesian and objective Bayesian)
lead to different interpretations or definitions. In this section we adopt the definition of handling
optional stopping that was used by Rouder, and show, by repeating and extending Rouder’s
original simulation, that Bayesian methods do handle optional stopping in this sense. In the
next section, we shall then see that for ‘default’ and ‘pragmatic’ priors used in practice, Rouder’s
original definition may not always be appropriate — indicating there are problems with optional
stopping after all.

3.3.1 Example 0: Rouder’s example

We start by repeating Rouder’s (2014) second example, so as to explain his ideas and re-state
his results. Suppose a researcher wants to test the null hypothesis 7, that the mean of a normal
distribution is equal to 0, against the alternative hypothesis #; that the mean is not 0: we are
really testing whether ¢ = 0 or not. In Bayesian statistics, the composite alternative H; : g # 0
is incomplete without specifying a prior on y; like in Rouder’s example, we take the prior on
the mean to be a standard normal, which is a fairly standard (though by no means the only
common) choice (Berger, [1985; Bernardo and Smith, 1994). This expresses a belief that small
effect sizes are possible (though the prior probability of the mean being exactly 0 is 0), while a
mean as large as 1.0 is neither typical nor exceedingly rare. We take the variance to be 1, such
that the mean equals the effect size. We set our prior odds to 1-to-1: This expresses a priori
indifference between the hypotheses, or a belief that both hypotheses are really equally probable.
To give a first example, suppose we observe #n = 10 observations Now we can observe the data
and update our prior beliefs. We calculate the posterior odds, in our case equal to the Bayes
factor, via Eq. for data D = (x1,...,x,):

1
post-odds|xi,...,x, = h (3.4)

where 7 is the sample size (10 in our case), and x is the sample mean. Suppose we observe
posterior odds of 3.5-to-1 in favor of the null.

Calibration, Mathematically As Rouder writes: If a replicate experiment yielded a posterior
odds of 3.5-to-1 in favor of the null, then we expect that the null was 3.5 times as probable as
the alternative to have produced the data’ In mathematical language, this can be expressed
as

»

“post-odds|xy,...,x, =a” = a, (3.5)

post-odds

for the specific case n =10 and a = 1/3.5; of course we would expect this to hold for general n
and a. The quotation marks indicate that we condition on an event, i.e. a set of different data
realizations; in our case this is the set of all data xi, ..., x, for which the posterior odds are
a. We say that expresses calibration of the posterior odds. To explain further, we draw the
analogy to weather forecasting: consider a weather forecaster who, on each day, announces
the probability that it will rain the next day at a certain location. It is standard terminology
to call such a weather forecaster calibrated if, on average on those days for which he predicts
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‘probability of rain is 30%);, it rains about 30% of the time, on those days for which he predicts
40%, it rains 40% of the time, and so on. Thus, although his predictions presumably depend on
a lot of data such as temperature, air pressure at various locations etc., given only the fact that
this data was such that he predicts a, the actual probability is a. Similarly, given only the fact the
posterior odds based on the full data are a (but not given the full data itself), the posterior odds
should still be a (readers who find hard to interpret are urged to study the simulations
below).

Indeed, it turns out that (3.5) is the case. This can be shown either as a mathematical theorem,
or, as Rouder does, by computer simulation. At this point, the result is merely a sanity check,
telling us that Bayesian updating is not crazy, and is not really surprising. Now, instead of a
fixed #, let us consider optional stopping: we keep adding data points until the the posterior
odds are at least 10-to-1 for either hypothesis, unless a maximum of 25 data points was reached.
Let 7 be the sample size (which is now data-dependent) at which we stop; note that 7 < 25.
Remarkably, it turns out that we still have

post-odds|“post-odds|x,...,x; =a” = a, (3.6)

for this (and in fact any other data-dependent) stopping time 7. In words, the posterior odds
remain calibrated under optional stopping. Again, this can be shown formally, as a mathematical
theorem (we do so in Hendriksen, De Heide and Griinwald, 2020} see also Deng, Lu and Chen,
2016).

Calibration, Proof by Simulation Following Yu et al. (2014) and Sanborn and Hills (2014),
Rouder uses computer simulations, rather than mathematical derivation, to elucidate the
properties of analytic methods. In Rouder’s words ‘this choice is wise for a readership of
experimental psychologists. Simulation results have a tangible, experimental feel; moreover,
if something is true mathematically, we should be able to see it in simulation as well’ Rouder
illustrates both and by a simulation which we now describe.

Again we draw data from the null hypothesis: say # = 10 observations from a normal distribution
with mean 0 and variance 1. But now we repeat this procedure 20, 000 times, and we see the
distribution of the posterior odds plotted as the blue histogram on the log scale in Figure[3.1a.
We also sample data from the alternative distribution H,: first we sample a mean from a standard
normal distribution (readers that consider this ‘sampling from the prior’ to be strange are urged
to read on), and then we sample 10 observations from a normal distribution with this just
obtained mean, and variance 1. Next, we calculate the posterior odds from Eq. (3.4). Again, we
perform 20, 000 replicate experiments of 10 data points each, and we obtain the pink histogram
in Figure[3.1a} We see that for the null hypothesis, most samples favor the null (the values of the
Bayes factor are smaller than 1), for the alternative hypothesis we see that the bins for higher
values of the posterior odds are higher.

In terms of this simulation, Rouder’s claim that, ‘If a replicate experiment yielded a posterior
odds of 3.5-to-1 in favor of the null, then we expect that the null was 3.5 times as probable as
the alternative to have produced the data; as formalized by (3.5), now says the following: if we
look at a specific bin of the histogram, say at 3.5, i.e. the number of all the replicate experiments
that yielded approximately a posterior odds of 3.5, then the bin from #; should be about 3.5
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times as high as the bin from #,. Rouder calls the ratio of the two histograms the observed
posterior odds: the ratio of the binned posterior odds counts we observe from the simulation
experiments we did. What we expect the ratio to be for a certain value of the posterior odds, is
what he calls the nominal posterior odds. We can plot the observed posterior odds as a function
of the nominal posterior odds, and we see the result in Figure[3.1b] The observed values agree
closely with the nominal values: all points lie within simulation error on the identity line, which
can be considered as a ‘proof of by simulation.

Rouder (2014) repeats this experiment under optional stopping: he ran a simulation experiment
with exactly the same setup, except that in each of the 40, 000 simulations, sampling occurred
until the posterior odds were at least 10-to-1 for either hypothesis, unless a maximum of 25
observations was reached. This yielded a figure indistinguishable from Figure[3.1b} from which
Rouder concluded that ‘the interpretation of the posterior odds holds with optional stopping’;
in our language, the posterior odds remain calibrated under optional stopping — it is a proof, by
simulation, that (3.6) holds. From this and similar experiments, Rouder concluded that Bayes
factors still have a clear interpretation under optional stopping (we agree with this for what we
call below Type o and I priors, not Type II), leading to the claim/title ‘optional stopping is no
problem for Bayesians’ (for which we only agree for Type o and purely subjective priors).

Is sampling from the prior meaningful? When presenting Rouder’s simulations to other
researchers, a common concern is: ‘how can sampling a parameter from the prior in H, be
meaningful? In any real-life experiment, there is just one, fixed population value, i.e. one fixed
value of the parameter that governs the data’ This is indeed true, and not in contradiction with
Bayesian ideas: Bayesian statisticians put a distribution on parameters in #,; that expresses
their uncertainty about the parameter, and that should not be interpreted as something that
is ‘sampled’ from. Nevertheless, Bayesian posterior odds calculations are done by calculating
weighted averages via integrals, and the results are mathematically equivalent to what one gets
if, as above, one samples a parameter from the prior, and the data from the parameter, and then
takes averages over many repetitions. We (and Rouder) really want to establish and @)
(which can be interpreted without resorting to sampling a parameter from a prior), and we
note that it is equivalent to the curve in Figure[3.1b|coinciding with the diagonal.

Some readers of an earlier draft of this paper concluded that, given its equivalence to an
experiment involving sampling from the prior, which feels meaningless to them, is itself
invariably meaningless. Instead, they claim, because in real-life the parameter often has one
specific fixed value, one should look at what happens under sampling under fixed parameter
values. Below we shall see that if we look at such strong calibration, we sometimes (Example 1)
still get calibration, but usually (Example 2) we do not; so such readers will likely agree with
our conclusion that ‘optional stopping can be a problem for Bayesians, even though they would
disagree with us on some details, because we do think that (3.6) can be a meaningful statement
for some, but not all priors. To us, the importance of the simulations is simply to verify
and, later on (Example 2), to show that (3.8), the stronger analogue of that we would like
to hold for default priors, does not always hold.
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Figure 3.1: The interpretation of the posterior odds in Rouder’s experiment, from 20, 000 replicate experiments. (a)
The empirical sampling distribution of the posterior odds as a histogram under Ho and H;. (b) Calibration plot: the
observed posterior odds as a function of the nominal posterior odds.

3.3.2 Example 1: Rouder’s example with a nuisance parameter

We now adjust Rouder’s example to a case where we still want to test whether ¢ = 0, but the
variance o is unknown. Posterior calibration will still be obtained under optional stopping;
the example mainly serves to gently introduce the notions of improper prior and strong vs.
prior calibration, that will play a central role later on. So, H, now expresses that the data are
independently normally distributed with mean 0 and some unknown variance 02, and H;
expresses that the data are normal with variance 0, and some mean y, where the uncertainty
about y is once again captured by a normal prior: the mean is distributed according to a normal
with mean zero and variance (again) o (this corresponds to a standard normal distribution
on the effect size). If 6* = 1, this reduces to Rouder’s example; but we now allow for arbitrary
0%. We call 62 a nuisance parameter: a parameter that occurs in both models, is not directly
of interest, but that needs to be accounted for in the analysis. The setup is analogous to the
standard 1-sample frequentist ¢-test, where we also want to test whether a mean is 0 or not,
without knowing the variance; in the Bayesian approach, such a test only becomes defined once
we have a prior for the parameters. For 4 we choose a normalf|for the nuisance parameter
o we will make the standard choice of Jeftreys’ prior for the variance: P;(¢) := 1/0 (Rouder
et al,,[2009). To obtain the Bayes factor for this problem, we integrate out the parameter o cf.

>The advantage of a normal is that it makes calculations relatively easy. A more common and perhaps more
defensible choice is a Cauchy distribution, used in the ‘default Bayesian ¢-test, which we consider further below.
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Eq. (3.3). Again, we assign prior odds of 1-to-1, and obtain the posterior odds:
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Formally, Jeffreys’ prior on o is a ‘measure’ rather than a distribution, since it does not integrate

to L: clearly
[ee] (o] 1
f P,(0)do = f —do = oo, (3.7)
0 0 o

Priors that integrate to infinity are often called improper. Use of such priors for nuisance
parameters is not really a problem for Bayesian inference, since one can typically plug such
priors into Bayes’ theorem anyway, and this leads to proper posteriors, i.e. posteriors that do
integrate to one, and then the Bayesian machinery can go ahead. Since Jeffreys’ prior is meant
to express that we have no clear prior knowledge about the variance, we would hope that
Bayes would remain interpretable under optional stopping, no matter what the (unobservable)
variance in our sampling distribution actually is. Remarkably, this is indeed the case: for all
o2 > 0, we have the following analogue of :

ol

post-odds|o? = a7, “post-odds|x;,..., x; = a” = a, (3.8)

In words, this means that, given that the posterior odds (calculated based on Jeffreys’ prior, i.e.
without knowing the variance) are equal to a and that the actual variance is o7, the posterior
odds are still a, irrespective of what o7 actually is. This statement may be quite hard to interpret,
so we proceed to illustrate it by simulation again.

To repeat Rouder’s experiment, we have to simulate data under both H and H;. To do this we
need to specify the variance o2 of the normal distribution(s) from which we sample. Whereas,
as in the previous experiment, we can sample the mean in ‘H,; from the prior, for the variance
we seem to run into a problem: it is not clear how one should sample from an improper prior.
0. But we cannot directly sample ¢ from an improper prior. As an alternative, we can pick any
particular fixed o2 to sample from, as we now illustrate. Let us first try o* = 1. Like Rouder’s
example, we sample the mean of the alternative hypothesis #; from the aforementioned normal
distribution. Then, we sample 10 data points from a normal distribution with the just sampled
mean and the variance that we picked. For the null hypothesis #, we sample the data from
a normal distribution with mean zero and the same variance. We continue the experiment
just as Rouder did: we calculate the posterior odds from 20, 000 replicate experiments of 10
generated observations for each hypothesis, and construct the histograms and the plot of the
ratio of the counts to see if calibration is violated. In Figure 3.2a] we see the calibration plot
for the experiment described above. In Figure[3.2b|we see the results for the same experiment,
except that we performed optional stopping: we sampled until the posterior odds were at least
10-to-1 for H;, or the maximum of 25 observations was reached. We see that the posterior odds
in this experiment with optional stopping are calibrated as well.
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Prior Calibration vs. Strong Calibration Importantly, the same conclusion remains valid
whether we sample data using o*=1,0ro?=2,or any other value — in simulation terms
simply expresses that we get calibration (i.e. all points on the diagonal) no matter what o we
actually sample from: even though calculation of the posterior odds given a sample makes use
of the prior P;(¢) = 1/0 and does not know the ‘true’ o, calibration is retained under sampling
under arbitrary ‘true’ 0. We say that the posterior odds are prior-calibrated for parameter y and
strongly calibrated for 6*. More generally and formally, consider general hypotheses H, and H;
(not necessarily expressing that data are normal) that share parameters yy, y; and suppose that
@) holds with y; in the role of 6. Then we say that y, is prior-calibrated (to get calibration
in simulations we need to draw it from the prior) and y, is strongly calibrated (calibration is
obtained when drawing data under all possible ;).

Notably, strong calibration is a special property of the chosen prior. If we had chosen another
proper or improper prior to calculate the posterior odds (for example, the improper prior
P’(0) o< 072 has sometimes been used in this context) then the property that calibration under
optional stopping is retained under any choice of 2 will cease to hold; we will see examples
below. The reason that P;(0) o< 1/0 has this nice property is that o is a special type of nuisance
parameter for which there exists a suitable group structure, relative to which both models are
invariant (Eaton, 1989; Berger, Pericchi and Varshavsky, 1998; Dass and Berger, |2003). This
sounds more complicated than it is — in our example, the invariance is scale invariance: if we
divide all outcomes by any fixed ¢ (multiply by 1/0), then the Bayes factor remains unchanged;
similarly, one may have for example location invariances.

If such group structure parameters are equipped with a special prior (which, for reasons to
become clear, we shall term Type o prior), then we obtain strong calibration, both for fixed
sample sizes and under optional stopping, relative to these parametersf]Jeffreys prior for the
variance P;(¢) is the Type o prior for the variance nuisance parameter. Dass and Berger (2003)
show that such priors can be defined for a large class of nuisance parameters — we will see the
example of a prior on a common mean rather than a variance in Example 3 below; but there also
exist cases with parameters that (at least intuitively) are nuisance parameters, for which Type o
priors do not exist; we give an example in Appendix[3.A. For parameters of interest, including
e.g. any parameter that does not occur in both models, Type o priors never exist.

3.4 When Problems arise: Subjective versus Pragmatic and
Default Priors

Bayesians view probabilities as degree of belief. The degree of belief an agent has before con-
ducting the experiment, is expressed as a probability function. This prior is then updated with
data from experiments, and the resulting posterior can be used to base decisions on. For one
pole of the spectrum of Bayesians, the pure subjectivists, this is the full story (De Finetti, 1937;
Savage, [1954): any prior capturing the belief of the agent is allowed, but it should always be

3Technically, the Type o prior for a given group structure is defined as the right-Haar prior for the group (Berger,
Pericchi and Varshavsky,|1998): a unique (up to a constant) probability measure induced on the parameter space by
the right Haar measure on the related group. Strong calibration is proven in general by Hendriksen, De Heide and
Griinwald, 2020} and Hendriksen, |2017|for the special case of the 1-sample ¢-test.
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Figure 3.2: Calibration of the experiment of Section from 20, 000 replicate experiments. (a) The observed posterior
odds as a function of the nominal posterior odds. (b) The observed posterior odds as a function of the nominal posterior
odds with optional stopping.

interpreted as the agent’s personal degree of belief; in Section[3.5 we explain what such a ‘belief’
really means. On the other end of the spectrum, the objective Bayesians (Jeftreys, 1961; Berger,
2006) argue that degrees of belief should be restricted, ideally in such a way that they do
not depend on the agent, and in the extreme case boil down to a single, rational, probability
function, where a priori distributions represent indifference rather than subjective belief and
a posteriori distributions represent ‘rational degrees of confirmation’ rather than subjective
belief. Ideally, in any given situation there should then just be a single appropriate prior. Most
objective Bayesians do not take such an extreme stance, recommending instead default priors
to be used whenever only very little a priori knowledge is available. These make a default choice
for the functional form of a distribution (e.g. Cauchy) but often have one or two parameters that
can be specified in a subjective way. These may then be replaced by more informative priors
when more knowledge becomes available after all. We will see several examples of such default
priors below.

So what category of priors is used in practice? Recent papers that advocate the use of Bayesian
methods within psychology such as Rouder et al. (2009), Rouder et al. (2012)) and Jamil et
al. (2016) are mostly based on default priors. Within the statistics community, nowadays a
pragmatic stance is by far the most common, in which priors are used that mix ‘default’ and
‘subjective’ aspects (Gelman, 2017) and that are also chosen to allow for computationally feasible
inference. Very broadly speaking, we may say that there is a scale ranging from completely
‘objective’ (and hardly used) via ‘default’ (with a few, say 1 or 2 parameters to be filled in
subjectively, i.e. based on prior knowledge) and ‘pragmatic’ (with functional forms of the prior
based partly on prior knowledge, partly by defaults, and partly by convenience) to the fully
subjective. Within the pragmatic stance, one explicitly acknowledges that one’s prior distribution
may have some arbitrary aspects to it (e.g. chosen to make computations easier rather than
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reflecting true prior knowledge). It then becomes important to do sensitivity analyses: studying
what happens if a modified prior is used or if data are sampled not by first sampling parameters
0 from the prior and then data from P(- | 0) but rather directly from a fixed 6 within a region
that does not have overly small prior probability[*

The point of this article is that Rouder’s view on what constitutes ‘handling optional stopping’
is tailored towards a fully subjective interpretation of Bayes; as soon as one allows default and
pragmatic priors, problems with optional stopping do occur (except for what we call Type o
priors). We can distinguish between three types of problems, depending on the type of prior
that is used. We now give an overview of type of prior and problem, giving concrete examples
later.

1. Type o Priors: these are priors on parameters freely occurring in both hypotheses for
which strong calibration (as with o in ) holds under optional stopping. This includes
all right Haar priors on parameters that satisfy a group structure; Hendriksen, De Heide
and Griinwald (2020) give a formal definition; Dass and Berger (2003) and Berger,
Pericchi and Varshavsky (1998) give an overview of such priors. We conjecture, but have
no proof, that such right Haar priors on group structure parameters are the only priors
allowing for strong calibration under optional stopping, i.e. the only Type o Priors. Some,
but not all so-called ‘nuisance parameters’ admit group structure/right Haar priors. For
example, the variance in the ¢-test setting does, but the mean in 2 x 2 contingency tables
(Appendix[3.A) does not.

2. Type I Priors: these are default or pragmatic priors that do not depend on any aspects
of the experimental setup (such as the sample size) or the data (such as the values of
covariates) and are not of Type o above. Thus, strong calibration under optional stopping
is violated with such priors — an example is the Cauchy prior in Example 2 of Section[3.4.1]
below.

3. Type II Priors: these are default and pragmatic priors that are not of Type o or I: the priors
may themselves depend on the experimental setup, such as the sample size, the covariates
(design), or the stopping time itself, or other aspects of the data. Such priors are quite
common in the Bayesian literature. Here the problem is more serious: as we shall see,
prior calibration is ill-defined, and correspondingly Rouder’s experiments cannot be
performed for such priors, and ‘handling optional stopping’ is in a sense impossible in
principle. An example is the g-prior for regression as in Example 3 below or Jeffreys’
prior for the Bernoulli model as in Section[3.4.3|below.

We illustrate the problems with Type I and Type II priors by further extending Rouder’s
experiment to two extensions of our earlier setting, namely the Bayesian ¢-test, going back to
Jeffreys (1961) and advocated by Rouder et al. (2009), and objective Bayesian linear regression,
following Liang et al. (2008). Both methods are quite popular and use default Bayes factors
based on default priors, to be used when no clear or very little prior knowledge is readily
available.

4To witness, one of us recently spoke at the bi-annual OBAYES (Objective Bayes) conference, and noticed that a
substantial fraction of the talks featured such fixed §-analyses and/or used priors of Type II below.
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3.4.1 Example 2: Bayesian ¢-test — The Problem with Type I Priors

Suppose a researcher wants to test the effect of a new fertilizer on the growth of some wheat
variety. The null hypothesis H states that there is no difference between the old and the new
fertilizer, and the alternative hypothesis H, states that the fertilizers have a different effect on
the growth of the wheat. We assume that the length of the wheat is normally distributed with
the same (unknown) variance under both fertilizers, and that with the old fertilizer, the mean
is known to be yy = 1 meter. We now take a number of seeds and apply the new fertilizer to
each of them. We let the wheat grow for a couple of weeks, and we measure the lengths. The
null hypothesis H, is thus: 4 = o = 1, and the alternative hypothesis H, is that the mean of the
group with the new fertilizer is different from 1 meter: y # 1.

Again we follow Rouder’s calibration check; again, the end goal is to illustrate a mathematical
result, @) below, which will be contrasted with @). And again, to make the result concrete,
we will first perform a simulation, generating data from both models and updating our prior
beliefs from this data as before. We do this using the Bayesian t-test, where Jeffreys’ prior
P;(0) =1/0 is placed on the standard deviation ¢ within both hypotheses H, and H;. Within
Ho we set the mean to yo = 1 and within #,;, a standard Cauchy prior is placed on the effect size
(¢ — po)/o; details are provided by Rouder et al. (2009). Once again, the nuisance parameter ¢
is equipped with an improper Jeffreys’ prior, so, like in Experiment 1 above and for the reasons
detailed there, for simulating our data, we will choose a fixed value for ¢; the experiments will
give the same result regardless of the value we choose.

We generate 10 observations for each fertilizer under both models: for H, we sample data from a
normal distribution with mean gy = 1 meter and we pick the variance o = 1. For H; we sample
data from a normal distribution where the variance is 1 as well, and the mean is determined
by the effect size above. We adopt a Cauchy prior to express our beliefs about what values of
the effect size are likely, which is mathematically equivalent to the effect size being sampled
from a standard Cauchy distribution. We follow Rouder’s experiment further, and set our prior
odds on H, and H,;, before observing the data, to 1-to-1. We sample 10 data points from each
of the hypotheses, and we calculate the Bayes factors. We repeat this procedure 20000 times.
Then, we bin the 20000 resulting Bayes factors and construct a histogram. In Figure[3.3a we
see the distribution of the posterior odds when either the null or the alternative are true in
one figure. In Figure[3.3b|we see the calibration plot for this data from which Rouder checks
the interpretation of the posterior odds: the observed posterior odds is the ratio of the two
histograms, where the width of the bins is 0.1 on the log scale. The posterior odds are calibrated,
in accordance with Rouder’s experiments. We repeated the experiment with the difference that
in each of the 40, 000 experiments we sampled more data points until the posterior odds were
at least 10-to-1, or the maximum number of 25 data points was reached. The histograms for this
experiment are in Figure[3.3d In Figure[3.3d|we can see that, as expected, the posterior odds
are calibrated under optional stopping as well.

Since ¢? is a nuisance parameter equipped with its Type o prior, it does not matter what value

we take when sampling data. We may ask ourselves what happens if, similarly, we fix particular
values of the mean and sample from them, rather than from the prior; for sampling from H,,
this does not change anything since the prior is concentrated on the single point g = I; in
‘H;, this means we can basically pick any y and sample from it. In other words, we will check
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Figure 3.3: Calibration in the t-test experiment, Section@ from 20, 000 replicate experiments. (a) The distribution
of posterior odds as a histogram under #, and #; in one figure. (b) The observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d) The observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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whether we have strong calibration rather than prior-calibration not just for 2, but also for
the mean p. We now first describe such an experiment, and will explain its importance further
below.

We generate 10 observations under both models. The mean length of the wheat is again set to
be 1 meter with the old fertilizer, and now we pick a particular value for the mean length of
the wheat with the new fertilizer: 130 centimeters. For the variance, we again pick o2 = 1. We
continue to follow Rouder’s experiment and set our prior odds on H, and H;, before observing
the data, to 1-to-1. We sample 20, 000 replicate experiments with 10 + 10 observations each, 10
from one of the hypotheses (normal with mean 1 for ;) and 10 from the other (normal with
mean y = 1.3 for H,), and we calculate the Bayes factors. In Figure[3.4a we see that calibration is,
to some extent, violated: the points follow a line that is still approximately, but now not precisely,
a straight line. Now what happens in this experiment under optional stopping? We repeated
the experiment with the difference that we sampled more data points until the posterior odds
were at least 10-to-1, or the maximum number of 25 data points was reached. In Figure[3.4b|
we see the results: calibration is now violated significantly — when we stop early the nominal
posterior odds (on which our stopping rule was based) are on average significantly higher than
the actual, observed posterior odds. We repeated the experiment with various choices of y’s
within H,, invariably getting similar resultsf|In mathematical terms, this illustrates that when
the stopping time 7 is determined by optional stopping, then, for many a and p’,

post-odds|y = y', “post-odds|xy, ..., x, = a” is very different from a, (3.9)

We conclude that strong calibration for the parameter of interest y is violated somewhat for fixed
sample sizes, but much more strongly under optional stopping. We did similar experiments for
a different model with discrete data (see Appendix[3.A), once again getting the same result. We
also did experiments in which the means of 7, were sampled from a different prior than the
Cauchy: this also yielded plots which showed violation of calibration. Our experiments are all
based on a one-sample ¢-test; experiments with a two-sample ¢-test and ANOVA (also with the
same overall mean for both H, and #,) yielded severe violation of strong calibration under
optional stopping as well.

The Issue Why is this important? When checking Rouder’s prior-based calibration, we
sampled the effect size from a Cauchy distribution, and then we sampled data from the realized
effect size. We repeated this procedure many times to approximate the distribution on posterior
odds by a histogram analogous to that in Figure[3.1a} But do we really believe that such a histo-
gram, based on the Cauchy prior, accurately reflects our beliefs about the data? The Cauchy
prior was advocated by Jeftreys for the effect size corresponding to a location parameter y
because it has some desirable properties in hypothesis testing, i.e. when comparing two models
(Ly, Verhagen and Wagenmakers, [2016). For estimating a one-dimensional location parameter
directly, Jeftreys (like most objective Bayesians) would advocate an improper uniform prior on
y. Thus, objective Bayesians may change their prior depending on the inference task of interest,

>Invariably, strong calibration is violated both with and without optional stopping. In the experiments without
optional stopping, the points still lie on an increasing and (approximately) straight line; the extent to which strong
calibration is violated — the slope of the straight line — depends on the effect size. In the experiments with optional
stopping, strong calibration is violated more strongly in the sense that the points do not follow a straight line anymore.
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Figure 3.4: Calibration in the t-test experiment with fixed values for the means of H( and H,; (Section from
40, 000 replicate experiments). (a) The observed posterior odds as a function of the nominal posterior odds. (b) The
observed posterior odds as a function of the nominal posterior odds with optional stopping.

even when they are dealing with data representing the same underlying phenomenon. It does
then not seem realistic to study what happens if data are sampled from the prior; the prior is
used as a tool in inferring likely parameters or hypotheses, and not to be thought of as something
that prescribes how actual data will arise or tend to look like. This is the first reason why it is
interesting to study not just prior calibration, but also strong calibration for the parameter of
interest. One might object that the sampling from the prior done by Rouder, and us, was only
done to illustrate the mathematical expression (3.6); perhaps sampling from the prior is not
realistic but (3.6) is still meaningful? We think that, because of the mathematical equivalence, it
does show that the relevance of is questionable as soon as we use default priors.

Prior calibration in terms of — which indeed still holdf — would be meaningful if
a Cauchy prior really described our prior beliefs about the data in the subjective Bayesian
sense (explained in Section [3.5). But in this particular setup, the Cauchy distribution is highly
unrealistic: it is a heavy tailed distribution, which means that the probability of getting very
large values is not negligible, and it is very much higher than with, say, a Gaussian distribution.
To make the intuition behind this concrete, say that we are interested in measuring the height of
a type of corn that with the old fertilizer reaches on average 2 meters. The probability that a new
fertilizer would have a mean effect of 6 meters or more under a standard Cauchy distribution
would be somewhat larger than one in twenty. For comparison: under a standard Gaussian, this
is as small as 9.87-107'%. Do we really believe that it is quite probable (more than one in twenty)
that the fertilizer will enable the corn to grow to 8 meters on average? Of course we could use a
Cauchy with a different spread, but which one? Default Bayesians have emphasized that such
choices should be made subjectively (i.e. based on informed prior guesses), but whatever value

$Note though that strong calibration still fails.



3.4. When Problems arise: Subjective versus Pragmatic and Default Priors 75

one choices, the chosen functional form of the prior (a Cauchy has, e.g., no variance) severely
restricts the options, making any actual choice to some extent arbitrary. While growing crops
(although a standard example in this context) may be particularly ill-suited to be modeled by
heavy-tailed distributions, the same issue will arise with many other possible applications for
the default Bayesian ¢-test: one will be practically sure that the effect size will not exceed certain
values (not too large, not too small, certainly not negative), but it may be very hard to specify
exactly which values. As a purely objective Bayesian, this need not be such a big problem -
one resorts to the default prior and uses it anyway; but one has to be aware that in that case,
sampling from the prior — as done by Rouder — is not meaningful anymore, since the data
one may get may be quite atypical for the underlying process one is modeling.

In practice, most Bayesians are pragmatic, striking a balance between ‘flat, ‘uninformative’
priors, prior knowledge and ease of computation. In the present example, they might put a
Gaussian prior with mean y on the effect size instead, truncated at 0 to avoid negative means. But
then there is the question what variance this Gaussian should have — as a pragmatic Bayesian,
one has to acknowledge that there will always be arbitrary or ‘convenience’ aspects about one’s
priors. This is the second reason why it is interesting to study not just prior calibration, but also
strong calibration for the parameter of interest.

Thus, both from a purely objective and from a pragmatic Bayesian point of view, strong cal-
ibration is important. Except for nuisance parameters with Type o priors, we cannot expect
it to hold precisely (see Gu, Hoijtink and Mulder, 2016 for a related point) — but this is fine;
like with any sensitivity or robustness test, we acknowledge that our prior is imperfect and we
merely ask that our procedure remains reasonable, not perfect. And we see that by and large
this is the case if we use a fixed sample size, but not if we perform optional stopping. In our
view this indicates that for pragmatic Bayesians using default priors, there is a real problem
with optional stopping after all. However, within the taxonomy defined above, we implicitly
used Type I priors (Cauchy) here. Default priors are often of Type II, and then, as we will see,
the problems get significantly worse.

As a final note, we note that in our strong calibration experiment, we chose parameter values
here which we deemed ‘reasonable), by this we mean values which reside in a region of large
prior density — i.e. we sampled from yu that are not too far from . Sampling from g in the
tails of the prior would be akin to ‘really disbelieving our own prior, and would be asking for
trouble. We repeated the experiment for many other values of y not too far from y, and always
obtained similar results. Whether our choices of y are truly reasonable is of course up to debate,
but we feel that the burden of proof that our values are ‘unreasonable’ lies with those who want
to show that Bayesian methods can deal with optional stopping even with default priors.

3.4.2 Example 3: Bayesian linear regression and Type II Priors

We further extend the previous example to a setting of linear regression with fixed design. We
employ the default Bayes factor for regression from the R package Bayesfactor (Morey and
Rouder, 2015), based on Liang et al. (2008) and Zellner and Siow (1980), see also Rouder and
Morey (2012). This function uses as default prior Jeffreys’ prior for the intercept y and the
variance (P;(y, o) ~ 1/0), and a mixture of a normal and an inverse-gamma distribution for
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the regression coefficients, henceforth g-prior:

y~N(y+X/3,02),
B ~N(0,go’n(X'X)™"), (3.10)
1 V2
g~1G (2 '3 ) .
Since the publication of Liang et al. (2008), this prior has become very popular as a default prior
in Bayesian linear regression. Again we provide an example concerning the growth of wheat.
Suppose a researcher wants to investigate the relationship between the level of a fertilizer, and
the growth of the crop. We can model this experiment by linear regression with fixed design.
We add different levels of the fertilizer to pots with seeds: the first pot gets a dose of 0.1, the
second 0.2, ans so on up to the level 2. These are the x-values (covariates) of our simulation
experiment. If we would like to repeat the examples of the previous sections and construct
the calibration plots, we can generate the y-values — the increase or decrease in length of the
wheat from the intercept y — according to the proposed priors in Eq. (3.10). First we draw a g
from an inverse gamma distribution, then we draw a 8 from the normal prior that we construct
with the knowledge of the x-values, and we compute each y; as the product of 8 and x; plus
Gaussian noise.

As we can see in Equation [3.10} the prior on f8 contains a scaling factor that depends on the
experimental set-up — while it does not directly depend on the observations (y-values), it
does depend on the design/covariates (x-values). If there is no optional stopping, then for
a pragmatic Bayesian, the dependency on the x-values of the data is convenient to achieve
appropriate scaling; it poses no real problems, since the whole model is conditional on X: the
levels of fertilizer we administered to the plants. But under optional stopping, the dependency
on X does become problematic, for it is unclear which prior she should use! If initially a design
with 40 pots was planned (after each dose from 0.1 up to 2, another row of pots, one for each
dose is added), but after adding three pots to the original twenty (so now we have two pots
with the doses 0.1,0.2 and 0.3, and one with each other dose), the researcher decides to check
whether the results already are interesting enough to stop, should she base her decision on the
posterior reached with prior based the initially planned design with 40 pots, or the design at the
moment of optional stopping with 23 pots? This is not clear, and it does make a difference, since
the g-prior changes as more x-values become available. In Figure[3.5a] we see three g-priors on
the regression coeflicient 3 for the same fixed value of g, the same x-values as described in the
fertilizer experiment above, but increasing sample size. First, each dose is administered to one
plant, yielding the black prior distribution for . Next, 3 plants are added to the experiment,
with doses 0.1,0.2 and 0.3, yielding the red distribution: wider and less peeked, and lastly,
another 11 plants are added to the experiment, yielding the blue distribution which puts even
less prior mass close to zero.

This problem may perhaps be pragmatically ‘solved’ in practice in two ways: either one could,
as a rule, base the decision to stop at sample size n always using the prior for the given design
at sample size n; or one could, as a rule, always use the design for the maximum sample
size available. It is very unclear though whether there is any sense in which any of these two
(or other) solutions ‘handle optional stopping’ convincingly. In the first case, the notion of
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Figure 3.5: Default priors that depend on aspects of the experimental setup: (a) G-priors for the regression example
of Sectionwith different sample sizes: n = 20 (black), n = 23 (red) and n = 34 (blue). (b) Jeffreys’ prior for the
Bernoulli model for the specific case that 7 is fixed in advance (no optional stopping): a Beta (1/2,1/2) distribution.

prior calibration is ill-defined, since post-odds|x;, ..., x, in is ill-defined (if one tried
to illustrate by sampling, the procedure would be undefined since one would not know
what prior to sample from until after one has stopped); in the second, one can perform it (by
sampling f from the prior based on the design at the maximum sample size), but it seems
rather meaningless, for if, for some reason or other, even more data were to become available
later on, this would imply that the earlier sampled data were somehow ‘wrong’ and would have
to be replaced.

What, then, about strong calibration? Fixing particular, ‘reasonable’ values of § does seem
meaningful in this regression example. However (figures omitted), when we pick reasonable
values for 8 instead of sampling f8 from the prior, we obtain again the conclusion that strong
calibration is, on one hand, violated significantly under optional stopping (where the prior used
in the decision to stop can be defined in either of the two ways defined above); but on the other
hand, only violated mildly for fixed sample size settings. Using the taxonomy above, we conclude
that optional stopping is a significant problem for Bayesians with Type-II priors.

3.4.3 Discrete Data and Type-II Priors

Now let us turn to discrete data: we test whether a coin is fair or not. The data D consist of
a sequence of n; ones and ng zeros. Under H,, the data are i.i.d. Bernoulli(1/2); under H,;
they can be Bernoulli(6) for any 0 < 6 < 1 except 1/2, 0 representing the bias of the coin. One
standard objective and default Bayes method (in this case coinciding with an MDL (Minimum
Description Length) method, (Griinwald, 2007)) is to use Jeffreys’ prior for the Bernoulli model
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within ;. For fixed sample sizes, this prior is proper, and is given by

1 1
P,(0) = —— -, .
(0) a0 (3.11)

where the factor 1/ is for normalization; see Figure 3.5b. If we repeat Rouder’s experiment, and
sample from this prior, then the probability that we would pick an extreme 6, within 0.01 of
either 1 or 0, would be about 10 times as large as the probability that we would pick a 6 within
the equally wide interval [0.49, 0.51]. But, lacking real prior knowledge, do we really believe
that such extreme values are much more probable than values around the middle? Most people
would say we do not: under the subjective interpretation, i.e. if one really believes one’s prior
in the common interpretation of ‘belief” given in Section 3.5} then such a prior would imply a
willingness to bet at certain stakes. Jeffreys’ prior is chosen in this case because it has desirable
properties such as invariance under reparameterization and good frequentist properties, but
not because it expresses any ‘real’ prior belief about some parameter values being more likely
than others. This is reflected in the fact that in general, it depends on the stopping rule. Using
the general definition of Jeftreys’ prior (see e.g. Berger (1985)), we see, for example, that in the
Bernoulli model, if the sample size is not fixed in advance but depends on the data (for example,
we stop sampling as soon as three consecutive 1s are observed), then, as a simple calculation
shows, Jeffreys’ prior changes and even becomes improper (Jordan, 2010).

In Appendix[3.A] we give another example of a common discrete setting, namely the 2 x 2
contingency table. Here the null hypothesis is a Bernoulli model and its parameter 0 is intuitively
a nuisance parameter, and thus strong calibration relative to this parameter would be especially
desirable. However, the Bernoulli model does not admit a group structure, and hence neither
Jeffreys’ nor any other prior we know of can serve as a Type o prior, and strong calibration
can presumably not be attained — the experiments show that it is certainly not attained if the
default Gunel and Dickey Bayes factors (Jamil et al., 2016)) are used (these are Type-II priors,
so we need to be careful about what prior to use in the strong calibration experiment; see
Appendix[3.Afor details).

3.5 Other Conceptualizations of Optional Stopping

We have seen several problems with optional stopping under default and pragmatic priors. Yet
it is known from the literature that, in some senses, optional stopping is indeed no problem
for Bayesians (Lindley, [1957; Savage, 1954; Edwards, Lindman and Savage, 1963; Good, 1991).
What then, is shown in those papers? Interestingly, different authors show different things; we
consider them in turn.

3.5.1 Subjective Bayes optional stopping

The Bayesian pioneers Lindley (1957) and Savage (1954) consider a purely subjective Bayesian
setting, appropriate if one truly believes one’s prior (and at first sight completely disconnected
from strong calibration — but see the two quotations further below). But what does this mean?
According to De Finetti, one of the two main founding fathers of modern, subjective Bayesian
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statistics, this implies a willingness to bet at small stakes, at the odds given by the prior[] For
example, a subjective Bayesian who would adopt Jeffreys’ prior P, for the Bernoulli model as
given by (3.11) would be willing to accept a gamble that pays off when the actual parameter
lies close to the boundary, since the corresponding region has substantially higher probability,
cf. the discussion underneath Eq. (3.11). For example, a gamble where one wins 11 cents if the
actual Bernoulli parameter is in the set [0,0.01] U [0.99,1] and pays 100 cents if it is in the set
[0.49,0.51] and neither pays nor gains otherwise would be considered acceptabl because
this gamble has positive expected gain under P;. We asked several Bayesians who are willing
to use Jeffreys’ prior for testing whether they would also be willing to accept such a gamble;
most said no, indicating that they do not interpret Jeffreys prior the way a subjective Bayesian
wouldP.

Now, if one adopts priors one really believes in in the above gambling sense, then it is easy to
show that Bayesian updating from prior to posterior is not affected by the employed stopping
rule; one ends up with the same posterior if one had decided the sample size # in advance or if
it had been determined, for example, because one was satisfied with the results at this n. In this
sense a subjective Bayesian procedure does not depend on the stopping rule (as we have seen,
this is certainly not the case in general for default Bayes procedures). This is the main point
concerning optional stopping of Lindley (1957), also made by e.g. Savage (1954) and Bernardo
and Smith (1994), among many others. A second point made by Lindley (1957, p. 192) is that the
decisions a Bayesian makes will “not, on average, be in error, when ignoring the stopping rule”
Here the “average” is really an expectation obtained by integrating 6 over the prior, and then
the data D over the distribution P(D | 8), making this claim very similar to prior calibration
(3.6) — once again, the claim is correct, but works only if one believes that sampling (or taking
averages over) the prior gives rise to data of the type one would really expect; and if one would
not be willing to bet based on the prior in the above sense, it indicates that perhaps one doesn’t
really expect that data after all.

We cannot resist to add here that, while for a subjective Bayesian, prior-based calibration is
sensible, even the founding fathers of subjective Bayes gave a warning against taking such a
prior too seriously{”|

“ Subjectivists should feel obligated to recognize that any opinion (so much more
the initial one) is only vaguely acceptable... So it is important not only to know the
exact answer for an exactly specified initial problem, but what happens changing
in a reasonable neighborhood the assumed initial opinion” De Finetti, as quoted by
Dempster (1975). — note that when we checked for strong calibration, we took

7Savage, the other father, employs a slightly different conceptualization in terms of preference orderings over
outcomes, but that need not concern us here.

80ne might object that actual Bernoulli parameters are never revealed and arguably do not exist; but one could
replace the gamble by the following essentially equivalent gamble: a possibly biased coin is tossed 10, 000 times, but
rather than the full data only the average number of 1s will be revealed. If it is in the set [0, 0.01] U [0.99,1] one gains
11 cents and if it is in the set [0.49, 0.51] one pays 100 cents. If one really believes Jeffreys’ prior, this gamble would be
considered acceptable.

9 Another example is the Cauchy prior with scale one on the standardized effect size (Rouder et al.,|2012), as most
would agree that this is not realistic in psychological research. Thanks to an anonymous reviewer for pointing this out.

1°Many thanks to Chris Holmes for bringing these quotations to our attention.
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parameter values y which were not too unlikely under the prior, which one may
perhaps view as ‘a reasonable neighborhood of the initial opinion’

“...in practice the theory of personal probability is supposed to be an idealization
of one’s own standard of behavior; the idealization is often imperfect in such a way

that an aura of vagueness is attached to many judgments of personal probability...
(Savage, 1954).

Hence, one would expect that even a subjectivist would be interested in seeing what happens
under a sensitivity analysis, for example checking for strong rather than prior-based calibration
of the posterior. And even a subjectivist cannot escape the conclusion from our experiments
that optional stopping leads to more brittle (more sensitive to the prior choice) inference than
stopping at a fixed n.

3.5.2 Frequentist optional stopping under %,

Interestingly, some other well-known Bayesian arguments claiming that ‘optional stopping
is no problem for Bayesians’ really show that some Bayesian procedures can deal, in some
cases, with optional stopping in a different, frequentist sense. These include Edwards, Lindman
and Savage (1963) and Good (1991) and many others (the difference between this justification
and the above one by Lindley (1957) roughly corresponds to Example 1 vs. Example 2 in the
appendix to (Wagenmakers,[2007)). We now explain this frequentist notion of optional stopping,
emphasizing that some (but — contrary to what is claimed — by no means all!) tests advocated
by Bayesians do handle optional stopping in this frequentist sense.

The (or at least, ‘a common’) frequentist interpretation of handling optional stopping is about
controlling the Type I error of an experiment. A Type I error occurs when we reject the null
hypothesis when it is true, also called a false positive. The probability of a Type I error for a
certain test is called the significance level, usually denoted by «, and in psychology the value of
a is usually set to 0.05. A typical classical hypothesis test computes a test statistic from the data
and uses it to calculate a p-value. It rejects the null hypothesis if the p-value is below the desired
Type I error level a. For other types of hypothesis tests, it is also a crucial property to control
the Type I error, by which we mean that we can make sure that the probability of making a
Type I error remains below our chosen significance level a. The frequentist interpretation of
handling optional stopping is that the Type I error guarantee holds if we do not determine the
sampling plan — and thus the stopping rule — in advance, but we may stop when we see a
significant result. As we know, see e.g. Wagenmakers (2007)), maintaining this guarantee under
optional stopping is not possible with most classical p-value based hypothesis tests.

At first sight none of this seems applicable to Bayesian tests, which output posterior odds rather
than a p-value. However, in the case that H, is simple (containing just one hypothesis, as in
Example o), there is a well-known intriguing connection between Bayes factors and Type I
error probabilities: — if we reject Hy iff the posterior odds in favor of H, are smaller than some
fixed a, then we are guaranteed a Type I error of at most a. And interestingly, this holds not
just for fixed sample sizes but even under optional stopping. Thus, if one adopts the rejection
rule above (reject iff the posterior odds are smaller than a fixed «), for simple H,, frequentist
optional stopping is no problem for Bayesians. This is what was noted by Edwards, Lindman
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and Savage (1963) (using a different terminology) and Good (1991), based on what Sanborn
and Hills (2014) call the universal bound, and what in probability theory is known as Doob’s
maximal inequality (Doob, 1971); see also Vovk et al. (2011) and Van der Pas and Griinwald
(2018)).

But what happens if H, is composite? As was only shown very recently (Hendriksen, De Heide
and Griinwald, [2020), the Bayes factor still handles optional stopping in the frequentist sense if
all free parameters in #, are nuisance parameters observing a group structure and equipped
with the corresponding Type o prior and are shared with #;, an example being Jeffreys’ Bayesian
t-test of Section As explained by Hendriksen, De Heide and Griinwald (2020), for general
priors and composite H, though, this is typically not the case; for example, the Gunel-Dickey
default Bayes factors for2 x 2 tables (another composite 7{,) cannot handle optional stopping
in the frequentist sense.

An Empirical Frequentist Study of Bayesian Optional Stopping Schoénbrodt et al. (2017)
performed a thorough simulation study to analyze frequentist performance of optional stopping
with Bayes factors both under H, and under #,. They confined their analysis to the Bayesian ¢-
test, i.e. our Example 2, and found excellent results for the Bayesian optional stopping procedure
under a certain frequentist interpretation of the Bayes factors (posterior odds). As to optional
stopping under H, (concerning Type I error), this should not surprise us: in the Bayesian
t-test, all free parameters in #, are equipped with Type o priors, which, as we just stated, can
handle optional stopping. We thus feel that one should be careful in extrapolating their results
to other models such as those for contingency tables, which do not admit such priors. As to
optional stopping under #;, the authors provide a table showing how, for any given effect size
0 and desired level of Type II error f3, a threshold B can be determined such that the standard
Bayesian t-test with (essentially) the following optional stopping and decision rule, has Type II
error f:

Take at least 20 data points. After that stop as soon as posterior odds are larger
than B or smaller than 1/B; accept H, if they are smaller than 1/B, and reject H,
if larger than B.

For example, if § > 0.3 and one takes B = 7 then the Type II error will be smaller than 4%
(see their Table 1). They also determined the average sample size needed before this procedure
stops, and noted that this is considerably smaller than with the standard ¢-test optimized for
the given desired levels of Type I and Type II error and a priori expected effect size. Thus, if one
determines the optional stopping threshold B in the Bayesian t-test based on their table, one
can use this Bayesian procedure as a frequentist testing method that significantly improves on
the standard ¢-test in terms of sample size. Under this frequentist interpretation (which relies
on the specifics of a table), optional stopping with the ¢-test is indeed unproblematic. Note that
this does not contradict our findings in any way: our simulations show that if, when sampling,
we fix an effect size in H;, then the posterior is biased under optional stopping, which means
that we cannot interpret the posterior in a Bayesian way.
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3.6 Discussion and Conclusion

When a researcher using Bayes factors for hypothesis testing truly believes in her prior, she
can deal with optional stopping in the Bayesian senses just explained. However, these senses
become problematic for every test that makes use of default priors, including all default Bayes
factor tests advocated within the Bayesian Psychology community. Such ‘default’ or ‘objective’
priors cannot be interpreted in terms of willingness to bet, and sometimes (Type II priors)
depend on aspects of the problem at hand such as the stopping rule or the inference task of
interest. To make sense of such priors generally, it thus seems necessary to restrict their use to
their appropriate domain of reference — for example, Jeffreys’ prior for the Bernoulli model as
given by is okay for Bayes factor hypothesis testing with fixed sample size, but not for more
complicated stopping rules. This idea, which is unfortunately almost totally lacking from the
modern Bayesian literature, is the basis of a novel theory of the very concept of probability called
Safe Probability which is being developed by one of us (Griinwald, |2013; Griinwald, |2018). That
(mis)use of optional stopping is a serious problem in practice, is shown by, among others, John,
Loewenstein and Prelec (2012b)); however, that paper is (implicitly) mostly about frequentist
methods. It would be interesting to investigate to what extent optional stopping when combined
with default Bayesian methods is actually a problem not just in theory but also in practice. This
would, however, require substantial further study and simulation.

Rouder (2014) argues in response to Sanborn and Hills (2014) that the latter ‘evaluate and
interpret Bayesian statistics as if they were frequentist statistics, and that ‘the more germane
question is whether Bayesian statistics are interpretable as Bayesian statistics. Given the betting
interpretation above, the essence here is that we need to make a distinction between the purely
subjective and the pragmatic approach: we can certainly not evaluate and interpret all Bayesian
statistics as purely subjective Bayesian statistics, what Rouder (2014) seems to imply. He advises
Bayesians to use optional stopping — without any remark or restriction to purely subjective
Bayesians, and for a readership of experimental psychologists who are in general not familiar
with the different flavors of Bayesianism — as he writes further on: ‘Bayesians should consider
optional stopping in practice. [...] Such an approach strikes me as justifiable and reasonable,
perhaps with the caveat that such protocols be made explicit before data collection’ The crucial
point here is that this can indeed be done when one works with a purely subjective Bayesian
method, but not with the default Bayes factors developed for practical use in social science: both
strong calibration and the frequentist Type I-error guarantees will typically be violated, and for
Bayes factors involving Type II-priors, both prior and strong calibration are even undefined.
In Table[3.1]we provide researchers with a simplified overview of four common default Bayes
factors indicating which forms of optional stopping they can handle.

While some find the purely subjective Bayesian framework unsuitable for scientific research
(see e.g. Berger (2006)), others deem it the only coherent approach to learning from data per
se. We do not want to enter this discussion, and we do not have to, since in practice, nowadays
most Bayesian statisticians tend to use priors which have both ‘default’ and ‘subjective’ aspects.
Basically, one uses mathematically convenient priors (which one does not really believe, so
they are not purely subjective — and hence, prior calibration is of limited relevance), but they
are also chosen to be not overly unrealistic or to match, to some extent, prior knowledge one
might have about a problem. This position is almost inevitable in Bayesian practice (especially
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Prior Cal. Strong Calibration Freq. OS
Default Bayes Factors
T-test (Rouder et al.,|2009) v but... (I) ; ig; g ((ecfiizect size) (1) v
ANOVA (Rouder et al,,|2012) | v but... (I) ){ 2; g ,(foe(cot)size) M v
Regression X (1) v foru,o (o) v
(Rouder and Morey, [2012) X for f3 (effects) (II)
Contingency Tables
(Jamil et al.,|2016) X (I X X
Bayes Factors with proper, fully
subjective priors (Rouder, 2014)) v N/A N/A

Table 3.1: Overview of several common default Bayes Factors (from the R-package BayesFactor (Morey and Rouder,
2015)), and their robustness against different kinds of optional stopping (proofs can be found in Hendriksen, De Heide
and Griinwald,[2020). ‘Prior Cal’ means ‘prior calibration’ and ‘Freq. OS’ means ‘frequentist optional stopping’ Between
parentheses is the type of prior used, in the taxonomy introduced in this paper. The but.. indicates that, formally, prior
calibration works for the priors, yet, because we are in the default setting, the Bayes factor is not fully subjective, so
prior calibration is not too meaningful — which is just the main point of this paper.

since we would not like to burden practitioners with all the subtleties regarding objective and
subjective Bayes), and we have no objections to it — but it does imply that, just like frequentists,
Bayesians should be careful with optional stopping. For researchers who like to engage in
optional stopping but care about frequentist concepts such as Type I error and power, we
recommend the safe tests of Griinwald, De Heide and Koolen, |2019/based on the novel concept
of S-values: S-values are related to, and sometimes coincide with, default Bayes factors, but
tests based on S-values invariably handle a variation of frequentist optional stopping. For
example, the three default Bayes factors that handle frequentist optional stopping in Table[3.1]
are also S-values, but there exist other S-values for these three settings that also handle optional
stopping but achieve higher frequentist power; and there also exists an S-value for contingency
tables that, unlike the default Bayes factor, handles frequentist optional stopping.

Open Practices Statement  Since all the data involved in this paper was generated by straight-
forward computer simulations rather than ‘real-world’ experiments, we did not make the data
available. No experiments were done, and hence no experiments were preregistered.
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3.A Example 4: An independence test in a 2x2 contingency
table

Suppose that a researcher considers two hypotheses: a null hypothesis H, that states that there
is no difference in voting preference (Democrat or Republican) between men and women,
and an alternative hypothesis 7, stating that men’s voting preferences differ from the women’s
preferences. Both hypotheses are composite — we may think of a Bernoulli model for H,: the
data are i.i.d. with a fixed probability of 1 (voting Democrat). We are however not interested
in the percentage of the persons voting for the Democrats. We are, instead, only interested
to learn if this percentage is equal for men and women or not. Thus our null hypothesis #,
consists of all Bernoulli distributions (all possible biases of the coin, infinitely many between 0
and 1) where the model for the men is the same as for the women. Our alternative hypothesis is
composite as well: all the sets of two Bernoulli distributions — one for the men and one for
the women — that are not equal. Thus, the Bernoulli parameter in #, is not a parameter of
interest; instead, at least intuitively, it is a nuisance parameter similar to the variance in Example
1; however, it does not observe a group structure and a Type o-prior for this parameter does
not exist.

Once again we follow Rouder’s experiments closely. We now use the Default Gunel and Dickey
Bayes Factors for Contingency Tables (Jamil et al., 2016), which employs specific default choices
for the priors within H, and #;, depending on four different sampling schemes (see Section[3.A]
for the details). We immediately run into a problem similar to the problems described with the
g-prior and Jeftreys’ prior for Bernoulli: which prior we should choose depends on the sampling
plan itself. Based on earlier work by Gunel and Dickey, 1974 (GD from now on), Jamil et al.
(2016) provide different default priors depending on whether the sample size n and/or some of
the four counts (number of men/women voting democratic/republican) are fixed in advance.
For the case that none of these are fixed in advance, they provide a prior which assumes that
the four counts are all Poisson distributed; see the next section for details. Intuitively, none of
these priors seem to be compatible with the very idea of ‘optional stopping’ and prior-based
calibration under optional stopping cannot be tested (since it is not clear what prior to sample
from — a Type II-problem in our earlier terminology). Still, to check the claim that ‘optional
stopping is no problem for Bayesians’ we will again check whether strong calibration holds
with and without optional stopping. We display here the results of an experiment with the
prior advocated for the case in which neither n nor any of the counts are assumed to be fixed
in advance, since this seems the choice least incompatible with optional stopping. To avoid
discussion on this issue though, we also performed the experiments with the priors advocated
for other sampling schemes and combinations of different sampling schemes, which led to very
similar results.

We will again fix some ‘reasonable’ parameter values in each model: when sampling from #,,
we really sample from 6 = 1/2, i.e. we suppose that 50% of either gender prefers the Democrats.
When we sample from H;, we suppose that 45% of the men prefers the Democrats, but for the
women it is as much as 55%. If there are equally many men as women, under both hypotheses
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the average percentage is equal. Like Rouder, we set our prior odds to 1-to-1.

We simulate 20.000 replicate experiments of 100 + 100 samples each, from both #, and #,,
and we calculate the Bayes Factors. We construct the histograms and the plots with the odds
as before. We can check the calibration in Figure[3.6b} we can see that the nominal posterior
odds agree roughly with the observed posterior odds. In Figure[3.6d however, we see the same
plot where we did the same experiment with optional stopping. We can clearly see that even
the rough linear relationship from Figure[3.6b]is completely gone. For this example, we can
conclude as well that strong calibration is violated.

We now revisit the example, but we change the proportions under both hypotheses and survey
only 25 men and 25 women, and we use a joint multinomial sampling scheme (the grand total,
n, is fixed). Under Hg, 70% of both men and women vote for the Democrats, and under H;,
65% of the men and 75% of the women do. We repeat exactly the same experiment (without
optional stopping), and we see the resulting plot in Figure[3.7a] We see that the relationship
between the observed and nominal posterior odds looks linear, but the slope is off. If we repeat
the same experiment with optional stopping, we see in Figure[3.7b|that additionally the linear
association is missing.

We do note that the objective priors used in the default Bayes Factor test for contingency tables
are proper, so we are able to sample from them. In Figure[3.7c we see what happens if we do
exactly the same experiment as in Figure[3.7a} but sampled from the prior: we see the observed
posterior odds plotted against the nominal posterior odds, and the points lie approximately on
the identity line, in contrast with Figure Furthermore, we performed the same experiment
as in Figure[3.7b]in this subjective Bayesian way, and we see that (in Rouder’s terminology) the
interpretation of the posterior odds holds with optional stopping in Figure[3.7d] As said, we
do not think this kind of sampling is very meaningful in default prior context; we just add the
experiment to show that invariably, if one can and wants to sample from priors, then Rouder’s
conclusions do hold.

