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Origin of the material
�is dissertation is based on the following papers.�e author of this dissertation contributed
substantially to each of these papers.

Chapter � is based on the paper that is under review as

Tom Sterkenburg and Rianne de Heide. On the truth-convergence of open-minded
Bayesianism.

Chapter � is accepted for publication in Psychonomic Bulletin & Review, and is available as the
technical report

Rianne de Heide and Peter Grünwald. Why optional stopping can be a problem
for Bayesians. arXiv ����.�����. August ����.

Chapter � is published as

Allard Hendriksen, Rianne de Heide and Peter Grünwald. Optional Stopping with
Bayes Factors: a categorization and extension of folklore results, with an application
to invariant situations. Bayesian Analysis, advance publication, �� August ����.
doi:��.����/��-BA����.

Chapter � is based on the technical report

PeterGrünwald, Rianne deHeide andWouterKoolen. Safe Testing. arXiv ����.�����.
June ����.

Chapter � is published as

Rianne de Heide, Alisa Kirichenko, Nishant Mehta and Peter Grünwald. Safe-
Bayesian Generalized Linear Regression. AISTATS ����, PMLR ���:����-����.

�e so�ware for this chapter is partly available as

Rianne deHeide (����). SafeBayes: Generalized and Safe-Bayesian Ridge and Lasso
Regression. R package version �.�. https://cran.r-project.org/src/contrib/Archive/
SafeBayes/

Chapter � is published as

Xuedong Shang, Rianne de Heide, Emilie Kaufman, Pierre Ménard and Michal
Valko. Fixed-Con�denceGuarantees for BayesianBest-Arm Identi�cation.AISTATS
����, PMLR ���:����-����.

https://cran.r-project.org/src/contrib/Archive/SafeBayes/
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Chapter �

Introduction

�is dissertation is about Bayesian learning from data. How can humans and computers learn
from data?�is question is at the core of both statistics and — as its name already suggests
— machine learning. Bayesian methods are widely used in these �elds, yet they have certain
limitations and problems of interpretation. In two chapters of this dissertation, we examine
such a limitation, and overcome it by extending the standard Bayesian framework. In two
other chapters, we discuss how di�erent philosophical interpretations of Bayesianism a�ect
mathematical de�nitions and theorems about Bayesianmethods and their use in practise.While
some researchers see the Bayesian framework as normative (all statistics should be based on
Bayesian methods), in the two remaining chapters, we apply Bayesian methods in a pragmatic
way: merely as tool for interesting learning problems (that could also have been addressed by
non-Bayesian methods). In this introductory chapter, I �rst explain Bayesian learning by means
of a coin tossing example.�erea�er, I review how di�erent scientists view Bayesian learning,
and in Section �.� the limitations and challenges of Bayesian inference that are addressed in this
dissertation are discussed. In Sections �.� through �.�, I give a brief introduction to the topics
of this dissertation.

�.� Bayesian learning
Learning A learner, which can be a human or a computer, interacts with the world she wants
to learn about via data, also called observations, examples or samples. We can view the data as
�nite initial segments Zt ∶= Z� , . . . , Zt of an in�nite data stream, denoted with Zω .�e learner’s
task is inductive inference: inference that progresses from given examples to hitherto unknown
examples and to general observational statements.�e learner needs to start with background
assumptions that restrict the space of possible outcomes. �is is called prior knowledge or
inductive bias. We assume that there is some collection of hypotheses that the learner can
propose or investigate. We can view an hypothesis as a general statement about the world. In
our context, the �elds of machine learning and statistics, hypotheses are o�en expressed by
a probability distribution over a sample space. We call those statistical hypotheses. A set of

�
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statistical hypotheses is a (statistical)model. A model captures the background assumptions
mathematically: It is a simpli�ed description of the part of the world we consider relevant.
In some chapters of this dissertation, we examine the behaviour of standard methods under
misspeci�cation, which means that the true world is not in the set of ways the world could be
that would make the assumptions true. In other words: the model is wrong.

Example �.� (Coin tossing). Suppose we toss a coin with unknown bias. If it lands heads, we
denote a one, if it lands tails, we denote a zero.�e learner sees a �nite string zt of zeros and
ones. We can model the coin tosses by Bernoulli random variables with parameter θ ∈ [�, �]. A
possible hypothesis is: ‘�e coin is fair’, and the corresponding statistical hypothesis is that the
data, i.e. the outcomes zt = z� , . . . , zt , are independently distributed according to a Bernoulli
distribution with parameter θ = ���.

Learning objectives �e task of the learner is inductive inference, which can have three dis-
tinct objectives.�e �rst objective is estimation, for example: estimating a regression coe�cient.
Another objective is to predict or classify future data, e.g. predicting how well a patient will
respond to a certain medicine, given patient characteristics such as white blood cell count,
age, gender, etc. A third objective, which is the focus of several chapters of this dissertation, is
testing.�e learner is handed an hypothesis and some �nite data sequence, and is requested to
conjecture an assessment, o�en binary valued: {true, false} or {accept, reject}.�ere is also a
dichotomy between exploratory and con�rmatory research. In exploratory research the learner
is given some data, and asked to produce an hypothesis about the origin of the data. We might
for example be interested in understanding a possible genetic basis for a disease. Paraphrasing
Tukey (����): Exploratory research is about �nding the question. In con�rmatory research the
validity of an existing hypothesis is tested.

Example �.� (continued). In the coin tossing example, we can estimate the bias of the coin, or
we can predict the next outcome, or we can test whether the coin is fair or not.

Bayesian inference With the model in place and the data to our disposal, we need one
more ingredient for induction: amethod, or rule for inference. In this dissertation, the focus
is on (variations on) Bayesian inference.�e essence of Bayesian inference is that it employs
probability distributions both over statistical hypotheses as well as over data. Following Ghosh,
Delampady and Samanta (����), we denote with θ a quantity of interest.�e learner starts with
specifying a prior distribution π(θ), which quanti�es her uncertainty about θ before seeing the
data Z .�en she calculates the posterior π(θ � z), the conditional density of θ given Z = z, by
Bayes theorem

π(θ � z) = π(θ) f (z � θ)
∫Θ π(θ′) f (z � θ′)dθ′

. (�.�)

�e numerator consists of the prior π(θ) and the likelihood f (z � θ), the denominator is the
marginal density of Z, also called Bayes marginal (likelihood) ormodel evidence.�e posterior
distribution represents the learner’s uncertainty regarding θ conditioned on the data. It is a
trade-o� between the prior and data distributions, determined by the strength of the prior
information and the amount of data available.
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A property that many �nd attractive of Bayesian methods, is that all inference goes via the
posterior distribution. In the situation of parameter estimation the learner could for example
report the posterior mean and variance

E(θ � z) = �
∞

−∞

θπ(θ � z)dθ ; Var(θ � z) = �
∞

−∞

(θ − E(θ � z))� π(θ � z)dθ . (�.�)

In case of hypothesis testing, she could compute the posterior odds or Bayes factor, see Sec-
tion �.�.

Computation For a long time Bayesian inference was mostly limited to conjugate families
of distributions: speci�c choices of the model and prior distribution that give a closed-form
expression for the posterior.�e development ofMarkov ChainMonte Carlo (MCMC)methods
in the ����s (Gelfand and Smith, ����) revolutionised Bayesian statistics. MCMC methods are
algorithms that generate samples from a probability distribution, by constructing a reversible
Markov chain that has the target distribution as its equilibrium distribution. In Chapter � we
develop some MCMC algorithms.

Let us return to our coin tossing example.

Example �.� (continued). Suppose a learner wants to learn the bias of the coin, i.e. the parameter
θ of a Bernoulli distribution. She �rst needs to specify a prior distribution on the parameter
space: the interval [�, �]. At this point, it is unclear how she should choose the prior; we will get
back on this issue in Section �.�.�. Already back in ����, Laplace suggested that, if one is ignorant
about the bias of the coin, one should choose a uniform distribution over the parameter space
(Laplace, ����), although the idea to translate ignorance to uniform was later challenged (see
Section �.�.�). Let us follow Laplace for now: the learner chooses a uniform distribution, which
corresponds to a Beta(�, �) distribution. As the Beta distribution is conjugate to the Bernoulli
family, quantities such as in (�.�) can be easily computed analytically. Speci�cally, the coin is
tossed t times and she observes the sequence zt consisting of n� ones and n� zeros.�e likelihood
is f (z � θ) = θn�(� − θ)n� . Due to the Beta-Bernoulli conjugacy, she can easily compute the
posterior distribution (�.�), which has the form of a Beta(� + n� , � + n�) distribution. To give an
estimate of the parameter θ, she can take the posterior mean E(θ � z) = (n� + �)�(n� + n� + �).
Alternatively, she can report the posterior mode: argmaxθ π(θ � zt) = n��(n� + n�).

With modern MCMC methods, Bayesian analyses are not restricted to conjugate families
anymore, and models with many parameters can be handled, even non-parametric (roughly:
in�nite-dimensional) models.�ese problems can also be addressed with non-Bayesian, o�en
called classicalmethods, see Section �.�.�.�ere exist however philosophers and statisticians
who believe that all learning problems should be addressed in a Bayesian way, I will loosely call
them Bayesians.

In the example, we saw how Bayesian inference is done in practise. However, we already
encountered a potential problem: How should the learner choose the prior?�ere are di�erent
views on this, and choice of prior is only one of many quarrels among Bayesians. To cite the
famous mathematician I.J. Good: “�ere are ����� varieties of Bayesians” (Good, ����); in other
words, there is no unique Bayesian theory of inference. Bayesianism extends far beyond the
�eld of statistics:�ere is Bayesian epistemology, Bayesian con�rmation theory (in philosophy
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of science), Bayesian learning theory (in psychology), Bayesian decision theory, and more.
Discussions about the foundations of Bayesianism are mostly held by philosophers, yet these
certainly a�ect (statistical) practise: Adherents to di�erent varieties of Bayesianism choose
di�erent priors, and present di�erent mathematical de�nitions and theorems.�e implications
of the philosophical discussions about Bayesianism for statistical practise are the subject of
Chapters � and �.

In the next section I explain the common ground of most of the varieties of Bayesianism.�is is
followed by an exposition of the main di�erences and disputes between Bayesians, in particular,
the subjectivists and the objectivists, yet I also introduce a third category that encompasses many
Bayesian statisticians: the pragmatists.

Since this dissertation is about Bayesian methods, an obvious question is: Why do people use a
Bayesian approach? For some (who perhaps may be called the true Bayesians) the main reasons
are philosophical, for others the fact that all inference is based on the posterior distributions is
attractive, and many �nd it intuitively appealing. Others have a more pragmatic view:�ere
exists an interesting problem, and Bayesian inference is a good way to solve it. In Section �.�.� I
discuss some of those arguments for the use of Bayesian methods, and also some against.

Section �.�.� brie�y describes ‘the other’main theory of statistics: classical or frequentist statistics.
In Chapters � and �, we use Bayesian methods, but we want them to have certain frequentist
properties and guarantees.

�.� Views on Bayesianism
As I mentioned above quoting I.J. Good, there is no uni�ed Bayesian movement, or theory of
inference, yet, there are some common foundations. Notable Bayesians and texts presenting
some in�uential interpretations are: Ramsey (����), Savage (����), Je�reys (����), De Finetti
e.g. (����), Je�rey (����), Howson and Urbach (����), and, from a more statistical perspect-
ive: Bernardo and Smith (����), Gelman et al. (����), and Ghosh, Delampady and Samanta
(����).

Central to Bayesian statistics, epistemology and con�rmation theory — the interests of this
dissertation — is the epistemic interpretation� of probability as degrees of belief. Most Bayesians
further agree (Romeijn, ����a; Easwaran, ����) that these degrees of belief should obey ra-
tionality conditions in two respects. In the �rst place, these concern the degrees of belief at a
certain point in time: Kolmogorov’s ���� axioms of probability theory. Secondly, these concern
how degrees of belief should change over time: this should be done by conditionalisation. We
have seen in the previous section and Example �.� how this is done: Formally, let S be some
statement, then we start with a prior probability Pold(S)— our prior belief in S. Upon acquir-
ing new evidence� E, we transform our prior probability to generate a posterior probability by

�One can also interpret a (mathematical) probability as physical probability: a relative frequency or propensity,
o�en termed chance. Some also called this objective probability, however, I �nd that an unfortunate wording, because of
possible confusion with what follows next in the main text: subjective and objective probability, which can both apply
to physical and epistemic probabilities. See also Hacking (����), who discusses the concept of probability historically
and philosophically.

�Assume for simplicity here that E comprises every statementwe became certain of and had positive prior probability.
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conditionalising on E, that is, Pnew(S) = Pold(S�E).�is is called Bayes’ rule.

But this is where the agreement among Bayesians ends.�e �rst issue that is at the heart of
many disputes among Bayesians — the interpretation of epistemic probability — is closely
related to the issue of the origin of priors. I now describe the views on these two issues held
by two central categories of Bayesians: the subjectivists and the objectivists. A�er that, I add a
third category: the pragmatists.

�.�.� �e origin of priors
Subjectivism At one end of the spectrum of Bayesians, the subjectivists (Ramsey, De Finetti,
Savage) take probability to be the expression of personal opinion. Probabilities can be related
to betting contracts (see Section �.�.�)), and the most extreme subjectivists impose no ra-
tionality constraints on prior probabilities other than probabilistic coherence, i.e. respecting
Kolmogorov’s probability axioms (De Finetti, ����; Savage, ����). For some subjectivists (e.g. Jef-
frey (����)), there can be some further constraints, but they exclude little, and in general, the
prior probability assignments may originate from non-rational factors.

Objectivism At the other tail of the spectrum, the objectivists (Je�reys, Jaynes) feel that prior
probabilities should be rationally constrained, for example by physical probabilities or sym-
metry principles. Ideally such rationality constraints would uniquely determine a prior for
every speci�c case, making prior probabilities logical probabilities.�e objective program was
already started by Sir Harold Je�reys in ���� (Je�reys, ����), and he advanced his theory of
invariants in ���� (Je�reys, ����; Je�reys, ����). His invariance principle leads to a rule to
identify distributions that represent ‘ignorance’ about a quantity of interest, considering the
statistical model.�is distribution is now known as Je�reys’ prior�. Assuming regularity condi-
tions (see Grünwald (����), p.����.), it is proportional to the square root of the determinant
of the Fisher information, and it is invariant under �-� di�erentiable transformations of the
parameter space. Je�reys’ invariance principle is modi�ed by Jaynes into hismaximum entropy
principle (Jaynes, ����). However, no principles exist that uniquely determine rational priors in
all cases (which is, besides, not claimed by any self-declared objective Bayesian either).�is
is by no means the only problem with objectivism, see Seidenfeld (����). Still, some authors
advocate its use in practice (Berger, ����).

Example �.� (continued). Je�reys’ prior for the coin tossing example is

π(θ)∝
�
I(θ)

=

�
���E �� d

dθ
log f (z � θ)�

�
�

= ��
θ(� − θ)

,

which corresponds to a Beta(���, ���) distribution.
�Related are reference priors for higher dimensional models (Bernardo, ����), Jaynes’ maximum entropy priors (see

the main text), and MDL-type priors (Grünwald, ����).
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Pragmatism Nowadays, many if not most statisticians using Bayesian methods do not adhere
to a particular philosophy, but choose their priors for pragmatic reasons: for mathematical
or computational convenience, because of their e�ects (e.g. shrinkage priors, see Chapter �),
to provide applied researchers with a default Bayesian method (see Chapter � and �), or to
construct methods that satisfy speci�c criteria (such as the GROW in Chapter �). O�en, these
priors exhibit a mix of subjective and objective elements, but the reasons for using these priors
and Bayesian methods in general are practical rather than philosophical.�is is what I call
pragmatic Bayesianism. Pragmatic Bayesians do not view probabilities as degrees of belief;
they call them for example weights.�is view is eloquently described by Gelman and Shalizi
(����).

Besides the interpretation of degrees of belief and the origin of priors, philosophers disagree
about many other aspects of Bayesianism, such as whether probability should be treated as
countably or �nitely additive (see Seidenfeld and Schervish (����), Kadane, Schervish and
Seidenfeld (����), Williamson (����) and Elliot (����)), whether conditionalisation can be
generalised to situations in which the observations are themselves probabilistic statements (see
Je�rey (����)), and more.

�.�.� Arguments for Bayesianism and criticism
�ere are various arguments for (types of) Bayesianism.�e most well-known are probably
the Dutch Book arguments, introduced by Ramsey (����) and De Finetti (����). �ey relate
probability, as degrees of belief, to a willingness to bet. If a bookmaker does not respect the
axioms of probability theory, a clever gambler can make a Dutch book: He can propose a set
of bets that wins him some amount of money no matter what the outcomes may be. �ere
exist versions with �nite and countable additivity, see e.g. Freedman (����). Related arguments
are exchangeability and De Finetti’s (����) representation theorem, see e.g. Bernardo (����),
Easwaran (����) and Romeijn (����).

In Bayesian decision theory, there are complete class theorems, originally due toWald (����) (see
e.g. Robert (����)), which provide a very pragmatic argument for Bayesianism.�ey basically
state that for every method for learning from data, there exists a method that is at least as good,
and that is Bayesian in the sense that it is based on updating beliefs using Bayes’ theorem with
a particular prior. A drawback of this argument is the limited applicability of these theorems, it
holds for compact parameter spaces and convex loss functions, and besides that, there is still
considerable room for manoeuvre in the choice of the prior. In particular, the choice of prior
may depend on e.g. the sample size and the choice of loss function, which may be unnatural to
many non-pragmatists.

Bayesian statistics can be justi�ed in other ‘non-Bayesian’ ways too. Some �nd Bayesian analysis
attractive because it does not rely on counterfactuals, whereas some non-Bayesian methods
do: they rely on integration over the sample space, hence on data that could have but have not
realised (Dawid and Vovk, ����). Others like Bayesian methods because all inference is based
on the posterior only, which leads to straightforward uncertainty quanti�cation — for example,
separate ‘con�dence intervals’ are not needed. Other reasons are more practical. Bayesian
inference o�en works very well in practise. For example in clinical trials, researchers o�en
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have to deal with missing data because of the intention-to-treat policy. Here Bayesian ways of
dealing with the missing data because of drop-outs o�en outperform other, classical methods
(Asendorpf et al., ����). Another example of a practical motivation is the success of shrinkage
priors, which are chosen to produce a sparse estimate of a regression parameter vector; these
are discussed in Chapter �.

Criticism

How to specify the prior?�is question both divides subjective and objective Bayesians, and
lies at the root of the main criticisms from non-Bayesians. Several issues can be �led under
the problem of priors. Subjectivists and objectivists debate whether there should be constraints
on prior probabilities, other than the laws of probability theory. In the case of objective Bayes,
there are no principles that uniquely determine objective priors in all cases. In particular, it is
unclear how a prior should represent ignorance. Subjective Bayesianism is criticised for the idea
that prior and posterior represent the learner’s subjective belief, while scientists are expected to
be concerned with objective knowledge (Gelman, ����).

Another objection to Bayesianism is the problem of old evidence (Glymour, ����): suppose a
new hypothesis is proposed, and it turns out to explain old evidence very well. How can the old
evidence be used to con�rm this hypothesis? Related is the problem of new theories (Earman,
����): the standard Bayesian framework does not provide a way to incorporate new hypotheses
in course of the learning process.�is problem is addressed in Chapter �.

�.�.� Classical statistics and frequentism

�e major alternative to Bayesian statistics is classical statistics. It is really a hotchpotch of many
di�erent methods, philosophical views, and interpretations of probability (see e.g. Section �.�
and Hájek (����)).�e common factor is that it only considers probability assignments over
the sample space and not over parameters that themselves represent probability distributions.
�e most important interpretation of the concept of probability in classical statistics, developed
by Von Mises (����), is that it can be identi�ed with a relative frequency: we can describe
the probability of a coin landing ‘tails’, with the number of tails in a (very long) sequence of
coin tosses, divided by the total number of tosses.�is is called frequentism. Since this is the
predominant view, classical statistics is o�en called frequentist statistics, but methods based on
other physical interpretations of probability, such as propensity, are considered classical as well.

�.� �e topics of this dissertation: challenges, limitations, and
pragmatics

I now give a high-level description of the main topics of this dissertation.�is is followed by a
brief, speci�c introduction for every chapter.
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Bayesian inference under model misspeci�cation
�e Bayesian framework as described above provides us with a way to change our degrees
of belief over time when new evidence obtains. A Bayesian learner starts with specifying a
model, and assigning prior probabilities to its elements. If the model is appropriate, i.e. if the
true data generating process is in the model and the prior does not exclude it from the start,
consistency is guaranteed: the learner will converge on the truth as more and more data are
obtained. However, it might happen that the model is misspeci�ed: the true data generating
process is not part of the model (or is assigned zero prior probability), which can be problematic
in di�erent ways, and in this dissertation, Bayesianism is extended in two di�erent ways to face
the problem.

First, it might happen that in the course of the learning process, the learner wants to incorporate
an hypothesis that did not occur to her before. �e standard Bayesian framework does not
o�er a way how to incorporate new hypotheses, it seems that the learner has to throw away her
data and start from scratch by specifying the larger model and assigning prior probabilities
to its elements. In Chapter �, further introduced in Section �.�, we consider an open-minded
Bayesian logic, to allow for dynamically incorporating new hypotheses.

Secondly, it could be that we want Bayes to concentrate on the best element in themodel, instead
of the truth, which is outside the model, where the best is the element that is closest to the truth.
In Chapter �, we show that standard Bayesian inference can fail to concentrate on this best
element in the model. We subsequently modify Bayes theorem (�.�) by equipping the likelihood
with an exponent, called the learning rate, and call this generalised Bayes. When the learning
rate is chosen appropriately, generalised Bayes concentrates on the best element in the model.
In Section �.� this problem is presented further.

Bayes factor hypothesis testing under optional stopping
Bayes factor hypothesis testing is a Bayesian approach to hypothesis testing based on the ratio of
two Bayes marginal likelihoods. In Chapters � and �, we study optional stopping, which inform-
ally means ‘looking at the results so far to decide whether or not to gather more data’. Di�erent
authors make claims about whether or not Bayes factor hypothesis testing is robust under
optional stopping, but it turns out that one can give three di�erent mathematical de�nitions
of what robustness under optional stopping actually means. We see in Chapters � and � that
adhering to one of the varieties of Bayesianism has implications for the claims one can make
in practise. For example, in Chapter � we elucidate claims about optional stopping which are
only meaningful from a purely subjective Bayesian perspective, yet the suggestion is made as if
those claims apply to pragmatic inference. In Section �.� I give an overview of current practise
in hypothesis testing, with �-values, and with Bayes factors.

A new theory for hypothesis testing with a Bayesian interpretation
In Chapter � we introduce a new theory for hypothesis testing. �e central concept of this
theory is the �-variable, a random variable similar to, but in many cases an improvement of
the �-value. We introduce an optimality criterion, called GROW, for designing �-variables,
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and it turns out that these GROW �-variables have an interpretation as a Bayes factor, yet
with special priors, which are very di�erent from those currently used by Bayesians.�is is
an example of radical pragmatism: we do not choose these priors based on any philosophical
considerations, but these special priors are designed so that the resulting method satis�es some
practically motivated criterion — namely, the GROW. One could even state that the Bayesian
interpretation of GROW �-variables is merely a by-product, yet a convenient one, because
it provides a common language for adherents of di�erent frequentist and Bayesian testing
philosophies. In Section �.� these schools of hypothesis testing (Fisherian, Neyman-Pearsonian,
the commonly used hybrid form with �-values, and Bayesian) are brie�y discussed.

Best-arm identi�cation with a Bayesian-�avoured algorithm
Another example of radical pragmatic Bayesianism can be found in Chapter �.�ere, we want
to identify from a sequence of probability distributions the one with the highest mean. We
can assign prior probabilities to distributions ν j , j = �, . . . ,K of having the highest mean, and
update these with Bayes’ theorem when we obtain a sample. We can construct a rule which
distribution to sample at time t based on the posterior distribution, but in order to meet certain
frequentist (and Bayesian) criteria, we do not always pick the distribution with the highest
posterior probability of having the highest mean. �e setting of Chapter �, which is called
Best-arm identi�cation, is introduced in Section �.�.

�.� Chapter �: Merging
In Chapter �, we consider the problem of dynamically incorporating hypotheses during the
Bayesian learning process. Here, successful learning means that if the true data generating
process is added to our model at some point, the learner almost-surely converges to the truth
as more and more data becomes available.

Setting Let the sample space be the set of all in�nite sequences, denoted byX∞, and consider
a σ-algebra F∞ containing all Borel sets�. We can for example look at the space of all binary
in�nite sequences, �ω (Cantor space). Now let H∗ and P be two probability measures over this
measurable space (X∞,F∞) of in�nite sequences, and denote with A ∈ F∞ a proposition�. An
example of such a proposition is: ‘the frequency of ones is equal to �.�’, or ‘every other bit is the
next bit of π’. We think of H∗ as the truth, i.e. the distribution generating the data, and we can
view P as the learner’s belief distribution.

�e learner starts with a number of propositions Ai , i ∈ N, to which she assigns a prior belief
P(Ai). At each time step t she observes an evidence item xt ∈ X , and she updates her belief in
the Bayesian way: her posterior belief in proposition Ai is

P(Ai �xt) = P(Ai ∩ xt)
P(xt)

.

�For a more detailed exposition, see Chapter �.
�Many authors call this an hypothesis, but to keep the introduction simple and to avoid confusion with statistical

hypotheses, I call it a proposition here, following e.g. Huttegger (����).
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�e learning goal If H∗ is the true distribution that governs the generation of the data, the
learner should use the data coming from H∗ to change her beliefs P towards H∗. Eventually, if
she sees enough data, we want P to come close to H∗.�ere are many notions for this closeness,
and an obvious one would be concentration of the learner’s posterior distribution on the true
distribution. However, this is too strong for our purposes, as we do not want to exclude the
possibility of di�erent distributions that are from some point on empirically equivalent (see
Lehrer and Smorodinsky (����)).�us, we will use the notion of truth-merger, which comes in
two variants.�e �rst is called strong merger (Kalai and Lehrer, ����; Lehrer and Smorodinsky,
����; Leike, ����)), which is still reasonably strong, as discussed in Chapter �.

De�nition �.� (Strong truth-merger). P merges with the truth H∗ if H∗-almost surely

sup
A∈F∞

�P(A�xt) −H∗(A�xt)�→ � as t →∞.

In words, with true probability �, the learner’s probabilities conditional on the past will asymp-
totically coincide with the true probabilities. Truth-merger is thus concerned with learning the
probabilities of future outcomes. In Chapter �, we are mainly concerned with the predictive
probabilities up to a �nite point in time, which is captured in the notion of weak merger (Lehrer
and Smorodinsky, ����):

De�nition �.� (Weak truth-merger). We say that P weakly merges with the truth H∗ if and
only if for ` ∈ N we have H∗-almost surely

sup
A∈Ft+`

�P(A�xt) −H∗(A�xt)�→ � as t →∞,

where Ft+` denotes the σ-algebra generated by the �rst t + ` outcomes.

Strong merger implies weak merger, as follows directly from the de�nitions.