Subjective vs. Objective Interpretation In their original paper, Gunel and Dickey,[1974/(GD)
give a subjective interpretation to their priors. These priors depend on the sampling scheme,
i.e. on whether the grand total, and/or one or both of the marginals are known or set by the
experimenter in advance. At first sight, this seems to be at odds with the fact that, with subjective
priors, Bayesian procedures do not depend on the stopping rule used, as we pointed out in
Section However, closer inspection reveals that if one follows the method under their
subjective interpretation, then the posterior indeed would not depend on the sampling scheme.
How is this possible? To see this, note that GD do not model their data as coming in sequentially,
but rather they consider a fixed, single datum D = (Nj, ..., N4 ) consisting of the four entries in
the contingency table (see e.g. Table[3.2|below). The different versions of their model and prior
are then arrived at by calculating, for example, P(D | H,) for the case that no information
about the design is given, and P(D | Ho, n) (where n = Ny + N, + N3 + Ny ) for the case that the
grand total (sample size) n is determined in the experiment design. In every case, the posterior
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Figure 3.6: Calibration of the contingency table experiment, Section from 20.000 replicate experiments. (a) The
distribution of posterior odds as a histogram under #, and 1. (b) The observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d) The observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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Figure 3.7: The observed posterior odds as a function of the nominal posterior odds, from 20.000 replicate experiments.
(a) Contingency table experiment, without optional stopping. (b) Contingency table experiment, with optional stopping.
(c) Subjective Bayesian version of the experiment in a. (d) Subjective Bayesian version of the experiment in b.
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odds post-odds|D will remain the same; for they require the prior to be used when 7 is given,
P(#Ho | n), to be arrived at by conditioning the original prior P(#,) on the grand total n. In
particular, this means that a truly subjective Bayesian who follows the GD model would have
P(H | n) # P(H,), and could thus not use a (1/2,1/2) ‘uninformative’ prior on (Hg, H;)
both when the grand total is known in advance and when it is not. In other words, the posterior
is not affected by the sampling scheme, but the prior is.

Details of the experiments For Example 4 above, we used the function contingencyTableBF.
This function gives the user the option to choose between four different so called sampling
schemes, implementing the Default Gunel and Dickey Bayes Factors for Contingency Tables
of Jamil et al. (2016). Which of the four options to use, depends on which covariates in the
contingency table are to be treated as fixed or as random, depending on the design of the
experiment.

0 1 sum
0 n — k] ny — k2 n-k
1 ky ky k
sum m Ny n
Table 3.2: 2x2 contingency table; the four entries correspond to the numbers N1, N, ..., N4 above.

In the first sampling scheme, none of the cell counts in the contingency table are considered fixed,
and the assumption is made that each cell count is Poisson distributed. The default prior for
this scheme is a conjugate gamma prior on the Poisson rate parameter, with hyperparameters
suggested by Gunel and Dickey. We use this sampling scheme for our first experiment in
Section[3.A, but as we noted in our discussion in the same section, the question of ‘what is the
actual sampling scheme” and hence ‘what is the right default prior’ for the type of experiment
we do — the same experiment with and without optional stopping — is really impossible to
answer. Thus, we repeated the experiment with other (combinations of) sampling schemes, in
all cases obtaining similar results. Indeed, when we perform the experiment without optional
stopping, we sample a fixed number of men and women, whereupon one margin (#;, n,) and
the grand total () is fixed. For our second example (Figure[3.7aland[3.7b) we used the prior
advocated for the sampling scheme in which the grand total (n in Table is fixed. Under
this sampling scheme, the cell counts are assumed to be jointly multinomial distributed, and a
Dirichlet conjugate distribution with the suggested parameters (Jamil et al.,|2016) is used as
prior, which in our case amounts to a uniform prior on the Bernoulli parameter 0; see Jamil
et al. (2016) for details. Again, using instead one of the priors advocated for one of the other
sampling schemes leads to very similar results.



Chapter 4

Optional stopping with Bayes
Factors

Abstract

It is often claimed that Bayesian methods, in particular Bayes factor methods for hypothesis
testing, can deal with optional stopping. We first give an overview, using elementary probability
theory, of three different mathematical meanings that various authors give to this claim: (1)
stopping rule independence, (2) posterior calibration and (3) (semi-) frequentist robustness to
optional stopping. We then prove theorems to the effect that these claims do indeed hold in
a general measure-theoretic setting. For claims of type (2) and (3), such results are new. By
allowing for non-integrable measures based on improper priors, we obtain particularly strong
results for the practically important case of models with nuisance parameters satisfying a group
invariance (such as location or scale). We also discuss the practical relevance of (1)-(3), and
conclude that whether Bayes factor methods actually perform well under optional stopping
crucially depends on details of models, priors and the goal of the analysis.

4.1 Introduction

In recent years, a surprising number of scientific results have failed to hold up to continued
scrutiny. Part of this ‘replicability crisis’ may be caused by practices that ignore the assumptions
of traditional (frequentist) statistical methods (John, Loewenstein and Prelec,|2012a). One of
these assumptions is that the experimental protocol should be completely determined upfront.
In practice, researchers often adjust the protocol due to unforeseen circumstances or collect
data until a point has been proven. This practice, which is referred to as optional stopping, can
cause true hypotheses to be wrongly rejected much more often than these statistical methods
promise.

Bayes factor hypothesis testing has long been advocated as an alternative to traditional testing

89
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that can resolve several of its problems; in particular, it was claimed early on that Bayesian
methods continue to be valid under optional stopping (Lindley, 1957; Raiffa and Schlaifer,
1961; Edwards, Lindman and Savage, 1963). In particular, the latter paper claims that (with
Bayesian methods) “it is entirely appropriate to collect data until a point has been proven or
disproven, or until the data collector runs out of time, money, or patience” In light of the
replicability crisis, such claims have received much renewed interest (Wagenmakers, 2007;
Rouder, 2014; Schonbrodt et al.,|2017; Yu et al.,[2014; Sanborn and Hills, 2014). But what do
they mean mathematically? It turns out that different authors mean quite different things by
‘Bayesian methods handle optional stopping’; moreover, such claims are often shown to hold
only in an informal sense, or in restricted contexts. Thus, the first goal of the present chapter is to
give a systematic overview and formalization of such claims in a simple, expository setting and,
still in this simple setting, explain their relevance for practice: can we effectively rely on Bayes
factor testing to do a good job under optional stopping or not? As we shall see, the answer is
subtle. The second goal is to extend the reach of such claims to more general settings, for which
they have never been formally verified and for which verification is not always trivial.

Overview In Section|q.2| we give a systematic overview of what we identified to be the three
main mathematical senses in which Bayes factor methods can handle optional stopping, which
we call T-independence, calibration, and (semi-)frequentist. We first do this in a setting chosen
to be as simple as possible — finite sample spaces and strictly positive probabilities — allowing
for straightforward statements and proofs of results. In Section[4.3, we explain the practical
relevance of these three notions. It turns out that whether or not we can say that ‘the Bayes
factor method can handle optional stopping’ in practice is a subtle matter, depending on the
specifics of the given situation: what models are used, what priors, and what is the goal of the
analysis. We can thus explain the paradox that there have also been claims in the literature that
Bayesian methods cannot handle optional stopping in certain cases; such claims were made,
for example by Yu et al.,|2014; Sanborn and Hills, |2014, and also by ourselves (De Heide and
Griinwald, 2018). We also briefly discuss safe tests (Griinwald, De Heide and Koolen, [2019)
which can be interpreted as a novel method for determining priors that behave better under
frequentist optional stopping. The chapter has been organized in such a way that these first two
sections can be read with only basic knowledge of probability theory and Bayesian statistics.
For convenience, we illustrate Section 4.3 with an informally stated example involving group
invariances, so that the reader gets a complete overview of what the later, more mathematical
sections are about.

Section |4.4| extends the statements and results to a much more general setting allowing for
a wide range of sample spaces and measures, including measures based on improper priors.
These are priors that are not integrable, thus not defining standard probability distributions
over parameters, and as such they cause technical complications. Such priors are indispensable
within the recently popularized default Bayes factors for common hypothesis tests (Rouder
et al.,[2009; Rouder et al., 2012 Jamil et al.,|2016).

In Section 4.5, we provide stronger results for the case in which both models satisfy the same
group invariance. Several (not all) default Bayes factor settings concern such situations; prom-
inent examples are Jeffreys’ (1961) Bayesian one- and two-sample ¢-tests, in which the models



4.1. Introduction 91

are location and location-scale families, respectively. Many more examples are given by Berger
and various collaborators (Berger, Pericchi and Varshavsky, 1998; Dass and Berger, 2003; Ba-
yarri et al., 2012} Bayarri et al., |2016). These papers provide compelling arguments for using
the (typically improper) right Haar prior on the nuisance parameters in such situations; for
example, in Jeffreys’ one-sample ¢-test, one puts a right Haar prior on the variance. In particular,
in our restricted context of Bayes factor hypothesis testing, the right Haar prior does not suffer
from the marginalization paradox (Dawid, Stone and Zidek, [1973) that often plagues Bayesian
inference based on improper priors (we briefly return to this point in the conclusion).

Haar priors and group invariant models were studied extensively by Eaton, 1989; Andersson,
1982; Wijsman, [1990, whose results this chapter depends on considerably. When nuisance
parameters (shared by both Hy and H)) are of suitable form and the right Haar prior is used, we
can strengthen the results of Section[4.4} they now hold uniformly for all possible values of the
nuisance parameters, rather than in the marginal, ‘on average’ sense we consider in Section [4.4]
However — and this is an important insight — we cannot take arbitrary stopping rules if we
want to handle optional stopping in this strong sense: our theorems only hold if the stopping
rules satisfy a certain intuitive condition, which will hold in many but not all practical cases:
the stopping rule must be “invariant” under some group action. For instance, a rule such as
‘stop as soon as the Bayes factor is > 20’ is allowed, but a rule (in the Jeffreys’ one-sample ¢-test)
such as ‘stop as soon as " x7 > 20 is not.

The chapter ends with supplementary material, comprising Section[4.A]containing basic back-
ground material about groups, and Section[4.B|containing all longer mathematical proofs.

Scope and Novelty Our analysis is restricted to Bayesian testing and model selection using
the Bayes factor method; we do not make any claims about other types of Bayesian inference.
Some of the results we present were already known, at least in simple settings; we refer in each
case to the first appearance in the literature that we are aware of. In particular, our results in
Section are implied by earlier results in the seminal work by Berger and Wolpert, 1988 on
the likelihood principle; we include them any way since they are a necessary building block for
what follows. The real mathematical novelties in the chapter are the results on calibration and
(semi-) frequentist optional stopping with general sample spaces and improper priors and the
results on the group invariance case (Section [4.4.24.5). These results are truly novel, and —
although perhaps not very surprising — they do require substantial additional work not covered
by Berger and Wolpert, 1988, who are only concerned with 7-independence. In particular, the
calibration results require the notion of the ‘posterior odds of some particular posterior odds,
which need to be defined under arbitrary stopping times. The difficulty here is that, in contrast
to the fixed sample sizes where even with continuous-valued data, the Bayes factor and the
posterior odds usually have a distribution with full support, with variable stopping times, the
support may have ‘gaps’ at which its density is zero or very near zero. An additional difficulty
encountered in the group invariance case is that one has to define filtrations based on maximal
invariants, which requires excluding certain measure-zero points from the sample space.
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4.2 The Simple Case

Consider a finite set X’ and a sample space Q = X'T where T is some very large (but in this
section, still finite) integer. One observes a sample x = xy, .. ., x;, which is an initial segment
ofx;,...,x7 e X T In the simplest case, T = n is a sample size that is fixed in advance; but,
more generally 7 is a stopping time defined by some stopping rule (which may or may not be
known to the data analyst), defined formally below.

We consider a hypothesis testing scenario where we wish to distinguish between a null hypo-
thesis Hy and an alternative hypothesis H;. Both Hy and H, are sets of distributions on 2, and
they are each represented by unique probability distributions Py and P, respectively. Usually,
these are taken to be Bayesian marginal distributions, defined as follows. First one writes, for
both k € {0,1}, Hy = {Pg| | 6 € @} with ‘parameter spaces’ @; one then defines or assumes
some prior probability distributions 7y and m; on ®¢ and ®;, respectively. The Bayesian mar-
ginal probability distributions are then the corresponding marginal distributions, i.e. for any
set A c Q) they satisfy:

Py(A) = f@ Pyio(A) dmo(8) 5 Pi(A) = f@ Py (A) dm (). (4.1)

For now we also further assume that for every n < T, every x" € X", Po(X" = x") > 0 and
Py(X" = x") > 0 (full support), where here, as below, we use random variable notation, X" = x"
denoting the event {x"} c Q). We note that there exist approaches to testing and model choice
such as testing by nonnegative martingales (Shafer et al.,[2011; Van der Pas and Griinwald, |2018)
and minimum description length (Barron, Rissanen and Yu, 1998; Griinwald, [2007) in which
the Py and P; may be defined in different (yet related) ways. Several of the results below extend
to general Py and P;; we return to this point at the end of the chapter, in Section E In all
cases, we further assume that we have determined an additional probability mass function 7
on {Hy, H,}, indicating the prior probabilities of the hypotheses. The evidence in favor of H;
relative to H given data x” is now measured either by the Bayes factor or the posterior odds.
We now give the standard definition of these quantities for the case that 7 = n, i.e., that the
sample size is fixed in advance. First, noting that all conditioning below is on events of strictly
positive probability, by Bayes’ theorem, we can write for any A c Q,

n(H |A) _P(A|H) n(H)

n(Hy|A)  P(A|Hy) n(Hy)’ (4.2)

where here, as in the remainder of the chapter, we use the symbol 7 to denote not just prior, but
also posterior distributions on {Hy, H; }. In the case that we observe x" for fixed n, the event
A is of the form X" = x". Plugging this into (4.2), the left-hand side becomes the standard
definition of posterior odds, and the first factor on the right is called the Bayes factor.

4.2.1 First Sense of Handling Optional Stopping: 7-Independence

Now, in reality we do not necessarily observe X" = x" for fixed » but rather X* = x” where 7 is
a stopping time that may itself depend on (past) data (and that in some cases may in fact be
unknown to us). This stopping time may be defined in terms of a stopping rule f : UL, X' —
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{stop, continue}. 7 = 7(xT) is then defined as the random variable which, for any sample
X1,..., X, outputs the smallest n such that f(xi,...,x,) = stop. For any given stopping time
7,any 1< n < T and sequence of data x” = (xy,...,x,), we say that x" is compatible with T if
it satisfies X" = x" = 7 = n. Welet X" c UL, X' be the set of all sequences compatible with
T.

Observations take the form X' = x7, which is equivalent to the event X" = x”; 7 = n for some
n and some x" € X" which of necessity must be compatible with 7. We can thus instantiate

@2 to

n(Hy | X"=x",7=n) P(r=n|X"=x"H) -n(H |X"=x")
n(Ho | X" =x",1=n) P(r=n|X"=x"H) -n(Hy|X"=x")
_n(Hy | X" =x")
~m(Hp | X" =xm)

(4.3)

where in the first equality we used Bayes’ theorem (keeping X" = x" on the right of the
conditioning bar throughout); the second equality stems from the fact that X" = x" logically
implies 7 = n, since x” is compatible with 7; the probability P(t = n | X" = x", H;) must
therefore be 1 for j = 0,1. Combining (4.3) with Bayes’ theorem we get:

p(x") B(x")
—_—

n(Hy | X" =x",1=n) Pi(X"=x") n(H)
n(Ho | X" =x",7=n) Py(X"=x") n(Ho)

(4.4)

where we introduce the notation y(x") for the posterior odds and (x") for the Bayes factor
based on sample x", calculated as if n were fixed in advance['

We see that the stopping rule plays no role in the expression on the right. Thus, we have shown
that, for any two stopping times 7; and 7, that are both compatible with some observed x", the
posterior odds one arrives at will be the same irrespective of whether x” came to be observed
because 7; was used or if x" came to be observed because 7, was used. We say that the posterior
odds do not depend on the stopping rule 7 and call this property t-independence. Incidentally,
this also justifies that we write the posterior odds as y(x"), a function of x" alone, without
referring to the stopping time .

The fact that the posterior odds given x" do not depend on the stopping rule is the first
(and simplest) sense in which Bayesian methods handle optional stopping. It has its roots in
the stopping rule principle, the general idea that the conclusions obtained from the data by
‘reasonable’ statistical methods should not depend on the stopping rule used. This principle
was probably first formulated by Barnard (1947;1949); Barnard, 1949 very implicitly showed
that, under some conditions, Bayesian methods satisfy the stopping rule principle (and hence
satisfy 7-independence). Other early sources are Lindley (1957) and Edwards, Lindman and
Savage (1963). Lindley gave an informal proof in the context of specific parametric models;

_ 'Aslightly different way to get to (4-4), which some may find even simpler, is to start with Po (X" = x",7 = n) =
Po(X" = x") (since X" = x" implies 7 = n), whence n(H; | X" = x",7 = n) o< P;j(X" = x", 7 = n)n(H;) =
Pi(X" = x")n(Hj).
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in Section [4.4.1] we show that, under some regularity conditions, the result indeed remains
true for general o-finite Py and P;. A special case of our result (allowing continuous-valued
sample spaces but not general measures) was proven by Raiffa and Schlaifer, 1961, and a more
general statement about the connection between the ‘likelihood principle’ and the stopping rule
principle’ which implies our result in Section[4.4.1/can be found in the seminal work (Berger
and Wolpert, 1988)), who also provide some historical context. Still, even though not new in
itself, we include our result on 7-independence with general sample spaces and measures since
it is the basic building block of our later results on calibration and semi-frequentist robustness,
which are new.

Finally, we should note that both Raiffa and Schlaifer, 1961/ and Berger and Wolpert, [1988
consider more general stopping rules, which can map to a probability of stopping instead of
just {stop, continue}. Also, they allow the stopping rule itself to be parameterized: one deals
with a collection of stopping rules { f; : £ € E} with corresponding stopping times {7¢: £ € E},
where the parameter ¢ is equipped with a prior such that § and H; are required to be a priori
independent. Such extensions are straightforward to incorporate into our development as well
(very roughly, the second equality in (4.3) now follows because, by conditional independence,
we must have that P(7; = n | X" = x",H;) = P(1; = n | X" = x", Hy)); we will not go into
such extensions any further in this chapter.

4.2.2 Second Sense of Handling Optional Stopping: Calibration

An alternative definition of handling optional stopping was introduced by Rouder, 2014} Rouder
calls y(x™) the nominal posterior odds calculated from an obtained sample x", and defines the
observed posterior odds as

n(H, | y(x") = ¢)
n(Ho [ y(x") = ¢)

as the posterior odds given the nominal odds. Rouder first notes that, at least if the sample
size is fixed in advance to n, one expects these odds to be equal. For instance, if an obtained
sample yields nominal posterior odds of 3-to-1 in favor of the alternative hypothesis, then it
must be 3 times as likely that the sample was generated by the alternative probability measure.
In the terminology of De Heide and Griinwald, 2018, Bayes is calibrated for a fixed sample size
n. Rouder then goes on to note that, if n is determined by an arbitrary stopping time 7 (based
for example on optional stopping), then the odds will still be equal — in this sense, Bayesian
testing is well-behaved in the calibration sense irrespective of the stopping rule/time. Formally,
the requirement that the nominal and observed posterior odds be equal leads us to define the
calibration hypothesis, which postulates that ¢ = P(H; | y = ¢)/P(Hy | y = ¢) holds for any
¢ > 0 that has non-zero probability. For simplicity, for now we only consider the case with equal
prior odds for Hy and H; so that y(x") = S(x™). Then the calibration hypothesis says that, for
arbitrary stopping time 7, for every ¢ such that (x7) = ¢ for some x” € X", one has

__P(BGT) = | Hy)
P(B(x) = ¢ | Ho)’

(4.5)
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In the present simple setting, this hypothesis is easily shown to hold, because we can write:

P(ﬂ(XT) =cC | Hl) _ ZyeX’:ﬁ(y):c P({y} | Hl) _ ZyeXT:ﬁ(y)=c CP({)/} | HO) _
P(ﬁ(XT) =c | HO) ZyeXT;ﬁ(y):c P({)’} ‘ HO) ZyEXT:ﬁ(y):c P({)’} ‘ HO)

Rouder noticed that the calibration hypothesis should hold as a mathematical theorem, without
giving an explicit proof; he demonstrated it by computer simulation in a simple parametric
setting. Deng, Lu and Chen, 2016/ gave a proof for a somewhat more extended setting yet
still with proper priors. In Section [4.4.2] we show that a version of the calibration hypothesis
continues to hold for general measures based on improper priors, and in Section|4.5.4] we extend
this further to strong calibration for group invariance settings as discussed below.

We note that this result, too, relies on the priors themselves not depending on the stopping time,
an assumption which is violated in several standard default Bayes factor settings. We also note
that, if one thinks of one’s priors in a default sense — they are practical but not necessarily fully
believed — then the practical implications of calibration are limited, as shown experimentally
by De Heide and Griinwald, 2018. One would really like a stronger form of calibration in which
(4.5) holds under a whole range of distributions in Hy and Hj, rather than in terms of Py and
P, which average over a prior that perhaps does not reflect one’s beliefs fully. For the case that
Hi and H, share a nuisance parameter g taking values in some set G, one can define this strong
calibration hypothesis as stating that, for all ¢ with (x7) = ¢ for some x* € X7, all g € G,

_ P(B(x") =c| Hi.g)
P(B(x7) = | Ho,g)

where f is still defined as above; in particular, when calculating 8 one does not condition
on the parameter having the value g, but when assessing its likelihood as in (4.6) one does.
De Heide and Griinwald, 2018 show that the strong calibration hypothesis certainly does
not hold for general parameters, but they also show by simulations that it does hold in the
practically important case with group invariance and right Haar priors (Example[4.1/provides

an illustration). In Section we show that in such cases, one can indeed prove that a version
of (4.6) holds.

(4.6)

4.2.3 Third Sense of Handling Optional Stopping: (Semi-) Frequentist

In classical, Neyman-Pearson style null hypothesis testing, a main concern is to limit the false
positive rate of a hypothesis test. If this false positive rate is bounded above by some « > 0,
then a null hypothesis significance test (NHST) is said to have significance level «, and if the
significance level is independent of the stopping rule used, we say that the test is robust under
frequentist optional stopping.

Definition 4.1. A function $ : U~ X' — {0,1} is said to be a frequentist sequential test with
significance level & and minimal sample size m that is robust under optional stopping relative
to Hy if forall P € H,

P(An,m<n<T:5(X")=1)<a,

i.e. the probability that there is an n at which S(X™) = 1 (‘the test rejects Hy when given sample
X") is bounded by a.
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In our present setting, we can take m = 0 (larger m become important in Section[4.4.3), so n
runs from 1 to T and it is easy to show that, for any 0 < « < 1, we have

P, (EIn,O<n§T:ﬁ(in) goc)goc. (4.7)

Proof. For any fixed « and any sequence x! = x,...,x7, let 7(xT) be the smallest # such that,
for the initial segment x" of xT, B(x") > 1/« (if no such n exists we set 7(x”) = T). Then 7 is a
stopping time, X* is a random variable, and the probability in is equal to the Py -probability
that B(X") > 1/, which by Markov’s inequality is bounded by a. O

It follows that, if Hy is a singleton, then the sequential test S that rejects Hy (outputs S(X") = 1)
whenever (x") > 1/« is a frequentist sequential test with significance level « that is robust
under optional stopping.

The fact that Bayes factor testing with singleton Hy, handles optional stopping in this frequentist
way was noted by Edwards, Lindman and Savage (1963) and also emphasized by Good, 1991,
among many others. If Hy is not a singleton, then (4.7) still holds, so the Bayes factor still
handles optional stopping in a mixed frequentist (Type I-error) and Bayesian (marginalizing
over prior within Hy) sense. From a frequentist perspective, one may not consider this to be
fully satisfactory, and hence we call it ‘semi-frequentist’ In some quite special situations though,
it turns out that the Bayes factor satisfies the stronger property of being truly robust to optional
stopping in the above frequentist sense, i.e. (4.7) will hold for all P € H, and not just ‘on average.
This is illustrated in Example[4.1/below and formalized in Section 4.5.5|

4.3 Discussion: why should one care?

Nowadays, even more so than in the past, statistical tests are often performed in an on-line
setting, in which data keeps coming in sequentially and one cannot tell in advance at what point
the analysis will be stopped and a decision will be made — there may indeed be many such
points. Prime examples include group sequential trials (Proschan, Lan and Wittes, 2006)) and
A/B-testing, to which all internet users who visit the sites of the tech giants are subjected. In
such on-line settings, it may or may not be a good idea to use Bayesian tests. But can and should
they be used? Together with the companion paper (De Heide and Griinwald, 2018) (DHG from
now on — corresponding to Chapter[3]of this dissertation), the present chapter sheds some light
on this issue. Let us first highlight a central insight from DHG, which is about the case in which
none of the results discussed in the present chapter apply: in many practical situations, many
Bayesian statisticians use priors that are themselves dependent on parts of the data and/or the
sampling plan and stopping time. Examples are Jeffreys prior with the multinomial model and
the Gunel-Dickey default priors for 2x2 contingency tables advocated by Jamil et al., 2016/ With
such priors, final results evidently depend on the stopping rule employed, and even though
such methods typically count as ‘Bayesian, they do not satisfy 7-independence. The results
then become non-interpretable under optional stopping (i.e. stopping using a rule that is not
known at the time the prior is decided upon), and as argued by De Heide and Griinwald, 2018,
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the notions of calibration and frequentist optional stopping even become undefined in such a
case.

In such situations, one cannot rely on Bayesian methods to be valid under optional stopping
in any sense at all; in the present chapter we thus focus on the case with priors that are fixed
in advance, and that themselves do not depend on the stopping rule or any other aspects of
the design. For expository simplicity, we consider the question of whether Bayes factors with
such priors are valid under optional stopping in two extreme settings: in the first setting, the
goal of the analysis is purely exploratory — it should give us some insight in the data and/or
suggest novel experiments to gather or novel models to analyze data with. In the second setting
we consider the analysis as final’ and the stakes are much higher — real decisions involving
money, health and the like are involved — a typical example would be a Stage 2 clinical trial,
which will decide whether a new medication will be put to market or not.

For the first, exploratory setting, exact error guarantees might neither be needed at all nor
obtainable anyway, so the frequentist sense of handling optional stopping may not be that
important. Yet, one would still like to use methods that satisfy some basic sanity checks for use
under optional stopping. 7-independence is such a check: any method for which it does not
hold is simply not suitable for use in a situation in which details of the stopping rule may be
unknown. Also calibration can be viewed as such a sanity check: Rouder, |2014 introduced it
mainly to show that Bayesian posterior odds remain meaningful under optional stopping: they
still satisfy some key property that they satisfy for fixed sample sizes.

For the second high stakes setting, mere sanity and interpretability checks are not enough:
most researchers would want more stringent guarantees, for example on Type-I and/or Type-II
error control. At the same time, most researchers would acknowledge that their priors are far
from perfect, chosen to some extent for purposes of convenience rather than true belieff| Such
researchers may thus want the desired Type-I error guarantees to hold for all P € Hy, and not just
in average over the prior as in (4.7). Similarly, in the high stakes setting the form of calibration
(4.5) that can be guaranteed for the Bayes factor would be considered too weak, and one would
hope for a stronger form of calibration as explained at the end of Section[4.2.2.

DHG show empirically that for some often-used models and priors, strong calibration can be
severely violated under optional stopping. Similarly, it is possible to show that in general, Type-I
error guarantees based on Bayes factors simply do not hold simultaneously for all P € H, for
such models and priors. Thus, one should be cautious using Bayesian methods in the high stakes
setting, despite adhortations such as the quote by Edwards, Lindman and Savage, 1963 in the
introduction (or similar quotes by e.g. Rouder et al., 2009): these existing papers invariably use
7-independence, calibration or Type-I error control with simple null hypotheses as a motivation
to — essentially — use Bayes factor methods in any situation, including presumably high-stakes
situations and situations with composite null hypotheses[’|

>Even De Finetti and Savage, fathers of subjective Bayesianism, acknowledged this: see Section 5 of DHG.

3Since the authors of the present chapter are inclined to think frequentist error guarantees are important, we
disagree with such claims, as in fact a subset of researchers calling themselves Bayesians would as well. To witness,
a large fraction of recent ISBA (Bayesian) meetings is about frequentist properties of Bayesian methods; also the
well-known Bayesian authors Good, [1991/and Edwards, Lindman and Savage, 1963/focus on showing that Bayes factor
methods achieve a frequentist Type-I error guarantee, albeit only for the simple Hy case.
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Still, and this is equally important for practitioners, while frequentist error control and strong
calibration are violated in general, in some important special cases they do hold, namely if the
models Hy and H, satisfy a group invariance. We proceed to give an informal illustration of
this fact, deferring the mathematical details to Section

Example 4.1. Consider the one-sample ¢-test as described by Rouder et al., 2009, going back
to Jeffreys, 1961, The test considers normally distributed data with unknown standard deviation.
The test is meant to answer the question whether the data has mean g = 0 (the null hypothesis)
or some other mean (the alternative hypothesis). Following (Rouder et al., 2009), a Cauchy prior
density, denoted by 715(8), is placed on the effect size § = y#/0. The unknown standard deviation
is a nuisance parameter and is equipped with the improper prior with density 77,(o) = < under
both hypotheses. This is the so-called right Haar prior for the variance. This gives the following
densities on n outcomes:

1 1 &
poo(x") = W 'eXP(zg2 szz) [ = Proo(x")] (4.8)

i=1

(5 (=) o

NSRS

" 1
Pros(x") = W cexp| -

n
in,
i=1

X =

N

so that the corresponding Bayesian marginal densities are given by

Ao = [ poa(x)ma(0) do,
ﬁl(xn):/(;oo[:Pl,a,a(xn)ﬂa(a)ﬂg(a)d5d0:fompl,a(x”)ng(g)dg.

Our results in Section [4.5|imply that — under a slight, natural restriction on the stopping rules
allowed — the Bayes factor p,(x")/p,(x") is truly robust to optional stopping in the above
frequentist sense. That is, will hold for all P € Hy, i.e. all ¢ > 0, and not just ‘on average.
Thus, we can give Type I error guarantees irrespective of the true value of ¢. Similarly, strong
calibration in the sense of Section holds for all P € H,. The use of a Cauchy prior is
not essential in this construction; the result will continue to hold for any proper prior on §,
including point priors that put all mass on a single value of d.

As we show in Section|4.5} these results extend to a variety of settings, namely whenever H, and
H, share a common so-called group invariance. In the #-test example, it is a scale invariance —
effectively this means that for all §, all o, the distributions of

Xi,..., X, under p; ;. 5, and 0X,...,0X, under p;; 4, coincide. (4.9)

For other models, one could have a translation invariance; for the full normal family, one has
both translation and scale invariance; for yet other models, one might have a rotation invariance,
and so on. Each such invariance is expressed as a group — a set equipped with a binary operation
that satisfies certain axioms. The group corresponding to scale invariance is the set of positive
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reals, and the operator is scalar multiplication or equivalently division; similarly, the group
corresponding to translation invariance is the set of all reals, and the operation is addition.

In the general case, one starts with a group G that satisfies certain further restrictions (detailed
in Section , amodel {p; g9 : g€ G,0 € @} where g represents the invariant parameter
(vector) and the parameterization must be such that the analogue of holds. In the example
above g = ¢ is the variance and 6 is set to & := y/0. One then singles out a special value of 6,
say 0o, one sets Hy := {pi ¢,0, : g € G}; within H; one puts an arbitrary prior on 6. For every
group invariance, there exists a corresponding right Haar prior on G; one equips both models
with this prior on G. Theorem [4.8and [4.9 imply that in all models constructed this way, we
have strong calibration and Type-I error control uniformly for all g € G. While this is hinted at
in several papers (e.g. (Bayarri et al.,[2016; Dass and Berger, [2003)) and the special case for the
Bayesian t-test was implicitly proven in earlier work by Lai, 1976} it seems to never have been
proven formally in general before.

Our results thus imply that in some situations (group invariance) with composite null hypo-
theses, Type-I error control for all P € H,, under optional stopping is possible with Bayes factors.
What about Type-II error control and composite null hypotheses that do not satisfy a group
structure? This is partially addressed by the safe testing approach of Griitnwald, De Heide and
Koolen, 2019 (see also Howard et al.,2018b for a related approach). They show that for completely
arbitrary H, and H;, for any given prior m on Hj, there exists a corresponding prior 7y on Hy,
the reverse information projection prior, so that, for all P € Hy, one has Type-I error guarantees
under frequentist optional continuation, a weakening of the idea of optional stopping. Further,
if one wants to get control of Type-II error guarantees under optional stopping/continuation,
one can do so by first choosing another special prior 77 on H; and picking the corresponding
7y on Hy. Essentially, like in ‘default’ or ‘objective’ Bayes approaches, one chooses special priors
in lieu of a subjective choice; but the priors one ends up with are sometimes quite different
from the standard default priors, and, unlike these, allow for frequentist error control under
optional stopping.

4.4 'The General Case

Let (Q, F) be a measurable space. Fix some m > 0 and consider a sequence of functions
Xm+1> Xm+2> - - . on Q so that each X,,, n > m takes values in some fixed set (‘outcome space’)
X with associated o-algebra . When working with proper priors we invariably take m = 0
and then we define X" := (X}, X5, ..., X,,) and we let (") be the n-fold product algebra of 3.
When working with improper priors it turns out to be useful (more explanation further below)
to take m > 0 and define an initial sample random variable (X (")) on Q, taking values in some
set (X™) ¢ X™ with associated o-algebra (Z(")). In that case we set, for n > m, (X") = {x" =
(X1s. v s Xp) € X" 0 x™ = (X1, s %) € (X™)}, and X* = ((XU)Y), X1, Xpnazs -+ o> X))
and we let =(") be (2(")) x H;:mﬂ 2. In either case, we let 7, be the o-algebra (relative to
Q) generated by (X", () ). Then (F ;) n=m,m+1,... is a filtration relative to F and if we equip
(Q, F) with a distribution P then (X(m) Ys Xim+1> Xme2, - - - becomes a random process adapted
to F. A stopping time is now generalized to be a function 7: Q - {m+1,m+2,...} U {oco}
such that for each n > m, the event {7 = n} is F,-measurable; note that we only consider
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stopping after m initial outcomes. Again, for a given stopping time 7 and sequence of data
x" = (x1,...,x,), we say that x" is compatible with 7 if it satisfies X" = x" = 7 = n, ie.
{we Q| X" (w)=x"} c{weQ|1(w)=n}.

Hj and H; are now sets of probability distributions on (Q, ). Again one writes H; = { Py, |
6 € ®;} where now the parameter sets ® ; (which, however, could itself be infinite-dimensional)
are themselves equipped with suitable o-algebras.

We will still represent both Hy and H, by unique measures Py and P; respectively, which we
now allow to be based on (5.5) with improper priors 7y and 7 that may be infinite measures.
As a result Py and P; are positive real measures that may themselves be infinite. We also allow
X to be a general (in particular uncountable) set. Both non-integrability and uncountability
cause complications, but these can be overcome if suitable Radon-Nikodym derivatives exist.

P(”)

To ensure this, we will assume that for all # > max{m, 1}, for all k € {0,1} and 0 € @, ok >

ﬁg") and ﬁf " are all mutually absolutely continuous and that the measures ﬁf " and ﬁ(()n) are

o-finite. Then there also exists a measure p on (Q, F) such that, for all such n, ﬁf n), an) and

p(" are all mutually absolutely continuous: we can simply take p(") = ﬁ(()n), but in practice, it
is often possible and convenient to take p such that p(") is the Lebesgue measure on R”, which
is why we explicitly introduce p here.

The absolute continuity conditions guarantee that all required Radon-Nikodym derivatives
exist. Finally, we assume that the posteriors 7 (®y | x™) (as defined in the standard manner in
below; when m = 0 these are just the priors) are proper probability measures (i.e. they
integrate to 1) for all x™ € (X™). This final requirement is the reason why we sometimes need to
consider m > 0 and nonstandard sample spaces (X") in the first place: in practice , one usually
starts with the standard setting of a (Q, F) where m = 0 and all X; have the same status. In all
practical situations with improper priors 7 and/or m; that we know of, there is a smallest finite
jand aset X° c X/ that has measure 0 under all probability distributions in Hy U Hy, such that,
restricted to the sample space X/ \ X'°, the measures ﬁf D and ﬁ(()]) are o-finite and mutually
absolutely continuous, and the posteriors 7 (@ | x7) are proper probability measures. One
then sets m to equal this j, and sets (X™) := X™ \ X°, and the required properness will be
guaranteed. Our initial sample (X (")) is a variation of what is called (for example, by Bayarri
et al. (2012)) a minimal sample. Yet, the sample size of a standard minimal sample is itself a
random quantity; by restricting X™ to (X'™), we can take its sample size m to be constant
rather than random, which will greatly simplify the treatment of optional stopping with group

invariance; see Example|4.1/and [4.2/below.

We henceforth refer to the setting now defined (with m and initial space (X"} satisfying the
requirements above) as the general case.

We need an analogue of for this general case. If Py and P, are probability measures, then
there is still a standard definition of conditional probability distributions P(H | A) in terms of
conditional expectation for any given o-algebra 4; based on this, we can derive the required
analogue in two steps. First, we consider the case that T = n for some n > m. We know in
advance that we observe X" for a fixed n: the appropriate A is then F,, n(H | A)(w) is
determined by X" (w) hence can be written as 7(H | X"), and a straightforward calculation
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gives that

n(Hi | X" =x") (”)/d() o n(H) .
”(H°|X":"”)_(( /dp(n))( )) (410)

where (dﬁl( n)/dp(”)) and (dﬁé”) /dp(™) are versions of the Radon-Nikodym derivatives
defined relative to p(”). The second step is now to follow exactly the same steps as in the
derivation of (4.4), replacing B(X") by wherever appropriate (we omit the details). This
yields, for any # such that p(7 = n) > 0, and for p{")-almost every x" that is compatible with
T,
Yn P
(”)
n(H [ x") _n(H | X" =x",7=n) _(( dp"” ))(x”)) n(H,)
n(Hp | x") n(Hp|X"=x",7=n) dP((, )/dp(”) n(Hy)

where here, as below, for n > m, we abbreviate 7(Hy | X" = x") to m(Hy | x™).

The above expression for the posterior is valid if Py and P; are probability measures; we will
simply take it as the definition of the Bayes factor for the general case. Again this coincides with
standard usage for the improper prior case. In particular, let us define the conditional posteriors
and Bayes factors given (X(")) = x™ in the standard manner, by the formal application of
Bayes’ rule, for k = 0,1 and measurable ®) c ©; and F-measurable A,

pim

Jor S0 () (0)
dp (W‘)

Jeo, d,,(m) xm)dm(6)

Pr(A]x™) = Pr(A|(X™) = x™) —f Py (A | (XY = x™Ydm (6| x™),  (4.13)

(@) [ x™) =

(4.12)

where Py (A | (X(m) = x™) is defined as the value that (a version of) the conditional

probability Pgx(A | F,,) takes when (XY = x™ and is thus defined up to a set of p("™)-
measure o.

With these definitions, it is straightforward to derive the following coherence property, which
automatically holds if the priors are proper, and which in combination with expresses

that first updating on x™ and then on x,,41, . .., x, (multiplying posterior odds given x™ with
the Bayes factor for n outcomes given X™ = x™, which we denote by ,,,) has the same
result as updating based on the full x4, ..., x, at once (i.e. multiplying the prior odds with the

unconditional Bayes factor 8, for n outcomes):

Bujm

7'[(H1|Xn :x",‘l’:n) _(dp(”)( |xm) X" )7-[(Hl|xm) (4.14)

n(Ho | X" =x",7=n) dP(n)( | xm) n(Ho | xm)
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4.4.1 71-independence, general case

The general version of the claim that the posterior odds do not depend on the specific stopping
rule that was used is now immediate, since the expression (4.11) for the Bayes factor does not
depend on the stopping time 7.

4.4.2 Calibration, general case

We will now show that the calibration hypothesis continues to hold in our general setting.
From here onward, we make the further reasonable assumption that for every x™ € (X™),
Po(7=00|x™) =P(7=00|x™) = 0 (the stopping time is almost surely finite), and we define
T:={neNs, | Po(r=n)>0}.

To prepare further, let {B; | j € 7;} be any collection of positive random variables such that for
each j € T, B; is F j-measurable. We can define the stopped random variable B, as

[}

B; Zl{r iBj= Z Lir-jyBj, (4.15)

j=0 j=m+l1
where we note that, under this definition, B, is well-defined even if E; [7] = oco.

We can define the induced measures on the positive real line under the null and alternative
hypothesis for any probability measure P on (Q, F):

P B(R.) - [0,1]: A P(B'(A)). (4.16)

where B (R>o) denotes the Borel o-algebra of R.(. Note that, when we refer to PIB:] this is
identical to PLB+] for the stopping time 7 which on all of Q stops at 7. The followmg lemma is
crucial for passing from fixed-sample size to stopping-rule based results.

Lemma 1. Let T; and {B, | n € T;} be as above. Consider two probability measures Py and
Py on (Q, F). Suppose that for all n € T,, the following fixed-sample size calibration property
holds:

PI(T:n)_dP1 (|T_”)(b)—cb (4.17)

‘or some fixed ¢ > 0, PolP) almost all b :
J s o Py(t=n) dpBI(-|7=n)

Then we have

(] dp >
fOT PO “_almost all b : W(lﬂ) =c-b. (418)

The proof is in Section[4.B|in the supplementary material.

In this subsection we apply this lemma to the measures Py (- | x™) for arbitrary fixed x™

(X™), with their induced measures P ( | ’”) P, [r:] (- | x™) for the stopped posterior odds
y.. Formally, the posterior odds y, as deﬁned in (4.11) constitute a random variable for each n,
and, under our mutual absolute continuity assumption for Py and Py, y, can be directly written
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0) _
jg(“) -m(Hy)/m(Hy). Since, by definition, the measures P (- | x™) are probability measures,

the Rnadon-Nikodym derivatives in and (4.18) are well-defined.

as

Lemma 2. We have for all x™ € (X™), all n > m:
—[yx] _ m —[yn] . m m
forﬁ([)y"](- | x™)-almost all b : ﬁl[ ](T_ nix") dﬁl[ ]( [ )(b) = m(H | xm) -b.
Py (r=n|xm) dPy" (-] x™) n(Hy [ x™)
(4.19)

Combining the two lemmas now immediately gives (4.20) below, and combining further with
and gives (4.21):

Corollary 3. In the setting considered above, we have for all x™ € (X™):

n(H | xm) dPY( ] xm)
7T(H() | xm) dﬁgyf]( | xm)

forﬁ([)yr]( | x™)-almost all b : (b)=b, (4.20)

and also

n(H) dP”

7'[(H0 ) dﬁgyr]

for ﬁ([)yr](- | x™)-almost all b : (b) = b, (4.21)

In words, the posterior odds remain calibrated under any stopping rule T which stops almost surely
at times m < 7 < 0o.

For discrete and strictly positive measures with prior odds n(H;)/n(Hy) = 1, we always have

m =0, and (4.20) is equivalent to (4.5). Note that ?([)H (- | x™)-almost everywhere in (4.20) is

equivalent to ﬁl[ ] (- | x™)-almost everywhere because the two measures are assumed to be
mutually absolutely continuous.

4.4.3 (Semi-)Frequentist Optional Stopping

In this section we consider our general setting as in the beginning of Section|4.4.2} i.e. with the
added assumption that the stopping time is a.s. finite, and with 7; := {j € N5, | Po(7 = j) >
0}.

Consider any initial sample x™ € (X™) and let P | x™ and P, | x™ be the conditional Bayes
marginal distributions as defined in (4.13). We first note that, by Markov’s inequality, for any
nonnegative random variable Z on Q with, for all x™ € (X'™), Egyjon [Z] <1, we must have, for
0<a<L,Py(Z'<a|x™)<E;, .[Z]]a <a.

Polxm

Proposition 4. Let 7 be any stopping rule satisfying our requirements. Let B, be the stopped
Bayes factor given x™, i.e., in accordance with (4.15), Brjm = X521 Liz=jy Bjim with Bjjm as
given by (4.14). Then Py, satisfies, for all x™ € (X™), Bp | . [Bejm] < 1, s0 that, by the reasoning

above, ﬁo(ﬁ <alx™)<a
T|m
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Proof. We have

7[ T] m
Ep oo [y2] = [ 070 (db[2") -

ap (b]x") n(Hi|x") 5 e m(Hp | x™)
fdPyT Yo | 2m) ”(H0|xm) a1 )_”(H0|x’"),

where the first equality follows by definition of expectation, the second follows from Corollary[s]
and the third follows from the fact that the integral equals 1.

But now note that

n(Hy | x™) n(Ho [ x™)
1 1 =Y ’
Beim = Z {r=iBjim = Z =i}V m(Hy | x™) Y m(H | x™)

]m+ ]m+

where the second equality follows from together with the first equality in (4.11). Combin-
ing the two equations we get:

n(Hp | x™)
By ) = Eper [ 20123 |

O

The desired result now follows by plugging in a particular stopping rule: let § : U2, ,, X' —
{0,1} be the frequentist sequential test defined by setting, for all n > m, x" € (X"): S(x") =1
if and only if B, > 1/a.

Corollarys. Lett* € {m+1,m+2,...} u{co} be the smallest t* > m for which /J)t_ﬁn < . Then
for arbitrarily large T, when applied to the stopping rule T := min{ T, t*}, we find that

Po(3n,m<n<T:S(X")=1]|x")=Py(3n,m<n<T:B,, <a|x™)<a.

n|m

The corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to Hy (Definition [4.1). Note that, just as in the simple case, the setting is really just
‘semi-frequentist’ whenever H) is not a singleton.

4.5 Optional stopping with group invariance

Whenever the null hypothesis is composite, the previous results only hold under the marginal
distribution Py or, in the case of improper priors, under Py(- | X™ = x™). When a group
structure can be imposed on the outcome space and (a subset of the) parameters that is joint to
Hj and Hy, stronger results can be derived for calibration and frequentist optional stopping.
Invariably, such parameters function as nuisance parameters and our results are obtained if
we equip them with the so-called right Haar prior which is usually improper. Below we show
how we then obtain results that simultaneously hold for all values of the nuisance parameters.
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Such cases include many standard testing scenarios such as the (Bayesian variations of the)
t-test, as illustrated in the examples below. Note though that our results do not apply to settings
with improper priors for which no group structure exists. For example, if Pg|, expresses that
X1, X5, ... are i.i.d. Poisson(6), then from an objective Bayes or MDL point of view it makes
sense to adopt Jeffreys’ prior for the Poisson model; this prior is improper, allows initial sample
size m = 1, but does not allow for a group structure. For such a prior we can only use the
marginal results Corollary[s|and Corollary[s] Group theoretic preliminaries, such as definitions
of a (topological) group, the right Haar measure, et cetera can be found in Section[4.A of the
supplementary material.

4.5.1 Background for fixed sample sizes

Here we prepare for our results by providing some general background on invariant priors
for Bayes factors with fixed sample size # on models with nuisance parameters that admit a
group structure, introducing the right Haar measure, the corresponding Bayes marginals, and
(maximal) invariants. We use these results in Sectionto derive Lemma |Z, which gives us a
strong version of calibration for fixed n. The setting is extended to variable stopping times in
Section [4.5.3) and then Lemmaly|is used in this extended setting to obtain our strong optional

stopping results in Section[4.5.4 and

For now, we assume a sample space (X'") that is locally compact and Hausdorff, and that is
a subset of some product space X" where X is itself locally compact and Hausdorft. This
requirement is met, for example, when X = R and (X") = X'". In practice, the space (X")
is invariably a subset of X" where some null-set is removed for technical reasons that will
become apparent below. We associate (X"} with its Borel o-algebra which we denote as F,,.
Observations are denoted by the random vector X" = (X, ..., X,,) € (X"). We thus consider
outcomes of fixed sample size, denoting these as x" € (X"}, returning to the case with stopping

times in Section[4.5.4 and [4.5.5]

From now on we let G be a locally compact group G that acts topologically and properlyf* on
the right of (X"). As hinted to before, this proper action requirement sometimes forces the
removal from X" of some trivial set with measure zero under all hypotheses involved. This is
demonstrated at the end of Example[4.1below.

Let Py . and Py, (notation to become clear below) be two arbitrary probability distributions
on (X") that are mutually absolutely continuous. We will now generate hypothesis classes Hy
and Hj, both sets of distributions on (X"} with parameter space G, starting from P, , and P, .,
where e € G is the group identity element. The group action of G on (X") induces a group
action on these measures defined by

Prg(A) = (Pre-)(A) = Pro(A-g7) = / Liay(x - g) Pre(dx) (4.22)

for any set A € F,, k = 0,1. When applied to A = (X'"), we get P ,(A) = 1, forall g € G,

4A group acts properly on a set Y if the mapping ¥ : Y x G — Y x Y defined by y(y,¢) = (y- g, ) is a proper
mapping, i.e. the inverse image of y of each compact setin Y x Y is a compact setin Y x G. (Eaton (1989), Definition 5.1)
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whence we have created two sets of probability measures parameterized by g, i.e.,
Hy={Pyg|geG}; H={P,|geG}. (4.23)

In this context, ¢ € G, can typically be viewed as nuisance parameter, i.e. a parameter that
is not directly of interest, but needs to be accounted for in the analysis. This is illustrated in
Example[4.1/and Example[4.2|below. The examples also illustrate how to extend this setting to
cases where there are more parameters than just ¢ € G in either Hy or H;. We extend the whole
setup to our general setting with non-fixed 7 in Section|[4.5.4.

We use the right Haar measure for G as a prior to define the Bayes marginals:

ﬁk (A) = fG /(‘X") ]l{A} de,g V( dg) (4.24)

for k = 0,1and A ¢ F,. Typically, the right Haar measure is improper so that the Bayes
marginals P are not integrable. Yet, in all cases of interest, they are (a) still o-finite, and, (b),
Py, P, and all distributions Py ; with k = 0,1and g € G are mutually absolutely continuous; we
will henceforth assume that (a) and (b) are the case.

Example[4.1 (continued) Consider the ¢-test of Example[4.1} For consistency with the earlier
Examplel.1, we abbreviate for general measures P on (X"), (dP/d\) (the density of distribu-
tion P relative to Lebesgue measure on R") to p. Normally, the one-sample ¢-test is viewed as a
test between Hy = {Py , | 0 € Rsg} and H] = {Py 4.6 | 0 € Rs¢, 8 € R}, but we can obviously also
view it as test between Hy and H; = {P; , } by integrating out the parameter § to obtain

Pre(x") = [ pros(x")ms(8)ds. (425)

The nuisance parameter o can be identified with the group of scale transformations
G ={c| ceRso}. We thus let the sample space be (X¥") = R" \ {0}", i.e., we remove the
measure-zero set {0}", such that the group action is proper on the sample space. The group
action is defined by x” - ¢ = c x" for x" € (X"), c € G. Take e = 1 and let, for k = 0,1, Py, be the
distribution with density py; as defined in and (4.25). The measures Py ; and P, ; defined
by then turn out to have the densities pg , and p; , as defined above, with ¢ replaced by
g Thus, Hy and H, as defined by and are indeed in the form needed to state
our results.

In most standard invariant settings, H, and H,; share the same vector of nuisance parameters,
and one can reduce Hy and H; to in the same way as above, by integrating out all other
parameters; in the example above, the only non-nuisance parameter was §. The scenario of
Example|4.1can be generalized to a surprisingly wide variety of statistical models. In practice
we often start with a model H; = {P;,, 5 : y € I, 0 € @} that implicitly already contains a
group structure, and we single out a special subset {Py, y, 8y : y € ['}; this is what we inform-
ally described in Example More generally, we can start with potentially large (or even
nonparametric) hypotheses

Hy = {Pyi: 0" € O} (4.26)
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which at first are not related to any group invariance, but which we want to equip with an
additional nuisance parameter determined by a group G acting on the data. We can turn this
into an instance of the present setting by first choosing,for k = 0, 1, a proper prior density 7
on O}, and defining Py . to equal the corresponding Bayes marginal, i.e.

Peo(A) = [ Poii(4) dm(0)). (427)

We can then generate Hy = { Py, | g € G} asin and (4.23). In the example above, H; would
be the set of all Gaussians with a single fixed variance o7 and ®] = R would be the set of all effect
sizes §, and the group G would be scale transformation; but there are many other possibilities. To
give but a few examples, Dass and Berger, 2003/ consider testing the Weibull vs. the log-normal
model, the exponential vs. the log-normal, correlations in multivariate Gaussians, and Berger,
Pericchi and Varshavsky, 1998 consider location-scale families and linear models where Hy and
H, differ in their error distribution. Importantly, the group G acting on the data induces groups
Gg, k = 0,1, acting on the parameter spaces, which depend on the parameterization. In our
example, the G; were equal to G, but, for example, if H, is Weibull and H; is log-normal, both
given in their standard parameterizations, we get Go = {go.5.c | 0.6,c(8,y) = (B¢, y/c), b >
0,c > 0} and G = {gipc | Lo.c(p-0) = (cp +log(b),co),b > 0,¢ > 0}. Several more
examples are given by Dass, 1998|

On the other hand, clearly not all hypothesis sets can be generated using the above approach.
For instance, the hypothesis H{ = {P,, | 4 = 1,0 > 0} with P, , a Gaussian measure with
mean p and standard deviation o cannot be represented as in (4.23). This is due to the fact that
for 0,0’ > 0,0 # 0’, no element g € R, exists such that for any measurable set A € (X"} the
equality

Pio(A)=Pio(A-g™)
holds. This prevents an equivalent construction of H; in the form of (4.23).

We now turn to the main ingredient that will be needed to obtain results on optional stopping:
the quotient o-algebra.

Definition 4.2 (Eaton (1989), Chapter 2). A group G acting on the right of a set Y induces
an equivalence relation: y; ~ y, if and only if there exists g € G such that y; = y, - g. This
equivalence relation partitions the space in orbits: O, = {y-g | g € G}, the collection of which is
called the quotient space Y | G. There exists a map, the natural projection, from Y to the quotient
space which is defined by ¢y : Y = Y/G : y » {y- g | g € G}, and which we use to define the
quotient -algebra

Gn = {@en (P (A)) | Ae F,}. (4.28)

Definition 4.3 (Eaton (1989), Chapter 2). A random element U,, on (X") is invariant if for all
g2€G, x" e (X"), Uy(x™) = U, (x" - g). The random element U, is maximal invariant if U, is
invariant and for all " € (X"), U, (x") = U,(»") implies x" = y" - g for some g € G.

Thus, U, is maximal invariant if and only if U, is constant on each orbit, and takes different
values on different orbits; ¢y is thus an example of a maximal invariant. Note that any
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maximal invariant is G,-measurable. The importance of this quotient o-algebra G, is the
following evident fact:

Proposition 6. For fixed k € {0,1}, every invariant U, has the same distribution under all
Pk,g> g€ G.

Chapter 2 of (Eaton, [1989) provides several methods and examples how to construct a concrete
maximal invariant, including the first two given below. Since 8, is invariant under the group
action of G (see below), 3, is an example of an invariant, although not necessarily of a maximal
invariant.

Example(4.1 (continued) Consider the setting of the one-sample ¢-test as described above
in Example|4.1] A maximal invariant for x” € (X") is

Un(x") = (a/aals 22/ [l - xn /[

Example 4.2. A second example, with a group invariance structure on two parameters, is the set-
ting of the two-sample ¢-test with the right Haar prior (which coincides here with Jeftreys’ prior)
n(,0) =1/0 (see Rouder et al. (2009) for details): the group is G = {(a,b) | a > 0, b € R}. Let
the sample space be (X") = R" \ span(e, ), where e, denotes a vector of ones of length n
(this is to exclude the measure-zero line for which the s(x") is zero), and define the group
actionby x” - (a,b) = ax” + be, for x" € (X"). Then (Eaton (1989), Example 2.15) a maximal
invariant for x” € (X")is U,(x") = (x" — Xe,)/s(x"), where X is the sample mean and

s(x") = (20 (xi - %)2) 7%

However, we can also construct a maximal invariant similar to the one in Example[4.1, which
gives a special status to an initial sample:

n>2.

XL-X X-X Xn—Xl)
X -Xi| " X - X X, - X

U, (X") = (

4.5.2 Relatively Invariant Measures and Calibration for Fixed n

Let U, be a maximal invariant, taking values in the measurable space (U,,G,). Although
we have given more concrete examples above, it follows from the results of Andersson, 1982
that, in case we do not know how to construct a U,,, we can always take U, = P(xny> the
natural projection Since we assume mutual absolute continuity, the Radon-Nikodym derivative

dp, U” /dP, U”] must exist and we can apply the following theorem (note it is here that the use
of rzght Haar measure is crucial; a different result holds for the left Haar measure)f]

Theorem Berger, Pericchi and Varshavsky, 1998, Theorem 2.1 Under our previous defini-
tions of and assumptions on G, Py ,, Py let f(x") := P1(x")/Po(x") be the Bayes factor based
on x". Let U, be a maximal invariant as above, with (adopting the notation of (4.16)) marginal

>This theorem requires that there exists some relatively invariant measure g on (X") such that for k = 0,1,g € G,
the Py o all have a density relative to 4. Since the Bayes marginal Py based on the right Haar prior is easily seen to be
such a relatively invariant measure, the conditions for the theorem apply.
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measures P g ] fork=0,1and g € G. There exists a version of the Radon-Nikodym derivative
such that we have for all g € G, all x" € (X"},

[Ux]

fo5 (Ua(x") = B(x"). (4.29)

As a first consequence of the theorem above, we note (as did Berger, Pericchi and Varshavsky
(1998)) that the Bayes factor 8, := B(XV) is G,-measurable (it is constant on orbits) , and
thus it has the same distribution under Py, and Py 4 for all g € G. The theorem also implies the
following crucial lemma:

Lemma 7. [Strong Calibration for Fixed n] Under the assumptions of the theorem above,
let U, be a maximal invariant and let V, be a G,-measurable binary random variable with
Pog(V,=1)>0, Py g(V =1)>0. Adoptzng the notation of (4.16), we can choose the Radon-

Nikodym derivative dP1 ( |V, = 1)/dP ( | V. = 1) so that we have, for all x" € (X"):

Pig(Va=1) B v, = 1)
Po,g(Vy 1) dPﬁ](|V 1)

(Bu(x")) = Bu(x"), (4.30)

where for the special case with Py o(V, = 1) = 1, we get ﬁ(ﬁn(x”)) = Ba(x").
Py

4.5.3 Extendingto Our General Setting with Non-Fixed Sample Sizes

We start with the same setting as above: a group G on sample space (X") c X" that acts
topologically and properly on the right of (X" ); two distributions Py , and P, on ((X"), F,)
that are used to generate Hy and H;, and Bayes marginal measures based on the right Haar

measure Py and P;, which are both ¢-finite. We now denote Hj, as H( ") , Py as P(”)

P,E ), allPe H (() " UH 1( ") are mutually absolutely continuous.

and Py, as

We now extend this setting to our general random process setting as specified in the beginning
of Section |4.4.2 by further assuming that, for the same group G, for some m > 0, the above
setting is defined for each n > m. To connect the H ,E”) for all these n, we further assume that
there exists a subset (X™) c X" that has measure 1 under P,E "e) (and hence under all P(”))
such that for all n > m:

1. We can write (X") = {x" € X" : (x1,..., %) € (X™)}.

2. Forall x" € (X"), the posterior v | x" based on the right Haar measure v is proper.
3. The probability measures P( ") and P(”“)
for a random process.

satisfy Kolmogorov’s compatibility condition
4. The group action - on the measures P&) and P,E":l)

, is compatible, i.e. for every n > 0,
for every A € F,, every g € G, k € {0,1}, we have P,E?g“) (A) = P,E’”g)(A).
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Requirement 4. simply imposes the condition that the group action considered is the same
for all n € N. As a consequence of 3. and 4., the probability measures P]E';) and P]E'?l) satisfy

Kolmogorov’s compatibility condition for all g € G, k € {0,1} which means that there exists a
probability measure Py , on (Q, ) (under which (X ()Y, Xpws1> Xms2s - - - is a random process),

defined as in the beginning of Section whose marginals for # > m coincide with P(") nd

there exist measures Py and P; on (Q, F) whose marginals for n > m coincide with P( " and

( ) We have thus defined a set Hy and H; of hypotheses on (Q, F) and the corresponding
Bayes marginals Py and P; and are back in our general setting. It is easily verified that the 1-
and 2-sample Bayesian t-tests both satisfy all these assumptions: in Example[4.1] take m = 1
and (X™) = R\ {0};in Example@, take m = 2 and (X™) = R*\ {(a,a) : a € R}. The
conditions can also be verified for the variety of examples considered by Berger, Pericchi and
Varshavsky (1998) and Bayarri et al.,|2012| In fact, our initial sample x™ € (X™) is a variation
of what they call a minimal sample; by excluding ‘singular’ outcomes from X'™ to ensure that
the group acts properly on (X™), we can guarantee that the initial sample is of fixed size. The
size of the minimal sample can be larger, on a set of measure o under all P € Hy u Hy, e.g. if,
in Example [E, X; = X,. We chose to ensure a fixed size m since it makes the extension to
random processes considerably easier.