Contribution In the standard form, a Bayesian learner starts with specifying her prior distri-
bution P, and learns by conditionalisation on the data.�e prior speci�es a particular model (set
of hypotheses to which positive probability is assigned), and if the truthH∗ is in this model and
H∗ is absolutely continuous with respect to P, then she will almost surely merge with the truth
(Blackwell and Dubins, ����). However, she cannot include every hypothesis from the start (see
Chapter �), she needs to commit to restrictions on her model (inductive assumptions), and
there is no room to adapt the model later on in the standard form of Bayesianism as described
in Section �.�. In particular, she can not expand the model to incorporate new hypotheses
(the Bayesian problem of new theory) that might be more in accordance with the data than
the hypotheses in the initially formulated model. For example, somebody might come along
and tell her about a new hypothesis that is eminently reasonable but which she simply did
not think of.�us, the challenge is to come up with an open-minded Bayesian inductive logic
that can dynamically incorporate new hypotheses. Wenmackers and Romeijn (����) formalise
this idea, but in Chapter � we show that their proposal does not preserve merger with the
true hypothesis. We then diagnose the problem, and o�er two versions of a forward-looking
open-minded Bayesian that do weakly merge with the truth when it is formulated.
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�.� Chapters �, � and �: Hypothesis testing
A large part of this dissertation is about hypothesis testing. Here I �rst introduce this topic in a
simpli�ed setting; for a more general treatment, see Chapter �, Section �.�. I then summarise
our contributions of Chapters �, � and �.

Setting Let the null hypothesisH� and the alternative hypothesisH� be statistical hypotheses,
i.e. sets of probability distributions on a measurable space (Ω,F). Let Xn ∶= X� , . . . , Xn be
random variables taking values in the outcome space Ω.

�e learning goal We wish to test the veracity of H�, possibly in contrast with some altern-
ativeH�, based on a sample Xτ that may or may not be generated according to an element of
H� orH�.�ere are several paradigms for testing, based on di�erent philosophies and also
with di�erent objectives.�e most commonly used framework for hypothesis testing in the
applied sciences, o�en referred to as classical or frequentist, is that of the p-value based null
hypothesis signi�cance testing (NHST).

De�nition �.� (P-value). A p-value is a random variable P such that for all � ≤ α ≤ � and all
P� ∈H�, we have P�(P ≤ α) = α.

P-values were advocated by Sir Ronald Fisher to measure the strength of evidence against the
null hypothesis, a smaller p-value indicating greater evidence (Fisher, ����). In his framework
of signi�cance testing, the learner comes up with a null hypothesis that the sample comes from
an in�nite population with known (hypothetical) distribution, so if the data are unusual under
H�, it constitutes evidence against the null.�e level of signi�cance is simply a convention� to
use as a cut-o� level for rejectingH�. In his later work (Fisher, ����; Fisher, ����), he re�ned
this and prescribed to report the exact level of signi�cance, which is thus a property of the
data.

Jerzy Neyman and Egon Pearson developed an alternative theory of null hypothesis testing
where the main concern is to limit the false positive rate of the test, and a second hypothesis, the
alternative hypothesis needs to be speci�ed. As opposed to the Fisherian framework in which
the p-value is a measure of evidence, the outcome of the Neyman-Pearson test is acceptance or
rejection of the null hypothesis.�e probability α of falsely rejecting the null hypothesis when it
is true is called the Type I error, the probability β of falsely accepting the null hypothesis is called
the Type II error, and the complement �− β is called the power of a test. If we �x the signi�cance
level α, a most powerful test is the one that minimises the Type II error β, and Neyman and
Pearson proved in the famous lemma named a�er them, that such a most powerful test for
simpleH� andH� has the form of a likelihood ratio threshold test. Note that in this framework
the signi�cance level is a property of the test. Whereas in Fisher’s framework, p-values from
single experiments provide evidence againstH�, in the Neyman-Pearsonian framework the
behaviour of the test in the long run is considered, and we can view the signi�cance level α as a
relative frequency of the Type I errors over many repeated experiments. As such, a test does not

�According to some authors (Hubbard, ����; Gigerenzer and Marewski, ����), the �% level was taken just because
�% tables were available to Fisher at the time he wrote his earlier works.



�� Chapter �. Introduction

provide evidence for the truth or falsehood of a particular hypothesis (Neyman and Pearson,
����).

�e current practise of the p-value based NHST is, remarkably, a hybrid of the methods
proposed by Fisher on the one hand, and Neyman and Pearson on the other hand, despite their
utter disagreement about hypothesis testing (see Hubbard (����) who quotes their reciprocal
reproaches), and the con�icting aspects of their theories of inference. Typically, a signi�cance
level α is pre-speci�ed (o�en �.��), then an experiment is designed so that it achieves a certain
power �− β, and a�er the data are obtained a p-value is calculated. When the p-value is smaller
than α, the null hypothesis is rejected, and inmany journals, the p-value is reported as well, o�en
with a superscript of one or more stars� indicating whether p < �.��, p < �.��, or p < �.���.
As early as the ����s (e.g. Edwards, Lindman and Savage (����)), many papers have been
published in which the p-value based NHST is criticised. Besides that it is a combination of
the two (incompatible) frameworks described above, it is criticised because of the widespread
misinterpretations of p-values (for example, they are thought to be equal to the Type I error
rate, or to the probability of an hypothesis being true given the data), their dependence on
counterfactuals and the need of the full experimental protocol to be determined upfront. For
articles debating the use of p-value based NHST, see e.g. Berger and Sellke (����), Wagenmakers
(����), Gigerenzer and Marewski (����), Grünwald (����), Wasserstein, Lazar et al. (����)
and Benjamin et al. (����). For work on Fisherian versus Neyman-Pearsonian views, see e.g.
Gigerenzer et al. (����), Gigerenzer (����) and Hubbard (����), and an interesting investigation
into why many are unaware of these di�erent views and their incompatibility is Huberty
(����).

Another framework for hypothesis testing is based on Bayes factors (Je�reys, ����; Kass and
Ra�ery, ����). Since the last decade this framework has been advocated by several researchers
as an alternative for the p-value based NHST (see e.g. Wagenmakers (����)). Here,H� and
H� are represented by measures P� and P� that are taken to be Bayesian marginal distributions.
Denote H j = {Pθ � j ; θ ∈ Θ j}, with (possibly in�nite) parameter spaces Θ j , and de�ne prior
distributions π� and π� on Θ� and Θ� respectively.�e Bayes marginals then are, for any set
A ⊂ Ω

P�(A) = �
Θ�

Pθ ��(A)dπ�(θ) ; P�(A) = �
Θ�

Pθ ��(A)dπ�(θ). (�.�)

�e Bayes factor is de�ned as the ratio of these Bayes marginals (for simpleH� andH� this
is simply a likelihood ratio). Sometimes we want to allow for improper prior distributions
(integrating to in�nity). For this case, we give a more general de�nition in Chapter �, in terms
of versions of the Radon-Nikodym derivatives of P� and P� w.r.t. some underlying measure. A
large Bayes factor corresponds to evidence against the null hypothesis. Sometimes, one can
also obtain frequentist Type-I error guarantees with Bayes factors.�e probability under (an
element of) the null hypothesis that a Bayes factor based on a sample with a �xed size n is larger
than ��α for α ∈ (�, �) is by Markov’s inequality bounded by α.�us, one can use Bayes factors
together with a frequentist Type I error guarantee by choosing a threshold of ��α, and rejecting
the null if the Bayes factor exceeds that threshold.

�See Gigerenzer and Marewski (����) for an excellent critique of, as they call it, the null ritual.
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Contribution (�) When a researcher wants to use p-value based NHST, the experimental
protocol must be completely determined upfront. In practise, researchers o�en adjust the
protocol due to unforeseen circumstances, or collect data until a point has been proven.�is
is o�en referred to as optional stopping. Informally, this means: ‘looking at the results so far
to decide whether or not to gather more data’. With (standard) p-value based NHST (aiming
to control the Type I error) this is not possible: one can prove that even if the null hypothesis
is the true data generating process, one is guaranteed to reject it upon collecting and testing
more and more data. Bayes factor hypothesis testing on the other hand has been claimed
by several authors to continue to be valid under optional stopping. But what does it mean
for a test to remain valid under optional stopping? It turns out that di�erent authors mean
quite di�erent things by ‘Bayesian methods can handle optional stopping’, and such claims are
o�en only made informally, or in restricted settings. We can discern three main mathematical
concepts of handling optional stopping, which we identify and formally de�ne in Chapter �:
τ-independence, calibration and (semi-)frequentist. We also mathematically prove that Bayesian
methods can indeed handle optional stopping in many (but not all!) ways, in many (but not
all!) settings. While Chapter � is written to untangle the optional stopping confusion by giving
rigorous mathematical de�nitions and theorems, Chapter � is written for practitioners and
methodologists who want to work with default Bayes factors introduced by the self-named
Bayesian psychology community (Rouder et al., ����; Jamil et al., ����; Ly, Verhagen and
Wagenmakers, ����). �at chapter is mainly a response to the paper Optional stopping: no
problem for Bayesians (Rouder, ����), and we explain for a non-mathematical audience why
there is more nuance to this issue than Rouder’s title suggests, and why his claims (which are
actually about calibration, which we formally de�ne in Chapter �.�.�, and not about Type I
error control) are relevant only under a subjective interpretation of priors. Default priors do
not have such an interpretation, making the relevance of Rouder’s claims for practise doubtful.
In Chapter � we prove that Rouder’s intuitions about calibration are correct, but they do not
carry over to other notions of optional stopping than calibration; and therefore they do not
apply to most practically relevant issues with optional stopping with Bayes factor hypothesis
testing.

Contribution (�) Many agree that the p-value based NHST paradigm is inappropriate (or
at least suboptimal) for scienti�c research, yet the dispute about its replacement continues to
be unresolved. Some propose a Bayesian revolution (yet sometimes overlook the limitations
of Bayesian approaches, see Chapter � and �), others adhere to more Fisherian or Neyman-
Pearsonian views. Finally, some are more pragmatic and just want to use an appropriate test
for their situation that gives them certain guarantees. Wouldn’t it be nice to have a common
language for adherents to those di�erent testing schools that expresses strength of evidence, that
allows for evidence from experiments originating from those di�erent paradigms to be freely
combined, and that resolves some of the main problems with p-values, such as interpretability
issues for practitioners? In Chapter � we introduce a theory for hypothesis testing based on
�-test statistics (we call them �-variables) that achieve just that.�e de�nition of an �-variable
is simple:
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De�nition �.� (�-test statistic). An �-test statistic is a non-negative randomvariable E satisfying

for all P ∈H�: EP[E] ≤ �.

�-variables are �exible: they can be based on Fisherian, Neyman-Pearsonian and Bayesian test-
ing philosophies; �-variables resultant from those di�erent paradigms can be freely combined
while preserving Type I error guarantees, and they allow for a clear interpretation in terms
of money or gambling. In Chapter � we develop this theory of �-variables; this includes the
development of optimal, ‘GROW’ �-variables.

�.� Chapter �: Generalised linear regression
In Chapter �, we consider Bayesian generalised linear regression under model misspeci�cation.
Here, successful learning means that the (generalised) posterior distribution concentrates
on an element in the model that is in some sense optimal, although it is not the true data
generating distribution (which is not in the model). I start by explaining linear regression in
the well-speci�ed case. I then introduce the (more general) learning goal and summarise our
contributions.

Setup In linear regression, we wish to �nd a relationship between a regressor variable X ∈ X
and a regression variable Y ∈ R, where X is some set. We want to learn a function g ∶ X → R

from the data, and we assume Gaussian noise on Y , that is Yi = g∗(Xi) + ε i , where ε i
i . i .d .∼

N (�, σ �), and g∗ is the true function we want to learn. We can thus formulate the conditional
density of Yn given Xn as

pg ,σ �(Yn �Xn) = � �√
�πσ �

�
n

exp�−∑
n
i=�(Yi − g(Xi))�

�σ � � .

In linear regression, we search for a function g for our problem among linear combinations
of basis functions: gβ(X) = ∑p

j=� β j g j(X). �is can be further extended to generalised linear
models (GLMs), where the dependent variable Y is not necessarily continuous-valued any more
(but from some set Y), and the noise is not necessarily Gaussian. An example that we encounter
in Chapter � is the logistic regression model { fβ ∶ β ∈ Rp}, where the outcomes Yi ∈ {�, �} are
binary random variables, the independent variables are p-dimensional vectors Xi ∈ Rp , with
the conditional density

p fβ(Yi = ��Xi) ∶=
eX

T
i β

� + eXT
i β

.

Learning goal We are given an i.i.d. sample Zn ∼ P from a distribution P on the sample
space Z = X ×Y , and we want to do inference with the generalised Bayesian posterior Πn on
our model F , de�ned by its density

πn( f ) ∶=
exp �−∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

. (�.�)
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Here ` f (zi) is the loss of f , an element of our model F , on outcome zi ∈ Z , and π� is the
density of a prior distribution onF relative to some underlying measure ρ. For GLMs, (�.�) can
equivalently be interpreted in terms of the standard Bayesian posterior based on the conditional
likelihood p f (y�x), i.e.

πn( f )∝
n
�
i=�
(p f (yi �xi))π�( f ). (�.�)

For example, consider standard linear regression with square loss ` f (x , y) = (y − f (x))� and
�xed learning rate η.�en (�.�) induces the same posterior πn( f ) over F as does (�.�) with
p f (y�x)∝ exp(−(y − f (x))�), which is the same as (�.�) with ` f replaced by the conditional
log-loss `′f (x , y) ∶= − log p f (y�x). All examples of GLMs in Chapter � can be interpreted in
terms of (�.�) for a misspeci�ed model, that is, the density P(Y �X) is not equal to p f for any
f ∈ F .

We do not assume that the model is well-speci�ed, however, we do assume that there ex-
ists an optimal element in our model f ∗ ∈ F that achieves the smallest risk (expected loss)
E[` f ∗(Z)] = inf f ∈F E[` f (Z)]. For GLMs this has additional interpretations: it means that ifF
contains the true regression function g∗, then f ∗ = g∗, and also, f ∗ is the element in F closest
to P in KL divergence inf f ∈F EX ,Y∼P[log(p(Y �X)�p f (Y �X)]. As more and more data becomes
available, we want the Bayesian posterior (�.�) to concentrate in neighbourhoods of f ∗.