In Section [4.5.1, underneath Example [4.1] we already outlined how a composite alternative
hypothesis can be reduced to a hypothesis with just a free nuisance parameter (or parameter
vector) g € G, by putting a proper prior on all other parameters and integrating them out. A
similar construction for a single parameter alternative hypothesis in the form of can be
applied in the non-fixed sample size case.

4.5.4 Strong Calibration

Consider the setting, definitions and assumptions of the previous subsection, with the additional
assumptions and definitions made in the beginning of Section[4.4.3} in particular the assumption
of a.s. finite stopping time. For simplicity, from now on, we shall also assume equal prior odds,
n(Hy) = n(H;p) = 1/2. We will now show a strong calibration theorem for the Bayes factors

B = (dP(n) )/ (dP(n) )(X™) defined in terms of the Bayes marginals P, and P; with the right
Haar prior. Thus f3; is defined as in with 8 in the role of B.

Theorem 4.8 (Strong calibration under optional stopping). Let T be a stopping time satisfying
our requirements, such that additionally, for each n > m, the event {1t = n} is G,-measurable.

Then, adopting the notation of (4.6, for all g € G, for P ]-almost every b > 0, we have:

dP[ B-]
—i () =b.
dP

That means that the posterior odds remain calibrated under every stopping rule T adapted to the
quotient space filtration G ., G 415 . . ., under all Py ,.

Proof. Fix some g € G. We simply first apply LemmalZwith Vi = 17—y}, which gives that the
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premise of Lemmali/holds with ¢ = 1 and j3, in the role of B,, (it is here that we need that
T, is G,-measurable, otherwise we could not apply Lemmal7]with the required definition of
V). We can now use Lemmawith Py, ¢ in the role of P, to reach the desired conclusion for
the chosen g. Since this works for all g € G, the result follows. O

Example[4.1, Continued: Admissible and Inadmissible Stopping Rules We obtain strong
calibration for the one-sample ¢-test with respect to the nuisance parameter o (see Example|.1]
above) when the stopping rule is adapted to the quotient filtration G, G,y41, . . .. Under each
Py € Hy, the Bayes factors f3,,, 41, - . . define a random process on Q such that each 3, is
G ,-measurable. This means that a stopping time defined in terms of a rule such as ‘stop at the
smallest ¢ at which B; > 20 or ¢ = 10°" is allowed in the result above. Moreover, if the stopping
rule is a function of a sequence of maximal invariants, like x;/|x1|, x2/|x1], . . ., it is adapted to
the filtration G,,, G141, - . . and we can likewise apply the result above. On the other hand, this
requirement is violated, for example, by a stopping rule that stops when Y7_, (x;)? exceeds
some fixed value, since such a stopping rule explicitly depends on the scale of the sampled
data.

4.5.5 Frequentist optional stopping

The special case of the following result for the one-sample Bayesian ¢-test was proven in the
master’s thesis (Hendriksen, |2017). Here we extend the result to general group invariances.

Theorem 4.9 (Frequentist optional stopping for composite null hypotheses with group invari-
ance). Under the same conditions as in Section|4.5.4, let T be a stopping time such that, for each
n > m, the event {1 = n} is G,-measurable. Then, adopting the notation of (4.16), for all g € G,

the stopped Bayes factor satisfies Ep, [B:] = [ ¢ dP(g,ﬁ c J (¢) =1, so that, by the reasoning above
Proposition@ we have for all g € G: Po,g(ﬁ <a)<a.

Proof. We have

A)O ch (c) f c)d c) f dPﬁ]

where the first equality follows directly from Theorem and the final equality follows because
Py 4 is a probability measure, integrating to 1. O

Analogously to Corollary[s} the desired result now follows by plugging in a particular stopping
rule:let S : U2, X' — {0,1} be the frequentist sequential test defined by setting, for all n > m,
x"e(X"): S(x ) =lifand onlyif 8, > 1/a.

Corollary 10. Let t* € {m+1,m+2,...} U{oco} be the smallest t* > m for which p;! < a.
Then for arbitrarily large T, when applied to the stopping rule T := min{ T, t*}, we find that for
all ge G:

Poo(In,m<n<T:S(X")=1|x")=Pyg(In,m<n<T:B,' <a|x™)<a.
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The corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to Hy (Definition[4.1).

Example|ﬂ(continued) When we choose a stopping rule thatis (G, G 1, - - - )-measurable,
the hypothesis test is robust under (semi-)frequentist optional stopping. This holds for example,
for the one- and two-sample t-test (Rouder et al.,|2009), Bayesian ANOVA (Rouder et al.,
2012), and Bayesian linear regression (Liang et al.,2008). Again, for stopping rules that are
not (G, Gms1, - . .)-measurable, robustness under frequentist optional stopping cannot be
guaranteed and could reasonably be presumed to be violated. The violation of robustness under
optional stopping is hard to demonstrate experimentally as frequentist Bayes factor tests are
usually quite conservative in approaching the asymptotic significance level «.

4.6 Concluding Remarks

We have identified three types of ‘handling optional stopping’: T-independence, calibration
and semi-frequentist. We extended the corresponding definitions and results to general sample
spaces with potentially improper priors. For the special case of models Hy and H; sharing a
nuisance parameter with a group invariance structure, we showed stronger versions of calibra-
tion and semi-frequentist robustness to optional stopping. A couple of remarks are in order.
First, one of the remarkable properties of the right Haar prior is that, under some additional
conditions on Py g and Py ¢ in (4.22), B, = f(x™) = 1for all x™ € (X™), implying that equal
prior odds lead to equal posterior odds after a minimal sample, no matter what the minimal
sample is (Berger, Pericchi and Varshavsky, 1998). One might conjecture that our results rely
on this property, but this is not the case: in general, one can have f(x™) # 1, yet our results still
hold. For example, in the Bayesian ¢-test, Example|4.1, m = 1 and f(x') = 1 can be guaranteed
only if the prior 75 on § is symmetric around 0; but our calibration and frequentist robustness
results hold irrespective of whether it is symmetric or not.

Secondly, in multiple-parameter problems, the suitable transformation group acting on the
parameter space may not be unique, in which case there are multiple possible right Haar
priors, see Example 1.2 and 1.3 in (Berger, Bernardo, Sun et al,, |2015) and (Berger, Sun et al.,
2008). However, in all examples we considered and further know of, this does not lead to
ambiguity, because different transformation groups give rise to different sets Hy of invariant
null hypotheses.

As a third remark, it is worth noting that — as is immediate from the proofs — all our group-
invariance results continue to hold in the setting with H}_ as in (4.26)), and the definition of the
Bayes marginal Py, relative to 6' as in replaced by a probability measure on (Q, F) that
is not necessarily of the Bayes marginal form. The results work for any probability measure;
in particular one can take the alternatives for the Bayes marginal with proper prior that are
considered in the the minimum description length and sequential prediction literature (Barron,
Rissanen and Yu,|[1998; Griinwald, |2007)) under the name of universal distribution relative to
{Py: | 0" € ®'}; examples include the prequential or ‘switch’ distributions considered by Van
der Pas and Griinwald, 2018!
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As afourth and final remark, a sizable fraction of Bayesian statisticians is wary of using improper
priors at all. An important (though not the only) reason is that their use often leads to some
form of the marginalization paradox described by Dawid, Stone and Zidek, 1973. It is thus useful
to stress that in the context of Bayes factor hypothesis testing, the right Haar prior is immune at
least to this particular paradox. In an informal nutshell, the marginalization paradox occurs if
the following happens: (a) the Bayes posterior 71({ | X") for the quantity of interest { based on
prior 7({, g) with improper marginal on g, only depends on the data X" through the maximal
invariant U,, i.e. 7({ | X") = f(U,(X")) for some function f, yet (b) there exists no prior 7’
on { such that the corresponding posterior 7' ({ | U,(X")) = f(U,(X™)). In words, the result
of Bayesian updating based on the full data X" only depends on the maximal invariant U"; but
Bayesian updating directly based on U” can never give the same result — a paradox indeed.
While in general, this can happen even if g is equipped with the right Haar prior [Case 1, page
199](Dawid, Stone and Zidek, 1973), Berger et. al’s Theorem 2.1 (reproduced in Section@
in our chapter) implies that it does not occur in the context of Bayes factor testing, where
{ € {Hy, H},and Hy and H; are null and alternatives satisfying the requirements of Section|s.5|
Berger’s theorem expresses that for all values of the nuisance parameter g € G, the likelihood

ratio dPl[)g”] / dP(EZ”] (U,(X™")) based on U,(X") is equal to the Bayes factor based on X"
with the right Haar prior on g, so that the paradox cannot occur.
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4.A  Group theoretic preliminaries

We start with some group-theoretical preliminaries; for more details, see e.g. (Eaton, [1989;
Wijsman, 1990; Andersson, 1982).

Definition 4.4 (Topological space). A non-empty set S together with a fixed collection of
subsets 7 is called a topological space T = (S,T) if

. S,3¢T,
2. UnV eT foranytwo sets U,V € T, and
3. $1U S, € T for any collections of sets S1, S, € 7.

The collection 7T is called a topology for S, and its members are called the open sets of T. A
topological space T is called Hausdor(f if for any two distinct points x, y € T there exist disjoint
open subsets U, V of T containing one point each.

Definition 4.5 ((Local) compactness). A topological space T is compact if every open cover,
that is, every collection C of open sets of T'

T=U,

UeC

has a finite subcover: a finite subcollection F € C such that

T= V.

VeF

It is locally compact if for every x € T there exist an open set U such that x € U and the closure
of U, denoted by CI(U), is compact, that is, the union of U and all its limit points in T is
compact. We can also formulate this as each x having a neighborhood U such that CI(U) is
compact.

Example 4.3 (Locally compact Hausdorff spaces). The reals R and the Euclidean spaces R”
together with the Euclidean topology (also called the usual topology) are locally compact Haus-
dorff spaces. R" (for n € N) is locally compact because any open ball B(x, r) has a compact
closure CI(B(x,r)) = {y € R";d(x,y) < ¢}, where d(x, y) is the Euclidean metric. Any
discrete space is locally compact and Hausdorff as well, as any singleton is a neighborhood
that equals its closure, and it is compact only if it is finite. Infinite dimensional Banach spaces
(function spaces) are for example not locally compact.

Definition 4.6 (Group). A set G together with a binary operation o, often called the group law,
is called a group when

1. there exists an identity element e € G for the group law o,

2. for every three elements a, b, ¢ € G, we have (a o b) o ¢ = a o (b o ¢) (associativity), and

T = gt

3. for each element a € G, there exists an inverse element, a’ € G, withaoa' =afoa =e.
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Transformation groups A group that consists of a set G of transformations on some set S is
called a transformation group. We also say that the group G acts on the set S. A transformation is
a mapping from § to itself that preserves certain properties, such as isometries in the Euclidean
plane. Transformation groups are usually not commutative, thatisao b # boa fora,b €
G.
Definition 4.7 (Topological group). A topological space G that is also a group is called a
topological group when the group operation o is continuous, that is, for a, b € G, we have that
the operations of product

1. GxG — G:(a,b) — aob,and taking the inverse

2.G>G:ara',

are continuous, where G x G has the product topology.

A topological group for which the underlying topology is locally compact and Hausdorft, is
called a locally compact group.

Definition 4.8 (Eaton (1989), Definition 2.1). Let Y be a set, and let G be a group with identity
element e. A function F : Y x G — Y satisfying

1 F(y,e)=y, yeY
2 F(y.0182) =F(F(3:21).82)> g&2€GyeY
specifies G acting on the right of Y.

In practice, F is omitted: we will write y - g for a group element g acting on the right of y € Y.
Forasubset ACY,wewrite A-g:=={a-g|acA}.

Definition 4.9 (Conway (2013), Example 1.11). Let G be a locally compact topological group.
Then the right invariant Haar measure (in short: right Haar measure) for G is a Borel measure
v satisfying

1. v(A) > 0 for every nonempty open set A € G,

2. v(K) < oo for every compact set K ¢ G,

3. v(A-g) = v(A) for every g € G and every measurable A € G.

4.B Proofs Omitted from Main Text

Proof. [of Lemma Let A c R, be any Borel measurable set. In the equations below, the sum
and integral can be swapped due to the monotone convergence theorem and the fact that B is
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a positive function.

fA ap(* = /Q 1(p,eay 4RI

= 1 1, dP
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3 ad n n
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Q n=0

:AH{BTEA}BT dp,
14
<:>/Atpo[sf](dt),

where (*) follows because of our fixed n-calibration assumption. Furthermore, (3) follows
from the following equality for any C € F

B (Cr{r=n}) =P (z=n) P (C| 1= n), (43)

and in (5) we perform a change of variables where we integrate over the possible values of the
Bayes Factor instead of over the outcome space, which we repeat in (14).

We have shown that the function g defined by g(t) = ¢ is the Radon-Nikodym
dp?]

derivative .
[B:]

O
Py
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Proof. [of Lemmal]2] Let A be any Borel subset of R,o. We have:

7[}’"] m f 7(1) m
P (| x", T =n) = Ly, eaydP, (-] 5™ 7 =
S e = [ 1 4P (5= )

*(1) m
x"t=n (0)
:,/*1 ]l{yn }( 7(0)(| )) (|x T = }’l)
e (xm7=n)

*)

n(Hy | x™,7=n) (0)
1 (B edXTER) =
(Xn> {Y”EA})} ( (Hl | xm, T= T’l) ( ‘ x te n)

Po(t=n|x")n(H —(0) m
:‘/< " {yneA}Yn(O( | ) ( 0))dpn (|x ,T:I’l)

Py(t=n|xm)n(H)

(Po(r—n|x’”)7rH0|x )[ dpyn (|x"7=n),
Pi(r=n|x™)n(H | x™) ’

where, for the case m = 0, (*) follows from (4.3), which can be verified to be still valid in our
generalized setting. The case m > 0 follows in exactly the same way, by shifting the data by m
places (so that the new x; becomes what was x,,,1, and treating, for k = 0,1, 7(Hy | x™) as the
priors for this shifted data problem, and then applying the above with m = 0).

We have shown that the Radon-Nikodym derivative ——————= at y, is given by

' Po(t=n|x™)m(H; | x™)

= , which is what we had to show. ]
Pi(r=n|x™)n(Hy|x™)

Proof. [of Lemmalz]] Let A’ denote the event V,, = 1 and let A ¢ R, be a Borel measurable
subset of the positive real numbers. We have that 3, is a function of the maximal invariant U,
as defined in Definition [ﬁ, and we write 8, (U, ). With this notation, we have:

Pl[fgn](A | A/) — / ]]-{A} dPI[)/;n](_ | AI)
fﬂ{p(u)eA}d A

dP Un](. |AI)
_ R S (Ul | ar
= ]Z:{n ]l{/s,,(Un)eA} P Un]( |A’ Po,g ( |A )

(n)f qr [U.]
P (A7) dPY
(4)f [Ua] ’
= Lig, (umyeay oy dpy (- A")
u, P Pl()g)(A’) aplod 0

(n)
Py (A")
©) CAVERN,
) P(")(A') <, Liarena(Un) B |4)

[ 1t dPPlaN ),
Pl(,z)(A,) Rso {A} 0,¢
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where step (2) holds because f3,, is G, -measurable. On the set A’ we have

P[Un ( |A ) P(”)(Al) ) dPl[,(;n]

which explains step (4), and step (5) follows from the definition of ,, in Equation (4.29).

( )(A) dPl[ﬁ"](-\VnZI)

We have shown that T t is equal to the Radon-Nikodym derivative [’/‘),g]—,
P () aEI ] v, 1)

which is what we had to prove. O



Chapter 5

Safe Testing

Abstract

We develop the theory of hypothesis testing based on the E-value, a notion of evidence that, un-
like the p-value, allows for effortlessly combining results from several tests. Even in the common
scenario of optional continuation, where the decision to perform a new test depends on previous
test outcomes, ‘safe’ tests based on E-values generally preserve Type-I error guarantees. Our
main result shows that E-values exist for completely general testing problems with composite
null and alternatives. Their prime interpretation is in terms of gambling or investing, each
E-value corresponding to a particular investment. Surprisingly, optimal “GROW?” g-variables,
which lead to fastest capital growth, are fully characterized by the joint information projection
(JIPr) between the set of all Bayes marginal distributions on 7, and #;. Thus, optimal E-values
also have an interpretation as Bayes factors, with priors given by the JIPr. We illustrate the theory
using several ‘classic’ examples including a one-sample safe t-test and the 2 x 2 contingency
table. Sharing Fisherian, Neymanian and Jeffreys-Bayesian interpretations, E-values and safe
tests may provide a methodology acceptable to adherents of all three schools.

5.1 Introduction and Overview

We wish to test the veracity of a null hypothesis H, often in contrast with some alternative
hypothesis H,, where both H, and H,; represent sets of distributions on some given sample
space. Our theory is based on e-test statistics. These are simply nonnegative random variables
that satisfy the inequality:

forall P € Hy: Ep[E] < 1. (5.1)

We refer to E-test statistics as E-variables, and to the value they take on a given sample as the
E-value, emphasizing that they are to be viewed as an alternative to, and in many cases an
improvement of, the classical p-value. Note that large E-values correspond to evidence against
the null: for given E-variable E and 0 < a < 1, we define the threshold test corresponding to E
with significance level a, as the test that rejects M, iff E > 1/a. We will see, in a sense to be

119
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defined, that this test is safe under optional continuation, which for brevity we will simply call
“safe”.

Motivation P-values and standard null hypothesis testing have come under intense scrutiny
in recent years (Wasserstein, Lazar et al.,|2016; Benjamin et al., |2018). E-variables and safe
tests offer several advantages. Most importantly, in contrast to p-values, E-variables behave
excellently under optional continuation, the highly common practice in which the decision
to perform additional tests partly depends on the outcome of previous tests; they thus seem
particularly promising when used in meta-analysis, avoiding the issue of ‘accumulation bias’
(Ter Schure and Griinwald, |2019). A second reason is their enhanced interpretability, and a
third is their flexibility: e-variables based on Fisherian, Neyman-Pearsonian and Bayes-Jeftreys’
testing philosophies all can be accommodated for. These three types of E-variables can be
freely combined, while preserving Type I error guarantees; at the same time, they keep a clear
(monetary) interpretation even if one dismisses ‘significance’ altogether, as recently advocated
by Amrhein, Greenland and McShane, 2019,

Contribution Our aim is to lay out the full theory of testing based on E-variables, both
methodologically and mathematically. Methodologically, we explain the advantages that E-
variables and safe tests offer over traditional tests, p-values and (some) Bayes factors; we
introduce the GROW criterion defining optimal E-variables and provide specific (‘simple §-
GROW?’) E-variables that are well-behaved in terms of GROW and power, and easy to use
in practice. Mathematically, we show (Theorem 5.4) that, for arbitrary composite, nonconvex
Ho and H,;, we can construct nontrivial E-variables. In many cases, (Theorem [ﬁ and
we can even construct E-variables that are optimal in the strong GROW sense. E-variables
have been invented independently by (at least) Levin (1976) and Zhang, Glancy and Knill
(2011) and have been analyzed before by Shafer et al. (2011) and Shafer and Vovk (2019) and
Vovk and Wang (2019), who emphasize that they can also be much more easily merged than p-
values. They are close cousins of test martingales (Shafer et al.,2011) which themselves underlie
AV (anytime-valid) p-values (Johari, Pekelis and Walsh, 2015), AV tests and AV confidence
sequences (Balsubramani and Ramdas, 2016; Howard et al.,|2018b; Howard et al., 2018a)). As
such, our methodological insights are mostly variations of existing ideas; yet, they have never
before been worked out in full. The mathematical results Theorem[s.4/and Theorem 5.6 are new,
although a special case of Theorem[s.4 was shown earlier by (Zhang, Glancy and Knill, 2011);
see Section 5.6 for more on the novelty and related work.

Contents In this introductory section, we give an overview of the main ideas: Section|5.1.1]
provides three interpretations of E-variables and the idea of optional continuation. In Sec-
tion[5.1.2} we discuss the GROW optimality theorem, and the use of our Theorem 5.4/to find
‘good’ Bayesian and/or GROW E-variables. Section 5.1.3 gives a first, extended example. The
remainder of the paper is structured as follows. Section [s.2]explains how some E-value based
tests are not merely safe under optional continuation, but also under the more well-known
optional stopping, and explains the close relation between test martingales and E-variables.
Section [5.3]gives our first main result, Theorem [5.4. Section [5.4] gives several examples, and
Section 5.5 reports some preliminary experiments. The paper ends with a section providing



5.1. Introduction and Overview 121

more historical context and an overview of related work in Section[5.6 — including a discussion
that clarifies how testing based on E-values could provide a unification of Fisher’s, Neyman’s
and Jeffreys’ ideas. All longer proofs are delegated to the appendices, which start with Ap-
pendix|5.A|providing details about (standard but tacit) assumptions and notations from the
main text.

5.1.1 The three main interpretations of E-variables

1. First Interpretation: Gambling The first and foremost interpretation of E-variables is in
terms of money, or, more precisely, Kelly (1956) gambling. Imagine a ticket (contract, gamble,
investment) that one can buy for 1%, and that, after realization of the data, pays E $; one may buy
several and positive fractional amounts of tickets. says that, if the null hypothesis is true,
then one expects not to gain any money by buying such tickets: for any € R*, upon buying r
tickets one expects to end up with rE[E] < r $. Therefore, if the observed value of E is large, say
20, one would have gained a lot of money after all, indicating that something might be wrong
about the null.

2. Second Interpretation: Conservative p-Value, Type I Error Probability Recall that a
strict p-value is a random variable P such that forall 0 < « < 1, all Py € H,,

Py(P<a)=a. (5.2)

A conservative P-value is a random variable for which holds with ‘=’ replaced by ‘<’ There
is a close connection between (small) p- and (large) E-values:

Proposition 1. For any given E-variable E, define P, = 1/E. Then p(;] is a conservative P-value.
As a consequence, for every E-variable E, any 0 < « < 1, the corresponding threshold-based test
has Type-I error guarantee a, i.e. for all P € H,,

P(E>1/a) < a. (5.3)
Proof. (of Proposition Markov’s inequality gives P(E > a™') < aEp[E] < a. O

While e-variables are thus conservative p-values, standard p-values satisfying are by no
means E-variables; if E is an E-variable and P is a standard p-value, and they are calculated
on the same data, then we will usually observe P « 1/E so E gives less evidence against the
null; SectionMand Sectionﬁwﬂl give some idea of the ratio between 1/E and P in various
practical settings.

Combining 1. and 2.: Optional Continuation, GROW  Propositions 2} 5 below show that
multiplying E-variables E1y, E(3), . . . for tests based on respective samples Y(;), Y(3), ... (with
each Y ) being the vector of outcomes for the j-th test), gives rise to new E-variables, even if the
decision whether or not to perform the test resulting in E ;) was based on the value of earlier
test outcomes E(;_1), E(j_3), - - .. As a result (Prop. , the Type I-Error Guarantee (5.3) remains
valid even under this ‘optional continuation’ of testing. An informal ‘proof” is immediate from
our gambling interpretation: if we start by investing $1in E(;) and, after observing E;), reinvest
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all our new capital $E(;) into E(,), then after observing E(,) our new capital will obviously
be $E (1) - E(3), and so on. If, under the null, we do not expect to gain any money for any of
the individual gambles E ), then, intuitively, we should not expect to gain any money under
whichever strategy we employ for deciding whether or not to reinvest (just as you would not
expect to gain any money in a casino irrespective of your rule for re-investing and/or stopping
and going home).

3. Third Interpretation: Bayes Factors For convenience, from now on we write the models
Ho and H; as
HOZ{P9:6€®()} 5 le{Pg:9€®1},

where for 0 € ®( U Oy, the Py are all probability distributions on the same sample, all have
probability densities or mass functions, denoted as pg, and we assume the parameterization is
1-to-1 (see Appendixfor more details). Y = (V1,..., Yy ), a vector of N outcomes, represents
our data. N may be a fixed sample size n but can also be a random stopping time. In the Bayes
factor approach to testing, one associates both # ; with a prior W}, which is simply a probability
distribution on @}, and a Bayes marginal probability distribution Py, with density (or mass)
function given by

po (D)= [ po0)dw;(6). (54)
The Bayes factor is then given as:
pu (Y)
BF = 5o (55)
qu (Y)

Whenever Ho = {Py } is simple, i.e., a singleton, then the Bayes factor is also an E-variable, since
in that case, we must have that W, is degenerate, putting all mass on 0, and p,, = po, and then
for all P € H,, i.e. for Py, we have

»[BF] f po(y) - f;wl((y)) -1 (5.6)

For such E-variables that are really simple-7{,-based Bayes factors, Proposition|[]reduces to the
well-known universal bound for likelihood ratios (Royall, [1997). When H, is itself composite,
most Bayes factors BF = py, /pw, will not be e-variables any more, since for BF to be an k-
variable we require (5.6) to hold for all Py, 6 € ®, whereas in general it only holds for P = Py,.
Nevertheless, our Theorem s.4|implies that there always exist many special combinations of W
and W, for which BF = py, /pw, is an E-variable after all, and that optimal g-values invariably
take on a Bayesian form (though sometimes with unusual priors).

5.1.2 How to find Good E-Values

1. (Semi-) Bayesian Approach Suppose we take a Bayesian stance regarding 7{; and, condi-
tioned on 7, are prepared to represent our uncertainty by prior distribution W; on 0.

Suppose that the set of all probability distributions W(@®,) that one can define on @, contains
a prior Wy that minimizes the KL divergence D(Pw, [|Pws) = miny,cpv(e,) D(Pw, | Pw,) to
Py,. Following Barron and Li, 1999, we call Py, the Reverse Information Projection (RIPr) of
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Py, onP(0) = {Pw, : Wy € W(@y)}. Parts1and 2 of our main result Theoremls.|essentially
state the following:

Corollary of Theorem Let W be any prior on ®; and let Py be the RIPr of Py, on
P(©y). Then the Bayes factor &3, := pw, (Y)/pwe (Y) is an E-variable.

The RIPr idea can be extended to the case that the minimum min oy (e,) D(Pw; | Pw,) is
not achieved, and the theorem provides a W;-based E-variable for that case as well. We can
thus be fully Bayesian about #;, but any prior W; on H; that we wish to adopt forces us to
adopt a corresponding prior Wy € H,. In general this may feel ‘un-Bayesian, but one may
perhaps consider it a small price to pay for creating a Bayes factor that should be acceptable
to frequentists as well — for the test corresponding to Ej, will preserve Type-I error bounds
under optional continuation under all Py € H,, no matter the prior W; one chose. Moreover,
in the standard case that the models are nested and H, is a sub-model of #,, it is generally
recognized that the priors on #y and #; should somehow be ‘matched’ with each other (Berger,
Pericchi and Varshavsky, 1998); we may view the RIPr construction as providing just such a
matching.

2. Frequentist (GROW) Approach We return to the monetary interpretation of e-values.
The definition of E-variable ensures that we expect them to stay under 1 (one does not gain
money) under any P € H,. Analogously, one would like them to be constructed such that they
can be expected to grow large as fast as possible (one gets rich, gets evidence against ) under
all P € ‘H;. Informally, E-variables with this property are called GROW. In its simplest form, for
‘Ho and H, that are strictly separated, the GROW (growth-rate optimal in worst-case) criterion
tells us to pick, among all E-variables relative to #,, the one that maximizes expected capital
growth rate under H,; in the worst case, i.e. the E-variable E* that achieves

E:E is arl?g-)\(fariable Il;Iel%-la EP [log E] (57)
We give five reasons for using the logarithm rather than any other increasing function (such
as the identity) in Section5.3.1, Briefly, when we keep using E-variables with additional data
batches as explained in Section|[5.2|below, then optimizing for log E ensures that our capital
grows at the fastest rate. Optimality in terms of GROW may be viewed as an analogue of the
classical frequentist concept of power.

Part 3 of Theorem 5.4 expresses that, under regularity conditions, the GROW E-variable is once
again a Bayes factor; remarkably, it is the Bayes factor between the Bayes marginals ( Py, , Py, )
that form the joint information projection (JIPr), i.e. that are, among all Bayes marginals indexed
by W(®,) and W], the closest in KL divergence (Figure|s.1). By joint convexity of the KL
divergence (Van Erven and Harremoés,|2014), finding the JIPr pair is thus a convex optimization
problem, tending to be computationally feasible.

3. 0-GROW E-values In Section we consider the case that 7y and #,; are neither sep-
arated nor do we have prior(s) on #; available. We can often parameterize the models as
®o={(0,y):yeT}and ©; = {(8,y) : 6 € A,y € T'} where 9§ is a single scalar parameter of
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interest. We can then define §-GROW E-variables that are GROW relative to some suitable
Hi={P.,y) :y €T, 8 €A,[0] > §}. The development is analogous to the classical development
of tests that have either maximal power under a minimal relevant effect size, or that have
a uniformly most powerful property; and the resulting §-GROW E-variables will also have
reasonable properties in terms of power. §-GROW E-variables are again Bayes factors. Often
the §-GROW E-variable is simple in that it sets W;* to be a degenerate prior, putting all its
marginal mass on A on a single § (for a one-sided test) or on {-8, 8} (two-sided). If H, is a
one-dimensional exponential family, then §-GROW E-values can be connected to the uniformly
most powerful Bayes factors of Johnson, [2013b.

We work out simple §-GROW E-variables for several standard settings: 1-dimensional expo-
nential families, nonparametric tests such as Mann-Whitney, 2 x 2 contingency tables and
the setting of the 1-sample ¢-test, each time applying Theorem|5.4]to show that the resulting
E-variable is GROW. We also provide ‘quick and dirty’ (non-GROW) e-variables for general
multivariate exponential family #,. Bayesian ¢-tests with a standard (nondegenerate) prior
W8] on 8, while providing a GROW &-variable, are not §-based in our sense. We present
a 6-GROW version of the Bayesian t-test that has significantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with §-GROW E-variables, if data comes from H, rather than #, one needs less data to
find out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the ¢-test setting the effective amount of data needed is about the same as
with the standard frequentist ¢-test because one is allowed to do optional stopping.

4. Robust Bayesian view of Theorem[s.4] We may think of the previous Bayesian RIPr result
as a special case of the JIPr result: if {, is composite, we can ‘collapse’ it into a single distribution
by adopting a prior W; on ©; of our choice and re-defining H, to be the singleton H; = { Py, }.
We are then in the setting of Figure[5.1/but with #, a singleton, and the JIPr becomes the RIPr.
The e-variable Ej,o = pw, /pwe can thus be thought of as the GROW E-variable relative to

.

More generally, we may only be able to specify a prior distribution on some, but not all of
the parameters. For example, in Bayesian testing with nuisance parameters satisfying a group
invariance as proposed by Berger, Pericchi and Varshavsky, 1998 one would like to specify
a prior W[§] on the effect size (non-nuisance) parameter § but make no assumptions at all
about the nuisance parameter vector y (a special case is the Bayesian ¢-test, with y representing
variance). This is an instance of a ‘robust Bayesian’ approach (Griinwald and Dawid, |2004)
in which prior knowledge is encoded as a set of priors (in this instance, it would be the set of
all priors on (8, y) whose marginal on § coincides with W[8]). Our Theorem|s.4 continues
to apply in this setting. Rather than a full model #,; as under 2. above, or a single prior W; as
under 1. above, we may replace the minimum over P € H; in (5.7) by a minimum over W e W)
over any convex set of priors W, on ®;, minpey, Ep[...] becoming minyeyy Ep, [...]. For
essentially any such W[, our Theorem |s.4/still holds. This high level of generality is needed,
for example, in our treatment of the 1-sample ¢-test. For this we formally show (in our second
main result, Theorem 5.6} which enables us to use Theorem|5.4) that the Bayes factor based
on the improper right Haar prior, advocated by Berger, Pericchi and Varshavsky, 1998, has a
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Figure 5.1: The Joint Information Projection (JIPr), with notation from Section ®¢ c O represent two nested
models, ®(9) is a restricted subset of ®; that does not overlap with @¢. P(0) = {Py : W ¢ W(O)}, and W(O)
is the set of all priors over ®, so P(®) is the set of all Bayes marginals with priors on ©. Theoremmsays that the
GROW E-variable E (’:)1 ®) between @ and ©;(9) is given by E(’:)l (6) = Pw / Py, the Bayes factor between the two

Bayes marginals that minimize KL divergence D(Py, || Py, ) }.

GROW property.

5. Examples and Experiments We work out simple §-GROW E-variables for several standard
settings: 1-dimensional exponential families, nonparametric tests such as Mann-Whitney, 2 x 2
contingency tables and the setting of the 1-sample ¢-test, each time applying Theorem 5.4|to
show that the resulting e-variable is GROW. We also provide ‘quick and dirty’ (non-GROW)
E-variables for the case that #, is a general multivariate exponential family. Specifically we
show that Bayes factors equipped with the right Haar prior on nuisance parameters provide E-
variables, despite the prior being improper. The Bayesian ¢-test with a standard (nondegenerate)
prior W[J] on § thus gives an S-variable, but it is not §-GROW in our sense. We present a
0-GROW version of the Bayesian t-test that has significantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with §-GROW E-variables, if data comes from H; rather than #, one needs less data to
find out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the t-test setting the effective amount of data needed is about the same
as with the standard frequentist ¢-test because, in this setting, one is allowed to do optional

stopping.

5.1.3 A First Example: the Gaussian Location Family

Let H, express that the Y; are i.i.d. ~ N(0,1). According to H,, the Y; are i.i.d. ~ N(u,1) for
some p € ©; = R. We perform a first test on initial sample Y := Y" := (Y3,..., Y, ). We consider
a standard Bayes factor test for this scenario, equiping ®; with a prior W that for simplicity
we take to be normal with variance 1, so that W has density w(u) o< exp(-u?/2). The Bayes
factor is given by

Eqy = = s .8
O h® T ) o
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where p,(Y) = p,(Y1,...,Y,) o< exp(= L7 (Y; — 4)?/2); by (5.6) we know that E(;y is an
E-value. By straightforward calculation:

1 1
logE = —Elog(n +1) + E(T’l +1) : [;li,

where i, = (X;-; Y;)/(n +1) is the Bayes MAP estimator, which only differs from the ML
estimator by O(1/n?): ji, — i, = W, /(n(n +1)). If we were to reject ®, when E > 20 (giving,
by Proposition[i]a Type-I error guarantee of 0.05), we would thus reject if

21/ w, ie. |@a| =/ (logn)/n,
n

where we used 210g20 ~ 5.99. Contrast this with the standard Neyman-Pearson (NP) test,
which would reject (a < 0.05) if |fZ,| > 1.96//n. The §~-GROW &-variables for this problem
that we describe in Sectionls.4.1/can be chosen so as to guarantee E* > 20 if || > i, with i, =
cn/\/n where ¢, > 0 is increasing and converges exponentially fast to /2log40 ~ 2.72. Thus,
while the NP test itself defines an E-variable that scores infinitely bad on our GROW optimality
criterion (Example [5.1), we can choose a GROW E* that is qualitatively more similar to a
standard NP test than a standard Bayes factor approach. For general 1-dimensional exponential
families, this 8-GROW E* coincides with a 2-sided version of Johnson’s (2013b; [2013a) uni-
formly most powerful Bayes test, which uses a discrete prior W within H,: for the normal
location family, W({#i,}) = W({-#,}) = 1/2 with @i, as above. Since the prior depends on
n, some statisticians would perhaps not really view this as ‘Bayesian’; and we also think of
such §-GROW E-variables, despite their formally Bayesian form, as having firstly a frequentist
motivation.

Un

Optional Continuation: Compatibility with Bayesian Updating For arbitrary prior W on
0y, define e, w = pw(Y")/po(Y") to be the Bayes factor with prior W for ®, applied to data
Y". The Bayesian E-variable can then be written as E(1) = en,,,w,, (Y(1)), with Ny = n,
Y1) = Y = Y". Suppose we have adopted some inital prior W(;) (say a normal with variance 1),
and initial observed data Y ;) = Y", leading to a first e-value E(;y = 18 — promising enough for
us to invest our resources into a subsequent trial. We decide to gather N(,) data points leading
to data Yo = (YN(1)+1; s YN(Z) ). We decide to use the following E-variable for this second
data batch:

_ Pwe (Y(Z))

po(Yoy)

for a new prior W(,). Crucially, we are allowed to choose both N,y and W, as a function

Eqy = EN(2), W2 (Y(Z)) ;

of past data Y. To see that E(,) gives an E-variable, note that, no matter how we choose
W(2)> Byey.p, [E(2)] = 1, by a calculation analogous to (5.6). If we want to stick to the Bayesian
paradigm, we can choose W(,y :== W) (- | Y(1)), i.e. W(y) is the Bayes posterior for y based on
data Y(;) and prior W(;. A simple calculation using Bayes’ theorem shows that multiplying
E® = Eqy - E(3) (which gives a new E-variable by Proposition , satisfies

pW(l) (Y(l)) : pW(l)(-‘Y(l)) (Y(Z)) _ pW(l) (Yl’ e YN(z))

E® =Eq -Ey = ,
RS pPo(Y2y) po(Y1,..., Yv,)

(5.9)
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which is exactly what one would get by Bayesian updating. This illustrates that, for simple H,,
combining E-variables by multiplication can be done consistently with Bayesian updating if
the E-variables are based on Bayes factors with prior on H; given by the posterior based on
past data. To be precise, if, in Propositiongelow, one takes as function g(Y) = W | Y, then

the resulting products E¢) = H?:l E(jy, k=1,2,... precisely correspond to the Bayes factors
based on prior W, after observing data Yi,..., Y.

Optional Continuation: Beyond Bayesian Updating However, it might also be the case that
it is not us who get the additional funding to obtain extra data, but rather some research group
at a different location. If the question is, say, whether a medication works, the null hypothesis
would still be that g = 0 but, if it works, its effectiveness might be slightly different due to
slight differences in population. In that case, the research group might decide to use a different
test statistic EEz) which is again a Bayes factor, but now with an alternative prior W on y (for
example, the original prior W{;y might be re-used rather than replaced by Wy (- | Y(1y). Even
though this would not be standard Bayesian, E ;) - EEZ) would still be a valid e-variable, and
Type-I error guarantees would still be preserved — and the same would hold even if the new
research group would use an entirely different prior on ©;. It is also conceivable that the group
performing the first trial was happy to adopt a Bayesian stance, adopting the normal prior W(,),
whereas the second group was frequentist, adopting a §-GROW &-variable satisfying E,, > 20

if (Y (2)| 2 2.72/\/n, with fi(Y ) the MLE based on the second sample. Still, basing decisions
on the product Ef) - E(, preserves Type-I error probability bounds. And, after the second

batch of data Y(), one might consider obtaining a third sample, or even more samples, each
time using a different W(y), that is always allowed to depend on the past. In the next section
we show how multiplying E-variables against such an arbitrarily long sequence of trials always
preserves Type-I error bounds.

Beyond the Normal Location Family Full compatibility of our approach with Bayesian
updating remains possible for all testing problems with simple H,,. If 7{¢ becomes composite, it
cannot always be ensured: while we may still choose prior W,y on @; to be the Bayes posterior
based on Yy), the corresponding prior on ® to be used in the second batch of data may in
general not be equal to the posterior on @ based on Y ;).

5.2 Optional Continuation

Suppose we have available a collection £ = U5 E,, with €, = {e,,w : W € W}, where for each
nand W € W,, e, w defines a nonnegative test statistic for data Y" = (Y3,...,Y,) of length n:
it is a function from V" to Ry. We are mostly interested in the case that £ really represents a
collection of -variables, so that for all n, W € W, E = e,, w(Y") is an E-variable. For example,
we could take ey, to be the E-variable in the example of Section5.1.3, which depends on the
prior W, each different prior leading to a different valid definition of E = e, w(Y). More
generally though, the e, v may not always have a direct Bayesian interpretation.

We observe a first sample (e.g., data of a first clinical trial), Y;) = YNo = (1,..., YN, ),



128 Chapter 5. Safe Testing

and measure our first test statistic E(;) based on Y. That is, E(1y = En,,w,,, (Y(1)) for some
function En,),w,, € En,,- Then, if either the value of E(;) or, more generally of the underlying
data Y ;) is such that we (or some other research group) would like to continue testing, a second
data sample Y, = (YN(I)H, . YT(Z)) is obtained (e.g. a second clinical trial is done), and a
test statistic E(,) based on data Y(5) is measured. Here 7(,) := N(;) + N(2), where N5 is the
size of the second sample. We may choose E(,) to be any member from the set £, and N, to
be any sample size. As illustrated by the example in Section|5.1.3] the particular choice we make
may itself depend on Y ). This means that N,y and E(,) are determined via two functions
g Unxo V" = Wu{stor} and h : U,»o V" — N where, for any data Y(;), g determines W5,
and h determines N5, so that together they determine the next e-variable to be used. After
observing Y (), depending again on the value of Y(,), a decision is made either to continue
to a third test, or to stop testing for the phenomenon under consideration. In this way we
go on until either we decide to stop or until some maximum number ky,,x tests have been
performed.

The decision whether to stop after k tests or to continue, and if so, what test statistic to use at
the k + 1-st test, is conveniently encoded into g. Thus, g(Y¥)) = sTop means that the k-th test
was the final one to be performed. N (k)» the size of the k-th batch of data, and T(k) = 2521 Njy»
the total sample size after k batches are determined as follows: we set Ny = h(Y* D), where
Y = (Yays ..o Y(ry)s and Yy = (Y7 , Yz, ), where we set 7(g) = 0. With this
notation, Y = Y(®) is an ‘empty sample’ and N, ) = h(Y?) is a data-independent sample size
for the first data batch; for convenience we also set E(gy = L. E(y), the k-th test statistic to be

(k—1)+1’ e

used is similarly determined via W(; = g(Y* D) and then E(k) = €Ny W (Y(k))- With
Y1, Ys, ... arriving sequentially, we can recursively use g to first determine N,y and E;); we can
then use g(Y(") to determine N(2), 7(2) and E(,); we then use g(Y®) to determine Ny, 7(3)
and E ), and so on, until g(Y®)) = sTop.

Before presenting definitions and results, we generalize the setting to allow us to deal with
optional continuation rules that may be restricted (as needed for e.g. the Bayesian ¢-test (Sec-
tion[5.4.3) and with data Y, Y5, .. . that are not i.i.d. according to all Py. For simple i.i.d testing
problems, one may simply set V,, = Y, everywhere for all n below, and skip directly to Defini-
tion[s.1and Proposition 2} ignoring the word ‘conditional’ in all that follows.

For the general case, we fix a sequence of random variables V;, V3, ... such that for each n,
V,, takes values in a set V,,, and there is a function v, such that V,, = v, (Y"). We call each
Vi a coarsening of Y" and, borrowing terminology from measure theory, we call the process
Vi, Va, ... afiltration of Y, Y2, .... We now let £{(V;)) = Up>0.m20 Enpm With £y = {epjm,w }
where e,|,,, w are functions of V"™, parameterized not just by the sample size n of samples
to which they are to be applied but also by the sample size m of the past sample, after which
they are applied. We call such a conditional test statistic E := ey, w(V""™) an E-variable
conditional on V™ relative to filtration (V;) ;e if

forall P e Ho: Ep[E| V"] <1 (5.10)

We change the definition of the function g above by replacing all occurrences of the letter Y
with the corresponding instance of the letter V, and with now Ex) = en [z, wii, (Y(k))-
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Definition 5.1. Let Krop > 0 to be the smallest k for which g (V(k)) = sTOP, and Kgrop = Kmax
if no such k exists. Let £((V;)) be a collection of nonnegative conditional test statistics as
above, defined relative to some filtration (V;) en of (Y;) ;en. We say that the threshold test based
on S is safe under optional continuation (for Type-I error probability, under multiplication) for
continuation rules based on (V;), if for every g as above, with E(M = H?:l E(j, forall Py € H,,
forevery0 < a <1,

P, (E(K”‘“’) > ofl) <a, (5.11)
i.e. the a-Type-I error probability bound is preserved under any optional continuation rule.

Henceforth we simply omit ‘for Type-I error, under multiplication’ from our descriptions. If for
all n, V,, = Y, then we simply write ‘safe under optional continuation’

A threshold test being safe under optional continuation implies that (5.11) even holds for the
most aggressive continuation rule i which continues until the first K is reached such that either
I"[I,f:1 Egry 2 a~t or K = kpax. Thus, safety under optional continuation implies that under all
Py € H,, the probability that there is any k < kpy,x such that E®) > 1/a is bounded by a. We
can now present our optional continuation result in its most basic form:

Proposition 2. Take any (V;),eN as above. If all elements of € are conditional E-variables as in
, then EXswor) is an B-variable, so that by Proposition|1, the threshold test based on E(¥stor)
is safe under optional continuation for all continuation rules based on (V;).

The proposition gives the prime motivation for the use of e-variables and verifies the claim
made in the introduction: the product of e-variables remains an E-variable, even if the decision
to observe additional data and record a new E-variable depends on previous outcomes. As a
consequence, Type-I error guarantees still hold for the combined (multiplied) test outcome. The
definition of safety requires Type-I error probabilities to be preserved under arbitrary functions
g yet a threshold test based on E(sor) can be applied without knowing the “off-sample” details
of the actual function g that was used: we only need to know, for each k, once we are at the
end of the k-th trial, the value of g(Y(¥)). Thus, crucially, we can apply such tests, and have
Type-I error guarantees without knowing any other detail of the functions that have actually
been (implicitly, or unconsciously) used. For example, suppose that we continued to a second
sample Y ,) because the data looked promising, say we observed a p-value based on Yy equal
to 0.02. We may not really know whether we would also have continued to gather a second
sample if we had observed p = 0.04 — but it does not matter, because irrespective of whether
a function g was used that continues if P(Y(;)) € [0.01,0.03] or a function that continues if
P(Y(1y) € [0.005,0.04], or any other g (e.g. based on E(;y instead of a p-value), safety under
optional continuation guarantees that our Type-I error guarantee is preserved — even without
us knowing such details concerning g.

A heuristic proof of Proposition 2| has already been given in the beginning of this paper: the
statement is essentially equivalent to ‘no matter what your role is for stopping and going home,
you cannot expect to win in a real casino. We give an explicit elementary proof in Appendix
There we also generalize Proposition |2)in various ways: we include the conditional case where
each Py defines a conditional distribution for Y” given covariate information X" and we allow
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the sample size of the j-th sample Y(;) to be not fixed in advance but itself determined by some
stopping rule. Finally, we also allow the decision whether or not to perform a new test to depend
on (nonstochastic) side-information such as ‘there is sufficient money to perform an additional
trial with 50 subjects.

5.2.1 E-valuesvs. Test Martingales; Optional Continuation vs. Stopping

The purpose of this section is two-fold: this paper is about ‘safe testing’ — not just under optional
continuation, but also under optional stopping, which we therefore must discuss. Second, the
prime tools for testing under optional stopping are test martingales, and these can be used to
‘generate’ useful E-variables, hence are important for us as well.

Optional Stopping We just formalized the idea of continuing from one trial (batch of data)
to the next, and potentially stopping at the end of each trial. Now we consider the closely related
‘dual’ question: we are sequentially observing data within a single trial, but we want to be able
to stop in the midst of it, without specifying at the beginning of the trial under what conditions
we should stop. For example, we originally planned for a sample size of n but our boss might
have peeked at interim results at n’ < n and concluded that these were so promising (or futile)
that she insists on stopping the experiment, without us having anticipated this in advance. We
cannot formalize this directly with E-values, because these are themselves defined for batches
of data Y = Y” of length # which may in fact come in without any particular order. Even if data
does come in a particular order, the number 7 (or a data-dependent, a priori specified stopping
time N as in Appendix[5.B) has to be specified in advance to make an E-value well-defined, so
it will not always be clear what evidential value we should assign to the data if we want to stop
at n’ < n. To deal with optional stopping, we should thus not work with test statistics but rather
with test processes, each process Sy defining an evidential value for each sample size.

Formally, a nonnegative test process S = (S;);en relative to a filtration (V;)en, is defined as a
sequence of nonnegative random variables Sj, S,, . .. such that each S; = 5;(V") can be written
as a function of V' for some function s;. We define a stopping rule g relative to (V;) to be any
function g : U,so V" — {sTOP, CONTINUE} so that there exists an (arbitrarily large but finite)
fimax Such that g(v") = stop for all # > 1y, all v € V". We let G,;, be the set of all such
functions g.

Definition 5.2. Let (S;);en be a nonnegative test process and let G ¢ G, be a set of stopping
rules. We say that the threshold test based on (S;) is safe under all stopping rules in G if for every
g € G as defined above, all Py € H,, forevery 0 < aw < I:

P, (SNSW > (x_l) <a, (5.12)
where the stopping time Nsyop is the smallest n at which g(v") = sTop.

As is well-known, test martingales lead to Type I error guarantees that are preserved under
optional stopping. Formally, a fest martingale relative to filtration (V;) is a test statistic process
S1,S, ... where each S, := []i; S; for another process Syjo, Syji; Syj2, - . . such that §y; is a
function of V' and satisfies, for all Py € H,, i > 1,

Ep, [Sy]i-1 | viTl<L (5.13)
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We call (Syi—1)ien @ test martingale building block process. In the proposition below, for P ¢
Ho UHy, P[V"] denotes the marginal distribution of V" under P, and we denote its density by
p'(V"). The following results are well-known:

Proposition 3. Take any filtration (V;) as above.

1. Suppose that H, is a simple null for data coarsened to (V;), i.e. for all P, Q € H,, all
n, P[V"] = Q[V"]. Then for every prior W on H,, the Bayes factor p',, [ pi, defines a test
martingale, i.e. (P, (V')/po (V")) ien is a test martingale relative to (V) en.

2. Now, take any test martingale (S;);en relative to filtration (V;)ien. Then forall g € Gy,
SN, IS an E-variable, so that by Proposition 1] the threshold test based on Sy,,, is safe
under optional stopping for all stopping rules that can be defined relative to (V;).

Proof. The first part follows by applying the cancellation trick as in to the conditional
likelihood ratio p', (V; | V1) /po (Vi | V1); the second part is immediate by Doob’s optional
stopping theorem. O

Test Martingales vs. E-Variables  Part 2 of Proposition[3 shows that test martingales lead to
tests that are safe under optional stopping. Just as important for us, it shows that we can use any
given martingale and any stopping rule g to define an E-variable. In recent work, A. Ramdas
and collaborators (Howard et al.,[2018b; Howard et al.,|2018a) have developed a large number of
practically most useful test martingales (some of these can be thought of as Bayes factors, and
some cannot; see Section [7.3]for many more references and history). All these test martingales
can thus be used to ‘generate’ useful E-variables (and in fact Part 2 of Proposition[3 can easily
be extended to also generate E-variables conditional on V™ for any desired m).

Conversely, we may ask ourselves whether E-variables can also be used to define test martingales
(and hence to allow for tests that are safe under optional stopping). The answer is subtle, as we
now illustrate. For simplicity, we only consider unconditional E-variables to be used with data
that are i.i.d. under all P € H,. In the sections to come, we provide constructions of E-variables
for many H,; all of these can be applied to data of arbitrary fixed sample sizes #n. For any given
Ho, they thus ‘automatically’ provide a test statistic process (E;);en with E; = e; (V).

1. A first idea is, for any given H, and corresponding e-variables (e;( V")), to define the
process (S;)ien where Syj;_; = e;(V;), using only the ‘first’ E-variable. From (5.13) we
immediately see that (Syj;_1) ien is now a martingale building block process and (S;) with
S; =TT, e1(V;) is a test martingale. Since in this way, we can convert all £-variables into
martingales, allowing us to do optional stopping, it may seem we have made the concept
of E-variable superfluous. But this is not the case: for many of the #, we consider below,
this method leads to the useless test martingale with S; = §,;_; = 1, for all #, independent
of the data. For example, this is the case for the 2 x 2-contingency tables (Section|5.4.4),
for multivariate exponential families (Section 5.4.5) and for the nonparametric test of
Example[5.3]— so that the above construction would lead to useless martingales that
almost surely remain 1 forever.

2. In some cases, the test statistic process (E;);en does turn out to give a test martingale.
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Examples are GROW E-variables for the case that 7 is simple (as in the one-parameter
exponential family case, Section|s5.4.1), or for the case that the GROW E-variable for H,
can be written as a function of (V;) such that #, is simple when data are coarsened to
(Vi) (as in the Bayesian ¢-test, Section|s5.4.3). This can be used to modify, if so desired,
E; to another E-variable Ey,, , based on some stopping rule g; see Section 5.5.2 where
this idea is used to improve statistical power of E;.

3. Yet in other cases, H, is composite, and there is no natural coarsening/filtration (V;)
under which it becomes simple. Then, at least in general, the process (e;( V")) is not a test
martingale. Counterexamples again include the E-values for the 2 x 2-contingency tables,
multivariate exponential families and for the nonparametric test of Example|s.3. We do
not see an easy way to obtain test martingales, and hence tests that are safe under ‘full’
optional stopping, for these settings. Still, sometimes tests based on the non-martingale
process (E;) en do allow for optional stopping under some non-trivial subset G c G, ;.
For example, it is easy to show that the E-values for multivariate exponential families that
we consider in Sectionlwlsatisfy Ep, [e(YNswor) | xNswor] < 1for all Py € Hy as long as,
for each n, the stopping rule g(Y") can be written as a fixed function of the sufficient
statistic 0, (Y"™) for Ho; the tests based on these e-values are thus safe under optional
stopping relative to (V;);en := (Y;);en under all such g.

5.3 Main Result

From here onward we let W(®) be the set of all probability distributions (i.e., ‘proper priors’)
on O, for any ® c ®, U ;. Notably, this includes, for each 0 € ©, the degenerate distribution
W which puts all mass on 6.

5.3.1 What is a good e-Value? The GROW Criterion

The (semi-) Bayesian approach to finding E-variables has already been treated in some detail
in Section|s.1.2. Thus, we focus on a frequentist perspective here, getting back to the Bayesian
approach later. We start with an example that tells us how not to design E-variables.

Example 5.1. [Strict Neyman-Pearson E-Values: valid but useless] In strict Neyman-Pearson
testing (Berger, |2003), one rejects the null hypothesis if the p-value P satisfies P < « for the a
priori chosen significance level «, but then one only reports “reject” rather than the p-value itself.
This can be seen as a safe test based on a special E-variable Ey,: when P is a p-value determined
by data Y, we define Ey, = 0 if P > a and Ey, = 1/« otherwise. For any P, € H, we then have
Ey.p,[Exe] = Po(P < a)a™ <1, so that Ey, is an E-variable, and the ‘safe’ test that rejects if
Exp > 1/a obviously is identical to the test that rejects if P < «. However, with this E-variable,
there is a positive probability « of losing all one’s capital. The e-variable Ey, leading to the
Neyman-Pearson test, i.e. the maximum power test, now thus corresponds to an irresponsible
gamble that has a positive probability of losing all one’s power for future experiments. This also
illustrates that the E-variable property is a minimal requirement for being useful under
optional continuation; in practice, one also wants guarantees that one cannot completely lose
one’s capital.
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In the Neyman-Pearson paradigm, one measures the quality of a test at a given significance level
a by its power in the worst-case over all Py, 6 € 0. If @ is nested in @y, one first restricts ©;
to a subset @] c ©; with @y N @] = @ of ‘relevant’ or ‘sufficiently different from ®,” hypotheses.
For example, one takes the largest @] for which at the given sample size a specific power can
be obtained. We develop analogous versions of this idea below; for now let us assume that we
have identified such a @] that is separated from @,. The standard NP test would now pick, for
a given level «, the test which maximizes power over ®]. The example above shows that this
corresponds to an E-variable with disastrous behavior under optional continuation. However,
we now show how to develop a notion of ‘good” E-variable analogous to Neyman-Pearson
optimality by replacing ‘power’ (probability of correct decision under ®/) with expected capital
growth rate under ©7, which then can be linked to Bayesian approaches as well.

Taking, like NP, a worst-case approach, we aim for an E-variable with large Ey..p,[ f(E)] under
any 0 € ©]. Here f : R* — R is some increasing function. At first sight it may seem best to pick
f the identity, but this can lead to adoption of an E-variable such that Py(E = 0) > 0 for some
0 € @1; we have seen in the example above that that is a very bad idea. A similar objection applies
to any polynomial f, but it does not apply to the logarithm, which is the single natural choice for
f: by the law of large numbers, a sequence of E-variables Ej, Es, ... based oniid. Y;), Y(3), ...
with, for all j, Ey  .p[log E;] > L, will a.s. satisfy E(m) = 1L, Ej = exp(mL + o(m)), ie. E
will grow exponentially, and L(log, e) lower bounds the doubling rate (Cover and Thomas,
1991)). Such exponential growth rates can only be given for the logarithm, which is a second
reason for choosing it. A third reason is that it automatically gives -variables an interpretation
within the MDL framework (Section[5.7.2); a fourth is that such growth-rate optimal E can be
linked to power calculations after all, with an especially strong link in the one-dimensional
case (Section[5.4.1), and a fifth reason is that some existing Bayesian procedures can also be
reinterpreted in terms of growth rate.