Contribution In the last decade it has become clear that standard Bayesian inference can
behave badly under model misspeci�cation, that is, when the true distribution P is not in
the model F . Grünwald and Van Ommen (����) give a simple linear regression example in
which Bayesian model selection, model averaging and ridge regression severely over�t: Bayes
learns the noise of the sample in stead of (or in addition to) the signal. For small sample sizes,
the posterior does not concentrate on element f ∗ ∈ F closest in KL divergence to the true
distribution P, even if the true regression function is in the model (in their example, only the
noise is misspeci�ed). �ey also provide a remedy for this problem: using the appropriate
generalised Bayesian posterior, de�ned analogously to (�.�) by its density

πn( f ) ∶=
exp �−η∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−η∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

,

where η > � is the learning rate, and η = � corresponds to standard Bayesian inference.�ey
show with simulations that for small enough η (which can be found by the Safe-Bayesian
algorithm), this results in excellent performance. In Chapter � we show that failure of standard
Bayes (η = �) and empirical success of generalised Bayes (with small enough η) on similar
toy problems extends to more general priors (lasso, horseshoe) than considered by Grünwald
and Van Ommen (����) and more general models (GLMs). Additionally, we show real-world
examples on which generalised Bayes outperforms standard Bayes. Grünwald and Mehta
(����) showed concentration with high probability of generalised Bayes with learning rate
η in the neighbourhood of f ∗ under the η-central condition. In Chapter � we show under
what circumstances this central condition holds for GLMs. Furthermore, we provide MCMC
algorithms for generalised Bayesian lasso and logistic regression.
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�.� Chapter �: Best-arm identi�cation
In this chapter we consider a Bayesian-�avoured anytime best-arm identi�cation strategy. We
show that it is in some sense optimal, meaning that it (asymptotically) uses as few samples as
possible to indicate with a certain con�dence which of a sequence of probability distributions
has the highest mean.

Setup A �nite stochasticmulti-armed bandit model is a sequence of K probability distribu-
tions ν = (ν� , . . . , νK), which we call arms. With µi we denote the expectation of distribution
ν i of arm i (assumed it exists), and we denote the optimal arm I� to be the arm with mean
µ� ∶=maxi∈[K] µi , assuming it to be unique.�e learner, who does not know about the distribu-
tions ν, interacts with the model by choosing at each time t = �, �, . . . an arm It to sample, and
she observes an evidence item, called reward,Yt ,It ∼ νIt .�e learner chooses arm It based on the
history (I� ,Y�,I� , . . . , It−� ,Yt−�,It−�), and possibly some side information or exogenous random-
ness, denoted by Ut−�. Let Ft be the σ-algebra generated by (U� , I� ,Y�,I� ,U� , . . . , It ,Yt ,It ,Ut),
then It is Ft−�-measurable.�e sequence of random variables (It)t∈N is called the strategy of
the learner or a bandit algorithm.

Learning goal We consider a setting called best-arm identi�cation (BAI), the name says it
all: we want to explore the arms to make an informed guess which one has the highest mean.
A BAI strategy consists of three components. �e sampling rule selects an arm It at round
t. �e recommendation rule returns a guess for the best arm at time t (it is Ft-measurable),
and thirdly, the stopping rule τ, a stopping time with respect to (Ft)t∈N, decides when the
exploration is over. Two main mathematical frameworks for BAI exist. One is the �xed-budget
setting, where the stopping time τ is �xed to some (known) maximal budget, and the goal is
to minimise the probability of returning a suboptimal arm (Audibert and Bubeck, ����).�e
other, which we consider in Chapter �, is the �xed-con�dence setting, in which given a risk
parameter δ, the goal is to ensure that the probability to stop and recommend a suboptimal arm
is smaller than δ, while minimizing the total number of samples E[τ] to make this δ-correct
recommendation (Even-dar, Mannor and Mansour, ����).�ere exist several sampling rules
for the �xed-con�dence setting, most of them depend on the risk parameter δ, but one that does
not is the tracking rule of Garivier and Kaufmann (����), which also asymptotically achieves the
minimal sample complexity combined with the Cherno� stopping rule (see ibid. and Chapter �).
A sampling rule that does not depend on the risk parameter δ or a budget is called anytime by
Jun and Nowak (����), and is appealing for many (future) applications in machine learning,
such as hyper-parameter optimisation.

Contribution We consider a Bayesian-�avoured anytime sampling rule introduced by Russo
(����), called Top-Two�ompson Sampling (TTTS). So far, there has been no theoretical sup-
port for the employment of TTTS for �xed-con�dence BAI, and Russo (����) proves posterior
consistency (with optimal rates) under restrictive assumptions on the models and priors, ex-
cluding two settings mostly used in practise: Gaussian and Beta-Bernoulli bandits. In Chapter �
we address the following: We (�) propose a new Bayesian sampling rule (T3C), computationally
superior to TTTS; (�) establish δ-correctness of two new Bayesian stopping and recommend-
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ation rules; (�) provide sample complexity analyses of TTTS and T3C under our proposed
stopping rule; (�) prove optimal posterior convergence rates for Gaussian and Beta-Bernoulli
bandits.

�.� �is dissertation
Each of the chapters of this dissertation corresponds to one of the papers listed on page i,
therefore, the chapters are self-contained. However, they are written for di�erent audiences,
hence they di�er greatly in style, in technical level, and in background knowledge required to
be able to read them.

Chapter � (Sterkenburg and De Heide, ����) is written for a readership of mathematical philo-
sophers. Mathematical philosophy is a �eld in which philosophical questions are treated with
tools and methodology from mathematics: with de�nitions, theorems and proofs, and with pre-
cision and rigour. Mathematical philosophers o�en have a strong understanding of some �elds
in mathematics, such as measure theoretic probability, set theory, and of course logic.

Chapter � (De Heide and Grünwald, ����) is written for statisticians and methodologists.�ese
are o�en researchers in a methodology department associated to a faculty of applied research
(psychology, biology, etc.), who study and develop statistical methods for their �eld. Only
elementary probability theory and statistics is needed to read this chapter.

�e subsequent four chapters (Hendriksen, De Heide and Grünwald, ����; Grünwald, De
Heide and Koolen, ����; De Heide et al., ����; Shang et al., ����) are aimed at mathematical
statisticians and machine learning theorists with a solid mathematical background (in particu-
lar, obviously, mathematical statistics and probability theory). For Chapter � some familiarity
with group theory is useful to fully appreciate it, and for Chapter � the same holds for stat-
istical learning theory, although in both chapters all necessary preliminaries are (concisely)
provided.
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Chapter �

On the Truth-Convergence of
Open-Minded Bayesianism

Abstract
Wenmackers and Romeijn (����) formalize ideas going back to Shimony (����) and Putnam
(����) into an open-minded Bayesian inductive logic, that can dynamically incorporate stat-
istical hypotheses proposed in the course of the learning process. In this paper, we show that
Wenmackers and Romeijn’s proposal does not preserve the classical Bayesian consistency guar-
antee of almost-sure merger with the true hypothesis. We diagnose the problem, and o�er a
forward-looking open-minded Bayesians that does preserve a version of this guarantee.

�.� Introduction
On the standard philosophical conception of Bayesian learning, an agent starts out with a
particular prior distribution and learns by conditionalizing on the data it receives. Well-known
results on the merger of opinion show that the speci�c prior does not matter too much, as long
as there is agreement on what is possible at all.�ese same results can also be taken to show
that the agent converges to the truth, as long as its prior does not exclude this truth from the
start (Earman, ����, ����; Huttegger, ����).

However, a Bayesian agent cannot include in its prior every possible truth from the start; not in
practice, and not even in theory (Putnam, ����; Dawid, ����; Belot, ����; Sterkenburg, ����). A
Bayesian agent must commit to restrictive inductive assumptions in its initial choice of prior
(Howson, ����; Romeijn, ����). Standard results about convergence to the truth only apply
if these initial assumptions are actually valid in the learning situation at hand. But there is,
on the standard conception, no room for the agent to readjust (Levi, ����); not even if these
assumptions start looking faulty.

��
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In more explicitly statistical terms, a Bayesian agent’s prior can be seen to specify a particular
model, or set of hypotheses. If the model is appropriate, if one of the hypotheses is true, there
is—at least for a countable model—a guarantee of consistency that the agent with probability �
(almost surely, a.s.) converges on this truth. But if it is not, the agent’s beliefs can with positive
probability always and forever remain o� the mark. On the standard conception, there is, again,
no room for the agent to later adapt this model (Dawid, ����); there is, in particular, no room
to expand the model, to incorporate new hypotheses that might be more in accord with the
data (Gillies, ����; Gelman and Shalizi, ����).

�e question of how to open up the standard conception to make room for incorporating
new hypotheses is the Bayesian problem of new theory (Chihara, ����, ����; Earman, ����, ���f;
Romeijn, ����b). An early account that engages with the problem of new theory is the tempered
personalism due to Shimony (����). Central to Shimony’s account is an idea he traces back to
Putnam (����; see Shimony, ����, p. ��; ����), and in more veiled form to Je�reys (����; see
Shimony, ����, ���; also see Howson, ����).�is is the idea that, rather than taking as starting
point an hypothesis set that is as wide as possible, Bayesian inference is relative to a limited set
of “seriously proposed hypotheses,” that is dynamically expanded as new such hypotheses are
proposed. In this context Shimony introduced the notion of a catch-all hypothesis that is the
complement of all seriously proposed hypotheses at any given time.

Recently, Wenmackers and Romeijn (����) have worked out these ideas in a statistical setting,
into what they brand an open-minded Bayesianism. In a number of di�erent versions they
propose a Bayesian inductive logic that allows for an agent to adopt newly formulated statistical
hypotheses during the learning process.

One important question that they leave untouched, however, is whether these formalizations
actually preserve the consistency guarantee of truth-convergence.�at is, if the true hypothesis
is one of the actually formulated hypotheses, thus becomes part of the open-minded Bayesian’s
hypothesis set, is the agent from that point on still guaranteed to almost surely converge on this
truth?�at is the question we investigate in this paper.

We proceed as follows. First, in section �.�, we introduce the statistical framework of Bayesian
learning that Wenmackers and Romeijn employ, and discuss their di�erent versions of open-
minded Bayesians. �en, in section �.�, we investigate the guarantee of convergence to the
truth. We focus on the property of weak merger with the true hypothesis, whenever part of the
hypothesis set, and show that all the proposed versions of open-minded Bayesianism, unlike the
standard Bayesian, fail to guarantee this property. In section �.� we diagnose the problem and
the exact nature of the convergence we could possibly attain, in the course of which we introduce
the notions of an hypothesis and posterior scheme and that of a completed agent measure. We
then set out for a version of open-minded Bayesianism for which we can show, for every
hypothesis and posterior scheme, strong merger of the completed agent function, from which
weak merger of the agent follows.�is leads us, �nally, to our proposal of a forward-looking
open-minded Bayesian.�e general threat to truth-convergence lies in the possibility of an
endless stream of over�tting hypotheses: our forward-looking proposal meets this threat by
neutralizing the role of old evidence. In an initial proto-version this is achieved by a constraint
on the posteriors assigned to new hypotheses; in the �nal version this is achieved by combining a
constraint on new hypotheses’ priors (instantiating the idea of the catch-all) with the stipulation
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that new hypotheses’ likelihoods on old evidence are equal to the agent’s own past probability
assignment.

We should emphasize that Wenmackers and Romeijn in their paper (and we in this paper)
are concerned with the question of how to incorporate externally proposed new hypotheses:
their proposals are attempts to make this aspect part of a Bayesian logic of inductive inference.
�ey are in their paper (and we are here) not concerned with when new hypotheses should
be taken into consideration, let alone with how new hypotheses are conceived. To paraphrase
Lindley (����, p. ���) paraphrasing de Finetti: if you have your statistical model, reasoning
is mere calculation, but constructing your model actually requires thinking. We are here only
concerned with the former, but presume, withWenmackers and Romeijn, that the scope of mere
calculation may be slightly extended, to the procedure of incorporating given new hypotheses
into your model.

�.� �e open-minded Bayesians
In this section, we �rst set out the presupposed formal framework (sect. �.�.�), and then discuss
the standard Bayesian (sect. �.�.�), the vocal open-minded Bayesian (sect. �.�.�), the silent
open-minded Bayesian (sect. �.�.�) as well as its retroactive variant (sect. �.�.�), and �nally the
hybrid open-minded Bayesian (sect. �.�.�).

�.�.� Formal framework: outcomes and hypotheses
In the statistical set-up employed by Wenmackers and Romeijn,� the domain of a Bayesian
agent’s probability function is theCartesian productΩ×Θ of an outcome spaceΩ and a statistical
hypothesis space Θ.

�e outcome space

In all of the following, we assume the simple scenario of repeatedly sampling from two possible
elementary outcomes, � and �. Formally, the outcome space Ω is the space {�, �}ω of all in�nite
binary sequences Eω . It is convenient for our purposes to treat a probability measure over this
space as a function P over the �nite sequences, that satis�es P(���) = �, where��� is the empty
outcome sequence, and P(Et) = P(Et�) + P(Et�) for all �nite outcome sequences Et , where
EtE denotes outcome sequence Et of length t followed by elementary outcome E ∈ {�, �}.
Formally, the set of cones JEtK ∶= {Eω ∈ Ω ∶ Eω extends Et} for all �nite sequences Et generates
a σ-algebra F over Ω containing all the Borel sets, and an assignment P as above induces a
unique measure µ on (Ω,F) with µ(JEtK) = P(Et) for all �nite Et .

�e hypothesis space

We consider statistical hypotheses that are given by likelihood functions over the possible
outcomes. �at is, we take hypotheses H to be themselves probability measures over the

�For a recent alternative proposal for open-minded Bayesianism in a framework that does not explicitly deal with
statistical hypotheses, see Raidl (����).
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outcome space.

As a basic example, the i.i.d. or Bernoulli hypothesis Hθ with parameter θ ∈ [�, �] assigns each
length-t data sequence Et a probability Hθ(Et) = θ t� ⋅ (� − θ)t−t� with t� the number of �’s in
Et .�is induces one-step conditional probabilities Hθ(� � Et) = θ at each time point t, i.e., no
matter the past sequence Et .�us Hθ formalizes the data-generating process where the same
elementary outcome is always produced with the same probability; for instance, the process of
repeatedly tossing a coin (heads is �, tails is �) with bias θ.