We thus seek to find e-variables E* that achieve, for some @] c @; \ Q:

inf By.p,[logE"] = sup inf Ey.p,[logE] =: GrR(®)), (5.14)
96@1 EEE(@O) 96@1

where £(@y) is the set of all E-variables that can be defined on Y for ®. We call this special
E*, if it exists and is essentially unique, the GROW (Growth-Rate-Optimal-in-Worst-case) E-
variable relative to ®1, and denote it by E,, (see AppendixIEfor the meaning of ‘essentially
unique’).

If we feel Bayesian about #;, we may be willing to adopt a prior W on @, and instead of
restricting to ®], we may instead want to consider the growth rate under the prior W;. More
generally, as robust Bayesians or imprecise probabilists (Berger, 1985; Griinwald and Dawid,
2004; Walley, 1991) we may consider a whole ‘credal set’ of priors W/ ¢ W(®;) and again
consider what happens in the worst-case over this set. We are then interested in the GROW
E-variable E* that achieves

inf Ey.p,[logE*] = inf Ey.p, [logE]. :
o, By~ [log E7] pap B v~ry [log E] (5.15)
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Again, if an E-variable achieving (5.15) exists and is essentially unique, then we denote it by E;, ,.
1
If W = { W1} is a single prior, we denote the E-variable by Ej, . (5.15) then reduces to

Ey.p, [logEy, ] = sup Ey.p, [logE],
Ee€(0y)

and Theorem 5.4, Part 2 below implies that, under regularity conditions, in this case Ej,; =
pw,(Y)/pwe (Y) for some prior W° on @: the GROW E*-variable relative to Py, is always a
Bayes factor with Py, in the denominator.

If W] = W({0,}) is a single prior that puts all mass on a s1ngleton 61, then we write EW, asEg .
Llnearlty of expectatlon further implies that (5.15) and (5.14) coincide if W/ = W(©7); thus
generalizes (5.14).

All e-variables in the examples below, except for the ‘quick and dirty’ ones of Section|s.4.5} are
of this ‘maximin’ form. They will be defined relative to sets W, with in one case (Section|s.4.3)
W' representing a set of prior distributions on ©;, and in other cases (Section @
W] = W(0)) for a ‘default’ choice of a subset of ;.

5.3.2 The JIPr is GROW

We now present our main result, illustrated in Figure[s.1, We use D(P| Q) to denote the relative
entropy or Kullback-Leibler (KL) Divergence between distributions P and Q (Cover and Thomas,
1991). We call an E-variable trivial if it is always < 1, irrespective of the data, i.e. no evidence
against H, can be obtained. The first part of the theorem below implies that nontrivial E-
variables essentially always exist as long as ®y # ©;. The second part — really implied by the
third but stated separately for convenience — characterizes when such E-variables take the
form of a likelihood ratio/Bayes factor. The third says that GROW E-variables for a whole set of
distributions ®] can be found by a joint KL minimization problem.

Part 3 of the theorem refers to a coarsening of Y. This is any random variable V that can be

written as a function of Y, i.e. V = f(Y) for some function f; in particular, the result holds

with f the identity and V = Y. For general coarsenings V, the distributions Py for Y induce

marginal distributions for V, which we denote by ng].

Theorem 5.4. 1. Let Wy € W(Oy) such that infy, ey e,) D(Pw, |Pw,) < co and such that
for all § € @y, Py is absolutely continuous relative to Py;,. Then the GROW E-variable Ej,
exists, is essentially unique, and satisfies

Ey.p, [logE}, 1= sup Ey.p,[logE]= inf D(Py,|P
v~py, [log Ejy, ] Eeg(go) Y~py, [log E] ot oy (Pw, [ Pw,)

2. Let W, be as above and suppose further that the inf/min is achieved by some Wy, i.e.
infw,ew(e,) D(Pw, [Pw,) = D(Pw | Pwg ). Then the minimum is achieved uniquely by
this Wy and the GROW E-variable takes a simple form: Ej, = pw, (Y)/pwe(Y).

3. Nowlet ©] c ©, and let W/ be a subset of W(®?7) such that for some coarsening V of Y (we
may have Y = V) the following holds: for all 6 € @, all W e W], ng] is absolutely con-
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tinuous relative to P‘[AX 1 and the set {P‘[,\Z Tiw e W)} is convex (this holds automatically
if WY is convex). Suppose that
; ; - mi ; V1 plVly _ V1) plV]
wf?va; yinf D(Pw; |Pw,) = Jnin, jnin D(Py;*[[Py,") = D(Py, [Py.)) < o0, (516)
the minimum being achieved by some (Wy", Wy') such that D(Py;, |Pyy) < oo for all

Wi € WY. If the minimum is achieved uniquely by (W;*, Wy"), then the GROW E-variable
E;,,, relative to WY exists, is essentially unique, and is given by

. Py (V) o)
T v’ 5.17
o P (V)
where p', is the density on V corresponding to Pl[,\y 1. Also, E;V{ satisfies
V\}?W’ y~py [log w;] sup inf | y~py [log E] ( W | Wo*)' (5.18)

EeE(®9) WeWi
IfW[ = W(©y1), then by linearity of expectation we further have Ej), = Eg,.

The requirements that, for 0 € @, the Py are absolutely continuous relative to the Py, and,
in Part 3, that D(Py; |Pw;) < oo for all W; € W/ are quite mild — in any case they hold in
all specific examples considered below, specifically if @, c @, represent general multivariate
exponential families, see Section|5.4.5.

Since the KL divergence is strictly convex in both arguments if the other argument is held fixed,
and non-strictly jointly convex, we have that if (5.16) holds, then for each (W{, Wy) achieving
the minimum, either W = W*, Wy = Wy or both W, # W and Wy # W;'. In the latter case,
all mixtures (1 - a)(W/, Wy) + a(W;, Wy) also achieve the minimum.

Following Li, {1999, we call Py as in Part 2 of the theorem, the Reverse Information Projection
(RIPr) of Py, on {Pyw : W € W(®y)}. Extending this terminology we call (Pyx, Py ) the
joint information projection (JIPr) of {Py : W € W/} and {Py : W € W(®,)} onto each
other.

The requirement for the full JIPr characterization (5.18), that the minima are both achieved is
strong in general, but it holds in the examples of Section (1-dimensional) and[ﬂ 2x2
tables) with V = Y. By allowing V to be a coarsening of Y, we make the condition considerably
weaker: it then also holds in the ¢-test example of Section[5.4.3 — that example will also illustrate
that {P‘[AZ liw e W/} may be convex even if W/ is not, and that in cases where the minimum
in over Py, on Y does not exist, still its infimum over Py, on Y may be equal to the
minimum over Py, defined on V, which does exist.

Proof Sketch of Parts 2and 3 We give short proofs of parts 2 and 3 under the (weak) addi-
tional condition that we can exchange expectation and differentiation and the (strong) con-
dition that V is taken equal to Y. To prove parts 2 and 3 without these conditions, we need a
nonstandard minimax theorem; and to prove part 1 (which does not rely on minima being
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achieved) we need a deep result from Barron and Li (Li, [1999); these extended proofs are in
Appendix[s.C}

For Part 2, consider any W € W(©,) with Wy # Wy, with W{ as in the theorem statement.
Straightforward differentiation shows that the derivative (d/da) D(Pw, | Pa-a)we+aw;) ata = 0
is given by f(a) = 1~ Ey.p,, [pw,(Y)/pwe(Y)]. Since (1 - a) Wy + aWy € W(®,) for all
0 < a < 1, the fact that Wy achieves the minimum over W(®,) implies that f(0) > 0,
but this implies that EYNPW(g [pw,(Y)/pws(Y)] < 1. Since this reasoning holds for all Wy €
W(®y), we get that pw, (Y)/pwe (Y) is an E-variable. To see that it is GROW, note that, for
every E-variable E = e(Y) relative to £(®y), we must have, with q(y) = e(y)pwe (), that
J q(y)dy = Ey.p,.[E] <1, s0 q is a sub-probability density, and by the information inequality
0
of information theory (Cover and Thomas, 1991), we have

Ep,, [logE] = Ep,, [log 9(Y) ] <Ep, [log pw (Y)

=Ep, (logE}, |,
pwe(Y) ng’(Y)] m, log Biv]

implying that E7, is GROW.

For Part 3, consider any W/ € W, with W/ # W*, W}*, Wy as in the theorem statement.
Straightforward differentiation and reasoning analogously to Part 2 above shows that the
derivative (d/da)D(P(_ayws+aw:|Pwy) at & = 0 is nonnegative iff there is no a > 0 such
that Ep _ B [log pw: (Y)/pw* (Y)] < EpM . [log pw>(Y)/pwy (Y)]. Since this holds for all

W/ e Wl', and since D(Pwx|Pwy) = infweny D(Pw|Pyy), it follows that
infywewy Ep,, [log Eyy, ] = D(Py || PW* ), whichis already part of (5.18). ). Note that we also have
1

inf Ey.p, [log EZy] < f Ey.p,[logE
Jinf, v~py [log Ejyr] < EQZ‘ZEU)&?W v~py [log E]

< inf  sup Ey.p,[logE]
WEWI E€8(®0) "

= inf sup  Ey.p, [logE]
WeW[ Eee(W(0y)) "

IN

inf sup Ey.p,[logE]
WeW! pee({wy}) "

IN

sup Eyp [log E].
EeE({W,})

where the first two and final inequalities are trivial, the third one follows from definition of
E-variable and linearity of expectation, and the fourth one follows because, as is immediate
from the definition of E-variable, for any set W, of priors on @, the set of E-variables relative
to any set VW' ¢ W, must be a superset of the set of E-variables relative to W.

It thus suffices if we can show that supp g ((y:y) Exv~p,. [logE] < D(Pyy|Pyw; ). For this,
1

consider e-variables E = e(Y) € E({ W }) defined relative to the singleton hypothesis { W }.
Since Ey.p, . [e(Y)] <1we can write e(Y) = q(Y)/pwy (Y) for some sub-probability density
0
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g, and

Y
sup  Ep ,[logE]=supEy.p , [log q(] (5.19)
Ee€({Pys}) q ' Pwy

0

= D(Pw; | Pwy),

where the supremum is over all sub-probability densities on Y and the final equality is the
information (in)equality again (Cover and Thomas, 1991). The result follows.

5.3.3 0-GROW and simple §-GROW E-Values

To apply Theorem|s.4]to design E-variables with good frequentist properties in the case that
©¢ ¢ O, we must choose a subset @] with ®] N @, = @. Usually, we first carve up @ into nested
subsets ®@(¢). A convenient manner to do this is to pick a divergence measure d : @, x @y — R§
with d(6,6) = 0 < 6, = 09, and, defining d(6) = infg o, d(0, 0) (examples below) so
that

O(e) ={0€®,:d(0) > ¢}. (5.20)
In the examples below we are interested in GROW &-variables Eg, ) for a given measure d for
some particular value of ¢. This is in full analogy to classical frequentist testing, where we look

for tests with worst-case optimal power with alternatives restricted to sets ©(¢); we merely
replace ‘power’ by ‘growth rate’

In some cases such E-variables Eg, ) take on a particularly simple form, as Bayes factors with
all mass in ®; concentrated on the boundary BD(®(¢)) = {0 € ©, : d(0) = ¢}.

To develop these ideas further, for simplicity we restrict attention to the common case with
just a single scalar parameter of interest § € A C R so that 1y, H; can be parameterized as
@ ={(8,y):8eA,yeT}and ®) = {(0,y) : y € T}, with T representing all distributions in
Ho. We can then simply take d((8,y)) = |0] so that ©®(8) = {(J,y) : § € A,|8] > 8,y € T'}. Then
the e-variable E(‘;( %) with § > 0 will be referred to as the §-GROW E-variable for short.

Further defining Ej = Ef 4 ). 526,yery> We Call Eg 5y simple if

E(t)(é) = EE (5.21)

In all examples below, the §-GROW E is also simple, making it particularly easy to deal
with.

To illustrate, consider first the one-sided case with A ¢ R{. Then, applying Theorem |5.4}
Part 3 with ® = {(J,y) : y € I'} and assuming the KL-infimum is achieved, we must have
E5 = ps,wr[y1(Y)/po,wyr](Y) for some priors W*[y], Wy [y] on y. We see that holds
iff

inf Ey.p [logE] = inf Ey.p E[logE: .
pee(fo)) 00() r[logE] = inf Ev-p,EllogE;) (5.22)

= D(Ps, w511 Po,wyy))- (5.23)
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In Appendix[5.D} Proposition [g] we provide some sufficient conditions for (5.22) to hold.

Now consider the two-sided case with scalar parameter space A" an interval containing 0 in its in-
terior. Since, by linearity of expectation, mixtures of E-variables are obviously e-variables,

o _1ow 1.,
Eé = EEQ + EE_Q (5.24)
is a simple E-variable. While E§ will be seen to be §-GROW in the two-sided Gaussian location
and t-test setting, in general, we have no guarantee that it is $-GROW. Still, in Appendix[5.D]
we show that if its constituents are one-sided GROW, i.e. holds for the 1-sided case with A
set to A" and with A set to —A~, then the worst-case growth rate achieved by Ej is guaranteed
to be close (within log 2) of the two-sided §-based GROW E-variable Eg ) In such cases we
may think of E§ as a simple §-almost-GROW E-variable. E{ may be much easier to compute
than the actual two-sided GROW E-variable Eg(s)- -

5.4 Examples

5.4.1 Point null vs. one-parameter exponential family

Let {Pg | 6 € @} with O c R represent a 1-parameter exponential family for sample space ),
given in its mean-value parameterization, such that 0 € ®, and take ®, to be some interval
(t',t) for some —o0 < t' < 0 < t < oo, such that t',0 and t are contained in the interior of
0. Let ®g = {0}. Both Ho = {Py} and H; = {Py : 6 € ©;} are extended to outcomes in
Y=(Y,...,Y,) by theiid. assumption. For notational simplicity we set

D(0]0) = D(Po(Y)[Po(Y)) = nD(Py(Y1)[ Po (1)) (5.25)

We consider the §-GROW E-variables Eg)( 5) relative to sets ®(4) as in (5.20). Since H, is
simple, we can simply take 6 to be the parameter of interest, hence A = ®; and I’ plays no role,
sothat ®(8) = {0 €@, :|0| > &}.

One-Sided Test: simple GROW g-Variable Here wesett’ =0sothat ®(8) ={60€c©;:0 >
8}. We show in Appendix[5.D|that this is a case in which (5.21) holds: the -GROW E-variable
is simple, and can be calculated as a likelihood ratio Eg ) = ps (Y)/po(Y) between two point

hypotheses, even though @(§) is composite.

GROW E-Variables and UMP Bayes tests We now show that, for this 1-sided testing case, for
a specific value of §, Eg ;) coincides with the uniformly most powerful Bayes tests of Johnson,
2013} giving further motivation for their use and an indication of how to choose & if no a priori
knowledge is available. Note first that, since ®, = {0} is a singleton, by Theorem|s.4} Part 2, we
have that E, = pw(Y)/po(Y), i.e. for all W € W(®; ), the GROW E-variable relative to { W}
is given by the Bayes factor py /po. The following result is a direct consequence of Johnson,
2013b, Lemma 1.
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Theorem 5.5 (Uniformly Most Powerful Bayes Test (Johnson, |2013b)). Consider the setting
above. Fix any 0 < « < 1 and assume that there is § € ©, with D(8]|0) = —loga. Then among
the class of all threshold-based tests based on local Bayes factors, i.e. all tests of the form “reject
iff pw(Y)/po(Y) 2 1/a” for some W € W(®,), the Type-II error is uniformly minimized over
0, by setting W to a degenerate distribution putting all mass on §:

(e ) 1) (ps(Y) 1
forall 0 € ©: Werw?&)P@(po(Y) > oc) =Py (PO(Y) > Mk

and with the test that rejects iff ps(Y)/po(Y) > 1/a, Ho will be rejected iff the ML estimator 0
satisfies 0 > 8.

Theorem|s.5 shows that, in the context of 1-sided testing with 1-parameter exponential families,
if a GROW Ee-variable is to be used in a safe test with given significance level & and one is
further interested in maximizing power among all GROW E-variables (i.e. with respect to any
set W, of priors on @), then one should use the simple E-variable E5 with D(Ps(Y;)|Po(Y1)) =

(~log a)/n since this will lead to the uniformly most powerful GROW test.

Example 5.2. [Normal Location, 1- and 2-sided] Consider the normal location setting of
SectionMwith ¢ = {0} as before, and y € ©,, the mean, the parameter of interest. First take
®; = R*, i.e. a one-sided test. Then Eguy = Pu (Y)/po(Y) and has Gr(®(u)) = D(u]0) =
(n/2)] 4?|. We now see that the uniformly most powerful §-GROW E-variable at sample size n
is given by the i, with D(fi,,|0) = —log «, so that @, = \/2(-log &) /n. Thus (unsurprisingly),
this GROW E-variable is a likelihood ratio test between 0 and i, at distance to 0 of order 1/1/7,
and we expect to gain (at least) —log « in capital growth if data are sampled from y > fi,,.

In the two-sided case, with ®; = R, we can pick the almost--GROW simple E-value (5.24), i.e.
E; = ((1/2)pu(Y) + (1/2)p-u(Y)) /po(Y). Using the distributions’ symmetry around 0, we
can show (Appendix that in this case, Ej, = E, i.e. E}, is in fact GROW for ®(p) = {P, :
|ul > u}. Even though in this 2-sided case we have no proof that it results in a uniformly most
powerful -GROW E-variable, we can still, when aiming for a high-power test, take our cue
from the 1-sided cases and pick E3 for the i, such that GR(@(,)) = —log . This leads to

the test we described in Section with threshold \/c,, /n — 2.72/\/n.

5.4.2 Nonparametric E-Variables

Some of the most well-known classical nonparametric tests are based on identifying a statistic
U = f(Y) that has the same distribution Py[U] under all 8 € @,. This U is then the test
statistic on which a p-value is based. At the same time, it is common to report an (empirical)
effect size 5(U) for such a test, giving an indication of the found deviation from the null; the
precise definition of & varies from case to case. For any distribution P for Y and any given
definition of 8 we will write §(P) = Ey..p[8(U)] for the population effect size. For simplicity
we restrict ourselves to cases in which 8 is a monotonically increasing function of U and
0(Py) = 0. Assuming we have chosen a test statistic U and a definition for 3, we can extend

the previous definitions to -GROW E-variables based on U or equivalently, 3. The idea is
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that H, and #,; are so large that a GROW (or uniformly-most-powerful) E-variable among
all e-variables for H and H; does not exist or is too hard to find; instead we make life easier
by searching for the e-variable that is GROW among all E-variables that can be written as a
function of U, which is a strict subset of those that can be written as a function of ). This is
easier since U has the same distribution Py[U] under all P € H,. To this end, assume Py[U]
has density p, against some background measure y. We define P as the distribution with
density p; (1) oc exp(A8(u))po(u). Let A be the set of A for which Py is well-defined, i.e. for
which [ po(u) exp(A8(u)) du(u) < co. Then P := {P) : 1 € A} is an exponential family given
in its natural parameterization, and by a standard property of exponential families, Ep, [3(U)]
is monotonically increasing in A. Rephrasing in the mean-value parameterization we can thus
write P[s) := Py, where A; is the A such that Ep, [6(U)] = 6.

Consider a one-sided test with H; representing §(P) > 0. Since we have reduced the problem to
the 1-sided 1-dimensional exponential family case of Section|5.4.1} we can once again conclude
. That is, for § > 0 such that P;4[U] is well-defined, we have that E* = pr51(U)/p[1(U) is
a simple E-variable that is GROW relative to the set { P € H,; : §(P) > &}, for data coarsened to U.
We can then define a simple two-sided E-variable analogously to Example[s.2] Also, Theorem[s.5
for 1-dimensional exponential families above tells us that, for § chosen so that

D (P(g1[U]|P) [U]) = - loga, (5.26)

the uniformly-most-powerful GROW safe test is the test that rejects iff E* > 1/a, under the
assumption that U ~ Py for § # 0. While by construction we can assume that U ~ P, under the
null, we cannot assume that U ~ Pg for some § under the alternative; our constructed model
may be misspecified. Whether E* still has a UMP property is thus an interesting question for
future research.

Examples.3. Inthe Mann-Whitney U test, we are given n = n,+n; outcomes, with n, outcomes
in group a and n;, in group b. This can be represented as n pairs (X;, Y;) with X; € {a, b},
Y; € R, X; indicating the group of the ith outcome, and n; = Y., 1x,-j, for j € {a, b}. Under
*H;, all outcomes in group a are i.i.d., all outcomes in group b are i.i.d., but the two distributions
are not the same; under H,, all outcomes are i.i.d. with the same distribution.

The Mann-Whitney U test is based on the Mann-Whitney U statistic (see any text book for
a definition). For every fixed n, and n;, under all P € #,, i.e all distributions such that
Y =(Y,..., Yy, 4n,) isiid. with ¥; 1 X;, U has the same discrete distribution Pyo;[U] with
mass function ppej(u) with some finite support . U is normally used to calculate a p-value.
Instead, we use it to calculate an e-value in the manner indicated above: a standard effect size
for the Mann-Whitney test is U/(n,1; ). Instead for convenience we take § = U/(n,n;) —1/2,

—_

so that Ep,[§] = 0. Define

Po (u) X e/\??\(u)

Swe po(w) e )

Since U has a finite range, p, is well-defined for A € R and it is the probability mass function
of the Py defined earlier. Then P5(U) = Py (U) for the A with Ep, [U] = J, and the GROW
E-variables relative to {P € H; : §(P) > 8} are simple: they are likelihood ratios for coarsened
data U of the form p5)(U)/pre1(U).

pa(u) =
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5.4.3 The Bayesian t-test and the simple §-GROW ¢-test

Jeffreys, 1961 proposed a Bayesian version of the t-test; see also (Rouder et al., 2009). We
start with the models Hy and H; for data Y = (V,...,Y,) given as Ho = {Po,,(Y) | 0 € T'};
Hy ={Ps,,(Y) | (6,0) € ©1}, where A=R,T =R*,®,:=AxTand ®; = {(0,0) : 0 € T},

and P;s , has density
= 2 15 =2
exp (—g [(% - 8) + (W)])

po.o(y) = (2mo?)nl2 >

withy = 2 3%, y;.

Jeffreys proposed to equip #,; with a Cauchy prior W°[J] on the effect size §, and both H,
and H, with the scale-invariant prior measure with density w’(¢) o< 1/0 on the variance.
Below we first show that, even though this prior is improper (whereas the priors appearing in
Theorem [5.4 are invariably proper), the resulting Bayes factor is an E-variable. We then show
that, for priors W[ 8] with more than 2 moments, it is in fact even the GROW Ee-variable relative
to all distributions in #, compatible with W[§]. Thus, GROW optimality holds for most priors
W8] one might want to use, including standard choices (such as a standard normal) and
nonstandard choices (such as the two-point prior we will suggest further below) but ironically
not to the moment-less Cauchy proposed by Jeffreys.

Almost Bayesian Case: prior on § available For any proper prior distribution W[4] on §
and any proper prior distribution W[¢] on o, we define

s () = [ [ poa(nawislawlo)

as the Bayes marginal density under the product prior W[§] x W{[c]. In case that W[o] puts
all its mass on a single o, this reduces to:

pwisne() = [ poa(y)awal (527

For convenience later on we set the sample space to be V" = (R~ {0}) x R""!, assuming
beforehand that the first outcome will not be 0 — an outcome that has measure o under all
distributions in H, and H; anyway. Now we define V := (V;,...,V,) with V; = Y;/|Y;|. We
have that Y determines V, and (V, ;) determines Y = (Y, Y,..., Y,). The distributions in
Ho U H, can thus alternatively be thought of as distributions on the pair (V, ¥;). V is “Y with
the scale divided out™ it is well-known (and easy to check, see Appendix[5.E) that under all
P e Hy, i.e. all Py, with 0 > 0, V has the same distribution P,[ V] with density pg. Similarly,
one shows that under all Py (4], with 0 > 0, V has the same pdf P/w[ 5] (which therefore does
not depend on the prior on ¢). We now get that, for all ¢ > 0,

~ Pwia)(V)

Efy(V) = 2 (V) (5.28)
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satisfies Ey.p [E*W[ 5] (V)] =1for all P € H,, hence it is an E-variable. Here we introduced the
notation Ej, (V) for E-variables that are GROW relative to W for data ‘at level’ V, i.e among
all E-variables that can be written as functions of V (see Appendix|s.A|for further explanation).
Remarkably, this ‘scale-free’ E-variable coincides with the Bayes factor one gets if one uses, for
o, the prior w (o) = 1/0 suggested by Jeffreys, and treats ¢ and 8 as independent. That is, as
shown in Appendix|[s.E} we have

Jo Pue W (@) d0 Pru(V)
[, po.c(Y)wH(a)do — pi(V) = Eiys)(V)- (5.29)

Despite its improperness, w'’ induces a valid e-variable when used in the Bayes factor. The
equivalence of this Bayes factor to E ;v[ 5]<V) simply means that it manages to ignore the
‘nuisance’ part of the model and models the likelihood of the scale-free V instead. The reason
this is possible is that w!’ coincides with the right-Haar prior for this problem (Eaton, 1989;
Berger, Pericchi and Varshavsky,|1998), about which we will say more below. Amazingly, it turns
out that the e-variable is GROW (among all -variables for data Y, not just the coarsened
V!) under the weak condition that the prior W[§] has a (2 + ¢)th moment. This follows from
Part 1 of our second main result, Theorem[5.6 below. Its proof is by no means straightforward (at

least, we did not find a simple proof). Let, for priors W[8], W[o], P‘[/y[]a],w[a] be the marginal

distribution on V, i.e. the distribution with density p’W[ 8. Wlo]"

Theorem 5.6. Let W[8] be a distribution on & such that for some & > 0, Es_ys][|0**] < o0

for some & > 0 (in particular this includes all degenerate priors with mass 1 on a single ). Let
WIT] be the set of all distributions W[ o on the variance 0. We have:

inf D(P o1lPowiol) = inf  D(P 1l 2o wio
S L (Pwte), w01 [ Po,wio)) i) (Pwre),w(o][Po,wio])
= D(Pg\y[]é] HP(gV]). (5.30)

More generally, fix a convex set of distributions VWW[8] on & such that, for some ¢ > 0, each
W[8] € W] satisfies Es.w(5)[|0]*7°] < oco. Let WY be a set of probability distributions on
0 x g such that, for each W[8] € W[8] and each distribution W[o] € W(T') on 6, W’ contains
a distribution whose marginal on 8 coincides with W8] and whose marginal on o coincides
with W[o]. We then have:

inf inf D(Py | P, = inf inf D(P P,

m}gw{ W[UI]IEIW[F] (Pw|[Po,wio)) w[sl]relw[a] W[UI]IEIW[I‘] (Pwioy.wio1 [ Po,wio))
. V] 1 5[V]
_w[al]relagv[z?]D(PW[“] 17670 63

Part 1 of this theorem allows us to use Part 3 of Theoremto conclude that E ;v[ 5] (V) =Ej:
the Bayes factor based on the right Haar prior, is not just an E-variable, but even the GROW
E-variable relative to the set of all priors on § x ¢ that are compatible with W[4§].
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Simple GROW safe ¢-test: prior on J not available What if we have no clear idea on how
to choose a marginal prior on 07 In that case, we can once again use the §~-GROW E-variable
for §. First, consider 1-sided tests. In Appendix[s.D|we show that holds in this case, i.e.
minwew(e(s)) D(PI[/} J HP(EY]) is achieved for the degenerate prior that puts mass 1 on g, i.e.
the §-GROW E-variable is simple. We can then use Theorem|5.6|above to infer that the Bayes
factor based on the right Haar prior w" on ¢ and this point prior on §, i.e. E} = ps(V)/pt(V)
is equal to the GROW Ee-variable relative to ®(§). Mutatis mutandis, the same holds for the
2-sided test: as shown in Appendix[s.D| with the GROW set ®(8) = {8 : [8| > 8} we get that
the -GROW Ee-variable is simple, and given by the Bayes factor with, for #;, the prior on §
that puts mass 1/2 on § and 1/2 on —§.

Optional Stopping For any prior W.[6]’ Ejy(4) defines a test statistic process ( Elis (V))ien
with Exyy57( V') = P,w[a] (V')/po(V?"). Notably, tests based on this process are safe for optional
stopping under Definition[5.2} by Proposition[3} this process defines a test martingale and hence,
by the same proposition, the threshold test based on (E W(o) (V")) ien preserves Type I error
guarantees also under optional stopping. As indicated by (Hendriksen, De Heide and Griinwald,
2020), this test does not necessarily preserve Type-I error guarantees under optional stopping
with stopping rules that can only be written as function of Y3, Y3, ... and not of V;, V5, .. .. But,
since Ej, 4 (V') is a function of the V;, it does allow for the prototypical instance of optional

stopping, where we stop at the smallest  at which Ey (V') > 20 = 1/a. The insight that Efy s

provides a test martingale is not new: as we learned from A. Ramdas, it was already considered
by Robbins, 1970!

Extension to General Group Invariant Bayes Factors In a series of papers (Berger, Pericchi
and Varshavsky, 1998; Dass and Berger, 2003; Bayarri et al.,[2012), Berger and collaborators
developed a theory of Bayes factors for Ho = {Po,, : y € T} and H; = {Ps , : 6 € A,y € '} witha
nuisance parameter (vector) y that appears in both models and that satisfies a group invariance;
the Bayesian ¢-test is the special case with y = ¢, = R* and with the scalar multiplication
group and § an ‘effect size’ Other examples include regression based on mixtures of g-priors
(Liang et al.,|2008) and the many examples given by e.g. Berger, Pericchi and Varshavsky, 1998;
Dass and Berger, 2003, such as testing a Weibull vs. the log-normal or an exponential vs. the
log-normal. The reasoning of the first part of this section straightforwardly generalizes to all
such cases: under some conditions on the prior on 6, the Bayes factor based on using the right
Haar measure on y in both models gives rise to an E-variable. We furthermore conjecture that in
all such testing problems, the resulting Bayes factor is even GROW relative to a suitably defined
set WW;; i.e. that a suitable analogue of Theoremholds. The proof of this theorem seems
extendable to the general group invariant setting, with the possible exception of Lemma|i2]in
Appendix|[5.E which uses particular properties of the variance of a normal; generalizing this
lemma (which also requires us to handle models with a nonunique right Haar prior (Sun and
Berger, 2007), for which it is not immediately clear how a generalization would look like) is a
major goal for future work.
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5.4.4 Contingency Tables

Let " = {0,1}" and let X = {a, b} represent two categories. We start with a multinomial
model G; on Z = X x ), extended to n outcomes by independence. We want to test whether
the Y; are dependent on the X;. To this end, we condition every distribution in G, on a fixed,
given, X = x = (x1,...,%,), and we let H; be the set of (conditional) distributions on Z that
thus result.

We thus assume the design of X" to be set in advance, but Nj, the number of ones, to be
random; alternative choices are possible and would lead to a different analysis. Conditioned on
X = x, the counts 1, n, = N,(x) and n,, (see Table[5.1), the likelihood of an individual sequence
y | x with statistics Nyg, Npo, Npo, Np; becomes:

p["l|a)."‘l|h (y | X) = p.“l\au“l\b (y | X, Ng, nb’ n) (5'32)

= gt (U= i) - gt (1= )™

These densities define the alternative model 1 = { Py, , u, * (H1jas thyp) € ©1} with ©; = [0,1]*.
Ho, the null model, simply has X = (Xj,...,X,) and Y = (Y;,...,Y,) independent, with
Yi,..., Y, iid. Ber(y;) distributed, y; € ®¢ = [0,1], i.e.

P (¥ %) = pyu(y) = i (1= )™

To test Ho against ,, we numerically calculate the GROW E-variable Eg ) where O(e)

0 1 sum 0 1 sum

a ,uaO ,ual ﬂa a NuO Nal ng
b | ppo  Uw | M b | Nyg Ny | my
sum | [ 23 1 sum | Ny N, n

Table 5.1: 2x2 contingency table: parameters and counts. y;; is the (unconditional) probability of observing category i
and outcome j, and N;; is the corresponding count in the observed sample.

is defined via (5.20) for two different divergence measures detailed further below. In both
cases, O (¢) will be compact, so that by the joint lower-semi-continuity of the KL divergence
(Posner, [1975), min D(Py, | Py, ) is achieved by some unique (W;*, W,"), and we can use Part
3 of Theorem to infer that the GROW E-variable is given by EJ), g ,)) = Eg () = Pwy (Y|
X)/pwy (Y). Note that the ‘priors’ W;* and Wy may depend on the observed x = x", in
particular on 1, and #n;, since we take these as given throughout. We can further employ
Carathéodory’s theorem (see Appendix[s.E.2 for details) to give us that W;* and W, must have
finite support, which allows us to find them reasonably efficiently by numerical optimization;
we give an illustration in the next section.

We now consider two definitions of @(¢). The first option is to think of y; as a ‘nuisance’
parameter: we want to test for independence, and are not interested in the precise value of y;, but
rather in the ‘effect size’ 8 = |4y, — 15| We can then, once again, use the §-GROW E-variable for
parameter of interest §. To achieve this, we re-parameterize the model in a manner that depends
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Figure 5.2: The Beam: Graphical depiction of the GROW ©(9).

on x via 1, and 11y, For given puyj, and py),, we set ) = (14410 + 1y iy ) /71, and & as above, and
we define pf , (y[x) (the probability in the new parameterization) to be equal to py, 4, (¥[X)
as defined above. As long as x (and hence n, and n;,) remain fixed, this re-parameterization is
1-to-1, and all distributions in the null model #, correspond to a ps i With 6 = 0.In Figure
we show, for the case n, = n;, = 10, the sets ®(8) for § = {0.42,0.46,0.55,0.67,0.79}. For
example, for § = 0.42, () is given by the region on the boundary, and outside of, the ‘beam’
defined by the two depicted lines closest to the diagonal. We numerically determined the JIPr,
Le., the prior (Pyy, Py ) for each choice of 8. This prior has finite support, the support points
are depicted by the dots; in line with intuition, we find that the support points for priors on
the set ®(J) are always on the line(s) of points closest to the null model, i.e. the 5-GROW
E-variable is simple. Variations of this definition of ®(§) and corresponding GROW E-values
have been considered by Turner, 2019, who showed that for one-sided testing, one can calculate
the above JIPr analytically; moreoever, if data comes in as pairs of each group, so that all X; are
giveby (a,b) and Y; = (yia, yiv) € {0,1}%, then on this rougher filtration, (where n, = n; atall
sample points), the JIPR for each n defines a test martingale and, along the lines of Proposition|}
we can use it for testing that is safe under optional stopping. The second option for defining
O(¢) is to take the original parameterization, and have d in (5.20)) be the KL divergence. This
choice is motivated in Appendix@ Then @(e) is the set of ()4, g1 ) With

. D(Plll\a,lmb HPM{) D(PH1|(¢>H1|1, HP[M)
inf = >
ulef0,1] n n

Note that the scaling by 1/# is just for convenience — since P, are defined as distributions of
samples of length 7, the KL grows with n and our scaling ensures that, for given py,, 45 and
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log(10)
log(20)
log(40)

- log(400)

Figure 5.3: The Lemon: Graphical depiction of the KL-divergence based GROW ©(¢).

N1a> N1,p> the set @ (¢) does not change if we multiply 1y, and n;; by the same fixed positive
integer. Note also that the distributions P, ,,, and P,, are again conditional on the given
x (and hence 1, and ny), and p; = (naphya + nppi)p) /7 as before. We can now numerically
determine @ (¢) for various values of ¢; this is done in Flgureu where, for example, the set
O(¢) for ¢ € {log10,10g20,...,log400} is given by all points on and outside of the inner-
mostly depicted lemon’ Again, we can calculate the corresponding JIPr; the support points of
the corresponding priors are also shown in Figure [E

5.4.5 General Exponential Families

The contingency table setting is an instance of a test between two nested (conditional) expo-
nential families. We can extend the approach of defining GROW sets ©(¢) relative to distance
measures d and numerically calculating corresponding JIPrs (Py+, Py ) straightforwardly to
this far more general setting. Aslong as Theorem[_], Part 3 can be apphed with W] = W(0(¢)),

the resulting Bayes factor py+ (Y)/pwx (Y) will be a GROW E-variable. The main condition for
Part 3 is the requirement that D(Pyy | Py ) < oo for all W' € W(®(¢)), which automatically
holds if D(Pg | Py ) < oo for all 6 € ®(e). Since, for exponential families, D(Pp| Py:) < oo for
all 6, 0’ in the interior of the parameter space ® = @1, this condition can often be enforced to
hold though, if we take a divergence measure d such that for each ¢ > 0, ®(¢) is a compact
subset of ®; and for each 6 € ©; that is not on the boundary, there is an ¢ > 0 such that
0€0(e).

For large n though, numerical calculation of GROW E-variables may be time consuming, and
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one may wonder whether there exists other nontrivial (but perhaps not GROW, or at least
not GROW relative to any intuitive sets @(¢)) E-variables that take less computational effort.
It turns out that these exist: one can calculate a conditional GROW-E-variable. We illustrate
this for the contingency table setting. Fix an arbitrary function ¢ mapping x to W(®,), the
set of priors on ®,. Conditional on the sufficient statistic relative to Ho, #;(Y) = Ni/n, all
distributions in H, assign the same probability mass po(y | Fi(y)) = 1/( ]31) to all y with
w1 (y) = i (Y). The conditional -variable based on g is then given by

_ P (Y[ (Y),x) ( n ) Pe(x) (Y [x)
po(Y | (Y)) N/ Pyt (B (Y) %)

This gives a conditional (and hence also unconditional) E-variable for every choice of function
g(x). In fact it coincides with what has been called a method for obtaining ‘clean’ evidence
for the 2 x 2 table setting by eliminating the nuisance parameter z; (Royall,[1997). In settings
with optional stopping based on the value of 7, it has a GROW-like optimality property for
certain choices of g which we will further explore in future work. In settings with fixed n, it is
not GROW and may perhaps be seen as a ‘quick and dirty” approach to design an e-variable.
It clearly can be extended to any combination of H; (not necessarily an exponential family)
and any exponential family #, such that the ML estimator 8, (y) is almost surely well-defined
under all P € H, whereas at the same time, /O\O(Y) is a sufficient statistic for H,, i.e. there is a
1-to-1 correspondence between the ML estimator 6, (Y) and the sufficient statistic ¢(Y). This
will hold for most exponential families encountered in practice (to be precise, H, has to be a
regular or ‘aggregate’ Barndorff-Nielsen, [1978, page 154-158 exponential family). In such cases,
if, for example, a reasonable prior W; on @ is available, we can efficiently calculate nontrivial
E-variables based on taking g(x) = W, but whether these are sufficiently strong approximations
of the GROW E-variable will have to be determined on a case-by-case, i.e. model-by-model
basis; we did some experiments for the contingency table, with W) a Beta prior, and there
we found them to be noncompetitive in terms of GROW and power with respect to the full

JIPA

(5.33)

5.5 Testing Our GROW Tests

We perform some initial experiments with GROW E-variables for composite 7 nested within
‘H,. We consider two common settings: in one setting, we want to perform the most sensitive
test possible for a given sample size n; we illustrate this with the contingency table test. In the
second setting, we are given a minimum clinically relevant effect size § and we want to find the
smallest sample size # for which we can expect good statistical (power) properties.

5.5.1 Case 1: Fixed 7, ¢ unknown

Mini-Simulation-Study 1: The 2x2 Table We first consider the GROW E-variables Eg s,
, the first option considered in Section 5.4.4l For

relative to parameter of interest § = |y, — piy)p

! Although it was not connected to e-variables, the idea to modify Bayes factors for nested exponential families by
conditioning on the smaller model’s sufficient statistic was communicated to us by T. Seidenfeld, 2016.
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a grid of &’ in the range [0.4,0.9] we looked at the best power that can be achieved by GROW
E-variable Eg 5., i.e. we looked for the §* (again taken from a grid in the range [0.4,0.9])
such that

1-B(8,6%) = 05@1)1(1&)) Py (logEg(((s*)) > —log oc) (5.34)

is maximized. We summarized the results in Table[5.2] We see that, although we know of no

3 GR(O(9)) = D(Pw: | Pw; ) &* power1-f3

0.42 1.20194 0.50 0.20
0.46 1.57280 0.50 0.29
0.50 1.99682 0.50 0.39
0.55 2.47408 0.50 0.49
0.59 3.00539 0.50 0.60
0.63 3.59327 0.50 0.69
0.67 4.23919 0.50 0.77
0.71 4.94988 0.50 0.85
0.75 5.73236 0.50 0.91

Table 5.2: Relating J, 8%, power and capital growth Gr(®(J)) for n, = n, = 10 for the GROW E-variables. For
example, the row with 0.42 in the first column corresponds to the two black lines in Figurewhich represent all
0 = ([41|a, .’"l\b) with § = 0.42.

analogue to Johnson’s Theorem 5.5 here, something like a “uniformly most powerful §-GROW
safe test” does seem to exist — it is given by E(’:) (6%) with §* = 0.50; and we can achieve power
0.8 for all 8 € ®(J) with § % 0.5. The same exercise is repeated with the GROW Ee-variables
defined relative to the KL divergence in Table|s.3, again indicating that there is something
like a uniformly most powerful §-GROW safe test. We now compare four hypothesis tests
for contingency tables for the n, = n; = 10 design: Fisher’s exact test (with significance level
a = 0.05), the default Bayes Factor for contingency tables (Gunel and Dickey, 1974; Jamil
et al,,|2016) (which is turned into a test by rejecting if the Bayes factor > 20 = —log «), the
‘uniformly most powerful’ GROW E-variable Eg s, with 6 = 0.50 (see Table which
we call GROW(®(4)) and the ‘uniformly most powerful’ KL-GROW e-variable Eg ..., with
¢* = logl6 (see Tables.3) which we call (®(e)). The 0.8-iso-power lines are depicted in
Figure|5;4} for example, if 6 = (414, 1)) is on or outside the two curved red lines, then Fisher’s
exact test achieves power 0.8 or higher. The difference between the four tests is in the shape:
Bayes and the §-based JIPr yield almost straight power lines, the KL-based JIPr and Fisher
curved. Fisher gives a power > 0.8 in a region larger than the KL-based JIPr, which makes sense
because the corresponding test is not safe; the §-GROW and default Bayes factor behave very
similarly, but they are not the same: in larger-scale experiments we do find differences. We see
similar figures if we compare the rejection regions rather than the iso-power lines of the four
tests (figures omitted).
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logne  GrR(O(¢g)) = D(Pw~||Pwy)  logne™  power
2 0.21884 16 0.06
5 0.98684 16 0.18
10 1.61794 16 0.29
15 1.99988 16 0.35
20 2.27332 16 0.40
25 2.48597 16 0.44
30 2.65997 16 0.47
40 2.93317 16 0.52
50 3.14447 16 0.55
100 3.78479 16 0.65
200 4.48606 16 0.74
300 4.86195 16 0.79
400 5.12058 16 0.82
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Table 5.3: Relating ¢, ¢*, power and capital growth Gr(©®(¢)) for n, = n;, = 10 for the KL-GROW E-variables. For
example, the row with 20 in the first column corresponds to the two curved red lines in Figure[5.3}which represent all
61 = (#1]a> pjp) with inf ,epo,17 D(Pg, || Pu) = log20.

Up

0.4

0.2

0.0

- -- GROW 6(¢)

---- GROW ©(3)

—— Fisher
Bayes

0.0 0.2 0.4

Figure 5.4: 0.8-iso-powerlines for the four different tests.
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5.5.2 Case 2: 1 to be determined, § known

Consider §-GROW e-variables for some scalar parameter of interest §. Whereas in Case 1, the
goal was implicitly to detect the ‘smallest detectable deviation’ from #,, in Case 2 we know
beforehand that we are only really interested in rejecting H, if § > 8. Here § > 0 is the minimum
value at which the statement || > 8" has any practical repercussions. This is common in medical
testing in which one talks about the minimum clinically relevant effect size §.

Assuming that generating data costs money, we would like to find the smallest possible # at
which we have a reasonable chance of detecting that |§] > §. Proceeding analogously to Case
1, we may determine, for given significance level « and desired power 1 — 3, the smallest n at
which there exist §* such that the safe test based on E-variable Eg 4., has power at least1- 8

for all 6 € ®(J). Again, both n and 6* may have to be determined numerically (note that §* is
not necessarily equal to 9).

Mini-Simulation-Study 2: 1-Sample t-test In this simulation study, we test whether the
mean of a normal distribution is different from zero, when the variance is unknown. We
determine, for a number of tests, the minimum # needed as a function of minimal effect size
J to achieve power at least 0.8 when rejecting at significance level a = 0.05. We compare the
classical t-test, the Bayesian ¢-test (with Cauchy prior on J, turned into a test that is safe under
optional continuation by rejecting when BF > 20 = 1/«) and our safe test based on the GROW
E-variable Eg 5. (V") = E;.(V") that maximizes power while having a GROW property. For
the standard ¢-test we can just compute the required (batch) sample size. This is plotted (black
line) in Figure[5.5|as a function of 8, where we also plot the corresponding required sample
sizes for the Bayesian t-test (larger by a factor of around 1.9 — 2.1) and our maximum power
0*-GROW t-test (larger by a factor of around 1.4 - 1.6).

However, these three lines do not paint the whole picture: we have already indicated in Sec-
tion@that for any prior W[&], the threshold test based on (Eyvrv[a] (V') en is safe also under
optional stopping. Since both the Bayesian t-test and our -GROW t¢-test are an instance of
E ;v[ 5] s given by (5.29), we preserve Type-I error guarantees if we stop at the smallest ¢ at

which Ej,( 5](Vt) > 20 = 1/a. We can now compute an effective sample size under optional

stopping in two steps, for given §. First, we determine the smallest n at which the §*-GROW
E-variable E¢ ., which optimizes power achieves a power of at least 0.8 = 1 f5; we call this
Mmax. We then draw data sequentially and record the Ej, 5, (V") until either this g-variable
exceeds 1/a or t = ny.x. This new procedure still has Type I error at most «, and it must have
power > 0.8. The ‘effective sample size” is now the sample size we expect if data are drawn from
a distribution with effect size at § and we do optional stopping in the above manner (‘stopping’
includes both the occasions on which H, is accepted and t = 71,,, and the occasions when Hg
is rejected and t < #11y,y). In Figure we see that this effective sample size is almost equal to
the fixed sample size we need with the standard ¢-test to obtain the required power. Thus, quite
unlike the classical ¢-test, our §-GROW t-test E-variable preserves Type I error probabilities
under optional stopping; it needs more data than the classical ¢-test in the worst-case, but
hardly more on average under ‘H,. For a Neyman-Pearsonian hypothesis tester, this should be a
very good reason to adopt it!



sample size
40 60 80

20

5.5. Testing Our GROW Tests

NI —_

NN c-e-

s (o.s.)

t-test (batch)

B (o.s.)
n_max(S’) (0.s.)
S’ (batch)
n_max(B) (0.s.)
B (batch)

151

Figure s5.5: Effective sample size for the classical ¢-test (black), Bayesian ¢-test (E-test with Cauchy prior on §) (red), and
the §-GROW E-test E* with a two-point prior on § (blue). The lines denoted batch denote the smallest fixed sample size
at which power 8 = 0.8 can be obtained under #; as a function of the ‘true’ effect size 8. The continuous lines, denoted
‘0.s. denote the sample size needed if optional stopping (see main text) is done (and for E*, the prior is optimized for
the batch sizes that were plotted as well. The ratios between the curves at § = 0.5 and the batch sample size needed
for the t-test is 0.9 (E* with o0.s.), 1.1 (Bayes ¢-test with 0.s.), 1.5 (E* with fixed sample size) and 1.9 (Bayes ¢-test with
fixed sample size). At § = 1 they are 0.98, 1.26, 1.61 and 2.01 respectively: the amount of data needed compared with
the tradition ¢-test thus increases in § within the given range. The two lines indicated as ‘#imax (0.5.)" are explained in

the main text.
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5.6 Earlier, Related and Future Work

E-Variables, Test Martingales, General Novelty As seen in Section E-variables are close
cousins of test martingales, which go back to Ville, 1939, the paper that introduced the modern
notion of a martingale. E-variables themselves have probably been originally introduced by
Levin (of P vs NP fame) (1976) (see also (Gécs, |2005)) under the name test of randomness, but
Levin's abstract context is quite different from ours. Independently discovered by Zhang, Glancy
and Kanill, 2011, they were later analyzed by Shafer et al., |2011; Shafer and Vovk, 2019; Vovk
and Wang, |2019; all these authors used different names for the concept. While we originally
called them ‘S-value] the paper (Vovk and Wang, 2019)), which appeared after the first version
of the present paper, called them E-variables, a name which we decided to adopt for its better
motivation (E can stand both for expectation, just like the p in P-value stands for probability;
but also for ‘evidence’).

Test martingales themselves have been thoroughly investigated by Shafer et al.,|2011; Shafer and
Vovk, 2019, They themselves underlie AV (anytime-valid) p-values (Johari, Pekelis and Walsh,
2015), AV tests (which we call ‘tests that are safe for optional stopping’) and AV confidence
sequences. The latter were recently developed in great generality by A. Ramdas and collaborators;
see e.g. (Balsubramani and Ramdas, |2016; Howard et al.,|2018b; Howard et al.,|2018a). Both
AV tests and confidence sequences have first been developed by H. Robbins and his students
(Darling and Robbins, 1967; Lai, [1976; Robbins, 1970). Like we do for E-variables, Ramdas et
al. (and also e.g. Pace and Salvan, |2019) stress the promise of the AV notions for a safer kind
of statistics that is significantly more robust than standard testing and confidence interval
methodology.

Just like regular tests can be turned into confidence intervals by varying the null and ‘inverting’
the resulting tests, AV confidence intervals can be created by starting with a collection of test
martingales, one for each null, and then varying the null and inverting the AV test based on
the test martingale for each null. We can do (and plan to investigate in future work) the same
thing with E-variables. More generally, the work on AV tests and confidence sequences is very
similar in spirit to ours, with our work stressing analysis at the level of batches of data rather
than individual data points. Thus, we do not claim any real novelty for the ‘safe’ or ‘always valid’
setting. The real novelty is in Theorem [5.4/and 5.6} However, as we discovered after posting
the first version of the present paper, a special case of Theorem [5.4] was already formulated
and proved’|by Zhang, Glancy and Knill, 2011 (see also (Zhang, |2013)) who show that GROW
E-variables can be constructed for discrete outcome spaces, simple (singleton) ; and convex
Ho. Theorem|s5.4 extends this to its full generality, showing that nontrivial £-variables always
exist and that optimal ones can often be constructed, for nonconvex H, and H, that are both
composite — that insight is the main novelty of this paper.

Relation to Sequential Testing Sequential testing (Lai, 2009), pioneered by Wald and Barn-
ard and developed much further by H. Robbins and his students, is mathematically similar
to testing based on test martingales and (therefore) E-variables. Sequential tests are based on

?Zhang, Glancy and Knill,|2011 was in turn inspired by Van Dam, Gill and Grunwald, |2005, co-authored by one of
us, which identifies the importance of the KL divergence in test design but falls short of defining E-values.
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random processes (S;)en that are a likelihood ratio of (potentially coarsened) data under all P
in both H and #,. By this we mean that there is a coarsening { V; } of the {Y;} so that both the
null and the alternative are simple for data coarsened to {V;}, as in Proposition|3, so that for
each n, all distributions in Py € H, induce the same distribution Qo[ V,,] on V" with density g;,
and all distributions P, € H; induce the same distribution Q;[ V"] on V" with density q;, and
Sy =q1(V")/qo(V™). The setting can be extended to the case where H, contains additional
distributions in H, and H;, as long as for all Py € Ho, Qo[S, ], the marginal distribution of S,
under Qo[ V, ], stochastically dominates Py[ V], and under all P, € H;, Q;[S,,'], the marginal
distribution of 1/S,, under Q;[V, ], stochastically dominates P[ V,].

For such likelihood ratio processes, S, S,, . .. has the property of being a test martingale under
both H and (after inversion) under H;. The sequential test based on Sy, S, . . . with prespecified
parameters «, 3 proceeds by calculating S;, S,, . . . and stopping at 7*, the smallest 7 at which
either S; > (1- )/« (‘accept’) or S; < (1 - «)/f (‘reject’). Wald showed that this test has Type
I error probability bounded by a and Type II error bounded by f3. The reason one can stop at a
smaller threshold ((1 - )/« rather than 1/«) is that one has to stop at 7*, Thus, the method
does not allow for optional stopping in our sense: the probability that there is some n with
Sn 2 (1- )/ is strictly larger than a.

Still, since Sy, S5, . . . forms a test martingale under H,, it can be used to generate useful E-values
as explained in Section Thus, much of the work in sequential testing can be re-cycled
to obtain test martingales and E-values. Of course, as discussed in that section, not all useful
(6-GROW) E-variables derive from martingales, let alone from ‘two-sided’ martingales.

Conditional Frequentist Tests In a series of papers starting with the landmark (Berger,
Brown and Wolpert, 1994), Berger, Brown, Wolpert (BBW) and collaborators, extending initial
ideas by Kiefer, 1977 develop a theory of frequentist conditional testing that “in spirit” is very
similar to ours (see also Wolpert,1996; Berger,[2003) — one can view the present paper as a
radicalization of the BBW stance. Yet in practice there are important differences. For example,
our link between posteriors and Type I error is slightly different (Bayes factors, i.e. posterior
ratios vs. posterior probabilities), in our approach there are no ‘no-decision regions, in the BBW
papers there is no direct link to optional continuation.

Related Work on Relating p-values and E-variables Shafer and Vovk, |2019 give a general
formula for calibrators f. These are decreasing functions f : [0,1] — [0, oo] so that for any
p-value P, E := 1/ f(P) is an E-variable. Let f,s(P) := —ePlog P, a quantity sometimes called
the Vovk-Sellke bound (Bayarri et al.,|2016))), having roots in earlier work by by Vovk,1993/and
Sellke et al. (Sellke, Bayarri and Berger, [2001). All calibrators satisfy limpo f(P)/ fys(P) = oo,
and calibrators f advocated in practice additionally satisfy, for all P < 1/e, f(P) > fys(P).
For example, for any calibrator f suggested for practice, rejection under the safe test with
significance level « = 0.05, so that E > 20, would then correspond to reject only if P <
£71(0.05) > £,1(0.05) ~ 0.0032, requiring a substantial amount of additional data for rejection
under a given alternative. Note that the -variables we developed for given models in previous
sections are more sensitive than such generic calibrators though. For example, in Section [5.1.3]
the threshold 2.72/+/n corresponding to a = 0.05 corresponds roughly to p = 0.007, a factor
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2 larger. Experiments in the master’s study (Hu, 2020) indicate a similar phenomenon for
nonparametric tests: GROW E-values designed specifically for a given H, and H; achieve
higher growth rate and higher power than calibration e-values based on p-values for these

and H;.

Related Work: Testing based on Data-Compression and MDL

Example 5.4. Ryabko and Monarev, 2005|show that bit strings produced by standard random
number generators can be substantially compressed by standard lossless data compression
algorithms such as zip, which is a clear indication that the bits are not so random after all. Thus,
the null hypothesis states that data are ‘random’ (independent fair coin flips). They measure
‘amount of evidence against #, provided by datay = y;,..., y, as

n-— LZip (Y) >

where L,i,(y) is the number of bits needed to code y using (say) zip. Now, define p, (y) =
272 () Via Kraft's inequality (Cover and Thomas, 1991) one can infer that Yyefon P(y) <1
(for this particular case, see the extended discussion by Griinwald, 2007, Chapter 17). At the
same time, for the null we have H, = {P,}, where P, has mass function p, with for each n,
y € {0,1}, po(y) = 27". Defining E = p,(Y)/po(Y) we thus find

Ey.p[E]= Y, P(y)<1; logE=n—L,;(Y).
ye{0,1}"

Thus, the Ryabko-Monarov codelength difference is the logarithm of an e-variable. Note that
in this example, there is no clearly defined alternative; being able to compress by zip simply
means that the null hypothesis is false; it certainly does not mean that the ‘sub-distribution’ p,
is true (if one insists on there being an alternative, one could view p, as a representative of a
nonparametric #,; consisting of all distributions P; with Ey.p [log E] > 0, a truly huge and not
so intuitive set).

More generally, by the same reasoning, for singleton 7, = { P, }, any test statistic of the form
P,(Y)/po(Y), with py the density of Py and p, a density or sub-density (integrating to less
than 1) is an E-variable. Such e-variables have been considered extensively within the Minimum
Description Length (MDL) and prequential approaches to model selection (Rissanen, [1989;
Dawid, [1997; Barron, Rissanen and Yu, 1998} Griinwald and Roos, [2020). In these approaches
there usually is a clearly defined alternative 7;, so that a Bayesian would choose p, := pw, to be
a Bayes marginal density. In contrast, the MDL and prequential approach allow more freedom
in the choice of p;. MDL merely requires p, to be a ‘universal distribution’ such as a Bayes
marginal, a normalized maximum likelihood, prequential plug-in or a ‘switch’ distribution
(Griinwald, 2007). With simple #,, all such ‘MDL factors’ also constitute E-variables; but
with composite #,, just as with Bayes factors, the standard MDL approach may fail to deliver
E-variables.

Future Work, Open Problems In Section[s.3.3jwe indicated that standard §-GROW &-variables
often turn out to be ‘simple’ (and therefore easy to implement): they are defined to be GROW
relative to a large set, but they end up as Bayes factors py+/pw; in which W;* puts all mass
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on the boundary of ®,. We aim to investigate the generality of this phenomenon in future
work.

We already indicated that it may be possible to extend Theorem [5.6|to show that the Bayes
factor based on the right Haar prior can be GROW in more general group invariant settings;
showing or disproving this is a major goal for future work. Also, just as we propose to fully
base testing on a method that has a sequential gambling/investment interpretation, Shafer and
Vovk have suggested, even more ambitiously, to base the whole edifice of probability theory
on sequential-gambling based game theory rather than measure theory (Shafer and Vovk,
2001; Shafer and Vovk, [2019); see also (Shafer, [2019) who emphasizes the ease of the betting
interpretation. Obviously our work is related, and it would be of interest to understand the
connections more precisely.

5.7 A Theory of Hypothesis Testing

5.721 A Common Currency for Testers adhering Jeffreys, Neyman’s and
Fisher’s Testing Philosophies

The three main approaches towards null hypothesis testing are Jeftreys’ Bayes factor methods,
Fisher’s p-value-based testing and the Neyman-Pearson method. Berger, |2003, based on earlier
work, e.g. (Berger, Brown and Wolpert, [1994), was the first to note that, while these three meth-
odologies seem superficially highly contradictory, there exist methods that have a place within
all three. Our proposal is in the same spirit, yet more radical; it also differs in many technical
respects from Berger’s. Let us briefly summarize how E-variables and the corresponding safe
tests can be fit within the three paradigms:

Concerning the Neyman-Pearson approach: E-variables lead to tests with Type-I error guar-
antees at any fixed significance level a, which is the first requirement of a Neyman-Pearson
test. The second requirement is to use the test that maximizes power. But we can use GROW
E-variables designed to do exactly this, as we illustrated in Section E The one difference to the
NP approach is that we optimize power under the constraint that the e-variable is GROW —
which is essential to make the results of various tests of the same null easily combinable, and
preserve Type I error probabilities under optional stopping. Note though that this constraint
is major: as shown in Example|s.1} the standard NP tests lead to useless E-variables under the
GROW criterion.

Concerning the Fisherian approach: we have seen that E-variables can be reinterpreted as
(quite) conservative P-values. But much more importantly within this discussion, e-variables
can be defined, and have a meaningful (monetary) interpretation, even if no clear (or only a
highly nonparametric/nonstationary) alternative can be defined. This was illustrated in the data
compression setting of Example[s.4] Thus, in spirit of Fisher’s philosophy, we can use E-variables
to determine whether there is substantial evidence against #,, without predetermining any
alternative: we simply postulate that the larger E, the more evidence against 7, without having
specific frequentist error guarantees. The major difference though is that these E-variables
continue to have a clear (monetary) interpretation even if we multiply them over different tests,
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and even if the decision whether or not to perform a test (gather additional data) depends on
the past.

Concerning the Bayesian approach: despite their monetary interpretation, all E-variables that
we encountered can also be written as likelihood ratios, although (e.g. in Example [5.4 or
Section either 7, or H; may be represented by a distribution that is different from a
Bayes marginal distribution. Still, all GROW (optimal) E-variables we encountered are in fact
equivalent to Bayes factors, and Theorem [5.4] Part 3 strongly suggests that this is a very general
phenomenon. While the point priors arising in the §-GROW Ee-variables may be quite different
from priors commonly adopted in the Bayesian literature, one can also obtain E-variables by
using priors on #; that do reflect prior knowledge or beliefs — we elaborate on this under
Hope vs. Belief below.

The Dream With the massive criticisms of P-values in recent years, there seems a consensus
that p-values should be used not at all or, at best, with utter care (Wasserstein, Lazar et al.,
2016; Benjamin et al., [2018), but otherwise, the disputes among adherents of the three schools
continue — intuitions among great scientists still vary dramatically. For example, some highly
accomplished statisticians reject the idea of testing without a clear alternative outright; others
say that such goodness-of-fit tests are an essential part of data analysis. Some insist that sig-
nificance testing should be abolished altogether (Amrhein, Greenland and McShane, |2019),
others (perhaps slightly cynically) acknowledge that significance may be silly in principle, yet
insist that journals and conferences will always require a significance-style ‘bar’ in practice
and thus such bars should be made as meaningful as possible. Finally, within the Bayesian
community, the Bayes factor is sometimes presented as a panacea for most testing ills, while
others warn against its use, pointing out for example that with different default priors that have
been proposed, one can get quite different answers.

Wouldn't it be nice if all these accomplished but disagreeing people could continue to go their way,
yet would have a common language or currency’ to express amounts of evidence, and would be
able to combine their results in a meaningful way? This is what E-variables can provide: consider
three tests with the same null hypothesis H, based on samples Y;), Y () and Y 3 respectively.
The results of a §-based E-variable test aimed to optimize power on sample Y ;), an E-variable
test for sample Y,y based on a Bayesian prior W on 7, and a Fisherian E-variable test in which
the alternative #, is not explicitly formulated, can all be multiplied — and the result will be
meaningful.

Hope vs. Belief In a purely Bayesian set-up, optional stopping is justified if 8 viewed as a
random variable is independent of the stopping time N under the prior W. In that case, a
celebrated result going back to Barnard, 1947 (see Hendriksen, De Heide and Griinwald, 2020
for an overview) says that the posterior does not depend on the stopping rule used; hence it
does not matter how N was determined (as long as it does not depend on future data). If Bayes
factors are ‘local, based on priors that depend on the design and thus on the sample size n, then,
from a purely Bayesian perspective, optional (early) stopping is not allowed: since the prior
depends on 1, when stopping at the first T < n at which pyw, (y7)/pw, (") > 20, neither the
original prior based on the fixed #n nor the prior based on the observed T (which treats the



5.7. A Theory of Hypothesis Testing 157

random T as fixed in advance) is correct any more. This happens, for example, for the default
(Gunel and Dickey, 1974) Bayes factors for 2 x 2 contingency tables advocated by Jamil et al.,
2016 — from a Bayesian perspective, these do not allow for optional stopping.

The same holds for the UMP Bayes factors that we considered in Section[s.4.1 These generally
are ‘local, the prior W; (and, presuming the idea can be extended to composite #,, potentially
also W) depending on the sample size n. For example, for the 1-sided test with the normal
location family, Example we set all prior mass on i, = \/2(-loga)/n; a similar dependence
holds for the prior on §* in the §*-based GROW t-test if we choose §* to maximize power. Thus,
while from a purely Bayesian perspective such E-variables/Bayes factors are not suitable for
optional stopping, in Section 5.4, both the §-based GROW E-variable for the normal location
family and for the t-test setting do allow for optional stopping under our definition: one may
also stop and report the Bayes factor at any time one likes during the experiment, and still Type
I error probabilities are preserved (Hendriksen, De Heide and Griinwald, |2020)). This is what
we did in the experiment of Figure[is: the pre-determined 7 (called there #n.,,¢) on which the
prior W; on § (that puts mass 1/2 on 6, and 1/2 on —8*) is based is determined there such that,
if we stop at any fixed T = n’, the statistical power of the test is optimal if n’ = np,,; but the
likelihood ratio e(YT) := pw,(YT)/pw,(YT) remains an E-variable even if T = n’ # #1,x OF
even if one stops at the first T' < 71,4, such that E(YT) > 20. Thus, we should make a distinction
between prior beliefs as they arise in Bayesian approaches, and what one may call ‘prior hope’
as it arises in the E-variable approach. The purely Bayesian approach relies on the beliefs being,
in some sense, adequate. In the E-variable based approach, one can use priors that represent
subjective a priori assessments; for example, in the Bayesian ¢-test, one can use any prior W; on
0 one likes as long as it has more than two moments, and still the resulting Bayes factor with
the right Haar prior on ¢ will be a GROW E-variable (Theorem[s.6). If H, is the case, and the
data behave as one would expect according to the prior Wy, then the E-variable will tend to be
large - it GROWs fast. But if the data come from a distribution in #; in a region that is very
unlikely under W;, E(Y) will tend to be smaller — but it is still an E-variable, hence leads to
valid Type-I error guarantees and can be interpreted when multiplied across experiments. Thus,
from the E-variable perspective, the prior on W, represents something more like ‘hope’ than
‘belief” — if one is lucky and data behave like W} suggests, one gets better results; but one still
gets valid and safe results even if W is chosen badly (corresponds to false beliefs).

This makes the E-variable approach part of what is perhaps among the most under-recognized
paradigms in statistics and machine learning: methods supplying results that have frequentist
validity under a broad range of conditions (in our case: as long as H or H, is correct), but that
can give much stronger results if one is ‘lucky’ on the data at hand (e.g. the data matches the
prior). It is, for example, the basis of the so-called PAC-Bayesian approach to classification in
machine learning (McAllester, [1998; Griinwald and Mehta, 2019), which itself, via Shawe-Taylor
and Williamson, 1997, can be traced back to be inspired by the conditional testing approach of
Kiefer, 1977/that also inspired the BBW approach to testing. It also connects to the general idea
of ‘safe’ inference (Griinwald, 2000; Griinwald, 2018)).
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5.72 Possible Objections

By the nature of the subject, the relevance of this work is bound to be criticized. We would like
to end this paper by briefly anticipating three potential criticisms.

Where does all this leave the poor practitioner? A natural question is, whether the E-
variable based approach is not much too difficult and mathematical. Although the present,
initial paper is quite technical, we feel the approach in general is in fact easier to understand
than any approach based on p-values. The difficulty is that one has to explain it to researchers
who have grown up with p-values — we are confident that, to researchers who neither know
p-values nor E-variables, the E-variables are easier to explain, via the direct analogy to gambling.
Also, we suggested §-based ‘default’ E-variables that (unlike some default Bayes factors) can be
used in absence of strong prior knowledge about the problem yet still have a valid monetary
interpretation and valid Type I Error guarantees. Finally, if, as suggested above, practitioners
really were to be forced, when starting an analysis, to think about optional stopping, optional
continuation and misspecification — this would make life difficult, but would make practice all
the better.

No Binary Decisions, Part I: Removing Significance There is a growing number of influen-
tial researchers who hold that the whole concept of ‘significance; and ensuing binary ‘reject’ or
‘accept’ decisions, should be abandoned altogether (see e.g. the 800 co-signatories of the recent
Amrhein, Greenland and McShane, 2019, or the call to abandon significance by McShane et al.,
2019). This paper is not the place to take sides in this debate, but we should stress that, although
we strongly emphasized Type-I and Type-II error probability bounds here, E-variables still
have a meaningful interpretation, as amount of evidence measured in monetary terms, even if
one never uses them to make binary decisions; and we stress that, again, this monetary inter-
pretation remains valid under optional continuation, also in the absence of binary decisions.
We should also stress here that we do not necessarily want to adopt ‘uniformly most powerful

E-variables, even though our comparison to Johnson’s uniformly most powerful Bayes tests

in Section 5.4 and the experiments in Section [5.5 might perhaps suggest this. Rather, our goal

is to advocate using GROW E-variables relative to some prior W on @ or a subset of ®(4)

of ®; — the GROW criterion leaves open some details, and our point in these experiments is

merely to compare our approach to classical, power-optimizing Neyman-Pearson approaches —
to obtain the sharpest comparison, we decided to fill in the details (the prior W on ©(§)) for
which the two approaches (E-variables vs. classical testing) behave most similarly.

No Binary Decisions, Part II: Towards Safe Confidence Intervals Another group of re-
searchers (e.g. Cumming, 2012) has been advocating for generally replacing testing by estim-
ation accompanied by confidence intervals; or, more generally (McShane et al., 2019), that
researchers should always provide an analysis of the behavior of and uncertainty inherent in
one or more estimators for the given data. While we sympathize with the latter point of view, we
stress that standard confidence intervals (as well as other measures of uncertainty of estimators
such as standard errors) suffer from a similar problem as p-values: they are not safe under
optional continuation. The aforementined anytime-valid confidence sequences developed by
Lai and later Ramdas and collaborators (Lai, 1976; Howard et al., |2018b; Howard et al.,|2018a)
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do allow for optional stopping and hence, if subsequent experimenters keep using the same
underlying test martingales, optional continuation. We strongly feel that if one really wants to
replace testing by confidence approaches, one should adopt anytime-valid rather than standard
confidence intervals, even though the former ones are invariably a bit broader. In future work
we hope to study whether it is useful to consider ‘safe confidence intervals, merely allowing for
optional continuation rather than optional stopping (at each data point).
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5.A Proof Preliminaries

In the next sections we prove our theorems. To make all statements in the main text mathem-
atically rigorous and their notations mutually compatible, we first provide a few additional
definitions and notation.

Sample Spaces and og-Algebras In all mathematical results and examples in the main text,
we tacitly make the following assumptions: all random elements mentioned in the main text
are defined on some measurable space (Q,.A). We assume that {Y; };c; and {R; } s are two
collections of measurable functions from Q) to measurable spaces (), A") and (R, A" respect-
ively, where either I = {1,2,..., fij,x } for some finite 71, or I = N. We additionally assume
that each Y; takes values in ) € R™ for some finite m, and we equip (Q,.A) with the filtration
(Fi)ier where F; is the o-algebra generated by (Y', R").

For each 8 € ® := ®( U0, in the unconditional case, Py is a distribution for the random process
(Y:)ies - In the conditional case, we assume finite I and existence of a fixed function ¢ and
another collection of functions {X; } ;¢; such that forall i € I, X; = ¢(R;), with X; taking values
in some set X'. For each x" € X", Py(- | X" = x") is then a distribution on (Y, ..., Y, ). We
assume throughout that Py(Y" | X" = x") = Po(Y" | X" = x™) for every n,m > n,x™ ¢ X™:
present data is independent of future covariates given present covariates. Whenever we refer to
a random variable such as Y without giving an index, it stands for Y" = (Y3,..., Y, ); similarly
for all other time-indexed random variables.

We stated in the main text that we assume that the parameterization is 1-to-1. By this we mean
that for each 0,6’ € ® with 6 # 0', the associated distributions are also different, so that
Py # Py, We also assume that @, and @, are themselves associated with appropriate o-algebras.
In general, ®; need not be finite-dimensional, so we allow non-parametric settings.

(In)-Dependence and Densities In Section |5.2|on optional continuation we make no fur-
ther assumptions about Py. Specifically, the Y; need not be independent. In all other sections,
unless we explicitly state otherwise, we assume independence. Specifically, when the Py rep-
resent unconditional distributions, then we assume that the random variables Y}, Y5, ... are
independent under each Py with 6 € ©, and that for all i, the marginal distribution Py(Y;)
has a density relative to some underlying measure A;. That is, we for each j we can write
po(Y/) =po(11,...,Y;) = HLI Pp.;(Y;) asa product density where pj ; is a density relative to
A1. In all our examples, A, is either a probability mass function on ) or a density on ) relative
to Lebesgue measure, but the theorems work for general A,. Then pg(Y) =T}, py ;(Y;) isa
density relative to A := A,,, defined as the n-fold product measure of ;.

With the exception of the contingency table setting of Section [5.4.4]and the conditional expo-
nential family setting that we briefly mentioned in Section[s.4.5 (the only sections in which the
+Py are conditional (on x) distributions), we assume that the Y; are not just independent but
also identically distributed, hence p ; = pj | for all i.

Notational Conventions When we mention a distribution Py without further qualification,
we mean that it is the distribution of Y = (Y3,...,Y,) = Y" defined on Q; and we use py for its
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density as defined above. We sometimes refer to the marginal distribution of a random variable
U under Py, where U is a function (coarsening) of Y. We denote this distribution as Py[U], and
its density by pp (u1, ..., u,), avoiding the cumbersome pg[U](uy, ..., u,).

We generically use E* to denote E-variables that are GROW relative to some prior, set, or
set of priors, e.g. Eyy, Eg g)> Eyy,> and so on. If we consider E-variables that can be written
as a function of a coarsened random variable V = f(Y), and that are also GROW on the
‘coarsened’ level of distributions on V rather than Y, then we write E* (V). Thus, standard
GROW E-variables could equivalently be written as E* (Y).

5.B  Optional Continuation with Side-Information

Proof of Proposition[2] ~Although Proposition|is easily proved using Doob’s optional stop-
ping theorem, it may be useful to give a direct proof:

Proof. (sketch) We first consider the case with K¢rop = kmax. Under all Py, we have

E[E®] - E[eh(V")IT(o)»g(V") (VO) - eh (v o) ey (V) (V(k))]
= Evy~p, By )by v) - - By opyvien [eh(V°)|T(0),g(V°) (V(l)) .
En(VO)lrayg(VO) (V®)-.... ER(VED) ryy, g(VED) (V(k))]
=EBvoy-p [eh(w)lno),g(V“) (VD) -Ey,, .pyo [eh(v(l))\T(l),g(V(l)) (V).
<o By mppveen [eh(w—w)h(k_l),g(w-l)) (V(k>)] . ]] .

By definition of E-variables, all factors in the product are bounded by 1, and the result follows.
For general Ksrop < kmay, note that without loss of generality we may assume that W contains
the parameter 1, where for all n, m, e, is the trivial E-variable e, ;(v"*") = 1 for all
v e PR For any sequence vy, v, . .. we modify g, h to ¢’, b’ recursively as follows: we let
B (vD) = h(vD), b’ (v?)) = h(v?)), .., similarly for ¢’ and g, until we reach the smallest
k such that g(v(¥)) = stop. Then we set g'(v") = g'(v,...,v,) = 1and h'(y") = 1 for
all n > 7(4y and all v" that are extensions of v'®). The E’ based on the new g’, h’ will have

E/(ma) = E(K) Tt follows from (a) that E'(*m») is an g-variable, so the result follows. O

Extending Proposition[2] We want to extend the proposition to allow for two possibilities,
First, the sample size for the j-th batch of data may be determined by a stopping time N;),
which generalizes the N(;) used in the main text to the case that the sample size of the j-th
sample Y/ is not fixed in advance. For example, in the 2 x 2 table (Example[s.4.4) we might
continue sampling until we have obtained 10 new examples of category a. Second, we want
to model the idea of ‘side information’ For this, we assume we make additional observations
Z(0ysZ(1)>Z(2)> - - -- The idea is that at the end of analyzing the k-th data batch Y ), we also
get some side information Z ;) which may influence our decision whether or not to take into
account a new data batch Y ;). We want to make as few assumptions as possible about this
side-information; specifically, we will not assume that is itself of stochastic nature (i.e. will
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assume no distribution on it), and the Z ;) may take values in an unspecified countable set
Z(k). Thus, whereas the data Y(x) can always be viewed as a vector (YT(H)H, e YT(k) ), we do
not assume that Z ;) has such (or any other) sub-structure. To make this compatible with the
measure-theoretic setting of the previous section, we assume that all Z; are random variables
on (Q, .A). Whereas before, the filtration (F;);e; was defined by setting F; to be the o-algebra
generated by (Y', R"), we now set F; to be the o-algebra generated by (Y', R’, Z;,y) where
Ji is the largest J > 0 such that () < i, where () is defined as below. Since To) =0, /Jiisa
measurable function. It represents ‘which batch sample size i is part of For example, if the first
batch has sample size N(;y = 5 and the second N,y = 10, then, for 1 < i < 5, before observing Y;,
the available information is Y'~!, R"™, Z (o). Then, for 6 < i < 10, we are ‘in the second batch]

and the available information is Y'~!, R'™!, Z(, Afterwards, Z (2) becomes available, and so on

As formalized in below, we will assume that past outcomes may influence the value of Z (k)>
but Z () should be independent of any future Y (. j). Our optional continuation result continues
to hold irrespective of the actual definition of Z ) and Z(y), as long as these independences hold.
Thus, we may think of Z ;) as encoding information that is difficult to think of stochastically,
such as ‘more money to perform future tests is available’ Still, the confinements of classical
probability theory (or rather the measure theory on which it is based) force us to assume the
existence of sets of possible outcomes Z(y, even if we do not need to specify them. It seems
that even this can be avoided by re-expressing the optional continuation result in terms of the
open protocols enabled by the Game-Theoretic Theory of Probability due to Shafer and Vovk,
2019; but that would really go beyond the scope of this paper.

Batch Stopping Times To further incorporate Z ;) into our framework together with sample
sizes N ) that are not fixed in advance, we need a slight generalization of the idea of stopping
time and stopping rule. In our context, a stopping rule for the k-th batch with start time t is a col-
lection of functions f(x) r,;» i € N, where f(xy . ; maps (Z k), X, V'*') to {sTOP, CONTINUE}
such that for every z € Z(_y), every sequence (x1,v1), (X2,V2),..., there is an i > t such
that
f(k),t,i (2, ((x1,v1)5 -+ o5 (X145 Vesi) ) = STOP.

Thus, we require stopping times that are finite on all sample paths rather than the more usual
‘almost surely finite’ stopping times because the X; and Z ;) do not have a distribution associated
with them.

We now define 7y as the stopping time for the k-th batch in terms of stopping rules f( defined
above. We set 7(;) := N(1y to be the smallest i such that f(;,0,;(Z(0), X, V') = sToP, and more
generally, we set 7(x) to be 7(x_1) + N(x), where N, is the smallest i such that

f(k),‘r(k,l),i (Z(k_l) > XT(k_l)+i 5 VT(k_])+i) = STOP.
To make all required probabilities and expectations well-defined we set, for all i > 1,
Po(Yegysn ooy Yy v | ZO YW, xTo+y = Po(Yrysts e s Yo +i | YO, X" (5.35)

That is, according to all distributions Py under consideration, the ‘side-information’ Z(/) avail-
able after the j-th data batch cannot influence future outcomes Y:, +i; on the other hand,
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the formulation allows that all data obtained up to and including Y) may influence the
side-information Z ).

The definition below evidently generalizes (5.10), and the proposition evidently generalizes
Proposition
Definition 5.3 (Conditional E-Variables). Let X;, Y;, V; and (1), ..., 7(x) with 1 < k < kpax
be as above. Let Ex) be a nonnegative random variable that can be written as a function of
(X®), v (k)Y We call E(iy an E-variable for V(. conditional on X (), V=D if it satisfies, for
all P € H,,

Ep[E(p | X, vED] <1, (5.36)

Proposition 7. [Optional Continuation with Side-Information] Let 7y, ..., 7(x) with k <
kmax and T* be generalized stopping times as above such that on all sample paths, T* coincides
with 7(;) forsome j =1..k. Let E(yy, E(), . . . , E(x) be a sequence of random variables such that for

each j =1..k, E ;) is an E-variable for V ;) conditional on XD, VU, Let the random variable

Ksrop be such that v° = 7(x, ). Then EKswor) is an p-variable, so that under all Py € Ho, for
every 0 < « <1, (5.11) of Proposition|z and all its consequences hold.

Proof. (sketch) By , E(j) being an E-variable conditional on X, VU= implies that E 0
is also an E-variable conditional on X, vU=D, zGD Then, since EU™) can be written as a
function of XU™), VU™, ZG we have, under all P € H,, for j > 1,

EP[E(j) | X(J’),V(J'*l)’z(jfl)] — Ep[E(]-) . E(J'*l) | X(J’))v(jfl))z(jfl)]
=Ep[E(j) | X(j)’v(j—l),z(j—l)] +E(j-1y < E(jo1)s

where the final step is just the definition of conditional E-variable. This shows that the process

EM E®), . constitutes a nonnegative supermartingale relative to the process
XM, v 70 x@) v 7z The result now follows by Doob’s optional stopping the-
orem. O

5.C Elaborations and Proofs for Sections.3]

Meaning of “E* as defined by achieving is essentially unique” Consider ®] c ®, and
@y, as in the main text in Section5.3| Suppose that there exists an E-variable E* achieving the
infimum in (5.14). We say that E* is essentially unique if for any other e-variable E° achieving
the infimum in (5.14), we have Py(E* = E°) = 1, for all § € ©] U @,. Thus, if the GROW
E-variable exists and is essentially unique, any two GROW E-variables will take on the same
value with probability 1 under all hypotheses considered, and then we can simply take one of
these GROW E-variables and consider it the ‘unique’ one.

5.C.1  Proof of Theorem|s.4|

For Part 1 of the result, we first need the following lemma. We call a measure Q on V" a
sub-probability distribution if 0 < Q(Y™) < 1. Note that the KL divergence D(P|Q) remains
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well-defined even if the measure Q is not a probability measure (e.g. Q could be a sub-probability
distribution or might not be integrable), as long as P and Q both have a density relative to a
common underlying measure (the definition of KL divergence does require the first argument
P to be a probability measure though).

Lemma 8. Let {Qw : W € Wy} be a set of probability measures where each Qy has a dens-
ity q, relative to some fixed underlying measure A. Let Q be any convex subset of these pdfs.
Fix any pdf p (defined relative to measure A) with corresponding probability measure P so that
infgeg D(P||Q) < oo and so that all Q € Q are absolutely continuous relative to P. Then:

1. There exists a unique sub-distribution Q° with density q° such that
D(P|Q®) = inf D(P|Q), (5.37)
QeQ

i.e. Q° is the Reverse Information Projection of P on Q.

2. For q° as above, for all Q € Q, we have

Ey.q [ PY) ] <1 (5.38)

We note that we may have Q° ¢ Q.
3. Let Qo be a probability measure in Q with density qo. Then: the infimum in is
achieved by Qy < Q° = Qp < holds for q° = qo.

Proof. The existence and uniqueness of a measure Q° (not necessarily a probability measure)
with density g° that satisfies D(P|Q°) = infgeg D(P|Q), and furthermore has the property

q(Y) ]

S <L (5.39)
q°(Y)

follows directly from Li, 1999}, Theorem 4.3. But by writing out the integral in the expectation
explicitly we immediately see that we can rewrite (5.39) as:

p(Y) ] 1
°(Y)] ™

Li’s Theorem 4.3 still allows for the possibility that [ g°(y) dA(y) > 1. To see that in fact this is
impossible, i.e. ¢° defines a (sub-) probability density, use Lemma 4.5 of Li,[1999. This shows
Part 1 and 2 of the lemma. The third part of the result follows directly from Lemma 4.1 of
Li,[1999). (additional proofs of (extensions of) Li’s results can be found in the refereed paper
Griinwald and Mehta, 2019). O

for all g that are densities of some Q € Q: Ey.p [

forall Q € Q: Ey.q [

We shall now prove Theorem|s.4/itself. Throughout the proof, A stands for the n-fold product
measure as defined in the introduction of this appendix, so that all distributions Py with
W e W] uW(®y) have a density py relative to A, and whenever we speak of a ‘density’ we
mean ‘a density relative to A’
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Proof of Theorem[s.4, Part 1 Let W, = W(®,) and let Q = {Pyy : W € W(®,)} and
P := Py;,. We see that Q is convex so we can apply Part 1 and 2 of the lemma above to P and Q
and we find that Ej,; = p,, (Y)/q°(Y) is an E-variable, and that it satisfies

* (Y o .
EPW] [lOgEV\ﬁ] = EPW1 [lOg pqv:((Y))] = D(PWl ”Q ) = inf )D(PWI HPWO) >

W()GW(@(]

where the second equality is immediate and the third is from (5.37). It only remains to show
that (a)

sup Ey.p, [logE] <Ep, [log 3y, |
Ee€(0y)
and (b) that Ej;, is essentially unique. To show (a), fix any E-variable E = ¢(Y) in £(®,). Now
further fix € > 0 and fix a W,y € W(®y) with D(Pyw; | Pw,,,) < infw,cpe,) D(Pw, |Pw,) + &
We must have, with q(y) = e(y)pw,, (), that [ q(y)dA = Ey.py,,, [E] £ 1, 50 g is a sub-
probability density, and by the information inequality of information theory (Cover and Thomas,
1991), it follows:

Ep,, [logE] = Ep,, [log pv?/((j()Y) ]
pw (Y) ]
pw, (Y)
= D(Pw, | Pw,,,)

< inf D(PWl HPWO) + E.
WoeW(0o)

<Ep, [log

Since we can take ¢ to be arbitrarily close to 0, it follows that

Ep,, [logE] < wneiv%%) D(Py, | Pw,) = Ep,, [logEy, ],

where the latter equality was shown earlier. This shows (a).

To show essential uniqueness, let E be any e-variable with Ep,, [log E] = Ep, [log Ejy |. By
linearity of expectation, E’ = (1/2)Ej, + (1/2)E is then also an E-variable, and by Jensen’s
inequality applied to the logarithm we must have Ep,, [log E'] > Ep,, [log Ej; | unless Py, (E =
Ej,,) = 1. Since we have already shown that for any E-variable E’, Ep,, [log E'] < Ep,, [log Ej, ],
it follows that Pw, (E # Ej,. ) = 0. But then, by our assumption of absolute continuity, we also
have Py, (E # Ej, ) = 0 so Ej, is essentially unique.

Proof of Theorem|s5.4} Part 2 The general result of Part 2 (without the differentiability con-
dition imposed in the proof in the main text) is now a direct extension of Part 1 which we
just proved above: by Part 3 of the lemma above, we must have that Q° = Pyyx and everything
follows.
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Proof of Theorem Part3 The proof consists of two sub-parts, Part 3(a) relying on Part 1
above (and the RIPr-construction, which works for the case that W, is a singleton), Part 3(b)
relying on a minimax theorem from Griinwald and Dawid, 2004 (relying heavily on an earlier
result from Topsee,[1979) that itself works for the case that @ is a singleton.

Part 3(a). We show the following inequalities:

V11 plV]y _ . . . . *
D(Py,7|Py,s) = wll?va; oinf. D(Pywi [ Pw,) > L ngval, Ep, [logE] > ngval, Ep, [log Eyy .

(5.40)
The first equality follows by assumption of the Theorem. For the first inequality, note that by
Theorem [E, Part 1, we have for each fixed W; € W) that

inf D(Pw,|Pw,) = sup Epwl[logE]
WoeWs Ee&(®y)

and this directly implies the inequality by a standard “infsup > supinf” argument (the
trivial side of the minimax theorem). The second inequality is then immediate since E;,, €
1

£(0y).
Part (3(b). From we see that it now suffices to show that

(P} \|p£VVOJ) < inf Ep, [logEjy], (5.41)

where by the assumptions of the theorem we may assume that miny, ey, D(P‘[AZ ] HP‘[AXJ) =
0

D(PI[/Z} HP%«] ). Since all distributions occurring in are marginals on V, and E* can be
written as a function of V, we will from now on simply refer to the marginal densities on
V corresponding to Py as pw (rather than pf, as in the main text), and we will omit the
superscripts [ V] from P; thus we take as our basic outcome now V rather than Y.

We will show the stronger statement that holds with equality. For this, let W and W;* be
as in the statement of the theorem. Let P be a probability measure that is absolutely continuous
with respect to Py, . Such P must have a density p and the logarithmic score of p relative to
measure Py« is defined, in the standard manner, as L(z, p) = —log p(v)/pw; (v), which is
P-almost surely finite, so that, following standard conventions for expectations of random
variables that are unbounded both from above and from below (see Griinwald and Dawid, 2004,
Section 3.1), Hyx (P) = Ev.p[L(V,p)] = =D(P|Py;), the standard definition of entropy
relative to Py, is well-defined and nonpositive.

We will apply the minimax Theorem 6.3 of (Griinwald and Dawid, 2004) with L as defined above.
For this, we need to verify Conditions 6.2-6.4 of that paper, where I' in Condition 6.3 and 6.4
is set to be our W/, and the set Q mentioned in Condition 6.2 must be a superset of I'. We will
take Q to be the set of all probability distributions absolutely continuous relative to Pyx; note
that each Q € Q then has a density g; we let Qpxys be the set of all densities corresponding to
Q. By our requirement that D( Py, | Py ) < oo for all W; € W/, we then have that W[ =T c Q
as required. By our definition of Q, Condition 6.2 then follows from Proposition A.1. from
the same paper (Griinwald and Dawid, [2004) (with g in the role of PWn*)’ and it remains to
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verify Condition 6.3 and 6.4, which, taken together, in our notation together amount to the
requirements (a) W, is convex, (b1) for every W; € W), Py, has a Bayes act relative to L and
(b2) Hyx (Pw,) > —o0, and (c) there exists W;* with Hyys (Py+) = Sup vy, ey Hwy (Pw,) < oo.
Now, (a) holds by definition; (b1) holds because L is a proper scoring rule so the density p
of any P is an L-Bayes act for P (see Griinwald and Dawid, 2004 for details); (b2) holds by
our assumption that —Hyx (Pw; ) = D(Pw, [ Py ) < oo and (c) holds because for all W; € W,
Hy; (Pw,) = =D(Pw; | Pw; ) <0.

Theorem 6.3 of Griinwald and Dawid, 2004/ together with Lemma 4.1 of that same paper then
gives

Hyy (Pwy) = sup Ey.p, [—log pw(V) ] = sup inf Ey.p, [—log a(V) :|

Wew! Pwy (V) Wew? 1€ <oexs Pwg (V)
| a(v) ] [ P <v>]
= inf sup Ey.p, [-lo = sup Ey.p,|-lo , (5.42)
€ Qpexs wEvPi/{ v [ gPWU* V) WEVPi/{ v gPWU* V)

where, to be more precise, the first equality is immediate from the fact that —Hyy: (Py») =
D(Py | Pwy) = infwew; D(Pw, |Pw;y) (which we may assume as stated underneath .
The second follows because the W -logarithmic score is a proper scoring rule, the third is
Theorem 6.3 of Griinwald and Dawid, 2004; this Theorem also gives that the infimum must be
achieved by some W € W[, and Lemma 4.1 of that paper then gives that it must be equal to
Wy*, which gives the fourth equality.

But, because the first and last terms in (5.42) must be equal, and using again that
Hy;s = =D(-|Pw; ), (5.42) implies (5.41), which is what we had to prove.

5.D Proofs that §-GROW E-variables claimed to be simple
really are simple

All our results will rely on the following proposition, which we state and prove first:

Proposition 9. [stochastic dominance and simple E-variables] Let ®, = {0}, let, for § >
0, ©(3) be defined as in (5.20) and let BD(O(8)) be the boundary Bp(®(8)) = {6 € O :
d(0]©,) = &}. Suppose that miny ey (sn(e(s))) D(Pw | Po) is achieved by some W;* (note that
this will automatically be the case if BD(©®(0)) is a finite set), so that by Theorem 5.4} Part 3,
E (o)) = Pwy (Y)/po(Y). Then the following statements are equivalent:

1.

[ pwy(Y) pwy(Y) ]
og . (5.43)

inf Ey.p, |1 = inf  Ey.p |1
eelg(a) Y~P po(Y) ] 9633?@)(6)) v pg[og po(Y)

2. For all Wi e W(@(9)), we have D(Pw, |Py) > D(Py | Po).
3. Wehave Eg 5\ = EL, g5y Which, if ©¢ and © are as above (5-21 ), is equivalent to 45.21 ).
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Furthermore, suppose that there exist a function t, a random variable T = t(Y) (whose density
under 0 we denote by p}), a 0* € BD(O(J)) and a strictly increasing function f such that
log pw+(Y)/po(Y) = log py. (£(Y))/po(£(Y)) = f(¢(Y)) and such that for all 6 € ©(J) ~
BD(O(0)), Py[ T, the distribution of T under Py, first-order stochastically dominates Py+[T]
(i.e. for all t, Fo(t) < Fos (t) where Fq is the distribution function of Pg[T]). Then (5.43) holds.

Proof. (1) = (2) We first note that the conditions of the proposition imply that for all 6 ¢
BD(O(9)),

pwr(Y) pwr(Y)
m)] Frety [l"g po(¥)

as is immediate from Theorem|s.4, Part 3, which gives that Py is the information projection
on the set W/ = W(Bp(0O(d))). Now, fix any W, € W(@((?)) and consider the function
f(a) = D((1 - a)Py~ + aPw;[Py) on a € [0,1]. Straightforward differentiation gives the
following: the second derivative of f is nonnegative, so f is convex on [0, 1]. The first derivative
of f(a) at a = 0 is given by

PW*(Y)] [ pwr (Y)]
Eyp |log 22X 2| _ gy |log 20 | s
Y PV‘I [ Og pO(Y) Y PWl Og pO (Y)

Pwl*(Y)]_ inf  E [lo le*(Y)
po(Y) benn(0(8)) 8 Po(Y)

where the first expression is just differentiation and the inequality follows from (5.44). So, if we
can show that, no matter how W; was chosen, the right-hand side of (5.45) is nonnegative, we
must have f(1) > (0) and the desired result follows. But nonnegativity of (s.45) follows by the
premise (5.43) and linearity of expectation.

(2) = (3) Since infy,epv(0(s)), woew(00) D(Pw; [ Po) = D(PW]* | Py) we can apply Theorem
Part 3, which gives the required result.

Ey.p, [log ] = D(Py~|Po), (5.44)

Ey.p,, [log ] , (5.45)

(3) = (1) is immediate using the definitions of Eg sy and E5 65y

For the second part, note that, by a general property of stochastic dominance (Pomatto, Strack
and Tamuz, [2020) we have for arbitrary distributions P[ T]: if P[ T] stochastically dominates
Py+[T], then we must also have Ep[11[f(T)] > Ep,. [f(T)]. This immediately implies the
result. O

Proofs that 5-GROW E-variables claimed to be simple are simple We need to show this
for four cases mentioned in the main text. In all these cases we show this by establishing the
existence of a statistic T as needed to apply the second part of Proposition o]

1. One-Sided Exponential Families (Section w) In this case BD(©(4)) is a singleton, so W*
is the degenerate distribution putting all mass on §. We take T = #(Y) to be the sufficient
statistic for the family at the given sample size. That is, we re-represent our exponential family
in the canonical parameterization, and let 85 be the canonical parameter corresponding to
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0 > 0; we can choose the parameterization such that 8y = 0. With T = ¢(Y) the sufficient
statistic, we then have log ps(Y)/po(Y) = Bst(Y) +10g(Z(0)/Z(Bs)) = f(t(Y)); here Z(-)
is the normalization function. Since f; is strictly increasing with § (another general property
of exponential families) and f3y = 0, we have that f(T) is increasing in T. It thus remains to

show that P(ET] stochastically dominates P(ET] for § > 4. But this is immediate by basic rewriting,

giving Fg(t) = [ exp(ﬁt)dP(ET] (t)/ ]:i exp(ﬂt)dP(gT] , and then taking derivatives.

2. Two-Sided Normal Location Family (Section We take T = 72, the square of the empirical
mean. The result then follows by reasoning similarly to 4. below but is easier, hence we omit
details.

3. One-Sided normal with unknown variance (Section 5.4.3) Note first that E§ = ps(V)/po(V).
Thus, by expressing E-variables in terms of V we can re-represent the problem as having a
simple H, so that we can use Proposition@ We take T = t;(Y) to be the Student’s T-statistic.
Straightforward rewriting gives that, for § > 0, for all o, ps(V)/po(V) = f(T) for some

increasing function f of T. We thus need to show that the distribution of T under P(ET] is

stochastically dominated by its distribution under P for &' > J. But these are just two
noncentral t-distributions with v := n — 1 degrees of freedom and noncentrality parameter
p=~/nd vs. y =/nd respectively. Since a noncentral ¢ distribution with parameters (v, 4)
can be viewed as the distribution of (Z + u)/\/V /v where Z is standard normal and V is
an independent x* random variable, stochastic dominance is immediate from the fact that
4>0.

4. Two-sided normal with unknown variance (Section @) This case is similar to the previous
one but now we take T = (,(Y))? to be the absolute value of Student’s t-statistic t(Y).
Symmetry considerations dictate that E5 = ((1/2)p” (V) + (1/2)p5(V))/po (V). It is easy to
verify that this quantity only depends on T and is strictly increasing in T. Again by symmetry,
the distribution of T under Ps[T] is the same as its distribution under P_s[T] and then
also the same as its distribution under P(;/5)5-(1/2)s[ T]. It thus suffices to show that P5[ T] is
stochastically dominated by Ps/[ T] for 6" > & > 0. But the distribution of T under Py is now
the ratio of two independent y* distributions, a noncentral y* with one degree of freedom and
noncentrality § and a central y* with n — 1 degrees of freedom. By independence, it is sufficient
to prove that noncentral y*’s with one degree of freedom and noncentrality 6’ > § dominates a
noncentral y* with one degree of freedom and noncentrality 8. But this is straightforward by
differentiating the cumulative distribution functions.

Relating Eg( 5) and £ (5) In the two-sided case We have, on all samples,

log Eg () > max{log(1/2)Eg,log(1/2)Es},
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so that

61|§1\f Ev.p,[log Eg 5] > 1|n|£ max{EY p,[log = E5] Ey.. pg[log E* ]} (5.46)

1 *
Zmax{elglf Ey.p,[log - E&] 1|51f28EYNp9[log2E5]}

1 1
N . | 1.
> max {01:256 Ey.p,[log 2EQ], 0:16réf—§ Ey.p,[log 2E_5]}

1 1.,
= max {EYNPQ[log 7EE], Ey.p_, [log fE_Q]} ,

where the final equality is just condition (5.43) of the proposition above again for the one-sided
case, which above we already showed to hold for 1-dimensional exponential families. On the
other hand, letting W; be the prior that puts mass 1/2 on § and 1/2 on —§, we have:

el‘gf Ev.p,[10g Eg 5)] < Eg.w, Ev~p, [log Eg4)] (5.47)
Py, (Y)

=Eg.w;Ey.p, [logE%@]
1 1_,. 1 | -
1 1
< max {EY~P§[10g EEE]’EYNP*Q[lOg EEiQ]} + &Ens

where the first inequality is linearity of expectation and the second inequality follows because,
since Eg ) is an E-variable relative to {Py }, we can set g := Eg ) - po; then [q(Y)dA<1land

Eg(s) = 4(Y) /po(Y), and the inequality follows by the information inequality of information
theory. €, above is defined as:

l o 1 * o 1 *
&n = 5 (Eé[logEca(a) —log *Ea] + E;(;[logEQ@ ~log EE—Q])
= log2+ 5 (Ea[logE@)(a)/Eé] +E_g[log Eg4)/E*s])

=log2 -~ (D(PQ(Y)HPWQ(Y)) + D(P-(Y) [ Pwy (Y))).

Together, (5.46) and (5.47] show that E®( 9 is an E-variable whose worst-case growth rate is
always within ¢,, < log2 (‘1 bit") of that of the minimax optimal Eg (5)> moreover, for fixed §, ¢,
quickly converges to 0, since, for 6 € {3, -4}, if Y ~ Py, then with high probability, P_y/Pp will
be exponentially small in 7, so that D(Pp(Y)|Pw,(Y)) ~ —log(1/2) = log2.

5.E  Proofs and Details for Section

We first walk through the claims made in Section(s.4.3. The first claim is that under all Py , with
0 > 0,V has the same distribution, say Py, and under all Pyy[47,, with ¢ > 0, V has the same
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distribution, say Pys](V). To show this, it is sufficient to prove that for all 0, all § € R, under
all Ps ,, the distribution of V only depends on § but not on o. But this follows easily: for i € 1..n,
we define Y/ = Y;/o. Then Y/ is ~ N(§,1). But we can write V as a function of (Y/,...,Y}),
hence the distribution of V does not depend on ¢ either (note that at this stage, symmetry of
the prior is not yet required).

(we only need to show the first equality) is straightforward to show: one first notes that,
for every ¢ > 0,

/Uﬁwm,g(Y/c)wH(a) do ) ]ﬂﬁww’a(Y)wH(o)do
[y po.c(Y[e)wH(a)do [ poo(Y)wH(o)do ’

which follows easily by changing the domain of integration in the leftmost expression in both
numerator and denominator from ¢ to co and noting that this incurs the same factor ¢” in
both numerator and denominator, which therefore cancels. Since we assume Y; # 0, the first
equality in now follows by setting ¢ == Y.

Proof of Theorem Part 1. For 0 < a < b < oo, denote by W[,y the restricted Haar prior,
i.e. the probability distribution on ¢ with density

[a](0) = {; wogiza ifo€labl,
otherwise.
For notational convenience we abbreviate the joint distribution of ¢ and Y for effect size prior
W{[6] and restricted Haar prior W, 4] on ¢ to Py(s],[a,6] = Pws], Wios[o]- The Bayes factor
for effect size prior W[8] vs. effect size 0 at sample size n based on using the restricted Haar
prior W, ;) in both #,; and H,, and data Y will be denoted as

foe a,b] Pw[a (Y)Wub (G)dG

B Y)= .
[u’b]( ) [ge[a,b] PO,O(Y)W a,b] (‘7) do

The Bayes factor based on the right Haar prior can then be written as B[ o1(Y). From (s5.29),
we have for all o > 0 that

Pwis(V)

\' \4

D (P1[/V[]5] HP(E ]) = EVNPw[B] |: p/ (V) = EY“Pw[s],u [logB[O,m] (Y)] ° (548)
0

Since V is a coarsening of Y, by the information inequality (Cover and Thomas, [1991), we must
also have, for all priors W[a], W[d']:

D (Pugs),wiol [Po.wior) > D (Psy oo [P ay) = 2 (PR IBE). Gaao)

where we also used that the marginal distributions on V do not depend on ¢. Combining
and (5.49), we find that it suffices to prove the following lemma, which is done further below.
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Lemma 10. For all W[§] satisfying the condition of Theorem|s.6, for all ¢ > 0, we have:

lim D (s i1 | Po.fijii)) = Bx~pygsy., [10g Bo,co ()] (5.50)

Part 2. Fix W[] as in the theorem statement, and any corresponding W, as above. We
have:

inf  D(PY PPN < inf inf D(Pw|P
W[(;I]I:Ww ( W[é]H 0 )‘m}?w; W[UI]IEIW[F] (PwlPo.wie)

< inf inf _D(P P = inf D(PM|PIV]). :
> Wislwls] Wlolow[r] (Pwsy.wiot IPo.wie1) WisJew[e] ( wia) 1Fo ) (551
Here the first inequality is based on (5.49), the second is immediate and the third follows by
noting that, by Part 1, for any fixed W[8] € W[§], we have

. _ V]l 4 plV]
W[gl]lelgv[r] D(Pwis1,wio]|Po,w(o)) = D (PW[(;] |70 ) :

But (5.51) is equivalent to the desired result.

5.E.1  Proof of Lemmaliol

Define random variables U := \/n"' Y, Y2, Y:=n"' Y. Y; and T := Y/U € [-1,1] is an invariant,
i.e. a function of V. We will sometimes express U and T as functions of Y and freely write
U(Y), T(Y) when this notation is more convenient.

The Bayes factor By, ;,1(Y) depends on Y only through the functions U(Y) and T(Y). We
will therefore also write it, whenever convenient, as a function of these random variables, and
denote it as Bp,,41(U, T).

The proof will combine the following two (sub-) lemmas, whose proof is deferred to further
below. The first lemma allows us to conclude that, when restricted to events of small (marginal)
probability, the expectation of the log Bayes factor is also small.

The second lemma allows us to conclude that, as i — oo, the expected log Bayes factor uniformly
converges on'y € A;, where A; is a set that itself grows towards R”. Thus, while uniform
convergence for all y € R" is too much to ask for, remarkably we do get uniform convergence
on a ‘noncompact’ sequence of sets: the sets A; are not included in any compact set.

Lemma 11. [Uniform Integrability-Flavored Lemma] Let A be a measurable subset of R". We
have for all 0 < a < b < oo, W[ 8] as in the theorem statement, that:

1
Ey -y oy LL(¥ea) - (—108B1o,60] (Y))] < Piyio (a6 (Y € A) log Puoltan) (Y € 4) (5.52)

Suppose further that Es.y51[|6]**¢] < oo for some & > 0. Then

Ey.py 5100 | Livea) 108 Blao](Y)] < Puio) (ap) (Y € A)/09) . C (5.53)

were C is a constant depending on W[8], n (but not on a, b).
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Lemma 12. [Uniform Convergence Beyond Compactness] Let (a;,b;,c;,C;)ien be a se-
quence of numbers in R* such that for all i, ¢; >1and¢c; <1, ¢,a; < ¢;b; (hence also a; < b;),
and lim; e a; = 0,1im; 0o b; = 00,1im; 00 ¢; = 00,lim; o ¢; = 0, lim(¢;b; — ¢;a;) = oo (For
example, take a; =1/i,b; = i,c; =log(i +1),¢; = 1/log(i +1)). Then:

lim sup sup (log B(,, 4,1 (11, t) —log B[g,ee1 (1, 1)) = 0.

i»oo  te[-1,1],uela;c;,bic;]

The proof of Lemma [12is itself based on another key observation, which is an immediate
consequence of the fact that Wy, ;] is proportional to the Haar measure on [a, b]:

Proposition 13. [Change-of-Variables] We have for all u > 0, all t € [~1,1], B[, 4)(u, ) =
Brajup/u) (L t).

We now first show how the two lemmas imply the main result. Take any sequence (a;, b;, ¢;,¢;)
satisfying the requirements of Lemmal12] Let
A,‘ = {Y eR": c;ai < U(Y) < Elbl}

and let A; c R" be its complement. We have

EY"‘PW[S],[ai,b,»] [logB[ui,b,](Y) - lOgB[O,w](Y)] = f(’) + g(i)’
where
. [a b,](Y)
(1) =Eyepyis . o [1 e o ]
f Y~Pwis) a1 | H{YeAi} 108 o5 B[o -1 (Y)
J(Y)]
o]

8(i) = Evepyto o []l{YeAf} lo %83 (Y)

Now, take a; = 1/i,b; = i,¢, =log(i +1),¢; = 1/log(i +1). We already indicated in Lemma.
that this choice allows us to apply Lemmali2|to f (i), which will therefore converge toOasi — oo.
It thus remains to show that g(i) — 0. By Lemmawe have g(i) = o(Pw(s,a;,6:1(Y € A)).

It thus suffices to show that Pyy[s],14,,6,](Y € A;) — 0. For this, note that we can write:

= EUNW[ai,b,»]EYNPW[S],l []]'{UU(Y)<£ia[\/O'U(Y)>E,‘bi}:l
< W[a,-,bi](o' <¢;a;Vvo>7cib;)+ EU~W[,, b1 []]-{c ai<o<tib;} By~ ~Py[s]. [ {oU(Y)<c,aivoU(Y)>C;b; }]]
= Vv[a,v,b,-](o < gia,-) + W[a,-,b,v](a > Eibi) + PW[&],I(U < gia,-) + PW[&],I(U > Cibi),

where we used the union bound. Now, by our choice of (a;, b;, ¢ i Ci ), the first two probabilities
goto0asi— oo. And, since a;c; — 0 and ¢;b; - oo and U has a fixed distribution which has

— —2
no mass at U < 0 (to be precise, nU_ has a noncentral y* distribution), the third and fourth
term go to 0 as well. The result is proved.
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Remaining Proofs underlying Lemmalfio

Proof. (of Proposition 13) Changing the integration variable from o to p := o//u, we have:

f(;fg b1 n(_162+6ut/0— u?fa?) do‘dW[(s]

o=a U
/ab 1 ,—(n/2)u?/0? 4
]5 /Pp al;/uu ulp n(4s%aut/(up)”uz/(uzpz))( ) dpdw([9]

b/ n/2)-u?
S e/ (42) dp

B[a,b] (1/[, t) =

>

and the result follows by rewriting. O

Proof. (of Lemmalg) Part 2. Let Wy, ;1 | y be the posterior distribution on (&, o) based on prior
W8] x Wiq,p]- By straightforward rewriting we can re-express 1/B[, 5] (y) as an expectation
over the posterior Wi, 4] | y. We do this in the second step below, and then continue using
Jensen’s inequality:

/5 Jocta © o~ (7120°+8°[2-85/0)+n(8*/2-05/0) 4 ¢ AW [ 6]
o n(y?/202+82/2-8y/a) do dW[‘S]
oo

log Bap1(y) = -

= —10gE(s,0)~ Wy, ly

1 1 _ 1 _
< 5 nd* + En'E(5,o)~w[u,,,]\y [y-d/c] < iﬂ'E(a,oyw[amy [Iyl-18l/c].

We thus have, by Holder’s inequality, for ¢, 7 > 1 with 1/r +1/g = I:

Ey [1{yea) -10g Bro ) (Y, W[6])] < (Ev [1 {m}])l/ " (By (E(s.o)-wpov [(n/z)|?||5|/a])’)” '

_ n1l/r
< P(Y € A)/- (n/2) - (ExE(s,oy-wy, v (VI01/0)")

where in the final line we once again used Jensen. The expectation can be rewritten as:

BvE(o)-awly (V101/9) = Bowisgomnon B, ia-ri, (F101/0)°
= Eswo1Eo~wi, By on(o/n,1/n) (IY'lls)’
= n’rE(;Nw[(s]\5|rEY'~N(5,1)|Y,‘r
<2"n""Es w10 Eyranq,a) [(IY" = 8] +[0])7]
<2'n""Esowia) [|01 +18°C, ],

where we used that |a + b|" < (2max{|a], |b|})" < 2"(Ja|" + |b|") and that, if Y ~ Ny, then
E[|Y|"] < C, for a constant C, that does not depend on &. The result follows.
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Part 1. Recall that V denotes the maximal invariant. Its marginal distribution does not depend
on o, so for any 0 < a’ < b’ we can write:

Evopy o []]-{YEA} ) (—logB[o,oo](Y))] -
Plap10(V(Y))
Evepusy fan [I{YEA} ' (10g pw[a (V(Y))

(V(Y)|YeA) Pap)o(YeA)
P YeA)- Ey. log —PLe:b10
WioD (o] (Y € A) By pives [ o8 woes] (VOY) [ Y €A) 8 P rany (Y€ A)

Pyio)ab](Y € A) - (log Pl p0(Y € A) - lngw Lab(YeA)) <
= Py(6),[a,) (Y € A)log Py(s) [a,5) (Y € A)

where we used Jensen’s inequality. O

Proof. (of Lemma Using Proposition f13|and its consequence that By .. depends on the
invariant only, i.e. for all % > 0, B[g,c0] (%, ) = B[g,c0](1, ), We can rewrite the supremum as

sup (log B[“i/a;bi/ﬁ] (l, l’) - IOgB[O)oo] (1, l’)) <
te[-1,1], uelaic,,bic;]
sup (lOgB[C,C/] (Lt) - log B[O,w] (1, t)) <

te[-1,1],0<c<1/c;, ¢’>1/c;

sup (log[ le_(”/z)"_2 do —logf le_(”/z)‘j_Z da) <
0<c<1/c;, ¢'>1/c; [UN c 0

iz, L
(logf e /M7 dg ~log —e" 7 4g ):f(ci»ci)

/¢, O

for some function f(¢,c) with lim,_, . z,0 f(¢,¢) = 0 (note that the dependence on ¢ has

disappeared); the result follows. Here we used that, for general u,¢,0 < a < b,

log By, (1, t) —log Bpo,ee1 (1, t) =

jb‘ fg 1 nA(—lBZJré‘ut/o—%uz/oz) do dW[(S] | _[5[00 Lon (-18*+out/o-L1u*/o* )d dW[ :|
~log

aa 000

<
fub Lo—(n/2)u/a? 4o f°° Lo-(n/2)u?/0? 4o -

log[wle_("/z)'uz/"2 da—log/ le_(”/z)'”z/”2 do.
0 o a 0O

log

O

5.E.2  Why W, and W are achieved and have finite support in Section|s.4.5|

The minima are achieved because of the joint lower-semi-continuity of KL divergence (Posner,
1975)). To see that the supports are finite, note the following: for given sample size n, the
probability distribution Py is completely determined by the probabilities assigned to the
sufficient statistics Nj|,, Ny. This means that for each prior W € W(®,), the Bayes marginal
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Py can be identified with a vector of M, := (n, +1) - (n;, + 1) real-valued components. Every
such Py can also be written as a mixture of Py’s for 6 = (pap1, 4p1) € 1, a convex set. By
Carathéodory’s theorem we need at most M, components to describe an arbitrary Py, .

5.F Motivation for use of KL to define GROW sets

If there is more than a single parameter of interest, then a natural (but certainly not the
only reasonable!) divergence measure to use in (5.20) is to set d equal to the KL divergence
D(61 ||®0) = inngG@O D(91H90)

To see why, note that ¢ indicates the easiness of testing @ (&) vs. @¢: the larger ¢, the ‘further’ ®(¢)
from ©, and the larger the value of Gr(¢). The KL divergence is the only divergence measure
in which ‘easiness’ of testing ®(¢) is consistent with easiness of testing individual elements
of @,. By this we mean the following: suppose there exist 6, 8] € ®; with 0; # 0] achieving
equal growth rates GrR({6]}) = Gr({6;}) in the tests of the individual point hypotheses {6, }
vs @¢ and {0} vs. ¢ Then if d is not the KL it can happen that, for some € > 0, 6, € @(¢) yet
6, ¢ ©(e). With d equal to KL this is impossible. This follows immediately from Theorems.4,
Part 1, which tells us D(0;]®g) = Gr({0;}).



Chapter 6

Safe-Bayesian generalized linear
regression

Abstract

We study generalized Bayesian inference under misspecification, i.e. when the model is ‘wrong
but useful’ Generalized Bayes equips the likelihood with a learning rate #. We show that for
generalized linear models (GLMs), n7-generalized Bayes concentrates around the best approx-
imation of the truth within the model for specific # # 1, even under severely misspecified noise,
as long as the tails of the true distribution are exponential. We derive MCMC samplers for
generalized Bayesian lasso and logistic regression and give examples of both simulated and
real-world data in which generalized Bayes substantially outperforms standard Bayes.

6.1 Introduction

Over the last ten years it has become abundantly clear that Bayesian inference can behave quite
badly under misspecification, i.e., if the model F under consideration is ‘wrong but useful’
(Griinwald and Langford, 2007; Erven, Griinwald and Rooij, [2007; Miiller, 2013; Syring and
Martin, |2017; Yao et al.,|2018; Holmes and Walker, 2017; Griinwald and Van Ommen, 2017). For
example, Griinwald and Langford (2007) exhibit a simple nonparametric classification setting
in which, even though the prior puts positive mass on the unique distribution in F that is
closest in KL divergence to the data generating distribution P, the posterior never concentrates
around this distribution. Griinwald and Van Ommen (2017) give a simple misspecified setting
in which standard Bayesian ridge regression, model selection and model averaging severely
overfit small-sample data.

Griinwald and Van Ommen (2017) also propose a remedy for this problem: equip the likelihood
with an exponent or learning rate n (see below). Such a generalized Bayesian (also known
as fractional or tempered Bayesian) approach was considered earlier by e.g. Barron and Cover,
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1991; Walker and Hjort, |2002; Zhang, |2006b. In practice, # will usually (but not always — see
Section [6.5.1/below) be chosen smaller than one, making the prior have a stronger regularizing
influence. Griinwald and Van Ommen (2017) show that for Bayesian ridge regression and model
selection/averaging, this results in excellent performance, being competitive with standard
Bayes if the model is correct and very significantly outperforming standard Bayes if it is not.
Extending Zhang’s (2006;|2006b) earlier work, Griinwald and Mehta (2019) (GM from now
on) show that, under what was earlier called the %-central condition (Definition below),
generalized Bayes with a specific finite learning rate 7 (usually # 1) will indeed concentrate in
the neighborhood of the ‘best’ f € F with high probability. Here, the ‘best’ f means the one
closest in KL divergence to P.

Yet, three important parts of the story are missing in this existing work: (1) Can Griinwald-Van
Ommen-type examples, showing failure of standard Bayes (7 = 1) and empirical success of
generalized Bayes with the right #, be given more generally, for different priors m (say of lasso-
type (n(f) o< exp(~A| f|,)) rather than ridge-type 7(f) o exp(~A| f|2)), and for different
models, say for generalized linear models (GLMs)? (2) Can we find examples of generalized
Bayes outperforming standard Bayes with real-world data rather than with toy problems such
as those considered by Griinwald and Van Ommen? (3) Does the central condition — which
allows for good theoretical behavior of generalized Bayes — hold for GLMs, under reasonable
further conditions?