Other hypotheses can express various dependencies of current probabilities on the structure of
the past data. At the extreme end are deterministic hypotheses, that at each point in time only
allow for one particular next outcome.�is corresponds to a function assigning probability � to
each initial segment of one particular in�nite outcome stream Eω .

Wewill assume that at any time there are only a �nite number of explicitly formulated hypothesis.
�ese N hypotheses H� , . . . ,HN−� are collected in a hypothesis set ΘN ∶= {Hi}i<N .

Belowwewill consider expanding sequences of hypotheses sets, for which the following notation
will be useful. Let N(t) denote the number of hypotheses formulated before time t, so that the
hypothesis formulated at time t (if it exists) is HN(t). We o�en write t� < t� < t� < . . . for the
time points at which new hypotheses are formulated. In that case we abbreviate Ni ∶= N(ti) =
N(t�)+ i, so thatHNi is the hypothesis formulated at ti andΘNi+� = {Hi}i≤Ni is the hypothesis
set right a�er the formulation of HNi . Note, again, that we do not make any assumptions on
the origin of the new hypotheses; all we suppose is that the inquiry prompts some (plausibly
data-dependent!) stream of incoming hypotheses. We will say more about this in our analysis
in sect. �.�.

Full probability functions frommarginal over ΘN

Choose some distribution over ΘN for an agent’s marginal probability function over the formu-
lated hypotheses. Since hypotheses are likelihood functions, we can de�ne the agent’s marginal
likelihood function over the outcomes, conditional on hypothesis Hi , by

P(E � Hi) ∶= Hi(E).

�en by the law of total probability we obtain the unconditional marginal likelihood over the
outcomes by

P(E) = �
i<N

P(Hi) ⋅Hi(E). (�.�)
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�us stipulating themarginal overΘN de�nes a probability function P over all ofΩ×ΘN .�

�.�.� �e standard Bayesian
A Bayesian agent starts with a set ΘN of N hypotheses, and a probability function P�, or prior,
over ΘN and hence over Ω ×ΘN .� When the agent receives a new outcome Et at time t > �, it
must update its probability function Pt−� to a new probability function or posterior Pt .

�e orthodox Bayesian way of updating on the evidence is by use of Bayes’s rule,

Pt(⋅) ∶= P�(⋅ � Et),

with Et the outcome sequence up to time t. In particular, for the agent’s predictive probabilities,
or its marginal probability function over �nite-length future outcomes,

Pt(Es) = P�(Es � Et) = P�(EtEs)
P�(Et)

.

Equivalently but more in line with the procedure in sect. �.�.�, the agent �rst updates the
marginal posterior over the hypotheses, again by Bayes’s rule and by Bayes’s theorem:

Pt(Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
P�(Et)

. (�.�)

�en, by the law of total probability on the conditional marginal likelihood,

Pt(Es) = P�(Es � Et) = �
i<N

P�(Hi � Et) ⋅Hi(Es � Et)

= �
i<N

Pt(Hi) ⋅Hi(Es � Et).

In summary, the standard Bayesian proceeds as follows.

(t = �) N hypotheses

At the start each explicitly formulated hypothesis Hi in ΘN receives a prior P�(Hi) > �,
such that∑i<N P�(Hi) = �.

�Our account of hypotheses is a slightly simpli�ed version of Wenmackers and Romeijn’s.�ey take as hypotheses
sets of probability functions, so that there is a di�erence between the “theoretical context” TN = {Hi}i<N , the set
of hypotheses, and ΘN = ∪i<NHi , the set of all probability functions that constitute the hypotheses. Furthermore,
an hypothesis’s likelihood is then only settled with the aid of a subprior over the hypothesis’s elements. While this
additional complexity arguably does more justice to the actual shape of hypotheses in scienti�c or statistical inference,
nothing in the following should hinge on the simpler formulation we have chosen to adopt. (Also note thatWenmackers
and Romeijn’s running example of the food inspection only �gures “elementary” hypotheses that are singleton sets, i.e.,
single probability functions as in our framework.)�at said, a natural further development of the current work would
allow for representing ‘hypotheses’ as models in the form of continuous distributions over parametric hypothesis
spaces, so at to be able to explicitly analyze, for instance, adding (continuously many) new parameters to an already
included model.

�We always assume that the prior for given hypothesis setΘN is regular, meaning that it assigns nonzero probability
to each element in ΘN .
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(t > �) Evidence Et

Updating on evidence at a later point in time proceeds by

Pt(Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
P�(Et)

.

(t > �)New hypothesis HN

An hypothesis formulated at a later point in time is not an element of the set ΘN of
hypotheses.�is hypothesis’s prior and posterior probability is and will always remain
�.

�.�.� �e vocal open-minded Bayesian

Wenmackers and Romeijn’s proposal of an open-minded Bayesianism starts with postulating,
alongside the set ΘN of explicitly formulated hypotheses, a catch-all hypothesis (����; an idea
presented in but preceding Shimony, ����, p. ��; e.g., Savage in a discussion edited by Barnard
and Cox, ����, p. ��).�is catch-all hypothesisΘN comprises all (yet) unformulated hypotheses;
Wenmackers and Romeijn explicitly de�ne it as the complement of ΘN within the class of all
possible hypotheses.

�eir vocal variant of open-minded Bayesianism (Wenmackers and Romeijn, ����, ����f, �����)
derives its name from the fact that the catch-all hypothesis comes with a symbolic prior and
likelihood function that �gures in all calculations.�is in contrast to the silent version (sect.
�.�.� below), where no such prior or likelihood is formulated.

Speci�cation

�us the vocal open-minded Bayesian starts with an hypothesis set ΘN of N explicitly for-
mulated hypotheses, and in addition a catch-all hypothesis ΘN . Each explicit hypothesis is
assigned a numerical prior probability, summing to �; and in addition the catch-all hypothesis is
assigned an “inde�nite” or “merely symbolic” prior τN .�e numerical probability assigned to an
H ∈ ΘN speci�es the prior probability value P�(H � ΘN), conditional on the hypothesis set; the
unconditional or absolute prior is given by the normalization P�(H) ∶= (� − τN) ⋅ P�(H � ΘN),
which is also inde�nite because it involves τN . While the catch-all thus receives an explicit yet in-
de�nite prior value P�(ΘN) = τN , the prior probability values P�(H′) of the (yet) unformulated
hypotheses H′ ∈ ΘN are le� fully unspeci�ed.

In addition to the inde�nite prior, the catch-all comes with a symbolic likelihood function
xN(⋅) ∶= P�(⋅ � ΘN).�us the unconditional marginal likelihood function, analogous to (�.�)
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but now not even conditional on ΘN , is given by the inde�nite term

P�(E) = �
i<N

P�(Hi) ⋅Hi(E) + τN ⋅ xN(E)

= (� − τN)�
i<N

P�(Hi � ΘN) ⋅Hi(E) + τN ⋅ xN(E).

�e calculation of an explicit hypothesis’s posterior on receiving evidence E proceeds by Bayes’s
rule and theorem in accordance with (�.�), but now also results in an inde�nite term because it
involves P�(E).

Finally and crucially, at each point in time the open-minded Bayesian may receive a newly
formulated hypothesis.�is new hypothesis, in terminology due to Earman (����, p. ���), is
shaved o� from the catch-all. Formally, the vocal agent extends its current hypothesis set ΘN
to the new set ΘN+� = ΘN ∪ {HN} to include the newly formulated hypothesis HN , leaving a
cleanly shaven catch-all ΘN+� = ΘN � {HN}. To specify the new hypothesis’s prior P�(HN)
the agent then chooses a prior probability value p that it takes from the prior τN , leaving the
inde�nite remainder τN+� ∶= τN − p for the new catch-allΘN+�. Writing xN+�(⋅) = P�(⋅ � ΘN+�)
for the new catch-all’s inde�nite likelihood function, expressions for the marginal likelihoods
and posteriors that explicitly contain HN can be calculated as above.

In summary, the vocal open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) > � conditional on ΘN ,
such that∑i<N P�(Hi � ΘN) = �. Moreover, the catch-all hypothesisΘN = Θ�ΘN receives
an inde�nite unconditional prior P�(ΘN) ∶= τN , and the unconditional priors of the
explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds in the standard fashion, although involving an inde�nite prior and
likelihood of the catch-all:

Pt (Hi) ∶= P�(Hi � Et) = P�(Hi) ⋅Hi(Et)
∑N−�

j=� P�(Hj) ⋅Hj(Et) + τN ⋅ xN(Et)
.

(t > �)New hypothesis HN

When a new explicit hypothesis HN is formulated, extending the hypothesis set to ΘN+� =
ΘN ∪ {HN}, the prior τN of the earlier catch-all is decomposed into a value p < τN for
the prior P�(HN) of the new hypothesis and a remainder τN+� = τN − p for the prior
P�(ΘN+�) of the new catch-all.



�� Chapter �. On the Truth-Convergence of Open-Minded Bayesianism

Discussion

�e obvious drawback of this proposal is the introduction of purely symbolic terms for the
priors and likelihoods of the catch-alls. Apart from the pain of doing actual calculations with
these terms, it is quite unclear how to understand them.

Wenmackers and Romeijn variously refer to these terms as “unknown,” “unde�ned,” “inde�nite,”
or “unspeci�ed.” But even if we grant that these terms can be considered unknown to the agent
(leaving aside worries about the notion, not just of an unknown probability, but of an unknown
epistemic probability), it seems to us that there is a di�erence between terms that are unknown
yet de�nite, and terms that are not. Only in the �rst case is there an actual matter to the fact of,
say, τN < c for a numerical constant c.�us it is only in the �rst case that it is clear that the
shaving o� from the catch-all actually imposes a limitation on how much prior the agent can
still assign to a newly formulated hypothesis.� In contrast, it is less clear whether an inde�nite
probability value allows for shaving o� any desired de�nite prior.�is might not be a problem
to Wenmackers and Romeijn; indeed this would �t their suggestion that the unconditional
probability of the catch-all’s complement is always in�nitesimally small (ibid., ����). However,
for our purposes it will prove to be important to impose such constraints on the agent, which is
why we will not further pursue the idea of inde�nite or in�nitesimal priors.

�.�.� �e silent open-minded Bayesian
�e motivation for the silent version of open-minded Bayesianism (Wenmackers and Romeijn,
����, ����f, ����f) is to evade the di�culties surrounding a symbolic assignment of prior and
likelihood to the catch-all. �is is achieved by doing away with this assignment altogether,
namely, by always only considering conditional probability evaluations, conditional on the
current hypothesis set.�e corresponding Bayesian agent is simply silent about the absolute
probability values.

Speci�cation

�e silent open-minded Bayesian starts out, as before, with an hypothesis set ΘN of explicitly
formulated hypotheses, assigning each H ∈ ΘN a conditional probability value P�(H � ΘN). As
opposed to the vocal Bayesian, there is no bookkeeping of the catch-all or the unconditional
prior P�.

Since all probability terms are conditional on the current hypothesis set, updating on evidence
proceeds fully conditional on ΘN . �at is, the term Pt(Hi � ΘN) is evaluated via the usual
Bayesian updating (�.�), conditional on ΘN .

If a new hypothesis HN is formulated, the silent open-minded Bayesian again extends its
current hypothesis set ΘN to the new set ΘN+� = ΘN ∪ {HN} to include the newly formulated
hypothesis HN . It then assigns the new hypothesis conditional on the new hypothesis set a

�For instance, Wenmackers and Romeijn (����, p. ����) mention the possibility of assigning a uniform prior to
a new hypothesis. If τN has an (unknown yet) de�nite value, then that would only be possible if this value is in fact
greater than �

N+� .
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posterior value of choice, i.e., a value for Pt(HN � ΘN+�).�e new posterior values of the earlier
hypotheses are calculated by renormalization, thus preserving the probability ratios.

In summary, the silent open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis in ΘN receives a prior P�(Hi � ΘN) conditional on the initial
hypothesis set.

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current context ΘN :

Pt(Hi � ΘN) ∶= P�(Hi � Et ,ΘN) =
P�(Hi � ΘN) ⋅Hi(Et)

P�(Et � ΘN)
.

(t > �)New hypothesis HN

When a new hypothesis HN is formulated, extending the hypothesis set to ΘN+� = ΘN ∪
{HN}, the posterior Pt(HN � ΘN+�) is set to a value p ∈ (�, �), and the posteriors of the
remaining explicit hypotheses conditional on the new hypothesis set are renormalized
by

Pt(Hi � ΘN+�) ∶= (� − p) ⋅ Pt(Hi � ΘN).

Discussion

In the silent versionWenmackers and Romeijn do awaywith the explicit monitoring of the catch-
all hypothesis by simply always “hiding behind the conditionalization stroke” (����, p. ����). As
they themselves point out, one might feel uneasy about thus still leaving unspeci�ed the agent’s
unconditional, absolute convictions. One might indeed feel that this threatens to su�ciently
compromise coherence that this is no Bayesian account anymore (cf. Glymour, ����, p. ����).
What is certainly lost, in moving to larger models, is the guarantee of dynamic coherence (see
sect. �.�.� below for more details).

However, it is surely more in line with statistical practice that probabilities are always evaluated
under the tentative assumption of a particular model, without any pledge to the truth of this
model. �e discussion by Sprenger (����) (also see Sprenger and Hartmann, ����, ch. ��,
Vassend, ����) is a recent example of several earlier expressions of this view in the Bayesian
literature (e.g., Lindley, ����, p. ���; ����), that tends to go together with a commitment to
coherence only for as long as the model does not change (see indeed Shimony, ����, ���f).
Perhaps most outspoken in this latter respect is Howson’s account of Bayesianism, “a theory of
valid inductive inference from pre-test to post-test distributions,” that o�ers the worry of an
“inconsistent assignment over time” a simple reply: “so what?” (����, p. ��).