We answer all three questions in the affirmative: in Section below, we give (a) a toy
example on which the Bayesian lasso and the Horseshoe estimator fail; later in the chapter, in
Section |6.5/we also (b) give a toy example on which standard Bayes logistic regression fails,
and (c) two real-world data sets on which Bayesian lasso and Horseshoe regression fail; in all
cases, (d) generalized Bayes with the right 7 shows much better performance. In Section 6.3}
we show (e) that for GLMs, even if the noise is severely misspecified, as long as the distribution
of the predictor variable Y has exponentially small tails (which is automatically the case in
classification, where the domain of Y is finite), the central condition holds for some # > 0. In
combination with (e), GM’s existing theoretical results suggest that generalized Bayes with this
1 should lead to good results — this is corroborated by our experimental results in Section6.5.
These findings are not obvious: one might for example think that the sparsity-inducing prior
used by Bayesian lasso regression circumvents the need for the additional regularization induced
by taking an # < 1, especially since in the original setting of Griinwald and Van Ommen,
the standard Bayesian lasso (# = 1) succeeds. Yet, Example |§] below shows that under a
modification of their example, it fails after all. In order to demonstrate the failure of standard
Bayes and the success of generalized Bayes, we devise (in Section [6.4) MCMC algorithms (f)
for generalized Bayes posterior sampling for Bayesian lasso and logistic regression. (a)-(f) are
all novel contributions.

In Section [6.2] we first define our setting more precisely. Section gives a first example
of bad standard-Bayesian behavior and Section 6.2.2) recalls a theorem from GM indicating
that under the 7-central condition, generalized Bayes for # < 7 should perform well. We
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present our new theoretical results in Section[6.3. We next (Section|[6.4), present our algorithms
for generalized Bayesian posterior sampling, and we continue (Section to empirically
demonstrate how generalized Bayes outperforms standard Bayes under misspecification. All
proofs are in Appendix|6.A.

6.2 The setting

A learning problem can be characterized by a tuple (P, ¢, F), where F is a set of predictors, also
referred to as a model, P is a distribution on sample space Z,and £ : F x Z - Ru {oo} is a loss
function. We denote by £(z) = £(f, z) the loss of predictor f € 7 under outcome z € Z.1f Z ~
P, we abbreviate £(Z) to £;. In all our examples, Z = X x ). We obtain e.g. standard (random-
design) regression with squared loss by taking ) = R and F to be some subset of the class of all
functions f : X - Rand, for z = (x, y), £¢(x, y) = (y — f(x))?; logistic regression is obtained
by taking F as before, ) = {~1,1} and £¢(x, y) = log(1 + exp(—yf(x)). We get conditional
density estimation by taking {p(Y | X) : f € F} to be a family of conditional probability
mass or density functions (defined relative to some measure y), extended to n outcomes by the
i.i.d. assumption, and taking conditional log-loss £¢(x, y) = —~log p(y | x).

We are given an i.i.d. sample Z" = Z;, Z,,...,Z, ~ P where each Z; takes values in Z, and
we consider, as our learning algorithm, the generalized Bayesian posterior, also known as the
Gibbs posterior, I1,, on F, defined by its density

exp (-n 1y £4(z1)) - mo(f)
Jrexp (-1 2l tp(z:)) - mo(f)dp(f)

where 7 > 0 is the learning rate, and m is the density of some prior distribution Iy on JF relative
to an underlying measure p. Note that, in the conditional log-loss setting, we get that

Ty (f) = (6.1)

n

() o< [1(s(yi | )"0 (f), (6.2)

i=1

which, if # = 1, reduces to standard Bayesian inference. While GM’s result (quoted as Theorem|[6.1]
below) works for arbitrary loss functions, Theorem [6.2]and our empirical simulations (this
chapter’s new results) revolve around (generalized) linear models. For these models, can
be equivalently interpreted either in terms of the original loss functions /s or in terms of
the conditional likelihood p. For example, consider regression with £;(x, y) = (y - f(x))?
and fixed 7. Then (6.1) induces the same posterior distribution 7, (f) over F as does (6.2)
with the conditional distributions p(y|x) o exp(—(y — f(x))?, which is again the same as
with £ replaced by the conditional log-loss £ (x, y) = —log p(y|x), giving a likelihood
corresponding to Gaussian errors with a particular fixed variance; an analogous statement holds
for logistic regression. Thus, all our examples can be interpreted in terms of for a model
that is misspecified, i.e., the density of P(Y|X) is not equal to ps for any f € F. As is customary
(see e.g. Bartlett, Bousquet and Mendelson (2005)), we assume throughout that there exists an
optimal f* € F that achieves the smallest risk (expected loss) E[{«(Z)] = inf ;. E[{((Z)].
If F is a GLM, the risk minimizer again has additional interpretations: first, f* minimizes,
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among all f € F, the conditional KL divergence E(x,y).p[log (p( Y[X)/py( Y|X))] to the true
distribution P. Second, if there is an f € F with Ex y.p[Y | X] = f(X) (i.e. F contains the true
regression function, or equivalently, true conditional mean), then the risk minimizer satisfies

fr=r

6.2.1 Bad Behavior of Standard Bayes

Example 6.1. We consider a Bayesian lasso regression setting (Park and Casella, [2008)) with
random design, with a Fourier basis. We sample data Z; = (X;, Y;) i.i.d. ~ P, where P is defined

as follows: we first sample preliminary (X}, Y!) with X! P Uniform([-1,1]); the dependent
variable Y/ is set to Y/ = 0 + ¢;, with &; ~ N(0, 0%) for some fixed value of ¢, independently of
X]. In other words: the true distribution for (X}, Y/) is ‘zero with Gaussian noise’ Now we toss
a fair coin for each i. If the coin lands heads, we set the actual (X;, Y;) = (X}, Y/), i.e. we keep

the (X/, Y/) as they are, and if the coin lands tails, we put the pair to zero: (X;, Y;) = (0,0).

We model the relationship between X and Y with a p™ order Fourier basis. Thus, F = { Wk
B e R*P*'}, with fg(x) given by

(ﬁ’ % . (2’1/2, cos(x), sin(x), cos(2x), ...,sin(px))> ,

and the n-posterior is defined by with £ (x, y) = (y - fg(x))?; the prior is the Bayesian
lasso prior whose definition we recall in Section [6.4.1. Since our ‘true’ regression function
E[Y; | X;]is 0, in an actual sample around 50% of points will be noiseless, easy points, lying on
the true regression function. Since the actual sample of (X;, Y;) has less noise then the original
sample (X!, Y!), we would expect Bayesian lasso regression to learn the correct regression
function, but as we see in the blue line in Figure|6.1} it overfits and learns the noise instead
(later on (Figure|6.3]in Section|[6.5.1) we shall see that, not surprisingly, this results in terrible
predictive behavior). By removing the noise in half the data points, we misspecified the model:
we made the noise heteroscedastic, whereas the model assumes homoscedastic noise. Thus, in
this experiment the model is wrong. Still, the distribution in F closest to the true P, both in
KL divergence and in terms of minimizing the squared error risk, is given by the conditional
distribution corresponding to Y; = 0 + ¢;, where ¢; is i.i.d. ~ A'(0, 0*). While this element of
F is in fact favored by the prior (the lasso prior prefers f with small |f];), nevertheless, for
small samples, the standard Bayesian posterior puts most if its mass at f with many nonzero
coefficients. In contrast, the generalized posterior with 5 = 0.25 gives excellent results
here. To learn this # from the data, we can use the Safe-Bayesian algorithm of Griinwald (2012).
The result is depicted as the red line in Figure[6.1] Implementation details are in Section [6.4.1]
and Appendix|[6.D} the details of the figure are in Appendix|6.E]

The example is similar to that of Griinwald and Van Ommen (2017), who use multidimensional
X and a ridge (normal) prior on || 3|; in their example, standard Bayes succeeds when equipped
with a lasso prior; by using a trigonometric basis we can make it ‘fail’ after all. Griinwald and
Van Ommen (2017) relate the potential for the overfitting-type of behavior of standard Bayes, as
well as the potential for full inconsistency (i.e. even holding as n — oo) as noted by Griinwald
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Figure 6.1: Predictions of standard Bayes (blue) and SafeBayes (red), n = 50, p = 101

and Langford (2007) to properties of the Bayesian predictive distribution

ﬁ(YrHl |Xn+1,Zn) = LPf(Yn+1 | Xn+1)7fn(f | Z")dP(f)

Being a mixture of f € F, p(Y,41 | Xu11), is a member of the convex hull of densities F but
not necessarily of F itself. As explained by Griinwald and Van Ommen, severe overfitting may
take place if p(Yor1 | Xp41, Z") is far’ from any of the distributions in F. It turns out that
this is exactly what happens in the lasso example above, as we see from Figure[6.2] (details in
Appendix|6.E). This figure plots the data points as (X;, 0) to indicate their location; we see that
the predictive variance of standard Bayes fluctuates, being small around the data points and
large elsewhere. However, it is obvious that for every density p  in our model 7, the variance
is fixed independently of X, and thus p(Y,.1 | Xy+1,Z") is indeed very far from any particular
ps with f € F. In contrast, for the generalized Bayesian lasso with # = 0.25, the corresponding
predictive variance is almost constant; thus, at the level # = 0.25 the predictive distribution
is almost ‘in-model’ (in machine learning terminology, we may say that p is ‘proper’ (Shalev-
Shwartz and Ben-David, 2014), and the overfitting behavior then does not occur anymore.

6.2.2 When Generalized Bayes Concentrates

Having just seen bad behavior for 5 = 1, we now recall some results from GM. Under some
conditions, GM show that generalized Bayes, for appropriately chosen #, does concentrate at
fast rates even under misspecification. We first recall (a very special case of) the asymptotic
behavior under misspecification theorem of GM. GM bound (a) the misspecification metric d;
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Figure 6.2: Variance of Predictive Distribution p(Yn+1 | Xu+1, Z") for a single run with n = 50.

in terms of (b) the information complexity. The bound (c) holds under a simple condition on
the learning problem that was termed the central condition by Van Erven et al. (2015). Before
presenting the theorem we explain (a)-(c). As to (a), we define the misspecification metric ds
in terms of its square by

, 2
GG =2 (1= [ Vo @rra@d)
which is the (2/7-scaled) squared Hellinger distance between p;; and p 5. Here, a density
Py is defined as

exp(-nLys(2))
[exp(=71L£(Z))]
where Ly = {7 — £« is the excess loss of f. GM show that d;; defines a metric for all 77 > 0. If

7 =1, £ is log-loss, and the model is well-specified, then it is straightforward to verify that
Py = pys-and so (1/2) - d;; becomes the standard squared Hellinger distance.

pra(2) = P2

As to (b), we denote by IC,, , (II) the information complexity, defined as:

1 & KL(II, | I1
IC”’W(HO) = E£~H,, [n ZLf(Z,-)] + w _
i=1 n-n
1 n n
n log/ mo(f)e =R I dp(f) =305 (Z0), (6.3)
" d i=1

where f denotes the predictor sampled from the posterior I, and KL denotes KL divergence;
we suppress dependency of IC on f* in the notation. The fact that both lines above are equal
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(noticed by, among others, Zhang (2006b); GM give an explicit proof) allows us to write the
information complexity in terms of a generalized Bayesian predictive density which is also
known as extended stochastic complexity (Yamanishi, [1998). It also plays a central role in the
field of prediction with expert advice as the mix-loss (Van Erven et al., |2015; Cesa-Bianchi and
Lugosi, [2006) and coincides with the minus log of the standard Bayesian predictive density if
n = 1and ¢ is log-loss. It can be thought of as a complexity measure analogous to VC dimension
and Rademacher complexity.

As to (c), GM’s result holds under the central condition ((Li,1999); name due to Van Erven et al.,
2015) which expresses that, for some fixed 77 > 0, for all fixed f, the probability that the loss of f
exceeds that of the optimal f* by a/7 is exponentially small in a:

Definition 6.1 (Central Condition, Def. 7 of GM). Let 77 > 0. We say that (P, £, F) satisfies the
1-strong central condition if, for all f e F: E [e_”Lf] <1l

As straightforward rewriting shows, this condition holds automatically, for any % < 1in the
density estimation setting, if the model is correct; Van Erven et al. (2015) provide some other
cases in which it holds, and show that many other conditions on ¢ and P that allow fast rate
convergence that have been considered before in the statistical and on-line learning literature,
such as exp-concavity (Cesa-Bianchi and Lugosi, 2006), the Tsybakov and Bernstein conditions
(Bartlett, Bousquet and Mendelson, [2005; Tsybakov, 2004) and several others, can be viewed as
special cases of the central condition; yet they don’t discuss GLMs. Here is GM’s result:

Theorem 6.1 (Theorem 10 from GM). Suppose that the 1j-strong central condition holds. Then
forany 0 < n <7, the metric d satisfies

Ez-pEf.n, [d%(f*,i)] < CyEznep [IC,,, ()]

with C, = n/( = n). In particular, C, < oo for 0 < n <7, and C, = 1 for n = 77/2.

Thus, we expect the posterior to concentrate at a rate dictated by E[IC,, , ] in neighborhoods
of the best (risk-minimizing, KL optimal, or even true regression function) f*. The misspe-
cification metric d% on the left hand side is a weak metric, however, in Appendix@we show
that we can replace it by stronger notions such as KL-divergence, squared error or logistic
loss. Theorem|6.1]generalizes previous results (e.g. Zhang (2006a) and Zhang (2006b)) to the
misspecified setting. In the well-specified case, Zhang, as well as several other authors (Walker
and Hjort, 2002; Martin, Mess and Walker, 2017), state a result that holds for any 7 < 1 but not
# = L. This suggests that there is an advantage to taking # slightly smaller than one even when
the model is well-specified (for more details see Zhang (2006a)).

To make the theorem work for GLMs under misspecification, we must verify (a) that the
central condition still holds (which is in general not guaranteed) and that (b) the information
complexity is sufficiently small. As to (a), in the following section we show that the central con-
dition holds (with 7 usually # 1) for 1-dimensional exponential families and high-dimensional
generalized linear models (GLMs) if the noise is misspecified, as long as P has exponentially
small tails; in particular, we relate 7 to the variance of P. As to (b), if the model is correct (the
conditional distribution P(Y | X) has density f equal to ps with f € F), where F represents
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a d-dimensional GLM, then it is known (see e.g. Zhang (2006b)) that, for any prior I, with
continuous, strictly positive density on F, the information complexity satisfies

Ezi.p[IC,,(I)] = O (% -log n) (6.4)

which leads to bounds within a log-factor of the minimax optimal rate (among all possible
estimators, Bayesian or not), which is O(d/n). While such results were only known for the
well-specified case, in Proposition 3 below we show that, for GLMs, they continue to hold for
the misspecified case.

6.3 Generalized GLM Bayes

Below we first show that the central condition holds for natural univariate exponential families;
we then extend this result to the GLM case, and establish bounds in information complexity of
GLMs. Let the class F = {pg : 6 € @} be a univariate natural exponential family of distributions
on Z =), represented by their densities, indexed by natural parameter 6 € ® c R (Barndorft-
Nielsen, 1978). The elements of this restricted family have probability density functions

Po(y) = exp(8y - F(8) +7(y)), (6.5)

for log-normalizer F and carrier measure r. We denote the corresponding distribution as Py.
In the first part of the theorem below we assume that © is restricted to an arbitrary closed
interval [0, 8] with @ < @ that resides in the interior of the natural parameter space ® =
{6 : F(0) < oo}. Such O allow for a simplified analysis because within @ the log-normalizer
F as well as all its derivatives are uniformly bounded from above and below; see (6.7) in
Appendix @ As is well-known (see e.g. Barndorft-Nielsen (1978)), exponential families can
equivalently be parameterized in terms of the mean-value parameterization: there exists a 1-to-1
strictly increasing function y : ® — R such that Ey.p,[Y] = (0). As is also well-known,
the density p s+ = pg+ within F minimizing KL divergence to the true distribution P satisfies
u(6*) = Ey.p[Y], whenever the latter quantity is contained in y(®) (Griinwald, 2007). In
words, the best approximation to P in F in terms of KL divergence has the same mean of Y as
P.

Theorem 6.2. Consider a learning problem (P, £, F) with £y(y) = —log po(y) the log loss and
F ={po: 0 € ©} aunivariate exponential family as above.

(1). Suppose that © = [0, 0] is compact as above and that 0* = arg min, g D(P| Py) liesin ®. Let
0 > 0 be the true variance Ey..p(Y —E[Y])? and let (0*)* be the variance Ey.p,, (Y ~E[Y])*
according to 6*. Then

(i) for all 7y > (c*)?/0?, the 5j-central condition does not hold.

(ii) Suppose there exists 4° > 0 such thgté = Ep[exp(n°|Y])] < oc. Then there exists ij > 0,
depending only on 1°, C, 0 and 0 such that the 7j-central condition holds. Moreover,

(iii), for all § > 0, thereis an & > 0 such that, for ally < (6*)*/0* -8, the 7j-central condition
holds relative to the restricted model F, = {pg: 0 € [0 —¢,0% + €]}
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(2). Suppose that P is Gaussian with variance 6> > 0 and that F indexes a full Gaussian location
family. Then the 7j-central condition holds iff 7 < (¢*)*/c?.

We provide (iii) just to give insight — ‘locally, i.e. in restricted models that are small neighbor-
hoods around the best-approximating 0, the smallest 7 for which the central condition holds
is determined by a ratio of variances. The final part shows that for the Gaussian family, the
same holds not just locally but globally (note that we do not make the compactness assumption
on O there); we warn the reader though that the standard posterior (5 = 1) based on a model
with fixed variance ¢* is quite different from the generalized posterior with # = (¢*)?/0* and
a model with variance 0% (Griinwald and Van Ommen, |2017). Finally, while in practical cases
we often find 7 < 1 (suggesting that Bayes may only succeed if we learn ‘slower’ than with the
standard # = 1, i.e. the prior becomes more important), the result shows that we can also very
well have 77 > 1; we give a practical example at the end of Section[6.5. Theorem [6.2]is new and
supplements Van Erven et al.’s (2015) various examples of F which satisfy the central condition.
In the theorem we require that both tails of Y have exponentially small probability.

Central Condition: GLMs Let F be the generalized linear model (McCullagh and Nelder,
1989) (GLM) indexed by parameter 5 € B c R? with link function ¢g:R = R. By definition this
means that there exists a set X c R? and a univariate exponential family Q = {pg : 6 € @} on
Y of the form (6.5) such that the conditional distribution of Y given X = x is, for all possible
values of x € X, a member of the family Q, with mean-value parameter g~'(($, x)). Then the
class F can be written as F = {pg : 8 € B}, a set of conditional probability density functions
such that

pp(y | x) = exp(0.(B)y - F(0:(B)) + (1)), (6.6)

where 0, (B) = ™ (g ({B,x))), and u', the inverse of u defined above, sends mean para-
meters to natural parameters. We then have Ep [Y | X] = g7' ({8, X)), as required.

Proposition 3. Under the following three assumptions, the learning problem (P, {, F) with F
as above satisfies the 1j-central condition for some 11 > 0 depending only on the parameters of the
problem:

1. (Conditions on g): the inverse link function g~' has bounded derivative on the domain
B x X, and the image of the inverse link on the same domain is a bounded interval in the
interior of the mean-value parameter space {y € R : u = Ey.4[Y] : q € Q} (for all
standard link functions, this can be enforced by restricting B and X to an (arbitrarily large
but still) compact domain).

2. (Condition on ‘true’ P): for some n > 0 we have
sup.exEv-p[exp(n|Y]) [ X = x] < co.
3. (Well-specification of conditional mean): there exists B° € Bsuch thatE[Y | X] = g7 ({B°, X)).
A simple argument (differentiation with respect to 8) shows that under the third condition, it
must be the case that ° = *, where * € Bis the index corresponding to the density p s+ = pg-

within F that minimizes KL divergence to the true distribution P. Thus, our conditions imply
that F contains a * which correctly captures the conditional mean (and this will then be the
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risk minimizer); thus, as is indeed the case in Example [6.1] the regression function must be
well-specified but the noise can be severely misspecified.

We stress that the three conditions have very different statuses. The first is mathematically
convenient; it can be enforced by truncating parameters and data, which is awkward but may
not lead to substantial deterioration in practice. Whether it is even really needed or not is not
clear (and may in fact depend on the chosen exponential family). The second condition is
really necessary — as can immediately be seen from Definition 6.1} the strong central condition
cannot hold if Y has polynomial tails and for some f and x, £;(x, Y) increases polynomially in
Y (in Section 6 of their paper, GM consider weakenings of the central condition that still work
in such situations). For the third condition, however, we suspect that there are many cases in
which it does not hold yet still the strong central condition holds; so then the GM convergence
result would still be applicable under ‘full misspecification’; investigating this will be the subject
of future work.

GLM Information Complexity ~To apply Theorem|6.1]to get convergence bounds for expo-
nential families and GLMs, we need to verify that the central condition holds (which we just
did) and we need to bound the information complexity, which we proceed to do now. It turns
out that the bound on IC,, , of O((d/n)logn) of (6.4) continues to hold unchanged under
misspecification, as is an immediate corollary of applying the following proposition to the
definition of IC,,,, given above (6.3):

Proposition 4. Let (P, ¢, F) be a learning problem with F a GLM satisfying Conditions 1-3
above. Then for all f € F, Ex y.p[Lf] = EX)YNPI* [Lf].

This result follows almost immediately from the ‘robustness property of exponential families’
(Chapter 19 of Griinwald (2007)); for convenience we provide a proof in Appendix @ The
result implies that any bound in IC,, ,, (IT ) for a particular prior in the well-specified GLM case,
in particular (6.4), immediately transfers to the same bound for the misspecified case, as long
as our regularity conditions hold, allowing us to apply Theorem 6.1]to obtain the parametric
rate for GLMs under misspecification.

6.4 MCMC Sampling

Below we devise MCMC algorithms for obtaining samples from the #-generalized posterior dis-
tribution for two problems: regression and classification. In the regression context we consider
one of the most commonly used sparse parameter estimation techniques, the lasso. For classi-
fication we use the logistic regression model. In our experiments in Section|[6.5} we compare
the performance of generalized Bayesian lasso with Horseshoe regression (Carvalho, Polson
and Scott, |2010). The derivations of samplers are given in Appendix|[6.D}

6.4.1 Bayesian lasso regression

Consider the regression model Y = X3 + ¢, where f§ € R? is the vector of parameters of
interest, Y € R", X e R”*?, and ¢ ~ N/(0, 0?1, is a noise vector. The Least Absolute Shrinkage
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and Selection Operator (LASSO) of Tibshirani (1996) is a regularization method used in
regression problems for shrinkage and selection of features. The lasso estimator is defined as
Blasso = arg min, | Y-XB|3+A| B, where |- |1, | |2 are [; and I, norms correspondingly. It can
be interpreted as a Bayesian posterior mode (MAP) estimate when the priors on f3 are given by
independent Laplace distributions. As discovered by Park and Casella (2008), the same posterior
on f3 is also obtained by the following Gibbs sampling scheme: set # = 1 and denote D, =
diag(i,...,7,). Also,leta = 2(n-1)+£+aand b, = (Y - XB)"(Y - XB)+1B" D, 'f+y,
where «,y > 0 are hyperparameters. Then the Gibbs sampler is constructed as follows.

B~N (M X"Y,0°M,),

o* ~ Inv-Gamma (a, b,) ,
72 ~1G (\/1202/B2,12),

where IG is the inverse Gaussian distribution and M, := (yX” X + D,™")"L. Following Park and
Casella (2008), we put a Gamma prior on the shrinkage parameter A. Now, in their paper Park
and Casella only give the scheme for 7 = 1, but, as is straightforward to derive from their paper,
the scheme above actually gives the #-generalized posterior corresponding to the lasso prior for
general 77 (more details in Appendix[6.D). We will use the Safe-Bayesian algorithm for choosing
the optimal # developed by Griinwald and Van Ommen (2017) (see Appendix [@) The code
for Generalized- and Safe-Bayesian lasso regression can be found in the CRAN R-package
‘SafeBayes’ (De Heide, 2016).

Horseshoe estimator The Horseshoe prior is the state-of-the-art global-local shrinkage prior
for tackling high-dimensional regularization, introduced by Carvalho, Polson and Scott (2010).
Unlike the Bayesian lasso, it has flat Cauchy-like tails, which allow strong signals to remain
unshrunk a posteriori. For completeness we include the horseshoe in our regression comparison,
using the implementation of Van der Pas et al. (2016).

6.4.2 Bayesian logistic regression

Consider the standard logistic regression model {f3 : § € R}, the data Y;,..., Y, € {0,1}
are independent binary random variables observed at the points X = (Xj,...,X,) € R™/
with
eXi B
P (Yi=1[X;)=pp (1] X;) = 2 oXF

The standard Bayesian approach involves putting a Gaussian prior on the parameter § ~
N (b, B) with mean b € R? and the covariance matrix B € RF*?. To sample from the #-
generalized posterior we modify a Pélya-Gamma latent variable scheme described in Polson,
Scott and Windle (2013). We first introduce latent variables w;,...,w, € R, which will be
sampled from Polya-Gamma distribution (constructed to yield a simple Gibbs sampler for
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Bayesian logistic regression, for more details see Polson, Scott and Windle (2013)). Let

Q = diag{wy, ..., w0y},

k= (Y1-1/2,...,Y, -1/2)7,
Vo= (XTQX +B™")7, and
my = Vo(n X"+ B'b).

Then the Gibbs sampler for #-generalized posterior is given by
wi ~PG(1, X[ B), B~ N(ma, Vo),

where PG is the Polya-Gamma distribution.

6.5 Experiments

Below we present the results of experiments that compare the performance of the derived Gibbs
samplers with their standard counterparts. More details/experiments are in Appendix[6.E|

6.5.1 Simulated data

Regression In our experiments we focus on prediction, and we run simulations to determine
the square-risk (expected squared error loss) of our estimate relative to the underlying distri-
bution P: E(x,yy.p(Y — X$)?, where X8 would be the conditional expectation, and thus the
square-risk minimizer, if § would be the true parameter (vector).

Consider the data generated as described in Example[6.1] We study the performance of the
n-generalized Bayesian lasso with 7 chosen by the Safe-Bayesian algorithm (we call it the
Safe-Bayesian lasso) in comparison with two popular estimation procedures for this context:
the Bayesian lasso (which corresponds to #=1), and the Horseshoe method. In Figure[6.3]the
simulated square-risk is plotted as a function of the sample size for all three methods. We average
over enough samples so that the graph appears to be smooth (25 iterations for SafeBayes, 1000
for the two standard Bayesian methods). It shows that both the standard Bayesian lasso and the
Horseshoe perform significantly worse than the Safe-Bayesian lasso. Moreover we see that the
risks for the standard methods initially grows with the sample size (additional experiments not
reported here suggest that Bayes will ‘recover’ at very large #).

Classification We focus on finding coefficients  for prediction, and our error measure
is the expected logarithmic loss, which we call log-risk: E(x y).p [— logLig(Y | X )], where

Lig(Y|X) = e"¥ ‘B J(1+eX Tﬁ). We start with an example that is very similar to the previous
one. We generate a n x p matrix of independent standard normal random variables with p = 25.
For every feature vector X; we sample a corresponding Z; ~ N (0, 0%), as before, and we
misspecify the model by putting approximately half of the Z; and the corresponding X; ; to
zero. Next, we sample the labels Y; ~ Binom(exp(Z;)/(1 + exp(Z;)). We compare standard
Bayesian logistic regression (77 = 1) to a generalized version ( = 0.125). In Figure[6.4 we plot
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Figure 6.3: Simulated squared error risk (test error) with respect to P as function of sample size for the wrong-model
experiments of Section|[6.5.1using the posterior predictive distribution of the standard Bayesian lasso (green, solid), the
Safe-Bayesian lasso (red, dotted), both with standard improper priors, and the Horseshoe (blue, dashed); and 201 Fourier
basis functions.

the log-risk as a function of the sample size. As in the regression case, the risk for standard
Bayesian logistic regression (# = 1) is substantially worse than the one for generalized Bayes
(n = 0.125). Even for generalized Bayes, the risk initially goes up a little bit, the reason being
that the prior is foo good: it is strongly concentrated around the risk-optimal f* = 0. Thus,
the first prediction made by the Bayesian predictive distribution coincides with the optimal
(B = 0) prediction, and in the beginning, due to noise in the data, predictions will first get
slightly worse. This is a phenomenon that also applies to standard Bayes with well-specified
models; see for example Griinwald and Halpern, 2004, Example 3.1.

Even for the well-specified case it can be beneficial to use 7 # 1. It is easy to see that the max-
imum a posteriori estimate for generalized logistic regression corresponds to the ridge logistic
regression method (which penalizes large || 8]|,) with the shrinkage parameter A = 1!, However,
when the the prior mean is zero but the risk minimizer 8* is far from zero, penalizing large
norms of f is inefficient, and we find that the best performance is achieved with # > L.

6.5.2 Real World Data

We present two examples with real world data to demonstrate that bad behavior under mis-
specification also occurs in practice. For these data sets, we compare the performance of
Safe-Bayesian lasso and standard Bayesian lasso. As the first example we consider the data of
the daily maximum temperatures at Seattle Airport as a function of the time and date (source:
R-package weatherData, also available at www.wunderground. com). A second example is
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Figure 6.4: Simulated logistic risk as function of sample size for wrong-model experiments of Section|6.5.1 using posterior
predictive distribution of standard Bayesian logistic regression (green, solid), and generalized Bayes (1 = 0.125, red, dotted)
with 25 noise dimensions.

Horse-shoe Bayesian lasso  SafeBayes lasso
MSE ((°C)?) 6.53 6.16 6.04
MSE ((ppm)?) | 1169 1201 1142

Table 6.1: Mean square errors for predictions on the Seattle and London data sets of Section

London air pollution data (source: R-package Openair, for more details see Carslaw and Rop-
kins (2012) and Carslaw (2015))). Here the quantity of interest is the concentration of nitrogen
dioxide (NO,), again as a function of time and date. In both settings we divide the data into
a training set and a test set and focus on the prediction error. In both examples, SafeBayes
picks an 7 strictly smaller than one. Also, for both data sets the Safe-Bayesian lasso clearly
outperforms the standard Bayesian lasso and the Horseshoe in terms of mean square prediction
error, as seen from Table[6.1] (details in Appendix|6.E).

6.6 Future work

We provided both theoretical and empirical evidence that #-generalized Bayes can significantly
outperform standard Bayes for GLMs. However, the empirical examples are only given for
Bayesian lasso linear regression and logistic regression. In future work we would like to devise
generalized posterior samplers for other GLMs and speed up the sampler for generalized
Bayesian logistic regression, since our current implementation is slow and (unlike our linear
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regression implementation) cannot deal with high-dimensional (and thus, real-world) data
yet. Furthermore, the Safe-Bayesian algorithm of Griinwald, 2012, used to learn #, enjoys good
theoretical performance but is computationally very slow. Since learning # for which the central
condition holds (preferably the largest possible value, since small values of # mean slower
learning) is essential for using generalized Bayes in practice, there is a necessity for speeding
up SafeBayes or finding an alternative. A potential solution might be using cross-validation
to learn #, but its theoretical properties (e.g. satisfying the central condition) are yet to be
established.
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6.A Proofs
6.A.1 Proof of Theorem|6.2]

The second part of the theorem about the Gaussian location family is a straightforward calcula-
tion, which we omit. As to the first part (Part (i)—(iii)), we will repeatedly use the following fact:
for every © that is a nonempty compact subset of the interior of @, in particular for ® = [6, 0]

with 6 < 0 both in the interior of ©, we have:

—oo < inf F(0) < sup F(0) < o0
0O 0c®

—o0 < é?éF (0) < ZIEJEF (0) < o0 (6.7)
0 < inf F"(0) < sup F"(6) < oo.
0c® 0ec®

Now, let 0, 6% € ®. We can write

n
E [e_ﬂ(&)—fe*)] =Ey.p [(;::*((Y;))) ] = exp (—G(ﬂ(@ — 6*)) + ﬂF(G*) - I’IF(G)) . (68)

where G(1) = —logEy..p [exp(AY)]. If this quantity is —oo for all 7 > 0, then (i) holds trivially.
If not, then (i) is implied by the following statement:

*\2
limsup {n : forall 6 € [6* —¢,0* +¢], E[exp(nL,,)] <1} = (") .

2 (6.9)
=0

Clearly, this statement also implies (iii). To prove (i), (ii) and (iii), it is thus sufficient to prove
(ii) and . We prove both by a second-order Taylor expansion (around 6*) of the right-hand

side of (6.8).

Preliminary Facts. By our assumption there isa #° > 0 such that E[exp(#°[Y])] = C < 0. Since
0* € ® = [0, 0] we must have for every 0 < 1 < 1°/(2|6 — 0]), every 6 € ©,

Efexp(27(6 - 67) - Y)] < E[exp(27|6 - 67| - [Y])]
< Elexp(r°(10 - 071/10 - 6]) - [Y])]

IN
g ol

AN

(6.10)
The first derivative of the right of is:

nE [(Y- F(0))exp(n((0-6*)Y + F(6") - F(e)))] . (6.11)
The second derivative is:

E [(—r]F"(H) +7 (Y = F'(0))?) - exp(n((6 - 0)Y + F(67) - F(e)))] . (6.12)
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We will also use the standard result (Griinwald, 2007; Barndorff-Nielsen, 1978) that, since we
assume 0% € O,

E[Y]=Eyep, [Y]=p(6%); forall@e®:F(0)=u(8); F"(0)=Ey.p(Y-E(Y))>
(6.13)
the latter two following because F is the cumulant generating function.

Part (ii). We use an exact second-order Taylor expansion via the Lagrange form of the remainder.
We already showed there exist #” > 0 such that, forall 0 < 5 < %', all 6 € ®, E[exp(25(6 -
0*)Y)] < co. Fix any such #. For some 0" € {(1- )8 + a8*: a € [0, 1]}, the (exact) expansion
is:

E [e—n(ee—zm] =1+7(0-0")E[Y-F(6%)]- g(e -0*)*F"(9")...
E [exp(q((@' —0*)Y + F(6) - F(e')))] .
ot ’77(9 ~ 0 VE[(Y-F(8))" - exp(n((6' - 6)Y + F(6") - F(6")))].

Defining A = 6’ — 0, and since F'(6*) = E[Y] (see (6.13)), we see that the central condition is
equivalent to the inequality:

HE[(Y — F'(6"))%e" ] < F"(6")E ["7].

From Cauchy-Schwarz, to show that the #-central condition holds it is sufficient to show
that

nf[ (¥ =F(@))],, ) 1€, oy < F7(6DE[e"],

which is equivalent to
FII(G/)E [quY]
< .
! VEIr-F@) e[
We proceed to lower bound the RHS by lower bounding each of the terms in the numerator and

upper bounding each of the terms in the denominator. We begin with the numerator. F'(8) is
bounded by (6.7). Next, by Jensen’s inequality,

E [exp(7AY)] > exp(E[7A - Y]) > exp(-7°|0 - 6]|u(6")])

is lower bounded by a positive constant. It remains to upper bound the denominator. Note that
the second factor is upper bounded by the constant C in (6.10). The first factor is bounded by
a fixed multiple of E|Y|* + E[F’(6)*]. The second term is bounded by (6.7), so it remains to
bound the first term. By assumption E[exp(#°|Y])] < C and this implies that E|Y*| < a* + C
for any a > e such that a* < exp(#°a); such an a clearly exists and only depends on #°.

(6.14)

We have thus shown that the RHS of is upper bounded by a quantity that only depends
on C, 1° and the values of the extrema in (6.7), which is what we had to show.

Proof of (iii). We now use the asymptotic form of Taylor’s theorem. Fix any # > 0, and pick any
0 close enough to 68” so that is finite for all " in between 6 and 0*; such a 6 # 8* must
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exist since for any § > 0, if |§ — 6*| < 8, then by assumption must be finite for all 7 < #°/4.
Evaluating the first and second derivative (6.11) and (6.12) at 6 = 6* gives:

E[e )] =1+ 4(0 - 0°)E[Y - F'(67)]...
2

- (’7(9 -0°)F"(0%) - T (0- 67 E[(¥ - F'(G*))Z]) +h(0)(6-67)

—1—7(9 0%)*F"(0%) + - U (9 0*)’E[(Y - F'(6*))*] + h(6)(6 - 6%)%,
where h(0) is a function satisfying 11m9_>9* h(6) = 0, where we again used (6.13), i.e. that
F'(6*) = E[Y]. Using further that 0? = E[(Y - F'(6*))?] and F”(6*) = (¢*)?, we find that
E[etoto)] < 1iff

n n
—5(0 - 0%)* (o) + 7(e -0)* 6>+ h(0)(0-60%)* <o0.

It follows that for all § > 0, there is an € > 0 such that forall 6 € [0* —¢, 0% + ], all 7 > 0,
2

%02 < ﬁ(or*)2 -0=E [e_”(z"_%*)] <1 (6.15)
o2
?0' ( )2 +0 = E[ —1(lo= es*)] >1 (616)
The condition in (6.15) is implied 1f:
(c*)* 28
0 < -—.
<=5 no?

Setting C = 462/(0*)* and 55 = (1 - C8)(0*)?*/0* we find that for any § < (c*)*/(80?),
we have 1 — C§ > 1/2 and thus 75 > 0 so that in particular the premise in is satisfied
for 7. Thus, for all small enough §, both the premise and the conclusion in hold for
fs > 0; since limgyo 175 = (0)?/0?, it follows that there is an increasing sequence 771y, ()5 - - -
converging to (¢*)?/o? such that for each 7;), there is £(;) > 0 such that for all § € [6* -
&), 0" +e;y ], E [e7 (fo=te)] < 1. Tt follows that the lim sup in (6.9) is at least (¢*)?/0?. A
similar argument (details omitted) using shows that the lim sup is at most this value; the
result follows.

6.A.2 Proof of Proposition 4]

For arbitrary conditional densities p’(y | x) with corresponding distribution P’ | X for
which

Ep[Y]X] = g7 (B, X), (617)
and densities ps+ = pg+ and pg with B, B € B, we can write:
s LT ) -y - 1og L0
ey tog 2 | - 2 0y - oy -0 D) | x

= Ex-p [(0x(B*) ~ 0x(B))g™ (B X]a) -
- ~log F(6x(B")) +log F(6x(B)) | X],
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where the latter equation follows by (6.17). The result now follows because (6.17) both holds for
the ‘true’ P and for Py.

6.A.3 Proof of Proposition[3,

The fact that under the three imposed conditions the 7-central condition holds for some 77 > 0
is a simple consequence of Theorem [6.2} Condition 1 implies that there is some compact ©
such that for all x € X, § € B, 6,(B) € ©. Condition 3 then ensures that 6, (f3) lies in the
interior of this ®. And Condition 2 implies that 7 in Theorem [6.2]can be chosen uniformly for
allx e X.

6.B Excess risk and KL divergence instead of generalized
Hellinger distance

The misspecification metric/generalized Hellinger distance dy; appearing in Theorem [6.1/is
rather weak (it is ‘easy’ for two distributions to be close) and lacks a clear interpretation for
general, non-logarithmic loss functions. Motivated by these facts, GM study in depth under
what additional conditions the (square of this) metric can be replaced by a stronger and more
readily interpretable divergence measure. They come up with a new, surprisingly weak condition,
the witness condition, under which d; can be replaced by the excess risk Ep[ L], which is the
additional risk incurred by f as compared to the optimal f*. For example, with the squared

error loss, this is the additional mean square error of f compared to f*; and with (conditional)
pr+ (YX)
pr(YIX)
standard KL divergence if the model is correctly specified. Bounding the excess risk is a standard
goal in statistical learning theory; see for example (Bartlett, Bousquet and Mendelson, |2005;
Van Erven et al.,2015).

log-loss, it is the well-known generalized KL divergence Ex y..p[log ], coinciding with

The following definition appears (with substantial explanation including the reason for its
name) as Definition 12 in GM:

Definition 6.2 (Empirical Witness of Badness). We say that (P, ¢, F) satisfies the (u,c)-
empirical witness of badness condition (or witness condition) for constants u > 0 and ¢ € (0,1]
ifforall f e F

E[(¢f—€p) - Lyyly—Lpe <u]> cE[ly —Lp].

More generally, for a function 7 : R* — [1,00) and constant ¢ € (0,1) we say that (P, ¢, F)
satisfies the (7, ¢)-witness condition if for all f € F, E[£f — £+ ] < 0o and

E[(f—pe) Lygly—Lps <T(E[ly —L])] 2 cE[f — £p2].

It turns out that the (7, ¢)-witness condition holds in many practical situations, including our
GLM-under-misspecification setting. Before elaborating on this, let us review (a special case
of) Theorem 12 of GM, which is the analogue of Theorem [6.1]but with the misspecification
metric replaced by the excess risk.
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1 qu+l
c1-1
1

First, let, for arbitrary 0 < # <7, ¢, = . Note that for large u, ¢, is approximately linear in

ufc.

Theorem 6.5. [Specialization of Theorem 12 of GM] Consider a learning problem (P, ¢, F).
Suppose that the 1j-strong central condition holds. If the (u, ¢)-witness condition holds, then for

any 1 € (0,77),
EznpEpom, [E[Ls]] < cu-Eznp [IC,,, (To)], (6.18)

with ¢, as above. If instead the (1, c)-witness condition holds for some nonincreasing function
as above, then for any A > 0,

EznpEpon, [E[Lf]] < A+ () - Eznop [ICs,, (To)] -

The actual theorem given by GM generalizes this to an in-probability statement for general
(not just generalized Bayesian) learning methods. If the (u, ¢)-witness condition holds, then,
as is obvious from and Theorem|[6.1] the same rates can be obtained for the excess risk
as for the squared misspecification metric. For the (7, ¢)-witness condition things are a bit
more complicated; the following lemma (Lemma 16 of GM) says that, under an exponential tail
condition, (7, ¢)-witness holds for a sufficiently ‘nice’ function 7, for which we loose at most a
logarithmic factor:

Lemma 6. Define My = sup . E [e"Lf] and assume that the excess loss Ly has a uniformly

exponential upper tail, i.e. My < oo. Then, for themap 7 : x = 1v x 'log 2= = O(1vlog(1/x)),
the (1, ¢)-witness condition holds with ¢ = /2.

As an immediate consequence of this lemma, GM’s theorem above gives that for any 7 € (0,7),
(using A = 1/n), there is C,; < oo such that

Ezn.pEfom, [E[Li]] < % +Cy - (logn) Ezuep [IC,., (%1 10))], (6.19)

so our excess risk bound is only a log factor worse than the bound that can be obtained for the
squared misspecification metric in Theorem[6.1] We now apply this to the misspecified GLM
setting:

Generalized Linear Models and Witness Recall that the central condition holds for general-
ized linear models under the three assumptions made in Proposition E Let {p = £p(X,Y) =
—log pg(Y | X) be the loss of action 8 € B on random outcome (X, Y) ~ P, and let 8* denote
the risk minimizer over B. The first two assumptions taken together imply, via (6.7), that there
is a x > 0 such that

sup Ex,y.p [ek(zﬁ’zﬁ*)] < sup Ey.px—x [e"(zﬁ’fﬁ*)]

BeB BeB,xeX
Fo.p) )" .
= Ssup (P‘m) .EYNP‘X:,X [e |Y‘j| < 00,
BeB,xeX 0.(B*)
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The conditions of Lemma@]are thus satisfied, and so the (7, ¢)-witness condition holds for the
7 and c¢ in that lemma. From we now see that we get an O((logn)?/n) bound on the
expected excess risk, which is equal to the parametric (minimax) rate up to a (log n)? factor.
Thus, fast learning rates in terms of excess risks and KL divergence under misspecification with
GLMs are possible under the conditions of Proposition 3.

6.C Learning rate > 1 for misspecified models

In what follows we give an example of a misspecified setting, where the best performance is
achieved with the learning rate # > 1. Consider a model {Pg, 8 € [0.2,0.8]}, where Py is a
Bernoulli distribution with Pg(Y =1) = B. Let the data Y3, ..., Y, be sampled i.i.d. from Py, i.e.
Y; =0foralli=1,...,n. In this case the log-likelihood function is given by

log p(Yy,...,Y,|B) =nlog(1-B).

Observe that in this setting 5 = 0.2. Now assume that the model is correctand data Y/, ..., Y,
is sampled i.i.d. from Pg with 8 = 0.2. Then the log-likelihood is

logp(Y{,...,Y,|B=0.2) ~0.2nlog0.2+0.8n10g 0.8 < nlog0.8 = log p(Y1,..., Y, | B =0.2).

Thus, the data are more informative about the best distribution than they would be if the model
were correct. Therefore, we can afford to learn ‘faster’: let the data be more important and the
(regularizing) prior be less important. This is realized by taking # >> 1

6.D MCMC sampling

6.D.1  The 7-generalized Bayesian lasso

Here, following Park and Casella (2008) we consider a slightly more general version of the
regression problem:
Y=pu+XB+e,

where y € R" is the overall mean, € R? is the vector of parameters of interest, y € R", X € R"™*?,
and & ~ N(0, 0?1, is a noise vector. For a given shrinkage parameter A > 0 the Bayesian lasso
of Park and Casella (2008)) can be represented as follows.

Y|y, X, B, 0% ~ N(u+ XB,d’I,), (6.20)
Blti, ..., T;,az ~N(0,0°D,), D, =diag(7,..., Tz) ,

2 2 P —)ﬂrz/zd 2 2 2
Tl,...,TPNH?e itdty, 1,...,7,>0,
j=1
o* ~n(o*)da*.
In this model formulation the ¢ on which the outcome variables Y depend, is the overall mean,

from which Xp are deviations. The parameter y can be given a flat prior and subsequently
integrated out, as we do in the coming sections.
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We will use the typical inverse gamma prior distribution on ¢?, i.e. for * > 0

>

2y _ )’a —2a-2 ~y/o
n(o”) = r(“)a e

where «,y > 0 are hyperparameters. With the hierarchy of the joint density for the
posterior with the likelihood to the power 7 becomes

P
(F(Y]us B, 0?))" () () T] Byl 02) m(?)
j=1

n
:( ! /eﬁw—mn—mﬂ(y—mn—xm
(2m02) 12

P 2B e
V4 —2a-2 —L T 2022F] -A°1)2
. e o io—e " (6.21
I'(a) H (202 2)1/2 2 (621
Let Y be Y — Y. If we integrate out y, the joint density marginal over y is proportional to
Cn(ne1) - (F-xB)T(T- ey -2 1 ey ST
o n(n-1) e Zgz(Y XB) (Y-XB) o 2a 26 o) H e A Tj/z' (6.22)

——e
j=1 (‘727]2')1/2

First, observe that the full conditional for 8 is multivariate normal: the exponent terms involving
B in (6.22) are

L (T -XB)"(T - XP) - ziﬁTD;vs

202

=53 (BT (X X+ DB =20V XB+n YY)} (623)

If we now write M, = (yXTX + DT_l)‘1 and complete the square, we arrive at

— {B-nMXTY) M (B M XTY) + Y (I, -’ XM XT)Y}.

Accordingly we can see that § is conditionally multivariate normal with mean 7M. X”Y and
variance 0% M.

The terms in (6.22) that involve ¢? are:
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2y{=n(n-1)/2-p/2-a-1} _ My o -g_ V.
(") exp{ (V- XB) (V- XB) - 554D g~ 5.

We can conclude that ¢ is conditionally inverse gamma with shape parameter

11n2_1+g+¢xandscaleparameterf(Y XB)T(Y -XB) + D, 7'B/2 +y.

Since 72 is not involved in the likelihood, we need not modify the implementation of it and

follow Park and Casella (2008):
1
- 1G (y/A202/82, 1)

J

Summarizing, we can implement a Gibbs sampler with the following distributions:

B~N(n(nx"X+D,")'X"Y, *(nX"X+D, )7, (6.24)
0% ~ Inv—Gamma(g(n -D+p/2+a, g(? -XB)(Y-XB)+ B "D, 'B/2+y), (6.25)
1
7 1G (y/2207/B2, %) . (6.26)

There are several ways to deal with the shrinkage parameter A. We follow the hierarchical
Bayesian approach and place a hyperprior on the parameter. In our implementation we provide
three ways to do so: a point mass (resulting in a fixed 1), a gamma prior on A* following Park
and Casella (2008) and a beta prior following De los Campos et al. (2009), details about the
implementation of the latter two priors can be found in those papers respectively.

6.D.2 The 7-generalized Bayesian logistic regression

We follow the construction of the Pélya-Gamma latent variable scheme for constructing a
Bayesian estimator in the logistic regression context described in Polson, Scott and Windle,
2013.

First, for b > 0 consider the density function of a P6lya-Gamma random variable PG(b, 0)

2t &= [(n+b) (2n+b) _cun?
e .

1) 2V T ) Vo

The general class PG(b, ¢) (b, ¢ > 0) is defined through an exponential tilting of the PG(b,0)
and has the density function

p(x

p(x|b,c) = M
E[e] 5

where w ~ PG(b,0).
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To derive our Gibbs sampler we use the following result from Polson, Scott and Windle,
2013.

Theorem 6.D.1. Let py, o(w) denote the density of PG(b,0). Then for all a € R
e’)" bk ® oy
wherex = a—b/2.

According to Theorem|6.D.1]the likelihood contribution of the observation i taken to the power
# can be written as

Ty 1
(eXiﬁ) o xT o ip?
L) - oc 18 [ e S (0 g,0),

1+ eXiP

where x; := y; —1/2 and p(w; | %, 0) is the density function of PG(#,0).
Let
X=X, X)), Y= (Y YT, k= (ke k)’
w=(w,...,w0,)7, Q:=diag(w,...,w,).
Also, denote the density of the prior on 8 by 7(8). Then the conditional posterior of 3 given w
is

xI'p)?

p(ﬁ | w, Y) o< n(ﬁ) IjLivﬂ(ﬁ | wi) - ﬂ([;) Iﬁl enx,-X,-Tﬁ*w, T oc ﬂ(ﬁ)e*%(zfXB)TQ(z—Xﬁ)’

where z = 7(g},..., ¢*). Observe that the likelihood part is conditionally Gaussian in .
Since the prior on f is Gaussian, a simple linear-model calculation leads to the following
Gibbs sampler. To sample from the the #-generalized posterior one has to iterate these two
steps

wi|B ”PG(’?’XiTﬁ)’ (6.27)
/3 | Y, NN(mw’ Vw)s (6.28)

where

Vo =(XTQX+B™)™,
my =Vo(nX"k + B7'b).

To sample from the PSlya-Gamma distribution PG(b, ¢) we adopt a method from (Windle,
Polson and Scott, 2014), which is based on the following representation result. According
to Polson, Scott and Windle, 2013/ a random variable w ~ PG(b, ¢) admits the following
representation

1f="

w z%,

n=0 “n
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where g, ~ Ga(b,1) are independent Gamma distributed random variables, and

1
d, =2m*(n+ 5)2 +2c%

Therefore, we approximate the PG random variable by a truncated sum of weighted Gamma
random variables. (Windle, Polson and Scott, 2014)) shows that the approximation method per-
forms well with the truncation level N = 300. Furthermore, we performed our own comparison
of the sampler with the STAN implementation for Bayesian logistic regression, which showed
no difference between the methods (for = 1).

6.D.3 The Safe-Bayesian Algorithms

The version of the Safe-Bayesian algorithm we are using for the experiments is called R-log-
SafeBayes, more details and other versions can be found in Gritnwald and Van Ommen (2017).
The 77 is chosen from a grid of learning rates # that minimizes the cumulative Posterior-Expected
Posterior-Randomized log-loss:

Z Eﬂ)azNH‘Zi—l),,] [—Ing(Yi‘X,‘,ﬂ, 0'2)] .
i=1

Minimizing this comes down to minimizing

n—1 2

1 1 (Yie — Xinfi
> AV[ log2mo}, + = (T zlﬂﬁl’") ] .
i=1 2 2 iy
The loss between the brackets is averaged over many draws of (B;,,, 07 ;) from the posterior,
where §; , (or 01'2,17) denotes one random draw from the conditional #-generalized posterior
based on data points z'. For the sake of completeness we present the algorithm below.

Algorithm 1 The R-Safe-Bayesian algorithm

1: Input: data z, ... z,, model M = {f(+|0)|6 € @}, prior IT on ®, step-size Ksrzp, max. exponent yax, loss

function €4 (z)
2 Sy =1, 2~ Kstep 9=2KstEp p=3Kstep Z_KMAX’}
3: foralln €S, do
4 sy=0
5 fori=1...ndo )
6: Determine generalized posterior IT(-|z'~, 1) of Bayes with learning rate 7.
7: Calculate posterior-expected posterior-randomized loss of predicting actual next outcome:
ri= £H|z"*1,r](zi) = E9~H\zi’1,11 [Ze(z,-)] (6.29)
Sy=Syp
end for
10: end for

11: Ouput: Learning rate 77
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— Bayes
—— SafeBayes
T T T T
-1.0 -0.5 0.0 0.5 1.0

Figure 6.5: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, n = 0.5) with n = 200, p = 100.

6.E Details for the experiments and figures

Below we present the results of additional simulation experiments for Section [6.5.1]
(Appendix|[6.E.1) and the description of experiments with real-world data (Appendix[6.E.2).
We also give details for Figure[6.2]in Appendix[6.E.3!

6.E.1  Additional Figures for Section 6.5.1]

Consider the regression context described in Section|6.5.1] Here, we explore different choices of
the number of Fourier basis functions, showing that regardless of the choice Safe-Baysian lasso
outperforms its standard counterpart. In Figures|[6.5|and[6.6 we see conditional expectations
E[Y | X]according to the posteriors of the standard Bayesian lasso (blue) and the Safe-Bayesian
lasso (red, 3 = 0.5) for the wrong-model experiment described in Section @, with 100 data
points. We take 201 and 25 Fourier basis functions respectively.

Now we consider logistic regression setting and show that even for some well-specified problems
it is beneficial to choose # # 1. In Figure[6.7|we see a comparison of the log-risk for = 1and
# = 3 in the well-specified logistic regression case (described in Section|6.5.1). Here p =1 and

B=4.

6.E.2 Real-world data

Seattle Weather Data The R-package weatherData (Narasimhan, 2014) loads weather data
available online from www.wunderground. com. Besides data from many thousands of per-
sonal weather stations and government agencies, the website provides access to data from
Automated Surface Observation Systems (ASOS) stations located at airports in the US, owned
and maintained by the Federal Aviation Administration. Among them is a weather station at
Seattle Tacoma International Airport, Washington (WMO ID 72793). From this station we
collected the data for this experiment.
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SafeBayes
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Figure 6.6: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, nj = 0.5) with n = 200, p = 12.

—— Gen. Bayesian Logistic regression, eta=1
Gen. Bayesian Logistic regression, eta=3

Risk

T T T T T T T
0 50 100 150 200 250 300

Sample Size

Figure 6.7: Simulated logistic risk as a function of the sample size for the correct-model experiments described in Section
[6.5.1)according to the posterior predictive distribution of standard Bayesian logistic regression (1 = 1), and generalized
Bayes (1 = 3).
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The training data are the maximum temperatures for each day of the year 2011 at Seattle
airport. We divided the data randomly in a training set (300 measurements) and a test set
(65 measurements). First, we sampled the posterior of the standard Bayesian lasso with a 201-
dimensional Fourier basis and standard improper priors on the training set, and we did the
same for the Horseshoe. Next, we sampled the generalized posterior with the learning rate 77
learned by the Safe-Bayesian algorithm, with the same model and priors on the same training
set. The grid of #’s we used was 1,0.9,0.8,0.7, 0.6, 0.5. We compare the performance of the
standard Bayesian lasso and Horseshoe and the Safe-Bayesian versions of the lasso (SB) in terms
of mean square error. In all experiments performed with different partitions, priors and number
of iterations, SafeBayes never picked 77 = 1. We averaged over 10 runs. Moreover, whichever
learning rate was chosen by SafeBayes, it always outperformed standard Bayes (with # = 1) in
an unchanged set-up. Experiments with different priors for A yielded similar results.

London Air Pollution Data  As training set we use the following data. We start with the first
four weeks of the year 2013, starting at Monday January 7 at midnight. We have a measurement
for (almost) every hour until Sunday February 3", 23.00. We also have data for the first four
weeks of 2014, starting at Monday January 6 at midnight, until Sunday February 2"¢, 23.00.
For each hour in the four weeks we randomly pick a data point from either 2013 or 2014. We
remove the missing values. We predict for the same time of year in 2015: starting at Monday
January 5 at midnight, until Sunday February 1** at 23.00. We do this with a (Safe-)Bayesian
lasso and Horseshoe with a 201-dimensional Fourier basis and standard improper priors. The
grid of #’s we used for the Safe-Bayesian algorithm was again 1,0.9,0.8,0.7, 0.6, 0.5. We look
at the mean square prediction errors, and average the errors over 20 runs of the generalized
Bayesian lasso with the # learned by SafeBayes, and the standard Bayesian lasso and Horseshoe.
Again we find that SafeBayes clearly performs better than standard Bayes.

6.E.3 Details for Figure[6.2]

Here we sampled the posteriors of the standard and generalized Bayesian lasso ( = 0.25) on 50
model-wrong data points (approximately half easy points) with 101 Fourier basis functions, and
estimated the predictive variance on a grid of new data points Xy, = {-1.00,-0.99,...,1.00}
with the Monte Carlo estimate:

m(Ynew | Xnew> Zold) = Ee‘Zo]d [VAR(Ynew | 6)] + VAR [E(Ynew | 9)] , (6.30)
where
Eo(zs [VAR(Yaew | 8)] = 1 3024 - 7,
m =
_ 1o 5 .,
VAR [E(Ynew | 0)] = VAR [XnewB] = — 3 (Xnew )" = (Xnew)
k=1

Here f is the posterior mean of the parameter for the coefficients and ¢2 is the posterior mean
of the variance.



Chapter 7

Fixed-confidence guarantees for
Bayesian best-arm identification

Abstract

We investigate and provide new insights on the sampling rule called Top-Two Thompson
Sampling (TTTS). In particular, we justify its use for fixed-confidence best-arm identification.
We further propose a variant of TTTS called Top-Two Transportation Cost (T3C), which disposes
of the computational burden of TTTS. As our main contribution, we provide the first sample
complexity analysis of TTTS and T3C when coupled with a very natural Bayesian stopping
rule, for bandits with Gaussian rewards, solving one of the open questions raised by Russo
(2016). We also provide new posterior convergence results for TTTS under two models that
are commonly used in practice: bandits with Gaussian and Bernoulli rewards and conjugate
priors.

7.1 Introduction

In multi-armed bandits, a learner repeatedly chooses an arm to play, and receives a reward
from the associated unknown probability distribution. When the task is best-arm identification
(BAI), the learner is not only asked to sample an arm at each stage, but is also asked to output a
recommendation (i.e., a guess for the arm with the largest mean reward) after a certain period.
Unlike in another well-studied bandit setting, the learner is not interested in maximizing the
sum of rewards gathered during the exploration (or minimizing regret), but only cares about the
quality of her recommendation. As such, BAI is a particular pure exploration setting (Bubeck,
Munos and Stoltz, 2009).

Formally, we consider a finite-arm bandit model, which is a collection of K probability distri-
butions, called arms A = {1, ..., K}, parametrized by their means py, . .., yux. We assume the

a

unknown) best arm is unique and we denote it by I* £ arg max. y;. A best-arm identification
q y 8 i¥

205
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strategy (I, J,, 7) consists of three components. The first is a sampling rule, which selects an
arm I,, at round #. At each round n, a vector of rewards Y,, = (Y1, -+, Yy, k) is generated for all
arms independently from past observations, but only Y, ; is revealed to the learner. Let F,, be
the o-algebra generated by (Uy, I1, Y11, U1, -+, Iy, Yo 1, Uy ), then I, is F,_j-measurable, i.e., it
can only depend on the past n — 1 observations, and some exogenous randomness, materialized
into U,—; ~ U([0,1]). The second component is a F,,-measurable recommendation rule J,,
which returns a guess for the best arm, and thirdly, the stopping rule 7, a stopping time with
respect to (F,) x> decides when the exploration is over.

BAI is studied within several theoretical frameworks. In this chapter we consider the fixed-
confidence setting, introduced by Even-dar, Mannor and Mansour, 2003, Given a risk parameter
0 € [0,1], the goal is to ensure that the probability to stop and recommend a wrong arm,
P[J: # I" AT < o0}, is smaller than §, while minimizing the expected total number of samples
to make this accurate recommendation, E [ 7]. The most studied alternative setting is the fixed-
budget setting for which the stopping rule 7 is fixed to some (known) maximal budget n, and
the goal is to minimize the error probability P[], # I*] (Audibert and Bubeck, 2010). Note
that these two frameworks are very different in general and do not share transferable regret
bounds (see Carpentier and Locatelli|2016 for an additional discussion).

Most existing sampling rules for the fixed-confidence setting depend on the risk parameter
0. Some of them rely on confidence intervals such as LUCB (Kalyanakrishnan et al., 2012)),
UGapE (Gabillon, Ghavamzadeh and Lazaric,|2012), or 111’ UCB (Jamieson et al.,|2014)); others
are based on eliminations such as SuccessiveElimination (Even-dar, Mannor and Mansour,
2003) and ExponentialGapElimination (Karnin, Koren and Somekh,|2013). The first known
sampling rule for BAI that does not depend on § is the tracking rule proposed by Garivier and
Kaufmann, 2016, which is proved to achieve the minimal sample complexity when combined
with the Chernoff stopping rule when § goes to zero. Such an anytime sampling rule (neither
depending on a risk § or a budget n) is very appealing for applications, as advocated by Jun and
Nowak, 2016/ who introduce the anytime best-arm identification framework. In this chapter, we
investigate another anytime sampling rule for BAI: Top-Two Thompson Sampling (TTTS), and
propose a second anytime sampling rule: Top-Two Transportation Cost (T3C).

Thompson Sampling (Thompson, 1933) is a Bayesian algorithm well known for regret minim-
ization, for which it is now seen as a major competitor to UCB-typed approaches (Burnetas
and Katehakis, [1996; Auer, Cesa-Bianchi and Fischer, 2002; Cappé et al.,[2013). However, it
is also well known that regret minimizing algorithms cannot yield optimal performance for
BAI (Bubeck, Munos and Stoltz, 2011; Kaufmann and Garivier, 2017) and as we opt Thompson
Sampling for BAI, then its adaptation is necessary. Such an adaptation, TTTS, was given by
Russo (2016) along with two other top-two sampling rules TTPS and TTVS. By choosing between
two different candidate arms in each round, these sampling rules enforce the exploration of
sub-optimal arms, which would be under-sampled by vanilla Thompson sampling due to its
objective of maximizing rewards.

While TTTS appears to be a good anytime sampling rule for fixed-confidence BAI when coupled
with an appropriate stopping rule, so far there is no theoretical support for this employment.
Indeed, the (Bayesian-flavored) asymptotic analysis of Russo, 2016|shows that under TTTS, the
posterior probability that I* is the best arm converges almost surely to 1 at the best possible



7.2. Bayesian BAI Strategies 207

rate. However, this property does not by itself translate into sample complexity guarantees.
Since the result of Russo, 2016, Qin, Klabjan and Russo (2017) proposed and analyzed TTEI,
another Bayesian sampling rule, both in the fixed-confidence setting and in terms of posterior
convergence rate. Nonetheless, similar guarantees for TTTS have been left as an open question
by Russo, 2016/ In the present chapter, we answer the question whether we can obtain fixed-
confidence guarantees and optimal posterior convergence rates for TTTS. In addition, we
propose T3C, a computationally more favorable variant of TTTS and extend the fixed-confidence
guarantees to T3C as well.

Contributions (1) We propose a new Bayesian sampling rule, T3C, which is inspired by TTTS
but easier to implement and computationally advantageous (2) We investigate two Bayesian
stopping and recommendation rules and establish their §-correctness for a bandit model with
Gaussian rewards[ (3) We provide the first sample complexity analysis of TTTS and T3C for a
Gaussian model and our proposed stopping rule. (4) Russo’s posterior convergence results for
TTTS were obtained under restrictive assumptions on the models and priors, which exclude
the two mostly used models in practice: Gaussian bandits with Gaussian priors and bandits
with Bernoulli rewards’| with Beta priors. We prove that optimal posterior convergence rates
can be obtained for those two as well.

Outline In Section|7.2, we restate TTTS and introduce T3C along with our proposed recom-
mendation and stopping rules. Then, in Section 7.3} we describe in detail two important notions
of optimality that are invoked in this chapter. The main fixed-confidence analysis follows in Sec-
tion[7.4, and further Bayesian optimality results are given in Section[.5| Numerical illustrations
are given in Section [7.6|

7.2 Bayesian BAI Strategies

In this section, we give an overview of the sampling rule TTTS and introduce T3C. We provide
details for Bayesian updating for Gaussian and Bernoulli models respectively, and introduce
associated Bayesian stopping and recommendation rules.

7.2.1 Sampling rules

Both TTTS and T3C employ a Bayesian machinery and make use of a prior distribution ITy
over a set of parameters ®, which is assumed to contain the unknown true parameter vector y.
Upon acquiring observations ( Yy 1, Y,—11,_, ), we update our beliefs according to Bayes’ rule
and obtain a posterior distribution IT, which we assume to have density 7, w.r.t. the Lebesgue
measure. Russo’s analysis is requires strong regularity properties on the models and priors,
which exclude two important useful cases we consider in this chapter: (1) the observations of
each arm i follow a Gaussian distribution N (y;, 0*) with common known variance o2, with
imposed Gaussian prior N'(py,i, 07 ;), (2) all arms receive Bernoulli rewards with unknown
means, with a uniform (Beta(1,1)) prior on each arm.

"Hereafter Gaussian bandits or Gaussian model.
2Hereafter Bernoulli bandits.
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Gaussian model For Gaussian bandits with a A'(0, x?) prior on each mean, the posterior
distribution of y; at round # is Gaussian with mean and variance that are respectively given
by
-1 .
ZZ=1 ]l{IgZ I}YK,IZ O'2

and ———,
T,i + 0212 T,i + 0212

where T, ; = Y.)-' 1{I, = i} is the number of selections of arm i before round 7. For the sake
of simplicity, we consider improper Gaussian priors with 1 ; = 0 and 01,; = +oo forall i € A,
for which

1 n-1 ) 0_2
1{I,=i}Yy;, and o, = .
Tn,i ez:zl [ n,i Tn,i

Un,i =

Observe that in this case the posterior mean y,, ; coincides with the empirical mean.

Beta-Bernoullimodel For Bernoulli bandits with a uniform (Beta(1,1)) prior on each mean,
the posterior distribution of y; at round # is a Beta distribution with shape parameters a,, ; =
Yo 1{I, = i}Yyy, +land B, = T, - Sp 1{Ir = i} Yo, + 1.

Now we briefly recall TTTS and introduce T3C. The pseudo-code of TTTS and T3C are shown
in Algorithm

Description of TTTS At each time step n, TTTS has two potential actions: (1) with probability

B, a parameter vector 0 is sampled from IT,,, and TTTS chooses to play I ,(11) £argmax; 4 0;, (2)
and with probability 1—- 3, the algorithm continues sampling new 6’ until we obtain a challenger

I 5,2) £ argmax, 4 0 that is different from I ,(,1), and TTTS chooses to play I 512).

Description of T3C One drawback of TTTS is that, in practice, when the posteriors become
concentrated, it takes many Thompson samples before the challenger I 5,2) is obtained. We thus
propose a variant of TTTS, called T3C, which alleviates this computational burden. Instead of
re-sampling from the posterior until a different candidate appears, we define the challenger as
the arm that has the lowest transportation cost W, (I 511), i) with respect to the first candidate
(with ties broken uniformly at random).

Let u,,; be the empirical mean of arm i and py,,;,j = (T,ifhn,i + Tnjthn,j)/(Tn.i + Tn,j), then
we define

NN 0 if[/ln,j 2 Un,is
Wali,]) = { Wiij+ Wi otherwise, (7.1

where W, ;,j = T,.id (ni» tin,i,j) forany i, jand d(u; u) denotes the Kullback-Leibler between
the distribution with mean y and that of mean y'. In the Gaussian case, d(y; p') = (4 -
#')?/(20%) while in the Bernoulli case d(u; ¢’) = pln(u/p') + 1 - ) In(1-u)/(1 - y'). In
particular, for Gaussian bandits

(Uni— /"n,j)z

WG 1) <
(1) = STy < 1/T,

Y ]l{.”n,j < l"n,i}-
>
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Note that under the Gaussian model with improper priors, one should pull each arm once at
the beginning for the sake of obtaining proper posteriors.

Algorithm 2 Sampling rule (TTTS/T3C)

1: Input: 8
2: forn < 1,2,---do
3: sample 0 ~ II,

4 1M argmax; 4 0;

5: sample b ~ Bern(p)

6: if b = 1 then

7: evaluate armI()

8: else

9: repeat sample 6’ ~ I,
10: 1? « argmax;_, 0/ TTTS
1 until I = 1O

12: 12) argmin, (1 Wn(l(‘), i), cf. T3C
13: evaluate arm](®

14: end if

15: update mean and variance

16: t=t+1

17: end for

7.2.2 Rationale for T3C
In order to explain how T3C can be seen as an approximation of the re-sampling performed by

TTTS, we first need to define the optimal action probabilities.

Optimal action probability The optimal action probability a, ; is defined as the posterior
probability that arm i is optimal. Formally, letting ®; be the subset of ® such that arm i is the
optimal arm,

@,’ é{@e@) ‘ 01' >max6j},
J#i

then we define

an; £11,(9;) = f 7,(6)de. (7.2)
0;
With this notation, one can show that under TTTS,
2) _ () . Qn,j
I, (07 =4I, =i) = =—=2L—. (7.3)
( J| ) Zk¢ian,k

Furthermore, when i coincides with the empirical best mean (and this will often be the case for

1 . . .
1) when n is large due to posterior convergence) one can write

ay,j =T, (05> 0;) = exp (=W (i, )

where the last step is justified in Lemmal6in the Gaussian case (and Lemmals2/in Appendix[7.I.3
in the Bernoulli case). Hence, T3C replaces sampling from the distribution by an approx-
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imation of its mode which is easy to compute. Note that directly computing the mode would
require to compute a,,;, which is much more costly than the computation of W, (i, j

7.2.3 Stopping and recommendation rules

In order to use TTTS or T3C as the sampling rule for fixed-confidence BAI, we need to addition-
ally define stopping and recommendation rules. While Qin, Klabjan and Russo, 2017 suggest to
couple TTEI with the “frequentist” Chernoft stopping rule (Garivier and Kaufmann, 2016), we
propose in this section natural Bayesian stopping and recommendation rules. They both rely
on the optimal action probabilities defined in (7.2).

Bayesian recommendation rule At time step n, a natural candidate for the best arm is the
arm with largest optimal action probability, hence we define

Jn = argmaxa,,; .
icA

Bayesian stopping rule In view of the recommendation rule, it is natural to stop when
the posterior probability that the recommended action is optimal is large, and exceeds some
threshold ¢, s which gets close to 1. Hence our Bayesian stopping rule is

Ts = inf{n € maxa, ; > Cn,a} . (7.4)
ic A

Links with frequentist counterparts Using the transportation cost W, (i, j) defined in (.1),
the Chernoft stopping rule of Garivier and Kaufmann, 2016|can actually be rewritten as

Ch. 4 . ..
= inf N : Wu(i,j) >dns - .
im0 | o)

This stopping rule is coupled with the recommendation rule J,, = argmax; p, ;.

As explained in that paper, W, (i, j) can be interpreted as a (log) Generalized Likelihood Ratio
statistic for rejecting the hypothesis H : (¢#; < y;). Through our Bayesian lens, we rather have
in mind the approximation IT,(0; > 0;) =~ exp {-W, (i, j)}, valid when y, ; > u,,j, which
permits to analyze the two stopping rules using similar tools, as will be seen in the proof of
Theorem[7.3}

As shown later in Sec. E, 75 and 7§™ prove to be fairly similar for some corresponding choices
of the thresholds ¢, s and d,, 5. This similarity endorses the use of the Chernoff stopping rule
in practice, which does not require the (heavy) computation of optimal action probabilities.
Still, our sample complexity analysis applies to the two stopping rules, and we believe that
a frequentist sample complexity analysis of a fully Bayesian-flavored BAI strategy is a nice
theoretical contribution.

3TTPS (Russo, 2016) also requires the computation of a, ;, thus we do not report simulations for it in Sec.
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Useful notation We follow the notation of Russo (2016) and define the following measures
of effort allocated to arm i up to time #,

Yni 2P[L = i|lFu] and Wiz >y
I=1

In particular, for TTTS we have

an;
Vi = Pani+ (1= P)an: >, L,

i L= an,j

while for T3C

L{W,(j,i) = ming.; W, (j, k)}
Y = Ban + (1= ) Y an, — :
e #|argmmk¢j Wn(],k)‘

7.3 Two Related Optimality Notions

In the fixed-confidence setting, we aim for building §-correct strategies, i.e. strategies that
identify the best arm with high confidence on any problem instance.

Definition 7.1. A strategy (I,,, J,,, ) is 8-correct if for all bandit models g with a unique optimal
arm, it holds that P, [J; # I* A T < c0] < 6.

Among §-correct strategies, we seek the one with the smallest sample complexity E [ 75]. So far,
TTTS has not been analyzed in terms of sample complexity; Russo (2016)) focuses on posterior
consistency and optimal convergence rates. Interestingly, both the smallest possible sample
complexity and the fastest rate of posterior convergence can be expressed in terms of the
following quantities.

Definition 7.2. Let Zx = {@ : Y5, wj = 1, w; > 0} and define for all i # I*

Ci(w, ') 2 mi%l wd(prsx) + w'd(pix),
XE

where d(p, p') is the KL-divergence defined above and Z = R in the Gaussian caseand Z = [0,1]
in the Bernoulli case. We define

I* 2 maxminC;(w,w;),
weSy i+l*

1>

Iy max min C;(wp, w;). (7.6)
weSy il*

W=

The quantity C;(wp+, w;) can be interpreted as a “transportation cost’* from the original bandit
instance g to an alternative instance in which the mean of arm i is larger than that of I*, when
the proportion of samples allocated to each arm is given by the vector w € Zg. As shown
by Russo, 2016, the w that maximizes is unique, which allows us to define the -optimal
allocation w” in the following proposition.

4for which W, (I*, i) is an empirical counterpart
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Proposition 1. There is a unique solution w” to the optimization problem satisfying wf* =
B, and forall i, j + I, C;(B, &f ) = C;(B, wf).

For models with more than two arms, there is no closed form expression for Fﬁ* or I'*, even for
Gaussian bandits with variance o2 for which we have

. (1 —pi)?
I; = _
e ep 21 202(1w; +1/B)

Bayesian -optimality Russo (2016)) proves that any sampling rule allocating a fraction f to
the optimal arm (¥, ;- /n — f8) satisfies 1 — a,, ;+ > e (T +o() (a.s.).We define a Bayesian f3-
optimal sampling rule as a sampling rule matching this lower bound, i.e. satisfying ¥, ;< /n - f3
and1-a, - < e (Ti+o(),

Russo (2016) proves that TTTS with parameter f3 is Bayesian 3-optimal. However, the result is
valid only under strong regularity assumptions, excluding the two practically important cases of
Gaussian and Bernoulli bandits. In this chapter, we complete the picture by establishing Bayesian
B-optimality for those models in Sec. [7.5} For the Gaussian bandit, Bayesian -optimality was
established for TTEI by Qin, Klabjan and Russo, [2017 with Gaussian priors, but this remained
an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allocation of
measurement effort to the $-optimal allocation: ¥,, ;/n — wlﬁ for all i, which is equivalent to
Tpi/n— wf (cf. Lemma.

p-optimality in the fixed-confidence setting In the fixed confidence setting, the perform-
ance of an algorithm is evaluated in terms of sample complexity. A lower bound given by Garivier
and Kaufmann, 2016/states that any §-correct strategy satisfies E [75] > (I'*) ' In (1/(39)).

Observe that I'" = maxge[o,1] ;. Using the same lower bound techniques, one can also prove
that under any J-correct strategy satisfying T;, ;- /n — f3,

This motivates the relaxed optimality notion that we introduce in this chapter: A BAI strategy
is called asymptotically B-optimal if it satisfies

T, 1+ E 1
n o, B and limsup [7s] < .
n 50 In(1/8) ~ T;

In this chapter, we provide the first sample complexity analysis of a BAI algorithm based on
TTTS (with the stopping and recommendation rules described in Sec. [7.2), establishing its
asymptotic -optimality.
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As already observed by Qin, Klabjan and Russo, |2017, any sampling rule converging to the
B-optimal allocation (i.e. satisfying T, ;/n — wf for all i) can be shown to satisfy

T

lim su S (1)
nsup sy < )

almost surely, when coupled with the Chernoff stopping rule. The fixed confidence optimality
that we define above is stronger as it provides guarantees on E [75].

7.4 Fixed-Confidence Analysis

In this section, we consider Gaussian bandits and the Bayesian rules using an improper prior
on the means. We state our main result below, showing that TTTS and T3C are asymptotic-
ally B-optimal in the fixed confidence setting, when coupled with appropriate stopping and
recommendation rules.

Theorem 7.2. With C$¢ the function defined in Corollary 10 of Kaufmann and Koolen, 2018,
which satisfies C8¢ (x) ~ x + In(x), we introduce the threshold

d, s = 41n(4 + In(n)) + 205 (1n((1<2-1)/5)) (27)
The TTTS and T3C sampling rules coupled with either
« the Bayesian stopping rule (7.4) with threshold
71 e_(m-" ﬁ )2
V2o

and recommendation rule J; = argmax; a, ;, or
o the Chernoff stopping rule with threshold d,, 5 and recommendation rule J, = argmax; p,, ;,

Cpo=1-

form a §-correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

. E [T@] 1
lim su < —.
s log(1/8) T

We now give the proof of Theorem 7.2, which is divided into three parts. The first step of the
analysis is to prove the §-correctness of the studied BAI strategies.

Theorem 7.3. Regardless of the sampling rule, the stopping rule with the threshold c, 5 and
the Chernoff stopping rule ([7.5) with threshold d,, s defined in (7.7) satisfy P [15 < 0o A ], # I*] <
d.

To prove that TTTS and T3C allow to reach a 3-optimal sample complexity, one needs to quantify
how fast the measurement effort for each arm is concentrating to its corresponding optimal
weight. For this purpose, we introduce the random variable

T; éinf{N 3 max|Tn,i/n—wf| <& Vn 2N}.
icA
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The second step of our analysis is a sufficient condition for 8-optimality, stated in Lemma 4}
Its proof is given in Appendix[7.F} The same result was proven for the Chernoff stopping rule
by Qin, Klabjan and Russo, 2017/

Lemma 4. Let 8, 3 € (0,1). For any sampling rule which satisfies E [Tg] < oo forall e >0, we

lim sup 7E [7s]
50 10g(1/8)

if the sampling rule is coupled with stopping rule (7.4),

have
<

>

1
1—**

Finally, it remains to show that TTTS and T3C meet the sufficient condition, and therefore the
last step, which is the core component and the most technical part our analysis, consists of
showing the following.

Theorem 7.5. Under TTTS or T3C, E [Tﬁg] < 400,

In the rest of this section, we prove Theorem[7.3]and sketch the proof of Theorem|[7.5| But we
first highlight some important ingredients for these proofs.

7.4.1 Core ingredients

Our analysis hinges on properties of the Gaussian posteriors, in particular on the following tail
bounds, which follow from Lemma 1 of Qin, Klabjan and Russo, 2017}

Lemma 6. Foranyi,je A, if i < pin,j

2
1 Un,j — Un,i
11, [491' > 61’] < 5 €XP {—(2]05”)} > (7.8)
1 (#ni = bt + 0nsif)”
n,j = Hn,i n,i,j
11, [9, > 6]] 2> \/ﬁ exp{— 20'?21314’1- }> (7.9)

2 a2 2
where Opij =0 [Toi + 0% Ty, ;.

This lemma is crucial to control 4, ; and v, ;, the optimal action and selection probabilit-
ies.

7.4.2  Proof of Theorem|7.3|
We upper bound the desired probability as follows

Plrs<ooAJr, #I"]< Y P[Ineay; > cysl
i+l*
< Z P[3neIl,(0; 201,) > cuo>ing < ni)
i+l*

< Z P [371 el- Cp,s > Hn(6[*> 91‘),‘[4”,]* < //ln),‘] .

i#I*



7.4. Fixed-Confidence Analysis 215

The second step uses the fact that as ¢, s > 1/2, a necessary condition for I1,,(6; > 0;1,) > ¢,
is that p,; > p, 1, . Now using the lower bound (7.9), if pn, 1+ < fn,;» the inequality 1 — ¢, 5 >
I1,(6;- > 0;) implies

2

o )2 1 1
Mz In———-—| =dus
20 \V 2”(1 - Cn,(?) \/E

i, I*
where the equality follows from the expression of ¢, 5 as function of d,, 5. Hence to conclude
the proof it remains to check that

2 s
20, ; 1+

pypa— * 2
P[3”€Hn,i Zﬂn,p,wzdm]SKal. (7.10)

To prove this, we observe that for g, ; > iy 1+,

(,un,i - ‘un,l*)z _

2
20, 1+

inf Tn,id(//‘n,i;ei) + Tn,I*d(,un,I*§ 91*)
0i<0;«
< T id (s i) + T d(fn, 15 pr+).

Corollary 10 of Kaufmann and Koolen, [2018 then allows us to upper bound the probabil-
ity
P(3ne T, id(pnis i) + To - d(fn,r» phr+) > dns |

by 8/ (K-1) for the choice of threshold given in (7.7, which completes the proof that the stopping
rule is 8-correct. The fact that the Chernoft stopping rule with the above threshold d,, s
given above is §-correct straightforwardly follows from (7.10).

7.4.3 Sketch of the proof of Theorem |ﬁ

We present a unified proof sketch of Theorem [7.5|for TTTS and T3C. While the two analyses
follow the same steps, some of the lemmas given below have different proofs for TTTS and T3C,
which can be found in Appendix[7.D]|and[7.E|respectively.

We first state two important concentration results, that hold under any sampling rule.

Lemma 7. [Lemma 5 of Qin, Klabjan and Russo|2017] There exists a random variable W1, such

that for all i € A,
10 e+ T, i
Vne, |uni—pil <oWiy } g1(+Tm”) a.s.,

andE[e)‘W‘] < oo forall A > 0.

Lemma 8. There exists a random variable W, such that for all i € A,

Ve |Tyi— Wil < War/(n +1)log(e? + n) as.,

and E [eAWZ] < oo forany A > 0.



216 Chapter 7. Fixed-confidence guarantees for Bayesian best-arm identification

Lemma [7 controls the concentration of the posterior means towards the true means and
Lemmaestablishes that T, ; and ¥, ; are close. Both results rely on uniform deviation in-
equalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that T is upper bounded
by some random variable N which is a polynomial of the random variables W; and W, in-
troduced in the above lemmas, denoted by Poly(W;, W) £ O(W," W,?), where ¢; and ¢, are
two constants (that may depend on the arms’ means and the constant hidden in the O). As all
exponential moments of W; and W, are finite, N has a finite expectation as well, concluding
the proof.

The first step to exhibit such an upper bound N is to establish that every arm is pulled sufficiently
often.

Lemma 9. Under TTTS or T3C, there exists Ny = Poly(Wy, W5) s.t.

Vn >N, Vi, Ty; 2 \/z, a.s..
K

Due to the randomized nature of TTTS and T3C, the proof of Lemma|g|is significantly more
involved than for a deterministic rule like TTEI. Intuitively, the posterior of each arm would
be well concentrated once the arm is sufficiently pulled. If the optimal arm is under-sampled,
then it would be chosen as the first candidate with large probability. If a sub-optimal arm is
under-sampled, then its posterior distribution would possess a relatively wide tail that overlaps
with or cover the somehow narrow tails of other overly-sampled arms. The probability of that
sub-optimal arm being chosen as the challenger would be large enough then.

Combining Lemma|o|with Lemma [7|straightforwardly leads to the following result.

Lemma 10. Under TTTS or T3C, fix a constant € > 0, there exists Ny = Poly(1/¢, Wy, Ws) s.t.
Vn>NpVieA, |pni-—pil<e

We can then deduce a very nice property about the optimal action probability for sub-optimal
arms from the previous two lemmas. Indeed, we can show that

A2,
Vi+I*, a;<exp {— 16““; IZ}
o

for n larger than some Poly(W;, W), where Ap, is the smallest mean difference among all
the arms.

Plugging this in the expression of v, ;, one can easily quantify how fast y,, ;« converges to f3,
which eventually yields the following result.

Lemma 11. Under TTTS or T3C, fix € > 0, then there exists N3 = Poly(1/e, Wi, W) s.t. Vn > N3,

‘ Tn,I*
n

-l <e
The last, more involved, step is to establish that the fraction of measurement allocation to every
B

it

sub-optimal arm i is indeed similarly close to its optimal proportion w
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Problem 1, Gaussian bandits, 6 = 0.01 Problem 2, Gaussian bandits, 6 = 0.01
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Figure 7.1: Black dots represent means and oranges lines represent medians.

Lemma 12. Under TTTS or T3C, fix a constant € > 0, there exists Ny = Poly(1/e, Wi, Ws) s.t.
Vn> N4,
Tn,i w,B

Vil -
n

<e.

The major step in the proof of Lemmalia|for each sampling rule, is to establish that if some arm
is over-sampled, then its probability to be selected is exponentially small. Formally, we show
that for n larger than some Poly(1/e, Wy, W;),

\Pni
_’wa+f = i <exp{-f(n,§)},

n
for some function f(n, £) to be specified for each sampling rule, satisfying f () > C¢\/n (a.s.).

This result leads to the concentration of ¥,, ; /n, thus can be easily converted to the concentration
of T,,;/n by Lemmalg|

Finally, Lemma and Lemma show that T is upper bounded by N = max (N3, Ny), which
yields

E[T§] < max(E [N3],E [Ny]) < 0.
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Sampling rule Execution time (s)
T3C 1.6 x107°
TTTS 2.3x107*
TTEI 1x107°
BC 1.4 x107°
D-Tracking 1.3x1073
Uniform 6 x107°
UGapE 5x107°

Table 7.1: Average execution time in seconds for different sampling rules.

7.5 Optimal Posterior Convergence

Recall that a,, ;« denotes the posterior mass assigned to the event that action I* (i.e. the true
optimal arm) is optimal at time n. As the number of observations tends to infinity, we want
the posterior distribution to converge to the truth. In this section we show equivalently that
the posterior mass on the complementary event, 1 — a,, 1+, the event that arm I* is not optimal,
converges to zero at an exponential rate, and that it does so at optimal rate FE .

Russo (2016) proves a similar theorem under three confining boundedness assumptions (see
Russo 2016, Assumption 1) on the parameter space, the prior density and the (first derivative
of the) log-normalizer of the exponential family. Hence, the theorems in Russo, 2016 do not
apply to the two bandit models most used in practice, which we consider in this chapter: the
Gaussian and Bernoulli model.

In the first case, the parameter space is unbounded, in the latter model, the derivative of the
log-normalizer (which is e”/(1 + e")) is unbounded. Here we provide a theorem, proving
that under TTTS, the optimal, exponential posterior convergence rates are obtained for the
Gaussian model with uninformative (improper) Gaussian priors (proof in Appendix[7.H), and
the Bernoulli model with Beta(1,1) priors (proof in Appendix[7.I).

Theorem 7.13. Under TTTS, for Gaussian bandits with improper Gaussian priors and for Bernoulli
bandits with uniform priors, it holds almost surely that

1
lim —= log(1—a, ) = T%.
im -~ og(l-au)=TIj

n—oo

2.6 Numerical Illustrations

This section is aimed at illustrating our theoretical results and supporting the practical use of
Bayesian sampling rules for fixed-confidence BAIL

We experiment with 3 Bayesian sampling rules: T3C, TTTS and TTEI with 3 = 1/2, against
the Direct Tracking (D-Tracking) of Garivier and Kaufmann, 2016 (which is adaptive to f3),
UGapE of Gabillon, Ghavamzadeh and Lazaric, 2012, and a uniform baseline. To make fair
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comparisons, we use the stopping rule and associated recommendation rule for all of the
sampling rules except for UGapE which has its own stopping rule.

We further include a top-two variant of the Best Challenger (BC) heuristic (see Ménard, |2019).
BC selects the empirical best arm T, with probability f and the maximizer of W, (T,,, j) with
probability 1 - f3, but also performs forced exploration (selecting any arm sampled less than \/n
times at round #). T3C can thus be viewed as a variant of BC in which no forced exploration is
needed to converge to w”, due to the noise added by replacing T,, with I 5,1). This randomization
is crucial as BC without forced exploration can fail: we observed that on bandit instances with
two identical sub-optimal arms, BC has some probability to alternate forever between these two
arms and never stop.

We consider two simple instances with arm means given by g; = [0.5 0.9 0.4 0.45 0.44999],
and g, = [10.8 0.75 0.7]. We run simulations for both Gaussian (¢ = 1) and Bernoulli bandits,
with a risk parameter § = 0.01. Fig. [.1 reports the empirical distribution of 75 under the
different sampling rules, estimated over 1000 independent runs. We also indicate the values
of N* 21og(1/8)/T* (resp.N§ s 21og(1/8) /Ty 5), the theoretical minimal number of samples
needed for any strategy (resp.any 1/2-optimal strategy). In Appendix|.C, we further illustrate
how the empirical stopping time of T3C matches the theoretical one.

These figures provide several insights: (1) T3C is competitive with, and sometimes slightly
better than TTTS/TTEI in terms of sample complexity. (2) The UGapE algorithm has a larger
sample complexity than the uniform sampling rule, which highlights the importance of the
stopping rule in the fixed-confidence setting. (3) The fact that D-Tracking performs best is
not surprising, since it converges to w” and achieves minimal sample complexity. However,
in terms of computation time, D-Tracking is much worse than others, as shown in Table[7.1,
which reports the average execution time of one step of each sampling rule for g, in the Gaussian
case. (4) TTTS also suffers from computational costs, whose origins are explained in Sec.
unlike T3C or TTEI. Although TTEI is already computationally more attractive than TTTS, its
practical benefits are limited to the Gaussian case, since the Expected Improvement (EI) does
not have a closed form beyond this case and its approximation would be costly. In contrast,
T3C can be applied for other distributions.

7.7 Conclusion

We have advocated the use of Bayesian sampling rules for BAL In particular, we proved that TTTS
and a computationally advantageous approach T3C, are both $-optimal in the fixed-confidence
setting, for Gaussian bandits. We further extended the Bayesian optimality properties (Russo,
2016)) to more practical choices of models and prior distributions. In order to be optimal, these
sampling rules would need the oracle tuning " = argmax,, ;; s, which is not feasible. In
future work, we will investigate the efficient online tuning of f3 to circumvent this issue. We also
wish to obtain explicit finite-time sample complexity bound for these Bayesian strategies, and
justify the use of these appealing anytime sampling rules in the fixed-budget setting. The latter
is often more plausible in application scenarios such as BAI for automated machine learning (Li
et al.,2017; Shang, Kaufmann and Valko, 2019).
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7.A  Outline

The appendix of this chapter is organized as follows:

Appendix[7.C|provides some further numerical illustration for better understanding of T3C.
Appendix [7.D|provides the complete fixed-confidence analysis of TTTS (Gaussian case).
Appendix7.E|provides the complete fixed-confidence analysis of T3C (Gaussian case).
Appendix[7.Fis dedicated to Lemmalg]

Appendix[7.Glis dedicated to crucial technical lemmas.

Appendix[7.H is the proof to the posterior convergence Theorem [7.27](Gaussian case).
Appendix[7IJis the proof to the posterior convergence Theorem[7.34|(Beta-Bernoulli case).

=.B  Useful Notation

In this section, we provide a list of useful notation that is applied in appendices (including
reminders of previous notation in the main text and some new ones).

o Recall that d(y;; 42 ) denotes the KL-divergence between two distributions parametrized
by their means y; and p,. For Gaussian distributions, we know that

_ 2
d(ps ) = 7(#12052) :

When it comes to Bernoulli distributions, we denote this with kI, i.e.

1-
kl(.‘"l;‘“Z):Hlln(:l)+(l—y1)ln( ‘ul),
2

1—‘1,12

o Beta(-,-) denotes a Beta distribution.

o Bern(-) denotes a Bernoulli distribution.

« B(-) denotes a Binomial distribution.

« N(,-) denotes a normal distribution.

o Y, ;is the reward of arm i at time .

« Y, , is the observation of the sampling rule at time #.

o Fu2o(h, Vo150, Yo, Iy, Yu1,) is the filtration generated by the first n observa-

tions.
* Vi 2P[I, =i|F,]
® \Iln,i = 27:1 V/l,i-

« For the sake of simplicity, we further define y, ; = \Pn .

o T,,; is the number of pulls of arm i before round ».

« T, denotes the vector of the number of arm selections.

o I, = argmax, , {4, denotes the empirical best arm at time 7.

o Forany a, b > 0, define a function C, j, s.t. Vy,

Can(y) 2 (a+b-1)kI(—2
a

+b—1;y)'
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o We define the minimum and the maximum means gap as

A A

Amin 2 min|p; — pjls  Amax = max|u; — pjl.
i#j i*j

o We introduce two indices

(Y] (2) »
n

= argmaxdy,;; n = argmaxa, .
J 150

Note that J 5,1) coincides with the Bayesian recommendation index J,,.
o Two real-valued sequences (a,) and (b,,) are are said to be logarithmically equivalent if

1 a
lim —1 il
o Og(b )

n—oo n n

03
and we denote this by a, = b,,.

7.C Empirical vs. theoretical sample complexity

In Fig. [7.2, we plot expected stopping time of T3C for § = 0.01 as a function of 1/ I'; on 100
randomly generated problem instances. We see on this plot that the empirical stopping time
has the right linear scaling in 1/T s (ignoring a few outliers).

4x10°

Empirical stopping time
S

°
0 95

5.0x10° 1.0x10° 15x10° 2.0x10°
1/Gamma_beta™*

°

Figure 7.2: dots: empirical sample complexity, solid line: theoretical sample complexity.

7.D Fixed-Confidence Analysis for TTTS

This section is entirely dedicated to TTTS.

7.D.1  Technical novelties and some intuitions

Before we start the analysis, we first highlight some technical novelties and intuitions. The main
novelty in our analysis is the proof of Lemmalg] establishing that all arms are sufficiently explored
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by our randomized strategies. Although Qin, Klabjan and Russo, 2017 indeed establish a similar
result, our proof is much more intricate due to the randomized nature of the two candidate
arms IV and I® for TTTS (resp. IV for T3C). In the proof of Lemma@ (in Appendix
and Appendix [7.E.1 respectively), we need to add a sort of ‘extra layer’ where we first studi

the behaviour of JV and J® for TTTS (resp. J® and J@ for T3C). We show in Lemma

(resp. LemmaEfor T3C) that if there exists some under-sampled arm, then either J @ or
J® is also under-sampled. A link between I and J is then established using the expression of
Wn,i>» which also allows to upper bound the optimal action probability with a known rate (see

Lemmali7).

7.D.2  Sufficient exploration of all arms
proof of Lemmalg under TTTS

To prove this lemma, we introduce the two following sets of indices for a given L > 0: Vn € N
we define

Ut {i:T,;<VL},

viegioT, <134
It is seemingly non trivial to manipulate directly TTTS’s candidate arms, we thus start by
connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling rule

presented by Russo, 2016 for which the two candidate samples are defined as in Appendix|7.B}
we recall them in the following.

1) . 2) .
,(1 ) 2 argmaxan,j,ff, )2 argmaxa,, ;.

J =

Lemma g]is proved via the following sequence of lemmas.

Lemma 14. There exists L, = Poly(W)) s.t. if L > Ly, for all n, U- # @ implies ],(,1) e VEor
@ ey,

Proof. If ] O VL, then the proof is finished. Now we assume that ] O VI, and we prove that
(2) L
n €V,

Step1 According to Lemma there exists L, = Poly(W;) s.t. YL > Ly, Vi € UL,

log(e + Ty,;)
1+ Tn,i

log(e + VL)
1+ \/f
Amin _ Amin
40W, 4

|tn,i = pil < an\

S(TVVl\

<oW;

The second inequality holds since x % is a decreasing function. The third inequality

holds for alarge L > L, with L, = . ...
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Step2 We now assume that L > L,, and we define
J; £ argmax i, j = argmax ;.

j<UE j<U?

The last equality holds since Vj € UL, |uy.; — i] < Amin/4. We show that there exists L3 =

Poly(W;) s.t. VL > L3,
T = (1)
n [

We proceed by contradiction, and suppose that J; # 7, then H,,m < H, 5 since 7 e VEic

UL. However, we have

O]

anJE‘l) =11, [6]51) > ma]x 9]-:|
j#Iu

<L, [615” > eﬁ]

1 (#,y0 =, 7)°
SoexXpy - .
2 20 (I/Tn’]ﬁl) +1/T”’E)

The last inequality uses the Gaussian tail inequality (7.8) of Lemma[6} On the other hand,

=10 = 0 + 0~ g =, 7]

|, 0 =t 57
2 |0 — pgel = w0 — By + pE =,
Ami Ami
> Amin _ ( Zun " Zun)
_ Amin
2 b
and
1 1 2
+ < —
T ]r(x1) Tn,ﬁ L
Thus, if we take Ls s.t.
expq — LyAnin < i,
1602 2K
then for any L > L3, we have
1 1
Wi =K S K

which contradicts the definition of J ,(11). We now assume that L > L, thus J ,(11) =7

Step3 We finally show that for L large enough, | @ ¢ VL. First note that V j € V-, we have

LAY
an,; <11, [Hj > Gﬁ] < eXP{_l602 . (7.11)
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This last inequality can be proved using the same argument as Step 2. Now we define another
index J; = argmax ;. fin,j and the quantity ¢, = max(¢y,jz> 4, 7). We can lower bound a,, j»
as follows:

An,Jt > 11, [9]; > Cn] H I, [91 < Cn]

i
=, [0;2¢co] I Ta[0;<cu] [T [0 <cu]
j#TEseUt jeUr
1

> Hn [9]: > Cn] F

Now there are two cases:

« Iy > p, 57> then we have

0, [0); 2 ] = T [0 2 p gz ] 2

N | =

e If y,; < p, 7> then we can apply the Gaussian tail bound of Lemma E, and we
obtain

IL, [6); > cu] =11, [91:, 2 #n,ﬁ] =11, [9/: > gy + (55 = Mn,m)]

P\]

2
1 1 n,Jn
2 expy——|1- = U T
Van 2( g Hw))

2
1 1 Tn,];‘
= exp) = (1+ (Mn,,;—ﬂn,m))

o

On the other hand, by Lemmal[7} we know that

gy = b, 75 = Wty = bz + gy — g+ g — 5

<lugy = pgl + oWh

log(e + T, ;=)
1+ Tn,]:

< uy; = gzl +20W;

log(e + T, ;=
< Amax + 20 Wi log(e + Tuy;).
1+Tn,]:
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Therefore,

log(e + T, j+)

Hn [8]: > Cn] > Amax +2UVVI

1+ Tn,];

[}
>
ae)
|
N | =
—_
—
+
=
=~
>
=4
0
=
+
=
5}
g
~
(3N
+
S
N
|38
—

Now we have

16 1\ 1 LY*Ana ’
a,,);;Zmax((z) ,(5) mexp{—z(l-raa-rzwl log(e+\/f)) ,

and we have Vj € VI, a,; < exp {-L%*A2,,/(160%)}, thus there exists Ly = Poly(W;) s.t.
VL > Ly, Vje VL,

an,];
an,j S 2 >
(2) L
and by consequence, ], € V.
Finally, taking L; = max(L,, L3, L4 ), we have VL > L,, either ]f,l) eVlor ]5,2) e VL O

Next we show that there exists at least one arm in V! for whom the probability of being pulled
is large enough. More precisely, we prove the following lemma.

Lemma 15. There exists L, = Poly(W;) s.t. for L > L, and for all n s.t. UL # @, then there exists
Jao€VEst.

5 min(f,1-f3)

K2 = l/’min .

Yn,J,

Proof. Using Lemma E, we know that J$” or J{) ¢ V. On the other hand, we know that

VieA,w,;=an,; (/3+(1_ﬂ)z f”»] )

Therefore we have

l//n,]’(ql) > ﬁan’]’sl) > g,
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since Y ;e 4 an,i =1, and

) a, ;o
> — a —n
Vg 2 (1= B,y 7=, =0

»Jn

. an’ 5.2)
=(1-B)a
( ﬁ) n’jf‘l)l—a o
n,),
L8
K2
since a, ;) 2 1/K and oo an:/(1- an)]g)) =1, thus amﬁz)/(l - an,/ﬁo) >1/K. O

The rest of this subsection is quite similar to that of Qin, Klabjan and Russo, 2017. Indeed, with
the above lemma, we can show that the set of poorly explored arms U~ is empty when  is large
enough.

Lemma 16. Under TTTS, there exists Ly = Poly(W;, W;) s.t. VL > Ly, U[LKLJ =@.

Proof. We proceed by contradiction, and we assume that U[LKL | is not empty. Then for any
1< ¢ < |KL|, U and V} are non empty as well.

There exists a deterministic L s.t. VL > Ls,
|L] > KL,

Using the pigeonhole principle, there exists some i € A s.t. Tj;); > L**. Thus, we have
Vil <K-1

Next, we prove |VL2LJ| < K - 2. Otherwise, since U/ is non-empty forany |L| +1< ¢ < [2L],
thus by LemmaE,Lthere exists J; € VZL s.t. ¥g,5, > Wmin. Therefore,

Z Ye,i 2 Ynmins
eV}
and
Z 1/’2,1’ 2 ll/min
7 L
IGV[LJ
since Vi © V|7 |. Hence, we have
[2L]

Z (Yae)i = Yepi) = Z Z Vei > Ymin [ L]

) - iyl
eVl 12 [LJH’EVLLJ
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Then, using Lemma|8] there exists Ls = Poly(W,) s.t. VL > Ls, we have

Z (TLZLJ,i - T[LJ,i) > Z (\IILZLJ,I' - \II[LJ,i - ZWZ\/LZLJ log(ez + LZLJ))
eVl eVl
> Z (\IILZLJ,Z' - \II[LJ,i) - ZKWZ\/LZLJ log(ez + LZLJ)

ievﬁj

> Ymin | L] = 2KW5C, | LJ*
> KL,

where C, is some absolute constant. Thus, we have one arm in V[LL | that is pulled at least L3/*
times between | L| + 1 and | 2L |, thus |V[L2LJ| <K-2.

By induction, for any 1 < k < K, we have \Vﬁd” < K - k, and finally if we take Ly =
maX(Ll) L5, L6)) then VL > Lo, UI_LKLJ =J. D

We can finally conclude the proof of Lemmalg| for TTTS.

Proof of Lemmalg Let Ny = KL, where Ly = Poly(W;, W,) is chosen according to Lemma|1_6.
For all n > Ny, we let L = n/K, then by Lemma ‘ we have U[LKL | = U, /K i empty, which
concludes the proof.

7.D.3 Concentration of the empirical means,
proof of Lemma[10lunder TTTS

Asa corollary of the previous section, we can show the concentration of y,, ; to y; for TTT
By Lemmal7} we know that Vi € Aand n € N,

log(e + Ty,;)

i — il < oW .
|.un,t ‘“1‘ 1 Tpi+1

According to the previous section, there exists N; = Poly(W;, W,) s.t. Vi > Nj and Vi € A,

T,.; > \/n/K. Therefore,

|thn,i = pil <

5this proof is the same as Proposition 3 of Qin, Klabjan and Russo, 2017
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since x — log(e + x)/(x + 1) is a decreasing function. There exists N; = Poly(e, W) s.t.

Vn > Ny,
log(e ++/n/K) p 2(n/K)4 P
VrfK+1 "\ \/n/K+1 "~ oW

Therefore, Vn > N, = max{N;, N;}, we have

&
ni— Wil SOW——.
|tni = pil < oW p
7.D.4 Measurement effort concentration of the optimal arm,
proof of Lemma [11]under TTTS

In this section we show that the empirical arm draws proportion of the true best arm for TTTS
concentrates to f when the total number of arm draws is sufficiently large.

The proof is established upon the following lemmas. First, we prove that the empirical best
arm coincides with the true best arm when the total number of arm draws goes sufficiently
large.

Lemma 17. Under TTTS, there exists M, = Poly(W;, W,) s.t. Yn > My, we have I’ = I* = ,(,1)
and Vi + I,
Al [m
a,;<e -t
Xp{ 1602 K}

Proof. Using Lemma@with € = Apin/4, there exists N = Poly(4/Amin, Wi, W) s.t. Vn > Nj,

Amin

VieA, |upi— il < ,
i€ Alpn,i il < =

which implies that starting from a known moment, y,, 1+ > y, ; for all i # I*, hence I; = I*.
Thus, Vi # I,

ay,i = 11, |:0, > maxﬁj]
Jj#i

<II, [91 > 01*]

p— * 2
< lexp - (fni = s .
2 202(1/Tn),‘+1/Tn)[*)

The last inequality uses the Gaussian tail inequality of (7.8) Lemmal6] Furthermore,

(/"n,i — Un,1* )2 = (|.”n,i - /”n,l*|)2
= (pm,i = i + i = pre + prs = i1 )?
> (|pi = e = i = pi + e = i re])’?

> (Amin - (Azin + Al:;in ))2 = Aiﬂn >




7.D. Fixed-Confidence Analysis for TTTS 229

and according to Lemmalg} we know that there exists M, = Poly(Wj, W) s.t. Vnn > M,

Thus, Vn > max{N|, M, }, we have

A2
Vil a,,;< exp{—mml;\/g}.
o

Then, we have

A%,
apg-=1- Zan,izl—(K—l)exp{— min n}.

o 1602 V K

There exists M} s.t. Vn > M}, a,» > 1/2, and by consequence I* = 7. Finally taking
M; £ max{Nj, M,, M’} concludes the proof. O

Before we prove Lemma|u1} we first show that ¥, ;- /n concentrates to .

Lemma 18. Under TTTS, fix a constant € > 0, there exists M3 = Poly(e, W;, W,) s.t. Y > Ms,
we have

<e.

\Pn,I*
|2 -

n

Proof. By Lemma |17} we know that there exists M{ = Poly(Wj, W) s.t. Vn > M, we have
I'=I"= ,(11) and Vi + I*,

n

AL [m
An,i < exp{—m“(‘;; K}'

Note also that Vn € N, we have

a.
Wn,[*:an,l* ﬁ""(l_/j)z = .
jI* l—an,j

We proceed the proof with the following two steps.
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Step1  We first lower bound ¥, |+ for a given ¢. Take My > M; that we decide later, we have
Vn > My,

\Ijn,l* 12 1 My n
=*ZVM*=*ZV/U*+* Z Vi,
n i nr I=My+1
1 & 1 Z
2 — Z Vi 2 — Z arr-p
oM+l Mi=mMn1
S (E
MM+ jEI*
L A% !
ZE o[- (K-1)expq- N\ =
n M 160 K
X i
nl =My+1 P 16 2 K
M4 (I’l M4) Amm M4
2 f- 7/3 ——B(K-1)exp TEAVAN

> -2 p(K - 1)exp{ s ]f(}

For a given constant ¢ > 0, there exists Ms s.t. Vn > Ms,

n

AL
ﬁ(K—l)eXp{—mUz K}<

[\SRIN

Furthermore, there exists Mg = Poly(¢e/2, Ms) s.t. Vn > Mg,

Therefore, if we take My £ max{M;, M5, Mg}, we have Vn > My,

\PnI*
— 2>p-c
2P
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Step2 On the other hand, we can also upper bound ¥, ;. We have Vn > M3,

\I’n,l* _ 1<
w7 IZ:;V/Z,I*

Yo (pr-p) ¥

=— 2 4L -
ni; jEI* l—al,j
1 & arj

S*Zall*ﬂ"r*zall* — >
nig ;¢I* l—al,j

al)j

<priy(-p

n i Jﬂ* l-ay;
exp {— Ay \/I}
1602 K
1- .
Z( ﬁ) ;" A12'nm l
! B ATV
Since, for a given & > 0, there exists Mg s.t. Vn > Mg,
A% \/7 1
expy——22, /=1t < -,
p{ 1602 V K 2

and there exists My s.t. V1 > Mo,

n

(l—ﬁ)(K—l)eXp{—Ami“ K} <

1602

™ m

Thus, Vn > Mjy = max{ Mg, My},
A /L A /1
¥, . 1- B | Mo exp{ 1602V ¥ " P\ 1602 V ¥
. +
"1 A /L g2 M 1% 1* 1 A /1
~“SXP\ "2 V K 10 “SXP\ "2 V K

!

<3 p{ 2}50/&)(1“)&19{ m\/i}

n
- exp (- e

A? 1

min +
My P12 V K e
+ =

A% 2
I=1j#I" 1 - exp {_ To0? \/%}

There exists My, = Poly(¢e/2, Myg) s.t. Vi > My,
exp —A‘Z“‘"\/I
B Mio 160> V K €
< -,
Z Z A% I 2
1T - exp { - o\ /4

—

I/\

1-
n
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Therefore, Vn > M; £ max{ M3, My; }, we have

\Pnl*
—— <p+e
<P

Conclusion Finally, combining the two steps and define M3 = max{M4, M}, we have
Vn > Ms;,

\Pn I*
— - p|<e.
i
O
With the help of the previous lemma and Lemma|} we can finally prove Lemma
Proof of LemmaE Fix an € > 0. Using Lemma we have Vn € N,
Tor Yoo p Wiy/(n +1)log(e +n)
n no|- n '
Thus there exists My, s.t. Vn > My,
‘Tn,l* _ \Pn,l* E
n no|”2
And using Lemmali8, there exists M} = Poly(e/2, Wi, W,) s.t. Vi > M3,
\I’n I* €
gl &
‘ n A< 2
Again, according to Lemmalis, there exists M} s.t. Vn > Mj,
W1 £
— < p+—.
n B 2
Thus, if we take N3 £ max{ M}, M1, }, then Vn > N3, we have
Tn I*
— —pl<e
s
u

7.D.5 Measurement effort concentration of other arms,
proof of Lemma 12 under TTTS

In this section, we show that, for TTTS, the empirical measurement effort concentration also
holds for other arms than the true best arm. We first show that if some arm is overly sampled at
time n, then its probability of being picked is reduced exponentially.
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Lemma 19. Under TTTS, for every & € (0,1), there exists S = Poly(1/&, W, W,) such that for
alln> 8, foralli #I*,

\Pn,i

i <exp{-e(§)n},

where ¢ is defined in below.

Proof. First, by Lemmali7| there exists M{’ = Poly(W;, W,) s.t. Yn > M{’,
r=r=".

Then, following the similar argument as in Lemma|[31} one can show that for all i # I* and for
all n > MY,

(/5+(1—/3)Z )
jei - On,

=i An, j
< a,,,,-ﬁ+a,,,,»(1 ﬁ) ] !

](1)
2

_%$+%(hﬁ)ﬁ;
n,I*

< an,iﬁ+an,i(1 ﬁ) ~a,
I*

< an,i

1- an,[*
I1,[0; > 0]
a Hn [Uj#l*ej > 91*]
I1, [9, > 61*]

a man¢1* Hn [01 > 61*] .

Using the upper and lower Gaussian tail bounds from Lemma 6} we have
exp - (.un,l* - .“n,i)2
202 (I/Tn)j* + I/Tn),')
V/n,i 2
1 (n,s = tin,j)

exp | —min -~ -1
P02\ o\ /(Y T +1/ T, )

_ )2
exp {_n (/"n,I ["n,z) }

IN

202 (n/ Ty +1n/Ty;)

2\ °

. (Unr — .”mj)
exp{ —n | min

1
#r \/202 (T’l/Tn)I* +T’Z/Tn)j) \/ﬁ
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where we assume that n > S, = Poly(W;, W) for which

(,“n,l* _!'411,i)2 51
0'2 (I/TH,I* + I/Tn)i) B

according to Lemmalo| From there we take a supremum over the possible allocations to lower
bound the denominator and write

_ )2
exp{-n (,un,l ,un,l)
202 (ﬂ/TnJ* + ﬂ/Tn)i)

2

expiy-—n sup min (‘u”’l* _ ‘u"’i)

1
@wp =T, [n 7* \/202 (Yowp +1/w;) Vv 2n
_ )2
exp{—n (,un,I ,“n,z) }

202 (n/ Ty +n[T, ;)
exp{—n (\/m_ \/12—”) }

where py = (4n,1,+ pinx)> and (B, u) = T (u) represents a function that maps f and p to
the parameterized optimal error decay that any allocation rule can reach given parameter 8

and a set of arms with means g. Note that this function is continuous with respect to 8 and p
respectively.

Now, assuming ¥, ; /n > wf + Eyields that there exists S5 = Poly(2/¢, W5) s.t. forall n > S,
Tuifn > wf + &/2, and by consequence,

([/ln,l* - Hn,i)z

202 (n/ Ty +1/(f +E/2))

Yn,i S €xpq—n +
2n n

- r;n)p/n ([’ln) -

&n(8)

Using Lemmabl, we know that for any ¢, there exists S3 = Poly(1/e, Wi, W) s.t. Vn > S;,
| T+ /n = P|<e;and Vje A, |uy,; - pj| < e Furthermore, (B, ) = I'; (p) is continuous with

respect to B and g, thus for a given ¢, there exists S = Poly(1/eg, Wi, W5) s.t. Vi > S5, we
have

(- —pi)? .
Ep g) - -T < &o.
O 5 (VB +1(f+g2)) "

Finally, define §; = max{S$,, S}, S}}, we have Vn > §j,

Vn,i Sexp{-eo(§)n},
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where s
& () = G ) —F/§+eo. (7.12)

202 (1/8+1/(of + £2))

O

Next, starting from some known moment, no arm is overly allocated. More precisely, we show
the following lemma.

Lemma 20. Under TTTS, for every &, there exists Sy = Poly(1/&, Wi, W) s.t. Vn > Sy,

Vie A,

Proof. From Lemmaltg, there exists S{ = Poly(2/&, W;, W5) such that for all n > S{ and for all

T N
\Ijn,i B f

ref+ = Vi <exp{-eo(&/2)n}.

Thus, forall i # I,

n ¥,
Z Vei ( > fj+§) > 1//4,1-]1( 2’ Sw?-rg)

\Pn,,‘ Sl £=8{+1 25T
< —+ +
n n n "
(%) p £
Zexp{ eo(E/Z)n} Z Ve,i ( < W) +2)
S/ Z 1
< bl
n n n

where we let £,, (&) = max {€ <n:¥i/n< wf + 5/2} Then

S exp {~¢o(£/2)n}

Y, S' =
n

+ W, 0).i

. S{+(l—exp( 80(5/2)) !

n
Then, there exists S5 such that for all n > Ss,

S+ (1-expl-ea(§/2) " _
n T2

Therefore, for any n > S; = max{S},Ss}, ¥p,; < w{j + ¢ holds forall i # I*. For i = I*, it is
already proved for the optimal arm. O

We now prove Lemmali2|under TTTS.
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Proof of Lemmalfi2| From Lemmal|2o] there exists S§ = Poly((K - 1)/, Wy, W,) such that
forall n > S},
§

K-1

<wf +

\I/ .
Vie A, 2
n

Using the fact that ¥, ;/n and wf all sum to 1, we have Vi € A,

\Pni \Pﬂ‘
, :I_Z Ni
n o
: )
>1—Z(wﬁ+
j#i ! K-1
:wlﬁ—f
Thus, for all n > S}, we have
\Pni
VieA |l —of| <t
n

And finally we use the same reasoning as the proof of Lemmato link T, ; and ¥,, ;. Fix an
&> 0. Using Lemma([8] we have Vn € N,

Tn,i _ \Pn,i
n n

< Way/(n +1)log(e? + n).

Vie A,

Thus there exists S5 s.t. Vn > S5,

&
< =

5

‘ Tn,I* \Pn,I*

n n

And using the above result, there exists Sy = Poly(2/e, W;, W) s.t. Vn > S,

~of

1

‘\Pn,i <

n

€
5
Thus, if we take N = max{S}, S5}, then Vn > N4, we have

Tn,i B

_wi

Vie A,

<e.

7.E  Fixed-Confidence Analysis for T3C

This section is entirely dedicated to T3C. Note that the analysis to follow share the same proof
line with that of TTTS, and some parts even completely coincide with those of TTTS. For
the sake of clarity and simplicity, we shall only focus on the parts that differ and skip some
redundant proofs.
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7.E.1  Sufficient exploration of all arms, proof of Lemmalgunder T3C

To prove this lemma, we still need the two sets of indices for under-sampled arms like in
Appendix|[7.D.2. We recall that for a given L > 0: Vn € N we define

Ul {i:T,;<VL},

vie i, <134,

For T3C however, we investigate the following two indices,

0

£ argmaxa,,;; ,(12) £ argmin W, (],Sl),j).
; )

Lemma g]is proved via the following sequence of lemmas.