�� Chapter �. On the Truth-Convergence of Open-Minded Bayesianism

Moreover, Wenmackers and Romeijn stay far from the latter extreme: both versions of their
open-minded Bayesian are “conservative extensions” where the probabilities conditional on
an expanded model cohere with those conditional on the original model (����, ����f). Bayes’s
rule amounts to restricting the subalgebra on the outcome space (to the subtree of the outcome
space that extends the evidence) while preserving all probability ratios within; the rule for
incorporating new hypotheses enlarges the subalgebra on the hypothesis space (to the larger
hypothesis set) while likewise preserving all probability ratios within the original (ibid.).

We conclude that the silent version holds a conceptual advantage over the vocal version.�e
main formal di�erence, for our purposes, is that in the vocal version, a newhypothesis is assigned
a certain prior value that is constrained by the catch-all’s prior; whereas in the silent version, a
new hypothesis is assigned a posterior value, the choice of which is unconstrained.

Wenmackers and Romeijn indeed worry that “[t]he silent proposal allows too much freedom in
the assignment of a posterior to the new hypothesis—so much freedom, that it is not clear that
the old evidence has any impact” (ibid., ����).�is prompts them to propose a hybrid variant of
the vocal and the silent versions (sect. �.�.� below). Before we turn to this version, we will take
a quick look at a more direct tweak of the silent version that replaces the choice of posterior by
the choice of prior, so that the calculation of the former requires some “reconstructive work”
that does take old evidence into account (ibid., ����).

�.�.� �e silent open-minded Bayesian: retroactive variant
�us the alternative variant of the silent version is where we ‘retroactively’ assign a prior to a
new hypothesis, i.e., a value p� to P�(HN � ΘN+�). A�er renormalizing the priors of the other
hypotheses,

P�(Hi � ΘN+�) ∶= (� − p�) ⋅ P�(Hi � ΘN) (�.�)

for all H ∈ ΘN , we can with the help of Bayes’s rule (using the the new likelihood HN(Et)),
calculate Pt(HN � ΘN+�) from there.

Formally, however, it does not make a di�erence whether we choose a prior and then calculate
the posterior, or the other way around. (Provided, that is, that HN ’s likelihood on Et is positive,
or its posterior can only be �.) For any desired posterior pt for a new hypothesis, we can
uniquely reconstruct a prior p� that in combination with the new hypothesis’s likelihood, will
result at time t in that posterior. A�er all, there are, unlike in the vocal version, no constraints
on choosing a prior p�.

�.�.� �e hybrid open-minded Bayesian
�e vocal and the silent version are combined in the hybrid version (Wenmackers and Romeijn,
����, ����f) as follows.�e agent starts out, as in the vocal version, with an explicit yet symbolic
assignment to the catch-all hypothesis. During the normal learning process of updating on the
evidence, it stays in the “silent phase,” in which it evaluates all probabilities conditional on the
current hypothesis set. Only when a new hypothesis is formulated does it enter the “vocal phase,”
in which it, like in the vocal version, retroactively shaves o� a prior for the new hypothesis
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from the catch-all’s prior, a�er which it, like in the retroactive silent version, recalculates the
priors and posteriors (again conditional, but on the new hypothesis set) from there.

In summary, the hybrid open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

Each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) > � conditional on ΘN ,
such that∑i<N P�(Hi � ΘN) = �. Moreover, as in the vocal version, the catch-all hypothesis
ΘN = Θ�ΘN receives an unconditional prior P�(ΘN) ∶= τN , and the unconditional priors
of the explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds as in the silent version, conditional on the current context ΘN :

Pt(Hi � ΘN) ∶= P�(Hi � Et ,ΘN) =
P�(Hi � ΘN) ⋅Hi(Et)

P�(Et � ΘN)
.

(t > �)New hypothesis HN

When a new explicit hypothesis HN is formulated, extending the hypothesis set to ΘN+� =
ΘN ∪ {HN}, as in the vocal version the unconditional prior τN of the earlier catch-all is
decomposed into a value p < τN for the unconditional prior P�(HN) of the new hypothesis
and a remainder τN+� = τN − p for the unconditional prior P�(ΘN+�) of the new catch-all.
�e priors conditional on the new hypothesis set are obtained by renormalization,

P�(Hi � ΘN+�) = �� −
p

� − τN+�
� ⋅ P�(Hi � ΘN),

from which the conditional posteriors are obtained by the usual updating,

Pt(Hi � ΘN+�) ∶= P�(Hi � Et ,ΘN+�) =
P�(Hi � ΘN+�) ⋅Hi(Et)

P�(Et � ΘN+�)
.

�us the hybrid version combines the conceptually more pleasing conditional reasoning of
the silent version with the constraint on new priors introduced by the catch-all in the vocal
version.�is constraint proves important for our concern in this paper, the guarantee of truth-
merging.

�.� �e open-minded Bayesians’ truth-convergence
We start by introducing the formal property of convergence to the truth, as satis�ed by the
standard Bayesian (sect. �.�.�). A�er some preliminary remarks about the meaning and the
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promise of this property in the open-minded case (sect. �.�.�), we demonstrate and diagnose
its failure for the silent (sect. �.�.�) and the hybrid (sect. �.�.�) version.

�.�.� �e standard Bayesian
Suppose the standard, ‘closed-minded’ Bayesian starts with a hypothesis set that includes the
hypothesis H∗ that is actually true, meaning that the probabilities given by H∗ are the true
probabilities that govern the generation of the data. In that case, one can prove a strong statement
about the agent’s convergence to this truth. Namely, one can prove that, H∗-almost surely, the
total variational distance

sup
A∈F
�Pt(A) −H∗(A � Et)� (�.�)

between the agent’s probabilities and the H∗-probabilities on future events goes to � as t →∞.
�at is, with true probability � (as given by H∗), the agent’s probabilities conditional on the past
will convergence on all events’ true probabilities. We say that the agent strongly merges with the
truth.

De�nition �. For probability measures P and Q on (Ω,F), we say that P strongly merges with
Q if Q-a.s.

sup
A∈F
�P(A � Et) − Q(A � Et)� t→∞��→ �. (�.�)

A standard Bayesian’s strong merger with the truth follows directly from a fundamental result
due to Blackwell and Dubins.

�eorem � (Blackwell andDubins, ����). For probability measures P and Q on (Ω,F) such that
the latter is absolutely continuous with respect to the former, i.e., Q(A) > � implies P(A) > � for
all events A in the σ-algebra F on Ω, it holds that Q-a.s. P strongly merges with Q.

Namely, if the Bayesian agent’s hypothesis set contains H∗, meaning that its regular prior
probability P(H∗) > �, then, in terminology due to Kalai and Lehrer (����, p. ����), P holds
a grain of H∗, or P holds a grain of the truth. �at is to say, there is an a ∈ (�, �), namely
a = P(H∗), such that the marginal prior P on the outcome space equals a ⋅H∗ + (�− a) ⋅ P′, for
some probability measure P′. More precisely still, from the fact that P(H∗) > �, we have that P
dominates H∗, meaning that P(Et) ≥ a ⋅H∗(Et) for all �nite outcome sequences Et , but that
implies that also P(A) ≥ a ⋅ H∗(A) for all events A ∈ F generated from the �nite sequences.
But that means that H∗ is absolutely continuous with respect to P.

Corollary �. If P holds a grain of the truth H∗, then P strongly merges with H∗.

Strong merger is indeed a very strong notion, as it includes all tail events A, the occurrence of
which cannot be veri�ed in �nite time. A more down-to-earth notion of truth-convergence is
weak merger (Kalai and Lehrer, ����), that only concerns the special case of the next outcome.
�is is the notion we will be focusing on in this paper.
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De�nition �. For probability measures P and Q on (Ω,F), we say that P weakly merges with
Q if Q-a.s.

sup
Et+�∈{�,�}

�Pt(Et+�) −H∗(Et+� � Et)� t→∞��→ �. (�.�)

In fact, weak merger of two probability measures is equivalent, for every d ∈ N, to merger
where the supremum ranges over all future outcomes of length up to d (ibid.). Nevertheless,
as we will explain in more detail in our analysis in sect. �.�, we will in this paper focus on the
case d = �. Moreover, as we will still explain too, despite the fact that this is already a su�cient
condition for strong merger, the notion of holding a grain of the truth will be central to our
analysis. When in the following we refer to “truth-convergence” without further quali�cation,
we mean weak merger as in de�nition �.�

�.�.� �e open-minded Bayesians
�e question we shall investigate is whether Wenmackers and Romeijn’s proposals can retain
this conception of convergence to the truth, whenever the true hypothesis H∗ is formulated.
More precisely, the question is whether we can show that, if H∗ is indeed formulated at some
time t�, the agent function Pt(⋅ � ΘN(t)), as t > t� goes to in�nity, weakly merges with H∗.�e
question is whether we can show that, a�er H∗ has been formulated,

sup
Et+�∈{�,�}

�Pt(Et+� � ΘN(t)) −H∗(Et+� � Et)� t→∞��→ � with H∗-probability �. (�.�)

One might already object here that we should rather consider merging of the unconditional
agent function Pt(⋅) = Pt(⋅ � ΘN(t) ∪ΘN(t)). For an adherent to the vocal variant, the agent’s
beliefs are constituted by a function over all hypotheses, including those in the catch-all, and
so, from this perspective, an agent’s truth-merging should be taken to mean merging of that
function. However, we already argued in favour of the conditional perspective of the silent
or hybrid version; and the question of convergence of a measure that is partly unspeci�ed
introduces problems of interpretation that look unsurmountable.

�is is not to say that the truth-merging of Pt(⋅ � ΘN(t)) is unproblematic in its interpretation.
Indeed, we will below be much concerned with meeting two challenges in squaring the semi-
formal expression (�.�) with our intuitive demand of truth-convergence. Semi-formal, because

��ere exist other notions of truth-convergence one could consider. Note, �rst of all, that the presupposition of a true
statistical hypothesis can be distinguished fromwhat is perhaps the more usual setting in philosophy, where truth-values
are attached to events or elements of the outcome space (Gaifman and Snir, ����; Earman, ����). Note, further, that
the notion of merging is concerned with learning the probabilities of future outcomes.�is can be distinguished from
learning the correct hypothesis (‘learning the parameter’ in a statistical model), which would correspond to the agent’s
posterior concentrating on the correct element in the hypothesis set. One reason why we do not consider this notion
here is that such posterior-concentration is rather trivially impossible unless we exclude the possibility of di�erent
hypotheses that nevertheless from some point on are ‘empirically equivalent’ in that they give the same predictive
probabilities (cf. Lehrer and Smorodinsky, ����, ���f). Finally, there are still less powerful notions of truth-merging,
including almost weak merging. See Lehrer and Smorodinsky (����), Leike (����, ch. �) for overviews of learning
notions and necessary and su�cient conditions.
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we are not yet clear, �rst of all, about the exact nature of the probability-� quali�cation. Second,
we are not yet fully clear, certainly not until the �rst is resolved, about the exact nature of the
agent measure that we seek merging for.

Nevertheless, the intuitive demand that (�.�) is supposed to capture is already su�ciently precise
to isolate a straightforward case in which truth-convergence is guaranteed (sect. �.�.�).�is
will then also already point us to the general case that might be problematic (sect. �.�.�). In fact,
this is already enough to show that this case is problematic: all the variants of open-minded
Bayesianism are not in general guaranteed to preserve truth-convergence (sects. �.�.�–�.�.�).
Only in the discussion leading up to our diagnosis of this failure and our proposal of a forward-
looking open-minded Bayesian, in sect. �.�, will we �nally face the aforementioned challenges
head-on.

Finitely many new hypotheses

�e answer to our question is a clear yes if we can be sure that, a�erH∗ is formulated, no further
new hypotheses will ever be formulated. For each of the di�erent versions of open-minded
Bayesianism, the agent with function Pt(⋅ � ΘN(t)) a�er formulation of H∗ can then be treated
as a standard Bayesian that starts its investigation at t with a �xed hypothesis set ΘN(t).�us,
as H∗ ∈ ΘN(t), the agent then holds a grain of the truth and we can simply apply corollary � to
Pt(⋅ � ΘN(t)) to indeed obtain not just weak but strongmerger with the truth from there.

�is observation easily extends to the more general case where we can be sure that a�er some
�nite point in time there will no longer be new hypotheses formulated. So suppose H∗ is
formulated at t� ≤ t, say in response to data Et� .�en, to put it graphically, from each of the
possible nodes Et in the outcome tree extending Et� , we can run corollary � on the �xed agent
function to obtain, with probability �, truth-merger from there; but that means we already have
the guarantee of truth-merger from here, at Et� . Hence, under the assumption that no more
hypotheses are formulated a�er some �nite time t, we have strong merger whenever the truth
H∗ is formulated.�is assumption can be reformulated as saying that, on any in�nite outcome
stream, only a �nite number of new hypotheses will ever be formulated.

Fact �. All open-minded Bayesians are guaranteed to strongly merge with the truth whenever
the truth is formulated, if there is a �nite bound on the number of new hypotheses that will be
formulated.

In�nitely many new hypotheses

�e previous assumption, in entailing that from some point on the open-minded Bayesian
reduces to a standard, �xed-minded, Bayesian, thereby also neutralizes a good part of the
distinctive interest of the former. It is, more importantly, an assumption that we do not generally
want to make: we certainly do not want to assume that, when the true hypothesis is formulated,
who or whatever is responsible for designing new hypotheses knows that it can stop now.

On the other hand, it also sounds unrealistic that in an actual scienti�c inquiry, certainly a�er
the true hypothesis has already been found, one would mindlessly keep incorporating newly
arriving hypotheses inde�nitely. One would presumably only look out for new hypotheses if
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the currently available ones do not seem to do: if there is some mis�t between the data and
the current hypotheses. Incorporating this element, possibly in the shape of a formal model
veri�cation procedure, would still not render the scenario of an unending stream of false
hypotheses insigni�cant: there is now a tension to be resolved between risking sticking to
suboptimal hypotheses and risking incorporating false ones.