Lemma 21. There exists L, = Poly(W,) s.t. if L > Ly, for all n, UL # @ implies 7 e VEor

’_(\Z_SEVL
n n-

Proof. If ] O VL, then the proof is finished. Now we assume that JV e VE c UL, and we
prove that J& e VL

Step1  Following the same reasoning as Step 1 and Step 2 of the proof of Lemma|i4, we know
that there exists L, = Poly(W)) s.t. if L > L,, then

Jr = argmax {4, ; = argmax y; = f,l).

jeut jeUt
Step2 Now assuming that L > L,, and we show that for L large enough, J @ ¢ VE. In the
same way that we proved one can show that for all Vj € VL,

(#n,l* - /’ln,j)z > L3/4Arznin

5 2( L1 )‘ 1602
o
Tn,l* Tn,j

W, (70, j) =

Again, denote J;; £ argmax._,;; f,, j, we obtain

jeut
0 if gy e 2 OB
(1, 0 = thng: )’
Wn(]fll),fﬁ) = 2ol & else.
2( 1 1 )
20

+
Tn’]y(‘l) Tn,];
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In the second case, as already shown in Step 3 of Lemma [14) we have that

log(e + T, j+)
1+ Tn,];

log(e + /L)
1+vL

|‘un,]; n ]*| < Amax + ZGVVI\

< Apax + 20Wl\

since J; € UL. We also know that

2w L), 20° LZ
Tn,]ff) Ty ) Tug \/_

Therefore, we get

(1) <£ A 20 W, M
( ]) max t 20 W 1+\/Z

On the other hand, we know that for all j € VL,

3AN2
(1) L ~ Smin
W, > .
Un'0) 2 =3¢

Thus, there exists L3 s.t. if L > Ls, then

Vie VE W, i) 2 2w, G0, 12).

That means J$*) ¢ VI and by consequence, 5,2) e VE

Finally, taking L; = max(L,, L3), we have VL > Ly, either ]S,l) e VEor ]f,z) e VL

O

Next we show that there exists at least one arm in V" for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma 22. There exists L, = Poly(W;) s.t. for L > Ly and for all n s.t. UL # @, then there exists

JoeVEst
min(S,1-f) ,

Yn,, 2 K2

= ¥min-

Proof. Using Lemmal we know that ], W or In e € VL. We also know that under T3C, for any

arm i, ¥, ; can be written as

L{ W, (jy i) = ming; W, (j k) }
v ,:ﬁan,,-+(1—[3)2an,j 3 2 ;
o |argm1nk¢j W, (j, k)|
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Note that (y,,;); sums to 1,

]I{Wn(j, i) = min;#j Wn(j’ k)}
V/n,i:/g""(l_/—;) @n,j i .
Zi: ZJ: j ; |argm1nk¢j W (j, k)|

:[34—(1—/3)2(1”,]':1.
J

Therefore, we have
> > E
Voo 2 Pa, o 2 K

on one hand, since Y ;. 4 dx,; = 1. On the other hand, we have

an’]’?)
v, (- )L

zl_ﬁ,
Kz

which concludes the proof. O

The rest of this subsection is exactly the same to that of TTTS. Indeed, with the above lemma,
we can show that the set of poorly explored arms U} is empty when 7 is large enough.

Lemma 23. Under T3, there exists Ly = Poly(W;, W;) s.t. VL > Ly, U[LKLJ =@.
Proof. See proof of Lemmali6]in Appendix[7.D.2, O

We can finally conclude the proof of Lemmag|for T3C in the same way as for TTTS in Ap-
pendix|[7.D.2! u

7.E.2 Concentration of the empirical means,
proof of Lemma |10/ under T3C

As a corollary of the previous section, we can show the concentration of y, ; to y;, and the
proof remains the same as that of TTTS in Appendix

7.E.3 Measurement effort concentration of the optimal arm,
proof of Lemma [u1junder T3C

Next, we show that the empirical arm draws proportion of the true best arm for T3C concentrates
to 3 when the total number of arm draws is sufficiently large. This proof also remains the same

as that of TTTS in Appendix[7.D.4}
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7.E.4 Measurement effort concentration of other arms,
proof of Lemma12 under T3C

In this section, we show that, for T3C, the empirical measurement effort concentration also
holds for other arms than the true best arm. Note that this part differs from that of TTTS.

We again establish first an over-allocation implies negligible probability result as follow.

Lemma 24. Under T3C, for every £ < g, with g, problem dependent, there exists S; = Poly(1/£, Wy, Ws)
such that for all n > Sy, for all i + I,

\Pn,i ﬁ Afnin n
TZwi+2£ = Y, <(K-1)exp e VK[

Proof. Fixi+I"st. ¥, ;/n> wf + 2¢, then using Lemma there exists S, = Poly(1/&, W;)
such that for any n > S,, we have

Tni
: wa+£,

n
Then,

Vi < Pani+(1-p) Z an,j]l{Wn(ﬂ i)= I}}i? W, (jis k)}

j*i
Sﬁan,i+(1—ﬁ)( S @+ a1 {W, (1) = min W"“*’k’})
jEi I

< D0+ L{W,(I", i) = min W, (I", k)}.
jEI* kI

Next we show that the indicator function term in the previous inequality equals o.

Using Lemmalz|and Lemmalulfor T3C, there exists S = Poly(1/&, Wy, W,) such that for any
n> S3,
Tn,I*

-B

n

<&andVje A, |un,—uj| < &

Now if Vj # I*, i, we have T, ;/n > wf,then

n_l_ Tn,j

n ]G.A n
T, T,
— n, + n,1+ Z
n no eri
2
>B-¢ +ofreq > wle,

i
j2I5 i

T,

n

which is a contradiction.
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Thus there exists at least one jo # I*, i, such that T}, j /n < wf. Assuming n > max(S,, S3), we
have

Wn(I*, l) _ Wn(I*,j()) _ (,un,l* ,un,l) _ (”n)l ﬂ »]0)
20° 1 + ! 20° ! + !
Tn,I* Tn,i Tn,I* Tn,jg
(pr — pi —28°)° (ur = pj, +28%)°

\Y%

202(1+1) oo
p-& wf+£ B+ & wfo

wt
irjo

. . 3 .
According to Proposmon Wy, converges to o when £ goes to o, more precisely we have

ijo L ( : /3) E+0(&8),

207 B+w

i
thus there exists a &y such that for all £ < ¢ it holds for all i, jo # I*, Wf B> 0. It follows then

W, (I, ) = min Wy (I, k) 2 Wy (I*, i) = W (I', jo) > 0,
=]

and 1{W, (I, i) = ming.p» W,(I",k)} = 0.

Knowing that Lemma[z]is also valid for T3C, thus there exists M; = Poly(4/A pin, Wi, Ws)
such that for all n > M;,

: * Arznin h
V]#:I ,an,jSexp —@ E ,
which then concludes the proof by taking S; £ max(M;, Sz, S3). O

The rest of this subsection almost coincides with that of TTTS. We first show that, starting
from some known moment, no arm is overly allocated. More precisely, we show the following
lemma.

Lemma 25. Under T3C, for every &, there exists Sy = Poly(1/&, Wi, W;) s.t. Vi > S,

\
Vied, —2L<of 428
n

Proof. See proof of Lemma20]in Appendix[7.D.5| Note that the previous step does not match
exactly that of TTTS, so the proof would be slightly different. However, the difference is only a
matter of constant, we thus still choose to skip this proof. O

It remains to prove Lemma|12|for T3C, which stays the same as that of TTTS.
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Proof of Lemmali2/for T3C  See proof of Lemmali2|for TTTS in Appendix[z.D.5|

7.F  Proof of Lemmalq

Finally, it remains to prove Lemma |4/ under the Gaussian case before we can conclude for
Theorem[7.2 for TTTS or T3C.

Lemma 4. Let 8, 3 € (0,1). For any sampling rule which satisfies E [TE] < oo forall e > 0, we

have
lim sup =701
50 log(1/3)

if the sampling rule is coupled with stopping rule (7.4),

S b

1
I‘*

For the clarity, we recall the definition of generalized likelihood ratio. For any pair of arms i, j,
We first define a weighted average of their empirical means,

Tn,i T4 Tn, j -
Tn,i + Tn,]‘ Hn Tn,i + Tn,j A"l”J'

T e
Un,i,j =

And if @, ; > @y, j, then the generalized likelihood ratio Z,, ; ; for Gaussian noise distributions
has the following analytic expression,

Zn,i,j = Tn,id(ﬁn,i;ﬁn,i,]’) + Tn,jd([//l\n,ﬁp\n,i,j)-
We further define a statistic Z,, as

Zyp2max min Z, ;.
ieA jeA\{i}

The following lemma stated by Qin, Klabjan and Russo (2017) is needed in our proof.
Lemma 26. For any { >0, there exists e s.t. Vn > Tg, Z,, > (I = {)n.

To prove Lemma 4} we need the Gaussian tail inequality (7.8) of Lemmale]

Proof. We know that

1= = ), an,

i#l*

< Z IT, [91 > 91*]
i#l*

= > M,[6; -0 >0]
i#l*

< (K—l) I_Il?XHn [9, - 91* > 0] .
i#]*
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We can further rewrite I1,, [6; — 6;- > 0] as

IT, [61 -0 > Un,i = Un,1 + Un1+ — Hn,i] .

We choose ¢ sufficiently small such that the empirical best arm I, = I*. Then, forall n > T} and

forany i # I*, y, 1+ > Uy,,;. Thus, fix any { € (0, FE/Z) and apply inequality of LemmaE
with y,, 1~ and p, ;, we have for any n > Tg,

1
1-a,p < (K—l)maxexp{
ixI* 2

_ (Mn,l* - P‘n,i)z}

2
20, ; 1+

_ (K-1)exp{-Z,}
2
) (K -1) exp {2—(r/; - ()n}'

The last inequality is deduced from Lemmal|26] By consequence,

£ K-1 *
Vl’l > T’B,ln(l— aﬂ,l*) SlnT - (rﬁ _()n.

On the other hand, we have for any #,

0
1-cps= .
2n(K -1
2n(K -1)\V2me exp{ 2In n((S)}
Thus, there exists a deterministic time N s.t. Vn > N,
0 2n(K -1)
In(l1-¢,5)=In———-Inn—-\/2In —=
( 2) (K -1)V/8me q
)
>In ———=-(n
2(K -1)v/2me
Let C; = (K —1)2\/2me, we have for any n > Ny = T; +N,
C3 *
In(l-a,<)-In(1-c,s) gln?—(rﬁ -2)n, (713)

and it is clear that E [Nj] < oo.

Let us consider the following two cases:

Case1 There exists n € [1, Ng| s.t. a, 1+ > ¢,5, then by definition,

Té‘SI’lSN].
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Case2 Foranyn € [1, Ny], we have a,, 1+ < ¢, 5, then 75 > Ny + 1, thus by Equation@,
0<In(l-ar1+) —In(1-cryo16)

< ln% = (T3 —20)(75 - 1),

and we obtain
TB S M + 1.
1"/; -2¢

Combining the two cases, and we have for any { € (0,T 3 /2),

Ts < max {NO, lrécj/z(? + 1}
In(C;) In(1/6)

+ .
r;-20 T;-2

§N0+1+

Since E[N;] < oo, therefore

E[T@] < 1

lim su < , Ve (0,T3/2),
P log(1/0) < Ty —ap "4 (O T

which concludes the proof. O

7.G  Technical Lemmas

The whole fixed-confidence analysis for the two sampling rules are both substantially based on
two lemmas: Lemma 5 of Qin, Klabjan and Russo, 2017/and Lemma We prove Lemmain
this section.

Lemma 8. There exists a random variable W, such that for all i € A,

Ve |Tyi— Wil < War/(n +1)log(e? + n) as.,

and E [e*"?] < oo for any A > 0.

Proof. The proof shares some similarities with that of Lemma 6 of Qin, Klabjan and Russo,
2017, For any arm i € A, define Vn € N,

a
D, = Tn,i - \Iln,i)

dn = ]1{1,1 = l} —Vn,i-



7.G. Technical Lemmas 245

It is clear that D,, = ¥/ d; and E [d,,|F,_1] = 0. Indeed,
E [dn|-7:n—l] =E []I{In = i} - Wn,i|-7:n—1]
P[I,=iF,]-E[P[I, = i|Fn1]|Fui]
=P[I, = i|Fu1] - P [, = i|Fp1] = 0.

The second last equality holds since P [I,, = i|F,,—;] is F,,—;-measurable. Thus D,, is a martingale,
whose increment are 1 sub-Gaussian as d,, € [-1,1] for all n.

Applying Corollary 8 of Abbasi-Yadkori, Pal and Szepesvari, 2012[6:, it holds that, with probability

larger than 1 - ¢, for all n,
ID,| < \l 2(1+n)1n( v 1(;”)

which yields the first statement of Lemmal3]

We now introduce the random variable

T . —, .
W, £ max max | L "”l

neN ieA \/(n+1)In(e2 +n)

-x2/2

Applying the previous inequality with § = e yields

P[3neN": D, > /(T+n) (n (T4 n) +22) | < P2,

P [Eln eN*:|D,| > /(1+n)In (e + n)xz] <e P,
where the last inequality uses that for all a, b > 2, we have ab > a + b.

Consequently Vx > 2, foralli € A

Tni_\I/ni —x?
P[max [T il 2x:|Sex/2.
neN \/(n +1)log (e + n)

Now taking a union bound over i € A, we have Vx > 2,

P[W, > x] < P [ max max i = ¥ >x
22T A e (n+1)log(\/ez+n) N

|Tn i _\Pn i‘
<P max : . > X
lig neN (n+1)log(Ve2 +n)

< Z P [ max [ Toi = Wi >x
ica | "N (n+1)log(VeZ+n)

< Ke™*12,

Sbut we could actually use several deviation inequalities that hold uniformly over time for martingales with
sub-Gaussian increments
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The previous inequalities imply that Vi € 4 and Vn € N, we have
‘Tn,i — \Iln’,'| < Wz\/(l’l + 1) 10g(€2 + 1’1)
almost surely. Now it remains to show that YA > 0,E [ekWZ] < oo. Fix some A > 0.

E[eAWZ] = /;T P[e)‘w2 >x]dx = [y: P[e“v2 > euy]Z)te”y dy

—2/\/ [Wy >2y]e 2”dy+2)t[ P[W, 22y] eV dy
y=2

<2/\[ (W >2y]e 2Aydy+2)tC1f eV 2)‘ydy<c>o

—edA-1 <oo

where C; is some constant.

O

7.H Proof of Posterior Convergence for the Gaussian Bandit

7.H.1  Proof of Theorem [7.13}, Gaussian case

Theorem 7.27. Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost
surely that

. 1 x
r}ingo—;log(l —anr) =Tjg.
From Theorem 2 in Qin, Klabjan and Russo, [2017, any allocation rule satisfying T, ;/n — wf
for each i € A, satisfies

lim —— log(l —anr) =1Ijg.

n—>oo
Therefore, to prove Theorem [7.27} it is sufﬁc1ent to prove that under TTTS,

T, i a.
Vie{l,...,K}, lim 2% wf. (7.14)

n—oo 1

Due to the concentration result in Lemma|8|that we restate below (and proved in Appendix[7.D),
which will be useful at several places in the proof, observe that

Tni a.s \Ijni a.s
lim =% % of o lim —%L % P,
n—-oco M9 ! n—oo n !

therefore it suffices to establish the convergence of y,, ; = ¥, ;/n to wl: , which we do next. For
that purpose, we need again the following maximality inequality lemma.

Lemma 8. There exists a random variable W, such that for all i € A,

V16| Ty — Yail < Wan/(n +1)log(e? + n) as.,
and E [e*"?] < oo for any A > 0.
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Step 1: TTTS draws all arms infinitely often and satisfies T), ;- /n — . More precisely, we
prove the following lemma.

Lemma 28. Under TTTS, it holds almost surely that
1. forallie A limy, o Ty, = 00.
2. app —> L
3. Tup/n—p.
Proof. Our first ingredient is a lemma showing the implications of finite measurement, and

consistency when all arms are sampled infinitely often. Its proof follows standard posterior
concentration arguments and is given in Appendix[z.H.2]

Lemma 29 (Consistency and implications of finite measurement).
Denote with I the arms that are sampled only a finite amount of times:

T={ie{l,....k}:Yn,T,; <oo}.

IfTZisempty, a, ; converges almost surely to 1 when i = I" and to O when i # I". IfT is non-empty,
then for every i € Z, we have liminf,_, o a,; > 0 a.s.

First we show that 3", T,,j = oo for each arm j. Suppose otherwise. Let Z again be the set of
arms to which only finite measurement effort is allocated. Under TTTS, we have

I//n,i:an,i(ﬁ+(l_ﬁ)z fn )

i l—an,j

SO Yy,;i > fay ;. Therefore, by Lemma@, if i € Z, then liminf a,, ; > 0 implies that 3", y,,; =
co. By Lemma |8 we then must have that lim, ., Ty,; = oo as well: contradiction. Thus,
lim, o Ty,; = oo for all i, and we conclude that a,, ;~ — 1, by Lemma @

For TTTS with parameter f3 this implies that ¥, ;. — f, and since we have a bound on |T;, ; /n -
¥, | in Lemmalg| we have T, - /n — 8 as well, O

Step 2: Controlling the over-allocation of sub-optimal arms. The convergence of T, +/n
to /3 leads to following interesting consequence, expressed in Lemma 30! if an arm is sampled
more often than its optimal proportion, the posterior probability of this arm to be optimal is
reduced compared to that of other sub-optimal arms.

Lemma 30 (Over-allocation implies negligible probability). [|Fix any & > 0 and j # I*. With
probability 1, under any allocation rule, if T,, 1 [n — B, there exist & > 0 and a sequence &, with
&n — 0 such that for any n € N,

Ty,j

a i ’
LD A S =S ()
n / max;zr+ n,i

7analogue of Lemma 13 of Russo, 2016
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Proof. We have I1,(®y;s1<) = X e an,i = 1 — an+, therefore max; .« a,; <1- a,-. By
Theorem 2 of Qin, Klabjan and Russo, 2017 we have, as T,, 1+ /n — f3,

1
lim sup —— log (me}xan,i) <Tj.
i+l*

n—o00 n
We also have the following from the standard Gaussian tail inequality, for n > 7 after which
fn1+ > pni> using that 0; — O« ~ N (pn,i = pnre> 05, +0p ) and op  + 0 o = 02(1/ Tpi +
1/ Tn,I* ))

_([/‘ni_[ln I*)2 (#ni_.unl)z
 <I1,(0; > 0p:) < : : = - - ) .
nt S Th(0: 2 1) < cxp (zfﬂam,p w1y ) P 2 (0 T + 0/

Thus, there exists a sequence ¢, — 0, for which

exp{—n (b = pnrr)” €n/2
Qn,j < 202(”/Tn,1* +1’I/Tn’j) "
maxi:r+ An,i exp {-n (T; +€4/2)})
=exp4-n (i = pr-)° -T; —¢
202(n) T +0/T,5) P ")

Now we take a look at the two terms in the middle:

(fn,j = thn,1+ )?
ZUZ(H/Tn)I* + H/Tn)])

_rﬂ.

Note that the first term is increasing in T, j/n. We have the definition from Qin, Klabjan and
Russo, 2017, for any j + I*,

- () — )’
B, 2 B BY’
20 (1/(0[* +1/wj)

and we have the premise
T, :
) > a)[,g + E
n j

Combining these with the convergence of the empirical means to the true means (consistency,
see Lemma, we can conclude that for all € > 0, there exists a time n, such that for all later
times n > ny, we have

pRp— *2 ;- *2 ;= *2
(fn,j = ton,1+) > (= prr) _e> ) —s>FE,

202 (n[Tore + 1/ To)) = 202 (VB +n/Ty) 202 (1B +1/(wh + ©))

where the first inequality follows from consistency, the second from monotonicity in T}, ;/n.
That means that there exist a £ > 0 such that

(#nj = pin1+)’
202(”/Tn,1* + ﬂ/Tn)]‘)

-T; > &,
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and thus the claim follows that when % > wf + &, we have

Ay, j n,j = #n,I* 2 ’
J < exp{—n( (4 J T il ) —FE —fn)} < e n(E+en)

MaXje« Ap,i 202(n/ Ty 1+ + ”/Tn,j)

O
Step 3: ¥/, ; converges to wf forallarms. To establish the convergence of the allocation effort
of all arms, we rely on the same sufficient condition used in the analysis of Russo, [2016, that we
recall below.

Lemma 31 (Sufficient condition for optimality). Consider any adaptive allocation rule. If we
have

Y, > B and Zy/n,jl{%)jzwf+f}<oo, Vji#I",&>0, (7.15)
neN

theny, — yP.

First, note that from Lemma we know that T, j» /n — B,anby Lemmathis impliesy, . — B,
hence we can use Lemma [31/to prove convergence to the optimal proportions. Thus, we now
show that holds under TTTS. Recall that J{" = arg max; a,,j and 7P = arg max . q) an,j.
Since a, ;» — 1 by Lemma E, there is some finite time 7 after which for all n > 1, 21) =TI
Under TTTS,

an,i(ﬂ+(1—/5)zlfr;;j )

ll/n,i =
j#i n,j

Z i+i an,j

< an)iﬁ + a,,)i(l - ﬂ)L
1- a, o
z.#. an,j

<anif+a,i(1- ﬁ)L

an’]ﬁn
1

< an,,-ﬁ + an,,-(l — ﬁ)
an,],(f)

< Ap,i i

an,]gz>

. 1
where we use the fact that for j # ],(1 ), we have a, o 2, and a, o < l-a o.Fornxt
this means that v, ; < a,,;/ maxj.;- a,,; forany i # I*.

By Lemma@, there is a constant &’ > 0 such and a sequence ¢, — 0 such that

Tyifn 2w+ E = — 0l g emn(Een),

MaXjzr+ Ay, j

8L emma 12 of Russo, 2016



250 Chapter 7. Fixed-confidence guarantees for Bayesian best-arm identification

Now take a time 7 large enough, such that for n > 7 we have [T,,;/n -y, ;| < § (which can be
found by Lemma|8). Then we have

{wn]_wj+£}<]l{T >w1+2§}

Therefore, for all i # I*, we have

St {2 v 0 ¢ Tyt T of vat < 3 e oo

n>t n>t n>t

Thus holds and the convergence to the optimal proportions follows by Lemmal31]

7.H.2 Proof of auxiliary lemmas

Proof of Lemma Let Z be nonempty. Define

Uoo,n = lim y, ;, and o .= lim o?

n—oo n—oo

n,i>

and recall that for i € A for which T, ; = 0, we have y,,, = p1,; = 0and 0 ; = 07, = 00, and if

T,.; > 0, we have

2

o
hni = ZIL{Ig—z}Y“Z,andU =7
nz /=1 n,i
For all arms that are sampled infinitely often, we therefore have pio. ; = y; and o2 ; = 0. For

all arms that are sampled only a finite number of times, i.e. i € Z, we have 02 ; > 0, and there
exists a time 7, after which for all n > ng and i € Z, we have T, ; = Ty i Deﬁne

oo = N(Hoo,bafo,l) ®N(Voo,2"7§o,2) ®... ®N(‘“oo,k"7§o,k) = ®5m ® @I,

i¢T ieZ

Then for each i € A we define

Ooo,i 21l (6, > maxGJ) .

j#i
Then we have for all i € Z, ao,; € (0,1), since afo)i >0, and thus ge 1+ < 1.

When 7 is empty, we have a,, 1+ = I1,(6;« > max;.- 0;), but since o, = ®;c4 d,,> we have
Goo» =land as ; =0 forall i + I*.
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7.1 Proof of Posterior Convergence for the Bernoulli Bandit

7.1 Preliminaries

We first introduce a crucial Beta tail bound inequality. Let FBeta denote the cdf of a Beta

distribution with parameters a and b, and F? .4 thecdfofa Binomial distribution with parameters
¢ and d, then we have the following relat10nsh1p, often called the ‘Beta-Binomial trick’,

oy (y) =1=Foyyy(a-1),

so that we have

P [X > X] =P [Bqub Lx S <a-— l] P [Bqub—l,lfx > b] .

We can bound Binomial tails with Sanov’s inequality:

—nd(k/n,x)
67 < P[Bn x 2 k] < e_”d(k/n,x)’
n+1 >

where the last inequalities hold when k > nx.

Lemma 32. Let X ~ Beta(a,b) and Y ~ Beta(c,d) with 0 < -7 < <L Then we have
P[X > Y] < De € where

C= _inf  Cop(y)+Cea(y)
T SYSGa

c—-1 a-1
D=3 in(Cop| —— |, Ceal —— ) -
emin(Cun (75 ) e (555

Note that this lemma is the Bernoulli version of Lemmalé]

and

Theorem 7.33. Consider the Beta-Bernoulli setting. For § € (0,1), under any allocation rule
satisfying Ty, 1+ [n — wfﬂ
lim —— log(l —app) < Fﬁ,

n—oo

and under any allocation rule satisfying T, ;/n — a)f foreachie A,
1
lim ——log(1-a,,~) =Tj.
lim L log(1- 1) = 1;

Proof. Denote again with 7 again the set of arms sampled only finitely many times. For Z empty,
we thus have po ; 2 lim, o pin,; = ;. The posterior variance is

2 An,iPn,i (1+ZZ 11]1{15—1}Y11e)(1+Tn1 >i- 11]1{12—’}Y€1z)

Opni = (i + Brnsi)* (i + i +1) 2+ T,:)?(2+ Ty +1)

We see that when 7 is empty, we have ai,)l- 2 lim, o 0,21)1» = 0, i.e., the posterior is concentrated.
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Step 1: A lower bound when some arms are sampled only finitely often. First, note that
when T, ; = 0 for some i € A, the empirical mean for that arm equals the prior mean

Un,i = 060,1'/(060,1‘ + ﬁo,:‘)»

and the variance is strictly positive:
2 _ 2
0 = (@0,iBo.i)/ ((@0,i + Bo.i)* (oo + Po.i +1)) > 0.

2. >0,and a.; € (0,1), implying

00,1

When Z is not empty, then for every i € Z we have o
deo 1+ < 1,and thus

1 1
lim ——log(1-a, ) =——log(1-de,+) =0.
n

n—oo n

Step 2: A lower bound when every arm is sampled infinitely often. Suppose now that Z is
empty, then we have

mellxl'[,,(ﬁ,' >0p)<l—a,p < Z I1,(60; >0r)<(k-1) me}xl‘[,,(@i >0p).
i+l i1 iFl*
Thus, wehavel-a, ;» < (k—-1) max;.+ IT1,(6; > 0« ) and also1-a,, » = max;.;« I1,,(0; > 0+).

We have

' = maxmin C;(wy, w;),
weW i#l*

rE = wevgﬁi:ﬂ I;l}{l C,-(ﬁ, w,-), with

C,’(Ol)]*, w,-) = mlFIzl wl*d(BI*;x) + wid(ﬁi;x) = w]*d(ej*;g) + w,-d(@,-;g),

where 0 € [6;, 0+ ] is the solution to

(U]*A,(el*) + wiA'(Gi)
WP+ ; ’

A'(0) =

Since every arm is sampled infinitely often, when n is large, we have p, 1~ > p,, ;. Define
Sui = Z?;ll 1{I, = i}Yy,. Recall that the posterior is a Beta distribution with parameters
an,i = Spi+1land B,; = Ty — Sui + 1. Let 7 € N be such that for every n > 7, we have
Su,if/ (Ty,i +1) < Sp1+ /(T 1+ +1). For the sake of simplicity, we define for any i € A the interval

N Sn,i Sn,l*
Iip = |-
Tn,i +1 Tn,l* +1

Then using Lemma@with a=8,,+1,b=T,;-S,i+Lc=S,++1,d=T, - Sy +1 we
have

I1,(0; - 01~ >0) < Dexp {— inf Cs,,+1,1,,-8,,+1(¥) + Cs, . 41,7, 12 =S, 1 +1()’)} .

yel;
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This implies
1 I1,(6; > 01
L1og (6.2 6r) Liog(p),
n exp {_1nfyell v Cs 1,1, -8,,41(Y) + Cs, o s1,1, 108, 1o +1(}’)}

which goes to zero as 1 goes to infinity. Indeed replacing a, b, ¢, d by their values in the definition
of D we get

D <3+ (T, -1)kl , _Snr
T,, i +1 Ty +1
ss+(n+1)kz(o;i)
n+1
=(n+1)log(n+1).
Hence,
IT,,(6; > 6;+) ‘eXP{—yglf Cs,+1.1=8,,+1(¥) + Cs, s, T,,I*—Snlwl()’)}
We thus have for any i,

l-a,,;= 1}1&113(Hn [9]- > 91*]

J#EI* yel;,

Tn i+ 1 Sl’l ; Tn « +1 Sl’l *
= exp{-nmin inf —L—Fkl Lyl + L ki ! 5y
JEI* yel; i« n Tn Jj +1 n Tn,I* +1

Sn, I
; <kl ; .
) o225}

= maxexp {— inf Can+1 T, =8,,41(¥) + Cs, 41T, 10 =5, 1 +1()/)}

> exp {—n maxmin inf w;kl ( T

o jE* yel;

Fix some ¢ > 0, then there exists some 7 (¢) such that for all n > ny(¢), we have for any j,

Sn,i S 1*
L= N [ VTE N T I
M [T,w-+1 TW+1] L+ &vr =] 2 1,

and because KL-divergence is uniformly continuous on the compact interval I ,, there exists
an n; such that for every n > n; we have

S,
ki Sl 1-e)kl(usy),
(Tn,j+1y)2( e)kl ()

for any y and for all j € A. Therefore, we have

Sa, “
l-a,;= exp{—n mjxrfimyi?f,* wikl ( T, + ,y) + wykl ( T, ;: 1')’)}

> exp{—n maxmin inf w;kl(pj;y )+w1*kl(yp,y)}

w  iEl* yeI
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Therefore, we have

1
limsup ——log(1-a,,;) <T*.
n

n—oo

If T,,;/n - w? for each i € A, we have

hm 1nf Tn,i+1kl( Sn,i l;y)+ Tn,I*+1kl( Sn,[* y)
n

n—00 yel; 1 n Tn,i + Tn,i +1
= inf  w/kl(usy)+wpkl(ursy)
yelpi prx]
=T,
and thus
l-a,,; = exp{—n max min inf w;kI(uj;y) + a)pkl(yp;y)}
w  jE* yel
zexp{-nl"},
implying

1
lim —-=log(1-a,;)=T".

n—oo 1

Everything goes similarly when w;+ = f € (0,1), so under any sampling rule satisfying
Ty,1+/n — 3 we have

1
limsup ——log(1 - a,,;) <Tj
n

n—oo

and under any sampling rule satisfying T, ; /n — a)f for each i € A, we have

1
lim ——log(1-a,,) =Ij.
n

n—oo

71.2  Proof of Theorem Bernoulli case

Theorem 7.34. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

1
lim ——log(1-a,r) =Tj.
n

n—oo

From Theorem 7.33(we know that under any allocation rule satisfying T, ;/n — wf for every
i € A, we have

1
lim ——log(1-a,,r) =Ij.
n

n—oo
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Thus, we only need to prove that under TTTS, for all i € A, we have

T .
lim —2 = wf.
n—oco n
Just as for the proof of the Gaussian case, we can use Lemmal8|(proof in Appendix[7.H.2), which
implies
v .
m,i da.s wﬁ

it

lim " % o o  lim
n—oo n ! n—oo p

Therefore, it suffices to show convergence for y, ; = ¥, ;/n to wf , which we will do next,
following the same steps as in the proof for the Gaussian case.

Step 1: TTTS draws all arms infinitely often and satisfies T, ;- /n — 3. We prove the follow-
ing lemma.

Lemma 35. Under TTTS, it holds almost surely that
1. forallie A limy,_ oo Ty = o0.

2. Ay, v —> 1.
T, 1+
3 g

Proof. First, we give a lemma showing the implications of finite measurement, and consistency
when all arms are sampled infinitely often, which provides a proof for 2. The proof of this
lemma follows from the proof of Theorem [.33} and is given in Appendix[7.L3]

Lemma 36 (Consistency and implications of finite measurement).
Denote with I the arms that are sampled only a finite amount of times:

T={ie{l,....k}:Yn,T,; <oo}.

IfT isempty, a, ; converges almost surely to1when i = I" and to 0 when i # I*. If T is non-empty,
then for every i € Z, we have liminf, . a,,; > 0 a.s.

Now we can show 1. of Lemma we show that under TTTS, for each j € A, wehave 3.,y Ty j =
oo. The proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have

a.
Vu,i = Qn,i ﬁ+(1_ﬁ)z o >
jzi 1= an,j
SO Wp,i > an,i, therefore, by Lemma if i € Z, then liminf a,, ; > 0 implies that ¥, v, ; =
co. By Lemma |8 we then must have that lim,_, ., T,,; = oo as well: contradiction. Thus,
lim,_, Ty, ; = oo for all i, and we conclude that a, ;« — 1, by Lemma @
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Lastly we prove point 3. of Lemma [35. For TTTS with parameter f3, the above implies that
¥, 1~ — B,and since we have a bound on |T,, ;/n — ¥, ;| in Lemmal we have T, 1+ /n > f as
well.

O

Step 2: Controlling the over-allocation of sub-optimal arms. Following the proof for the
Gaussian case again, we can establish a consequence of the convergence of T, 1+ /n to 8 : if an
arm is sampled more often than its optimal proportion, the posterior probability of this arm to
be optimal is reduced compared to that of other sub-optimal arms. We can prove this by using
ingredients from the proof of the lower bound in Theorem|7.33}

Lemma 37 (Over-allocation implies negligible probability). E
Fix any & > 0 and j + I*. With probability 1, under any allocation rule, if T, - [n — f5, there
exist & > 0 and a sequence ¢, with €, > 0 such that for any n € N,

T,

n,j An,j < e—n(E'+s,,)

> a)é + & =
J MaX;.p+ Ap,j

Proof. By Theorem 7.331, we have, as T,, - /n — f3,
. 1 N
lim sup —— log (max an,i) <Iy,
n—oo0 n i£l*

since max;.+ d,,; <1- a, ~. We also have from Lemmaa deviation inequality, so that we
can establish the following logarithmic equivalence:

an,j <I1,(0;201) = exp{—an (wn)p,w,,)j)} = exp{—an (ﬁ,wn,j)} ,

a Tn,]

where we denote w,,; = —~. We can combine these results, which implies that there exists a
non-negative sequence &, — 0 such that

An,j < exp{—an (/3, wn)j) - s,,/z}
maxjsr« An,i exp{—n(l“g + 5/2)}

=exp{-n(C; (B, wn;)~T;) —en}.

We know that C; (ﬁ, wf ) is strictly increasing in wf ,and C; (/3, w? ) = I';, thus, there exists
some &' > 0 such that

wn,j2w§.3+£ — Cj(ﬁ,a)n)j)—FE >£l.

9analogue of Lemma 13 of Russo, 2016
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Step 3: v, ; converges to wf for allarms. To establish the convergence of the allocation effort
of all arms, we rely on the same sufficient condition used in the analysis of Russo, 2016, restated
above in Lemma 31} and we will restate it here again for convenience.

Lemma 38 (Sufficient condition for optimality).
Consider any adaptive allocation rule. If

Vore > B and Y yu 1 {9, ;2 0f + &} <oo, V£ I E>0, (7.16)
neN

theny, — yP.

First, note that from Lemmal&'we know that T”}f = — B,and by Lemma@this implies v, ;. — B,
hence we can use the lemma above to prove convergence to the optimal proportions. This
proof is already given in Step 3 of the proof for the Gaussian case, and since it does not depend
on the specifics of the Gaussian case, except for invoking Lemma 29| (consistency), which
for the Bernoulli case we replace by Lemmal[36, it gives a proof for the Bernoulli case as well.
We conclude that holds, and the convergence to the optimal proportions follows by
Lemma |31

7.1.3 Proof of auxiliary lemmas

< ==L Then we have

Lemma 32. Let X ~ Beta(a,b) and Y ~ Beta(c,d) with 0 < —=.

P[X > Y] < De € where

a-1
a+b-1

C= _inf  Cop(y)+Cea(y),

—a—l_ P ind
s B e

and

c—-1 a-—1
D:3 i Ca - )Cc - 5 4 .
+m1n( ’h(c+d—l) ’d(a+b—1))

Proof

P[X>Y]=E[P[X>Y|Y]]sE[]l{Y<a27;1_l}+]l{Yza37;1_l}P[X>Y\Y]]
Sexp{—(c+d_1)kl( c-1 a-1 )}

c+d—1;a+b—1

+ E[exp{—(a +b-1)kl (%;Y)}]I{Y > ai—l}],

a
a+b a+b-1

A
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Using the Beta-Binomial trick in the second inequality. Furthermore, we have

a-1 c-1 a-1
A<E|1 Y - -1 ;Y
< [{a+b—lS Sc-rcl—l}]e)(p{ (a+b )kl(a+b—l )}

B

a-1 c—1
- b-1)kl ;
rep (-G b-0i (5 5 )

Denote with f the density of Y, then
1%1/J&ex{—W+b—Dk% a-l Hf()d
Via integration by parts we obtain
B—Fx{—@+b—DH( “‘1-)}Pu< ﬂ‘
- a+b-17 =) a1

L+dl d a-1
b-1)—kl ; -C, P(Y<y)d
+/ (a b =1 Fk () exp (-Cas()) PUY < ) dy

< @bk (e 1(Can0) + CaaON

u+b1
a-1 c-1
- b-1)kl ; s
+exp{ (a+ ) (a+b—1 c+d—1)}

where the first inequality uses the Binomial trick again. Let

n+b—1

a-1 c—1
C-  inf b-1m( ;) d—lH( ;)
u+b—1£3§ci;1—1(a+ ) a+b_1 y +(C+ ) C+d_1 y

= inf Cap(¥)+Cea(y),

a—1 c—1
P Y A

then note that in particular we have

. a-—1 -1 c—-1 ) a-—-1
Csm1n((a+b—1)kl( b1 c+d ) (C+d_1)kl(c+d—l’a+b—1))

1
c—-1 a-—1
= i C
mm( u’b(c+d— ) Cd(a+b—1))

Then

B<e© L+d‘(a+b—1)— (aigl_l;y)d)H-e

a+h—l

[ p-pm (- ) e

-C

a+b-1c+d-1
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Thus we have

a-1  c-1 -C
P[X>Y]S(3+(a+b—1)kl(a+b—l’c+d—1))e '

By symmetry, we have

c-1 a-1
PX Y 1 - 7 - > 1 1 _C’
(X > ]g(3+mln(ca,b(c+d_1) C’d(a+b—1)))e

where

a-1
C= inf b-Dkl|———

a+b-1 =V

c—-1
,y) + (C+d—1)kl(m,y)

Proof of Lemma Let Z be empty, then we have oo ; 2 lim, o0 tn,i = y;. The posterior
variance is

02 o “n,iﬁn,i
! ((xn,i +ﬁn,i)2(‘xn,i +ﬁn,i +1)
(U X5 I = i} Yo, ) (14 T — X4 1{I = i} Yer,)
2+ Ty)*(2+ T, +1) ’

We see that when Z is empty, we have 02, ; £ lim,_,. 0 ; = 0, i.e., the posterior is concentrated.

When T, ; = 0 for some i € A, the empirical mean for that arm equals the prior mean

Un,i = 061,1‘/(061,1‘ ""ﬁl,i)’

and the variance is strictly positive:

on; = (aniBui)/ (Cari+ Bri)(ani + Pri+ 1)) > 0.

2

0,

When Z is not empty, then for every i € Z we have o,
®oo.1+ < 1, hence the posterior is not concentrated.

> 0, and ao,; € (0,1), implying



260  Chapter 7. Fixed-confidence guarantees for Bayesian best-arm identification



Chapter 8

Discussion and future work

In this chapter I concisely review the previous six chapters of this dissertation, and explore
some open challenges and possible directions for future work.

8.1 Forward-looking Bayesians

In Chapter [2|we studied the failure of weak truth-merger of Wenmackers and Romeijn’s open-
minded Bayesians, and we proposed two versions of forward-looking open-minded Bayesians
that do weakly merge with the truth when the truth is added at some point in time. In Chapter|2|
we only focus on how to incorporate new hypotheses. A direction for future research, possibly
for me and my co-author on this chapter, is to formalise when new hypotheses should be
considered, and to investigate how this interacts with the guarantee of truth-merger.

Chapter|o]inspired the following idea for a future project for myself in the area of continuous-
armed best-arm identification in machine learning. This protocol can be viewed as similar to the
protocol of the forward-looking Bayesians, if we let arms correspond to hypotheses, however, it
is still unclear what the relation is between truth-merger and identification. The algorithms
proposed in papers on best-arm identification in continuous-armed bandits (Bubeck, Munos
and Stoltz, 2009; Carpentier and Valko, 2015; Aziz et al., 2018) employ two phases: First, a
finite subset of arms from a continuous reservoir is selected, and subsequently a finite-armed
bandit algorithm is run on this subset to identify the best arm. An interesting idea would be
to propose an algorithm that decides during the learning process to add (or remove) arms
from the finite set under consideration, which might lead to simple regret bounds scaling
better in the confidence parameter ¢ in the fixed-confidence setting. Another future course
would be to propose a Bayesian algorithm for best-arm identification in continuous-armed
bandits, which can also be seen as an extension of the algorithms discussed in Chapter[7} see
also the upcoming Section 8.4] This is both conceptually interesting because of the link with
the forward-looking Bayesians and Bayesian confirmation theory, and also interesting because
the Bayesian sampling rules of Chapter|[7]do not depend on a confidence parameter or time
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horizon. The combination of these two challenges is to propose a Bayesian algorithm for best-
arm identification in continuous-armed bandits that adds or removes arms in course of the
learning process. This algorithm could also provide some insights for the problem of when to
add new hypotheses in the framework of the forward-looking Bayesians.

8.2 Hypothesis testing

Chapters [3 and [4] deal with the question whether Bayes factor hypothesis testing is robust
under optional stopping. The bottom line of these chapters is that the answer to this question
depends on one’s perspective on Bayesianism (see also Section[1.2) and which definition of
optional stopping one employs — we give three distinct mathematical definitions in Chapter [4]
It is remarkable how resolutely some authors advocate the use of their favourite method for
hypothesis testing, and how firm their reproach sometimes is to other authors who nuance or
criticise claims about these methods, see for example (Benjamin et al.,2018) and (McShane
et al.,[2019); and even before being published, Chapter [3 provoked several responses (Rouder,
2019; Wagenmakers, Gronau and Vandekerckhove, [2019; Rouder and Haaf,|n.d.) . In light of
this fierce defence of some specific methods for hypothesis testing, an interesting project would
be to investigate the role of hypothesis testing in the behavioural sciences. In a paper related to
this subject, Gigerenzer and Marewski (2014)) argue that “determining significance has become
a surrogate for good research”. The current discussion on optional stopping with Bayes factors
that is the subject of Chapter[3]seems to be an example of that shift in focus from the actual goals
of science to the surrogate of “mindless mechanical statistics”. Goals of science include gaining
knowledge about the world around us, and hypothesis testing is one of the means scientists
have at their disposal to achieve that. How clear this distinction between goals and means is in
current research in the behavioural sciences, and what the role of hypothesis testing in scientific
research should be, are subjects to be addressed, possibly by philosophers of science.

In Chapter [s we proposed a new theory for hypothesis testing based on E-values. From a
practical perspective, it is now important to develop software for calculating E-values for
common hypothesis tests, so that practitioners can start working with E-value based hypothesis
tests. From a theoretical perspective, there are some open questions arising in particular from
the combination of Chapter[4and 5. The former chapter provides results showing that using
the right Haar prior in general group invariant cases leads to -values, however, in Chapter|s]is
only shown that these are GROW E-values for the particular (important) case of the ¢-test. An
objective for future work is thus to extend this to a general group-invariant setting. Further goals
for future work on Safe Testing include the construction of confidence intervals by inverting
a safe test. When this safe test constitutes a test martingale, these confidence intervals are
always valid confidence intervals in the sense of Howard et al.’s|2018b framework of uniform,
nonparametric, non-asymptotic confidence sequences (Darling and Robbins, 1967; Lai, 1984).
The intuitions behind the construction of safe tests can lead to other constructions of confidence
intervals. Further future objectives are to investigate the connections of safe testing to Shafer
and Vovk’s 2019 game-theoretic probability framework, and to the framework of always-valid
p-values (Robbins, 1970; Robbins and Siegmund, [1972; Robbins and Siegmund, 1974; Johari,
Pekelis and Walsh, |2015). The group of prof. Griinwald at CWI is working on these practical
and theoretical challenges.
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8.3 Safe-Bayesian generalised linear regression

Chapter[6 provides theoretical evidence that 1-generalised Bayes can outperform standard
Bayes for generalised linear models, and provides empirical evidence for Bayesian lasso and
logistic regression. We also provided MCMC samplers for the generalised Bayesian lasso and
logistic regression. The Gibbs sampler for the latter is based on a Pdlya-Gamma latent variable
scheme, in which the Pélya-Gamma random variable is approximated by a truncated sum
of weighted Gamma random variables. Our current implementation is slow and unable to
deal with high-dimensional data, presumably because of the approximation via the truncated
sum. There exist another implementation of Bayesian logistic regression, in the programming
language STAN (Carpenter et al.,[2017), using No-U-Turn-Sampling (Hoffman and Gelman,
2014), which is an extension of Hamiltonian Monte Carlo (HMC) (Duane et al., 1987). An
interesting direction for future work, possibly for a master’s or PhD student, would be to develop
HMC algorithms for 5-generalised Bayesian methods. This could also lead to a better and
possibly faster implementation of #-generalised Bayesian logistic regression.

An issue with generalised Bayesian methods is the dependency on the learning rate parameter
n. Grilnwald’s 2012 Safe-Bayesian algorithm provably finds the appropriate # for bounded
excess loss functions and likelihood ratio’s, and experiments of Griitnwald and Van Ommen
(2017) and Chapter[6]indicate that SafeBayes performs excellently in the unbounded case as
well, but theoretical guarantees still need to be established. Furthermore, a drawback of the
Safe-Bayesian algorithm is that it is computationally very slow. Another future objective is to
propose a faster algorithm for learning #, possibly based on cross-validation, naturally together
with theoretical guarantees, e.g. that the data distribution satisfies the central condition at the
learning rate 5 output by the algorithm.

Objectives for future work thus are:

o providing a better MCMC sampler for #-generalised logistic regression, possibly via
Hamiltonian Monte Carlo,

o providing MCMC samplers for other #-generalised GLMs,

« providing guarantees on the Safe-Bayesian algorithm for the unbounded case,

« proposing a faster algorithm than SafeBayes for learning the appropriate learning rate 7,
together with

o providing theoretical guarantees for this algorithm.

8.4 Pure exploration

In Chapter we studied two Bayesian sampling rules, TTTS and T3C, for best-arm identi-
fication (BAI) in the fixed confidence setting. We introduced the notion of asymptotic -
optimality and proved that TTTS and T3C are asymptotically S-optimal. This optimality notion
has two drawbacks. First, in order to be optimal, we would need the unknown true optimal
B* = argmaxg,r ;; I's. Secondly, the guarantees are asymptotic, whereas finite-time sample
complexity bounds would be more practicable.

Evident objectives for my future work are:
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« fixed-confidence guarantees with online tuning of 8 for TTTS and T3C,

« finite-time sample complexity bounds,

« an extension to continuous-armed bandit models (see Section[8.1/above), and
o fixed-budget guarantees.

Furthermore, Chapter[zjprovides a piece of the puzzle of the following two bigger pictures.

Any-time sampling rules BAIT has been studied in different frameworks: the fixed-budget
setting, the fixed-confidence setting, which has been studied in Chapter[7} and the any-time
BAI setting, introduced by Jun and Nowak, 2016. In the any-time setting, the sampling rule
does not depend on the risk parameter or the budget. The first sampling rule for BAI that does
not depend on the risk parameter is the tracking rule proposed by Garivier and Kaufmann
(2016). The sampling rules studied in Chapter [7, TTTS and T3C, are also examples of any-
time sampling rules. This sparks the question: does there exist a sampling rule that is, albeit
with modifications depending on the setting and objective, optimal in all settings? Thompson
sampling (TS) could be a possible candidate for this: vanilla TS for regret minimization, TTTS for
fixed-confidence best-arm identification, and (see below), Murphy sampling for the minimum
of means problem.

Pure-exploration objectives Pure exploration problems can have other objectives than find-
ing the best arm. Naturally, different objectives require different sampling rules. However, an
interesting avenue for future work is to investigate how the lower bounds and sampling rules
for the different objectives and frameworks relate. Here are two pure-exploration problems
with objectives different from BAIL

Kaufmann, Koolen and Garivier (2018) study a problem related to BAI: They consider the task
of adaptively learning how the minimum mean of a finite set of arms compares to a given
threshold. They provide a lower bound on the sample complexity in the fixed-confidence setting,
and propose an algorithm inspired by TTTS, called Murphy Sampling. Murphy Sampling is, just
as TTTS and T3C, an any-time sampling rule. An open problem is to find a fixed-budget lower
bound and algorithm for this problem.

Antos, Grover and Szepesvari (2010) and Carpentier et al. (2011) study the problem of estimating
the means of a finite number of arms in the fixed-budget setting uniformly well. The objective
is to minimise the worst expected squared error loss of the arms, and the performance of
the algorithm is measured by comparing its loss to that of the optimal allocation algorithm,
that is, regret. This notion of regret is however not cumulative, and this problem is therefore
more related to the pure-exploration setting than to the standard MAB framework. This is also
reflected in the property that good strategies for this problem should play all arms linearly in
the number of draws, whereas in the standard stochastic bandit setting suboptimal arms should
be played logarithmically in the number of draws. The problem can be extended to learning the
transition probabilities of Markov Chains (Talebi and Maillard, |2019). An open problem is to
find problem-dependent lower bounds for this problem. Furthermore, the algorithms proposed
in both papers depend on the budget and/or the confidence level. An interesting avenue for
future work is to find a problem-dependent lower bound and to propose an any-time, possibly
Thompson Sampling related sampling rule.
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Samenvatting

Dit proefschrift gaat over het leren van data op een Bayesiaanse wijze. Statistiek en machine
learning gaan over de vraag hoe mensen en computers kunnen leren van data. Bayesiaanse
methodes worden in deze vakgebieden veel gebruikt, echter, ze hebben bepaalde beperkingen
en interpretatieproblemen die niet altijd worden onderkend. In twee hoofdstukken van dit
proefschrift onderzoeken we een dergelijke beperking en omzeilen we deze door een verruiming
van het standaardkader van de Bayesiaanse methode. In twee andere hoofdstukken nemen we
door hoe verschillende filosofische interpretaties van het Bayesianisme wiskundige definities
en stellingen beinvloeden, en hoe dat zijn uitwerking heeft op de praktische toepassing van
Bayesiaanse methodes. In de overige twee hoofdstukken passen we zelf Bayesiaanse methodes
toe op een pragmatische wijze: enkel als werktuig voor een interessant statistisch probleem, een
probleem dat ook op een niet-Bayesiaanse manier had kunnen worden aangepakt.

Leren Als een onderzoeker iets wil leren over een onbekend proces, vindt er een interactie
plaats tussen haar en de data die door het proces zijn voortgebracht. De taak van de onderzoeker
is inductie: een manier van redeneren waarbij er op grond van waarnemingen tot een algemene
regel — een generalisatie — wordt gekomen. De onderzoeker begint met enkele veronder-
stellingen over het onbekende proces, omdat zonder deze voorkennis de datapunten op iedere
mogelijke manier zouden kunnen samenhangen en het onmogelijk is tot een generalisatie te
komen. Daarnaast bestaat er een verzameling van hypotheses die de onderzoeker kan opstellen
of onderzoeken: algemene beschrijvingen van het onbekende proces. In de context van dit
proefschrift, statistiek en machine learning, beschouwen we hypotheses die kunnen worden
uitgedrukt als een waarschijnlijkheidsverdeling over een uitkomstenruimte, en deze noemen we
statistische hypotheses. Een verzameling statistische hypotheses vormt een (statistisch) model.
Een model is een wiskundige weergave van de voorkennis.

Bayesianisme Naast een model en de data hebben we een laatste ingrediént nodig voor
inductie: een methode. Het hoofdthema van dit proefschrift is de Bayesiaanse methode. In
essentie is dit een methode die niet alleen waarschijnlijkheidsverdelingen over de data hanteert,
maar ook over de statistische hypotheses. De onderzoeker begint met het specificeren van een
prior, een waarschijnlijkheidsverdeling die haar onzekerheid over de statistische hypotheses
uitdrukt, voordat ze heeft kennis genomen van de data. Na waarneming van de data, wordt
met de stelling van Bayes een posterior berekend: een conditionele waarschijnlijkheidsverdeling
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over de statistische hypotheses gegeven de data.

Bayesianisme is een term die verwijst naar een verzameling aan deze methode verwante ideeén
in verschillende takken van de wetenschap. Echter, het Bayesianisme bestaat niet: er zijn ver-
schillende stromingen, die er bijvoorbeeld verschillende theorién op na houden over hoe de
priors tot stand komen. Twee noemenswaardige, invloedrijke stromingen zijn het subjectivisme
en het objectivisme. In de tweede helft van dit proefschrift staat een derde stroming centraal:
het pragmatisme: onderzoekers die de Bayesiaanse methode niet uit filosofische overtuigingen
bezigen, maar enkel vanwege haar nuttige eigenschappen of andere praktische beweegredenen.
Discussies over de grondslagen van het Bayesianisme worden vaak in de filosofie gevoerd; welke
stroming men aanhangt heeft nochtans consequenties voor de (statistische) praktijk: welke
priors men kiest, welke wiskundige definities men formuleert en welke stellingen men poneert,
hangt hier vanaf.

Misspecificatie van het model Zoals hierboven beschreven, begint de onderzoeker met het
specificeren van een model en het toekennen van priorwaarschijnlijkheden aan zijn elementen.
Als het ware datagenererende proces onderdeel is van het model, en niet uitgesloten wordt
door de prior, is consistentie gegarandeerd: naar mate we meer en meer data verkrijgen, valt
de onderzoekers posterior meer en meer samen met de ware verdeling. Niettemin kan het
voorkomen dat het model gemisspecificeerd is: het ware datagenererende proces is geen onder-
deel van het model (of heeft prior nul toegekend gekregen). Dit kan op verschillende manieren
problematisch zijn en in dit proefschrift wordt de Bayesiaanse methode op twee verschillende
manieren uitgebreid om twee van deze problemen te boven te komen.

Ten eerste kan het gebeuren dat de onderzoeker tijdens het leerproces een nieuwe hypothese
bedenkt en deze wil toevoegen aan het model. In het standaardkader van de Bayesiaanse meth-
ode is dit in principe niet mogelijk: de onderzoeker moet de reeds verkregen data weggooien en
opnieuw beginnen met het toekennen van priorwaarschijnlijkheden aan de elementen van het
nieuwe, grotere model. In hoofdstuk[o/bestuderen we een ruimdenkende Bayesiaanse logica, die
het dynamisch bijvoegen van nieuwe hypotheses tijdens het leerproces mogelijk maakt.

Ten tweede kan het gebeuren dat we willen dat de Bayesiaanse posterior samenvalt met het beste
element in het model, in plaats van met de ware verdeling die buiten het model ligt. In hoofd-
stuk|6]laten we zien hoe dit kan mislukken met de Bayesiaanse standaardmethode. Vervolgens
verrichten we een aanpassing aan de stelling van Bayes: de aannemelijkheidsverdeling wordt
tot een macht verheven, en we noemen dit de gegeneraliseerde Bayesiaanse methode. Indien
deze macht gevoeglijk wordt gekozen, lost dit het probleem op, en valt de gegeneraliseerde
Bayesiaanse posterior na vergaring van data samen met het beste element in het model, ondanks
de modelmisspecificatie.

Optioneel stoppen met de Bayes-factor-hypothesetoets De Bayes factor is een Bayesiaanse
methodiek voor hypothesetoetsen. In hoofdstuk s en [4]bestuderen we optioneel stoppen. In-
formeel betekent dit ‘tijdens het leerproces naar de tussenresultaten kijken om te beslissen of
er meer datapunten vergaard moeten worden’. Verschillende auteurs beweren dat Bayesiaanse
methodes bestand zijn tegen optioneel stoppen, maar het blijkt onduidelijk te zijn wat dat precies
betekent. In hoofdstuk 4] geven we drie verschillende wiskundige definities van deze uitspraak.
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In hoofdstuk[3 en[4]zetten we uiteen hoe het aanhangen van een van de stromingen van het
Bayesianisme invloed heeft op welke beweringen men kan doen in de praktijk. In hoofdstuk[s
laten wij bijvoorbeeld zien dat sommige beweringen over optioneel stoppen met Bayes factors
alleen betekenis hebben als ze vanuit een puur subjectieve invalshoek worden gedaan, desalni-
ettemin worden deze beweringen vaak gedaan als zouden ze ook gelden voor een pragmatisch
Bayesiaanse benadering.

Een nieuwe theorie voor hypothesetoetsen In hoofdstuk|s presenteren we een nieuwe the-
orie voor hypothesetoetsen. Deze theorie draait om het concept genaamd ‘E-variabele’ of
‘E-waarde;, een stochast die de mate van bewijs tegen de nulhypothese aanduidt en die in de
toekomst hopelijk de p-waarde zal vervangen in de toegepaste statistiek. Tevens introduceren
we een optimaliteitscriterium voor de constructie van E-variabelen, genaamd GROW, wat
een acroniem is voor het Engelse Growth-Optimal in Worst Case. Het blijkt dat de GROW
E-variabele een Bayesiaanse interpretatie kent, zij het met een geheel ander soort priors dan
priors die in de huidige Bayesiaanse praktijk worden gebruikt.

Identificatie van de beste waarschijnlijkheidsverdeling In hoofdstuk[; bestuderen we een
Bayesiaanse manier om uit een verzameling waarschijnlijkheidsverdelingen degene met de
hoogste verwachtingswaarde te onderscheiden. We kunnen aan de verschillende verdelingen,
die ook wel armen worden genoemd, een prior toekennen die de waarschijnlijkheid uitdrukt
dat deze verdeling de hoogste verwachtingswaarde heeft. Vervolgens stellen we een regel op
om op ieder tijdstip een arm te kiezen waarvan we een observatie willen ontvangen. Nadien
berekenen we de posteriorwaarschijnlijkheid dat deze arm de hoogste verwachtingswaarde heeft.
In hoofdstuk[7]bewijzen we asymptotische frequentistische garanties voor deze Bayesiaanse
strategie.
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