Important as this element is, it is beyond the scope of the current paper. We are here �rst
concerned with the consistency requirement of truth-convergence in the most general case
where the agent might forever keep receiving new (and false) hypotheses, which it has to
incorporate irrespective of the past outcomes and current hypothesis set.

�is general case is potentially problematic because if the agent keeps having to distribute
some of its posterior to these new and false hypotheses (and so keeps having to incorporate
these in its predictions), this could get in the way of its converging on the true hypothesis’s
true predictive probabilities. In fact, this is problematic, for all the versions of open-minded
Bayesianism. We now �rst look at the silent variants (sect. �.�.�), where this shows very directly;
and then at the more interesting hybrid variant (sect. �.�.�).

�.�.� �e silent open-minded Bayesian

�is version is the least constrained of the open-minded Bayesianisms, which makes it most
straightforwardly fail to guarantee truth-convergence. We �rst show this for the standard
open-minded version of sect. �.�.�, and then for the retroactive variant of sect. �.�.�.

�e silent open-minded version: original variant

�e reason for the failure of truth-convergence is that we cannot exclude in�nite streams of
false hypotheses that keep occupying a speci�c share of the posterior probability and in this
way keep distorting the predictive probabilities.

Fact �. �e original variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example �.�. Consider the scenario where the data is generated by some Bernoulli distribution
Hθ∗ . Suppose for concreteness that θ∗ = ����, and that this correct hypothesis H∗ = Hθ∗
is indeed formulated at some stage t�. Now consider the possibility that in�nitely o�en (i.e.,
for each stage t′ > t� there is a still later stage t > t′ at which) a new hypothesis HN(t) is
formulated that issues a predictive probability HN(t)(� � Et) = �. Since there are no restrictions
on the posterior which the silent open-minded Bayesian can assign to these newly formulated
hypotheses, it can choose to keep assigning a value Pt(HN(t) � ΘN(t)+�) ≥ ���� + ε for positive
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ε. In that case there will be in�nitely many stages t at which the predictive probability

Pt(� � ΘN(t)+�) = �
H∈ΘN(t)+�

Pt(H � ΘN(t)+�) ⋅H(� � Et)

> � �
��
+ ε� ⋅HN(t)(� � Et)

= �
��
+ ε,

blocking convergence to the correct predictive probability H∗(� � ⋅) = ����. �

�is example can be adapted at will to show that for any trueH∗ there are hypothesis streams and
posterior assignments that block convergence.�e essential trait is that the newly formulated
hypotheses receive—keep receiving—too much posterior.�is leads us to an obvious diagnosis:
the silent open-minded Bayesian is allowed too much freedom in assigning posteriors to newly
formulated hypotheses.

�e silent open-minded version: retroactive variant

Following up on the previous diagnosis, one way in which it might seem we can constrain the
freedom of the open-minded Bayesian is to insist that the posterior must be informed by the old
evidence.�is is the retroactive variant of the silent open-minded Bayesian, sect. �.�.� above; but
as we explained there already, there is, barring the case where the new hypothesis’s likelihood is
�, actually no formal di�erence between the two versions.�at is, any choice of posterior can
be modeled as a retroactive choice of prior.�is means that any counterexample to the silent
open-minded version also yields a counterexample to the retroactive variant, including the
previous example �.�.

Fact �. �e retroactive variant of the silent open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

Example �.�. Recall from the reconstruction of p� from pt in sect. �.�.� that the exact calcu-
lations now do depend on the likelihoods of all hypotheses on the past data, something that
was not speci�ed in example �.�. �e most straightforward circumstance is where the new
hypothesis’s likelihood on Et actually equals the probability of Et on ΘN ,

HN(Et) = P�(Et � ΘN), (�.�)

in which case a prior assignment P�(HN � ΘN+�) ∶= p translates into a posterior Pt(HN �
ΘN+�) = p. In that case, a prior choice of p ≥ ���� + ε recovers the previous example. If the
new hypothesis’s likelihood on the past data is lower than P�(Et � ΘN), the prior must be set
higher to retrieve the same posterior. As an illustration, if HN(Et) = ��� ⋅ P�(Et � ΘN), then a
posterior pt > ���� requires a choice of prior p� > ���.

Arguably, however, the more plausible circumstance is for newly proposed hypotheses to have
higher likelihood than the earlier hypotheses. Plausibly, new hypotheses (formulated a�er we
have already seen the past data) rather over�t the data: in the most extreme case, actually have
a likelihood �. In that case, of course, the same posterior pt requires a smaller prior p�. To
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illustrate again, suppose indeed HN(Et) = �; then in general to obtain posterior pt we need to
set

p� =
P�(Et � ΘN)

P�(Et � ΘN) + �
pt
− �

. (�.�)

But if the data is actually generated by Hθ∗ with θ∗ = �.�, then P�(Et � ΘN), with high
probability, will not exceed Hθ∗ ’s likelihood on the past data Et , which for typical data is about
�.��.�t ⋅ �.��.�t . In that case, the same posterior only requires an exponentially smaller prior:
already for t = ��, for instance, it su�ces for posterior pt > ���� to set p� > �����. �

�e arguably most natural circumstance of new hypotheses that over�t is thus also the most
di�cult case for our purposes. An extremely modest choice of prior here already su�ces for a
substantial posterior, and the threat to truth-convergence is precisely such substantial posterior
assignments to new and false hypotheses.

One can defend the retroactive approach on the grounds that it accommodates how old evidence
con�rms new theories (Wenmackers and Romeijn, ����, ����f); or one can disown it on the
grounds that it involves a “double counting” of the old evidence, since the hypothesis and
presumably its prior was already formulated in response to the evidence (cf. Earman, ����, ���f).
We point out here that for the above reason of over�tting hypotheses, a retroactive procedure
appears more challenging for the aim of truth-convergence. Of course, in the silent version, this
cannot make an essential di�erence: both variants are formally equivalent, and the challenge
above is limited to a moderate choice of prior in the retroactive variant that does not correspond
to a moderate choice of posterior in the original variant. But our analysis below reveals that in
the hybrid case, the di�erence between prior and posterior assignments will be crucial for the
guarantee of truth-convergence.

�.�.� �e hybrid open-minded Bayesian
�e diagnosis from the previous sectionwas clear: the (retroactive) silent open-minded Bayesian
is allowed too much freedom in assigning posteriors (priors) to newly formulated hypotheses.
Given this diagnosis, one might expect the hybrid version to do better. A�er all, here there
is an explicit constraint on priors: there is only so much the agent can shave o� from the
catch-all!

Again, this is only so becausewe interpret the catch-all’s prior as at least having some determinate
value.�is does not quite exclude that this is “a number extremely close to unity,” but it does
exclude a conception where it is some indeterminate value arbitrarily close to �, perhaps made
precise as “unity minus an in�nitesimal” (Wenmackers and Romeijn, ����, p. ����). Perhaps
the latter is the more natural conception. When it comes to truth-convergence, however, this
renders the hybrid version on a par with the silent version: both put no constraints on the
choice of prior (posterior), wherefore convergence cannot be guaranteed.�

�Wenmackers and Romeijn (ibid.) evoke Earman’s worry that the procedure of shaving-o� from the catch-all “leads
to the assignment of ever smaller initial probabilities to successive waves of new theories until a point is reached where
the new theory has such a low initial probability as to stand not much of a �ghting chance” (����, p. ���). On our
analysis, the danger is rather that new theories keep amassing too much probability.
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We will for this reason proceed with supposing that the hybrid version is characterized by
putting de�nite constraints on the choices of priors. Speci�cally, we imagine that there is a
certain limited reservoir of prior probability, from which the probability for new hypotheses
must be taken.We can think of this constraint as simply that, a constraint; we are not committed
to understanding this constraint in terms of a catch-all. Nevertheless, we see it as a conceptual
plus that it can be understood in this way, and this carries over to our own proposal in sect.
�.�.

Failure of truth-convergence

Unfortunately, the constraint introduced in the hybrid version does not su�ce: we can even
produce a scenario where convergence to the true predictive probabilities is guaranteed to fail.
�is scenario again exploits the possibility of a stream of over�tting hypotheses, that despite the
constraint on new prior assignments still keep taking up too much posterior. More precisely, on
every possible outcome stream we can repeat the following: wait while all current probabilistic
hypotheses have lower and lower likelihood on the unfolding sequence of outcomes, until the
di�erence with the maximal likelihood of a new over�tting hypothesis is large enough for such
a new hypothesis to have a su�cient impact, despite its necessarily constrained prior, on the
agent’s predictive probabilities.

Proposition �. �e hybrid open-minded Bayesian is not guaranteed to weakly merge with the
truth whenever the truth is formulated.

Example �.�. Suppose that the true hypothesis is the Bernoulli H∗ = Hθ∗ with θ∗ = ���,
and that this hypothesis is indeed formulated at a point in time t�.�us H∗ is assigned some
unconditional prior value p∗ =∶ P�(H∗), leaving the catch-all ΘN�+� with some unconditional
prior τN�+� = τN� − p∗.

Consider a history with t� < t� < t� < . . . in�nitely many later points in time at which a new
hypothesis is formulated.�e vocal open-minded Bayesian is restricted by the prior held by
the catch-all in how much prior it can shave o� and assign to these new hypotheses; but it can
choose to assign each HNi an unconditional prior

P�(HNi ) = �−i ⋅ τN�+� , (�.��)

since∑∞i=� �−i ⋅ τN�+� = τN�+�.

Now consider such a history where the newly proposed hypotheses all maximally over�t the
past data at their time of formulation, i.e., HNi (Eti ) = � for each i, and then make some biased
prediction HNi (� � Eti ) = pi , with �pi − ���� > ε for some pre-set ε > �.

Suppose, further, that all hypotheses formulated before the true hypothesis, and all the new
hypotheses a�er their formulation, issue predictive probabilities that are bounded away from �:
there is some δ > � such that all predictive probabilities are smaller than � − δ (equivalently, all
predictive probabilities are greater than δ).�e idea is that, whatever the subsequent data, the
hypotheses in play will each point in time leak some of their likelihood, so that, when a new
over�tting hypotheses HNi comes in, a�er the stretch of time between ti−� and ti has been large
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enough, its relative likelihood is so large that its biased prediction will su�ciently distort the
overall predictive probability.

Speci�cally, �x some ε′ < ε, and let

r =
�
� + ε

′

�
� + ε

, (�.��)

which itself lies in the interval � �� , ��. Now if at each ti we have

Pti (HNi � ΘNi+�) > r, (�.��)

then we have for E with HNi (E � Eti ) > �
� + ε that

Pti (E � ΘNi+�) = �
H∈ΘNi+�

Pti (H � ΘNi+�) ⋅H(E � Eti )

> Pti (HNi � ΘNi+�) ⋅HNi (E � Eti )

>
�
� + ε

′

�
� + ε

⋅ � �
�
+ ε�

= �
�
+ ε′ ,

blocking convergence.

As worked out in appendix �.A.�, inequality (�.��) is guaranteed if each

ti − ti−� >
− log (� − r) − (− log r) + i − log τN�+�

− log(� − δ)
. (�.��)

To break (�.��) down a little, note that if ε is reasonably large, and ε′ chosen very small, then r
is relatively close to �/� and has a minor in�uence on the bound. For instance, if r < ���, which
would follow from ε > ��� and ε′ ≈ �, then − log (� − r) − (− log r) < �, so that (�.��) is already
implied by

ti − ti−� >
� + i − log τN�+�

− log(� − δ)
. (�.��)

Furthermore, we have δ = ��� and (�.��) reduces to

ti − ti−� > � + i − log τN�+� (�.��)

in the extreme casewhere all hypotheses exceptHNi a�er ti−� always give predictive probabilities
(���, ���). �

Discussion

�e failure of truth-convergence of the hybrid open-minded agent may strike one as surprising.
It is, a�er all, characteristic of the hybrid procedure that the true hypothesis, once formulated,
holds an explicitly assigned share p∗ > � of the absolute prior. As soon as the true hypothesis
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is formulated, the unconditional agent function P� holds a grain p∗ of this truth, no matter
what hypotheses with what priors are still added later.�is carries over to the retroactive prior
measures conditional on any hypothesis set a�er the truth is formulated: P�(H∗ � ΘN) ≥ p∗
for all hypothesis sets ΘN a�er the formulation of H∗. But does this not suggest that the
agent function holds a grain of the truth, and was this not already enough for strong truth-
merger?

A complete answer to what is wrong with this intuition requires us to make perfectly precise
the desideratum of an open-minded agent’s truth-convergence. We will here �rst brie�y make
the above intuition precise in a particular way, a way that is clearly faulty, but that allows us to
highlight the challenges we face in formalizing our desideratum of an open-minded agent’s
truth-convergence. In the next section we proceed to meet these challenges and formalize our
desideratum, to subsequently propose a version of an open-minded Bayesian that does satisfy a
version of truth-convergence.

�us let us for a moment consider the measure P�(⋅ � Θ∞), induced by the actually generated
hypotheses and prior assignments in the limit.�is measure must also hold a grain p∗ of the
truth. What, exactly, is unsatisfying about proclaiming truth-convergence of the open-minded
agent, from the fact that we can always derive, with corollary �, strong truth-merger of this
measure?

�e straightforward answer is that this formal almost-sure strong merger must be unsatisfying
because, as we already know from example �.�, it can go together with a guaranteed failure
of weak merger. But how can this be? Here it is important to note that, in example �.�, the
hypothesis stream emphatically depends on the actually generated data stream. While the agent
function P�(⋅ � Θ∞) induced by this particular data and hence hypotheses stream can be shown
to a.s. merge with H∗ (as it contains a grain of H∗), this is still consistent with it failing to merge
on the actual data stream that induced it. (�e latter is consistent with truth-merger, because,
in our example, any particular outcome stream that is actually generated is an H∗-probability-�
event.)

�is provides an illustration of the two challenges we already identi�ed in sect. �.�.�. First,
since we have an hypothesis stream as a moving part, we have to be very careful with the
interpretation of probability-� statements on the data space.�e agent function P�(⋅ � Θ∞) was
only put in place, so to speak, a�er already �xing the actually generated data stream, and the
a.s. merger only derived a�er that. In contrast, intuitively, the ‘almost sure’ should range over
the possible data and all that depends on it, including the possible hypotheses (hence possible
shapes of the agent function) that are formulated in response to it.�e challenge is to attain
a formal a.s. merger that is also still meaningful in this sense. �is is intertwined with the
second challenge, which is to make precise which agent function we actually seek merger for.
�e obvious diagnosis is that the functions P�(⋅ � Θ∞), having this “a�er the fact” quality of
being dependent on a particular data and hence hypothesis stream, and indeed of then having
available this hypothesis set from the start, are not what we are a�er.

We now proceed to look for an answer to these two challenges, towards reclaiming a property
of truth-convergence.
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�.� �e forward-looking Bayesians and their truth-
convergence

We further analyze the goal of truth-convergence, introducing the assumption of a scheme
for hypothesis and posterior generation and the notion of a completed agent measure (sect.
�.�.�). We then propose a forward-looking open-minded Bayesian, the competed agent measure
of which does retain a grain of the truth, from which weak merger follows. We �rst propose
a proto-variant of this version, which is a variant of the silent open-minded Bayesian with a
limited posterior reservoir (sect. �.�.�), before we introduce the �nal version, that is a variant
of the hybrid open-minded Bayesian with a restriction on new hypotheses’ likelihoods (sect.
�.�.�).

�.�.� Towards regaining truth-convergence
Fixing the hypothesis scheme

We start with the �rst challenge in drawing up the desired convergence statement: how should
we think about the ‘almost surely’? In the following, we suppose for simplicity of presentation
that the agent possesses the true hypothesis H∗ from the start, H∗ ∈ Θ�.�

We �rst observe that it is impossible to derive a statement of the following form.

(i) For every H∗, there is an H∗-measure-� class of in�nite output streams on which the
open-minded agent converges to H∗, independent of the stream of newly formulated
hypotheses.

Already in the case of the standard Bayesian agent, the H∗-measure-� class of output streams
on which the agent converges cannot generally be independent of the other elements in the
agent’s hypothesis class. Consider for the true H∗ again the Bernoulli-�/�measure: it is not hard
to see that for each possible in�nite outcome stream, there exist hypothesis sets that contain
H∗ yet are such that the agent does not converge on this outcome stream. As an extreme case,
the agent will not converge on outcome stream Eω if the hypothesis set contains an hypothesis
that assigns probability � to this exact sequence Eω : the agent will converge, not on the true
predictive probabilities ���, but on predictive probabilities � for the correct next outcomes.�is
example concerns the initial hypothesis set of a standard (or indeed open-minded) agent, but
easily transfers to the streams of newly formulated hypotheses given to any plausible version of
an open-minded agent.� �us a statement of form (i) is too strong.

�is leads us to the following statement, where we have shi�ed the quanti�ers to allow the exact
measure-� class to depend on the hypothesis stream.

�For the general case where the truth is formulated a�er some �nite time t, or more speci�cally, a�er some �nite
sequence Et , mentions of ‘an H∗-measure-� class of in�nite outcome streams’ should be replaced by ‘an H∗(⋅ � Et

)-
measure-� class of in�nite outcome streams extending Et ,’ and the ‘stream (scheme) of newly formulated hypotheses’
by the ‘stream (scheme) of newly formulated hypotheses a�er Et .’

�We only need to assume that the agent’s posteriors will indeed converge on the predictions of hypotheses that
perform perfectly, which is a minimal condition for a version that will in fact have the capacity to converge to the truth.
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(ii) For everyH∗, every hypothesis stream, there is anH∗-measure-� class of in�nite outcome
streams on which the open-minded agent converges to H∗.

In order to demonstrate a statement of the form (ii), we must prove, for any given hypothesis
stream, a.s. convergence on the presupposition of this stream. Formally, we conceive of ΘN(⋅)
as a function that maps each time t to an hypothesis set Θ. Of course, this function must
also return hypothesis sets that actually correspond to some possible open-minded agent. For
instance, for each t there can be at most one hypothesis in ΘN(t+�) �ΘN(t).

�ere is a clear sense, however, in which a statement of form (ii) is too weak.�e main challenge
for establishing truth-convergence is, recall example �.�, the possibility of over�tting hypotheses
in reaction to each possible outcome stream. In light of such scenarios, presupposing a particular
hypothesis stream, irrespective of the generated data, is obviously unsatisfying.

But we can just as well assume that the generation of hypotheses is given by a function that
links hypothesis sets, not simply to the possible points in time, but to all possible �nite outcome
sequences.�at is, we presuppose some data-dependent (what we shall call) scheme for generat-
ing hypotheses, or simply hypothesis scheme, that is a function Θ(⋅) that maps each �nite data
sequence Et to an hypothesis set ΘEt . Again, this function must also be constrained by the
open-minded agent’s speci�cation.

�is then leads us to aim for a convergence statement of the following form.

(iii) For everyH∗, every hypothesis scheme, there is anH∗-measure-� class of in�nite outcome
streams on which the open-minded agent converges to H∗.

Note that the assumption of a particular H∗ in conjunction with an hypothesis scheme comes
down to treating hypothesis streams as random quantities, as they are given by a function on
the outcome streams governed by probability measure H∗. One could take this further and
consider for the true measure more elaborate probabilistic models that also directly range over
the class of possible hypothesis streams. We do not go this way here: we stick here to a true
measure H∗ that is a function over outcome sequences only, and work towards a convergence
statement where theH∗ measure-� class can depend on the hypothesis scheme. Of course, there
is more to say about the conceptual status of a convergence statement of the form (iii), and we
will say a bit more below.

We �rst observe, however, that there is still something le� implicit in statement (iii).�is is the
agent’s actual choice of posteriors (or, depending on the version, retroactive choice of priors
resulting in posteriors) for the incoming hypotheses.

Fixing the posterior scheme

But given a particular hypothesis scheme, perhaps we could always derive convergence for a
particular H∗-measure-� class of outcome streams, that is independent of the exact (positive)
posterior values the agent chooses to assign to these incoming hypotheses?

Unfortunately, this is again not attainable in general. Again we indeed already have for the stand-
ard Bayesian agent that a di�erent choice of prior distribution over the exact same hypothesis
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set (more exactly, a di�erent regular prior distribution that assigns each element positive prob-
ability) can result in a di�erentH∗-measure-� class of outcome sequences on which it converges
to H∗. In fact, we can show that there are single hypotheses sets such that for every individual
stream we can tweak the priors in such a way that convergence fails on this stream.

Proposition �. �ere exist countable hypothesis sets Θ and hypotheses H∗ ∈ Θ such that for
every in�nite outcome stream Eω , there is a regular prior distribution P over Θ such that the
Bayesian agent P’s predictive probabilities do not converge to H∗ on Eω .

Proof. See Appendix �.A.�.

�is result pertains to the initial hypothesis set of a standard (or indeed open-minded) agent,
but the initial set is already part of an open-minded agent’s hypothesis scheme, and the result
could also again readily be modi�ed to pertain to the posterior assignments to a scheme’s newly
formulated hypotheses.�us the result implies that we must allow the measure-� class to also
depend on the posterior scheme, that speci�es what numerical posterior values are assigned to
each (incoming) hypothesis. Formally, the combination of the hypothesis and the posterior
scheme is now codi�ed in a function P(⋅) that maps each �nite data sequence Et to a posterior
distribution PEt over the hypothesis setΘEt . Again, this function must also return distributions
that actually correspond to some possible open-minded agent; that is to say, these distributions
must be consistent with the speci�cations of the version of the open-minded agent in question.
For instance, in case of the hybrid agent (sec. �.�.� above), the distribution PEt is the distribution
Pt(⋅ � ΘN) a�er having observed Et and with ΘN = ΘEt . By the speci�cation of the hybrid
agent, this distribution Pt(⋅ � ΘN) = P�(⋅ � Et ,ΘN) is derived from some prior distribution P�
over ΘN .�is latter distribution must cohere with the priors P�(⋅ � ΘN′) for earlier and later
hypothesis sets ΘN′ , which likewise constrain the distributions PEs(⋅) = Ps(⋅ � ΘN′) for Es that
extend or are extended by Et . Whenever we invoke hypothesis and posterior schemes in the
following, we implicitly limit our attention to schemes that actually correspond to open-minded
agents of the version we are then considering.�

�is then leads us, �nally, to aim for a convergence statement of the following form.

(iv) For every H∗, every hypothesis and posterior scheme, there is an H∗-measure-� class of
in�nite outcome streams on which the open-minded agent converges to H∗.

Having thus derived the formal structure of the strongest convergence statement we can hope
for, let us expand a little bit on its conceptual status. One possible interpretation is that this
statement corresponds to an assumption that prior to the inquiry, both the future hypotheses
and the posteriors that will be assigned to them are, albeit still dependent on the random data
and unknown the agent, already �xed.�ere is at least a super�cial tension between such an
interpretation and a crucial motivation for investigating open-minded agents, namely that

�Some care is required in deriving relations between the functions PEt (⋅ � ΘEt ) from the agent speci�cations,
which also involves matching the original notation for agent functions (“Pt(⋅ � ΘN)”) with the PEt (⋅ � ΘEt ). �e
former notation leaves implicit what exactly are the past data that have resulted in the posteriors and hypothesis sets,
which becomes especially risky when analyzing retroactive assignments (what future hypothesis set and posteriors is
P�(⋅ � ΘN) actually reconstrued from?).�is will mostly matter for the proofs to follow: see appendix �.A.� on notation
used there for details.
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hypotheses and their priors are not forever �xed in advance, and the agent has the freedom to
change its mind. How problematic this is, would then conceivably depend on one’s view on the
external process where the hypotheses and posteriors come from: is there some mechanical
procedure that delivers them, or is this rather some process of creative and fundamentally
unalgorithmic scienti�c discovery? On the other hand, we think it is actually not so clear that the
mathematical structure of (proving) a statement of form (iv), “�x arbitrary x, we now show. . . ,”
commits one to a conceptual view of the kind, “assuming that x is �xed in advance, we have
that. . . ,” let alone what it exactly means for an hypothesis scheme to be (unknown to the agent
but) determined in advance.�ese are philosophically murky waters, and we will here limit
ourselves to noting that mathematically, this is the best we can aim for. Indeed, if already for
the standard Bayesian agent the precise measure-� class must depend on the other hypotheses
and exact priors, it is only natural to aim for the analogous statement for the open-minded
agent—in general.�is does not exclude the possibility of deriving statements of form (i) with
certain restrictions on the possible hypotheses, say a restriction of e�ective computability. But
this lies out of the scope of the current paper.

With this conceptual provision, we are now clear on the nature of the ‘a.s.’ quali�cation. In fact,
we have also already touched on the second challenge: what, exactly, is the agent function that
we seek convergence for? We will now make this precise.

�e completed agent measure

Given an hypothesis and a posterior scheme, an open-minded Bayesian’s probability assign-
ments a�er each possible �nite outcome sequence are fully determined. For all �nite Et , the
agent’s assignment to any event A is �xed and given by

PEt(A) = PEt(A � ΘEt). (�.��)

�e corresponding convergence statement of form (iii), for strong merger, is that for each
hypothesis and posterior scheme, we have for an H∗-measure-� class of in�nite outcome
sequences that

sup
A∈F
�PEt(A) −H∗(A � Et)� t→∞��→ �. (�.��)

Here we still adhered to the simplifying assumption made at the beginning of sect. �.�.�, that
the truth H∗ is contained in the initial hypothesis class.�e general case is covered by adding
the formulation of H∗ on the outcome stream as an condition for the convergence.�at is, for
an H∗-measure-� class of in�nite outcome sequences,

H∗ is formulated�⇒ sup
A∈F
�PEt(A) −H∗(A � Et)� t→∞��→ �. (�.��)

For weakmerger, this comes down to

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �. (�.��)
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A circumstance that makes convergence of the terms (�.��) hard to analyze is that, even under
the assumption of a given hypothesis and posterior scheme, they may not correspond to a single
probability measure. �at is to say, the assignments PEt(⋅) cannot in general be reconstrued
as the conditional probabilities of a particular measure: there need not be a single measure P
such that P(⋅ � Et) = PEt(⋅) for each Et .�is stems from the fact that an open-minded agent’s
assignments can be dynamically incoherent, in the sense that for �nite sequences Et� , Et� , the
second extending the �rst,

PEt� (A � Et�) ≠ PEt� (A). (�.��)

In words, the agent’s assignment to event A at time t�, conditional on the extended outcome
sequence Et� , may not equal the agent’s assignment to A at time t�, a�er having in fact seen
Et� . To make this slightly more concrete, consider again the hybrid open-minded agent. From
its speci�cation, there is some prior distribution P� such that PEt� (A � Et�) = P�(A � Et� ,ΘEt� )
and PEt� (A) = P�(A � Et� ,ΘEt� ). But there is no reason why the terms P�(A � ΘEt� ) and
P�(A � ΘEt� ), conditional on di�erent hypotheses, should be equal.

Nevertheless, the agent’s one-step predictive probabilities, given a particular hypothesis and pos-
terior scheme, do induce a coherent set of probability assignments.�e predictive probabilities
PEt(Et+�) induce a probability assignment P∞ on all �nite evidence sequences, by

P∞(Et) ∶=
t−�
�
i=�

PEi (Ei+�), (�.��)

and this induces a measure on all outcome streams. We will call this measure P∞ the completed
agent measure.

If we are able to show that, for any given hypothesis and posterior scheme, this measure
retains a grain of the truth H∗, then a statement of form (iii), for strong merger, follows from
corollary �.�at is, for any given hypothesis and posterior scheme, we can conclude that for an
H∗-measure-� class of outcome streams,

H∗ is formulated�⇒ sup
A∈F
�P∞(A � Et) −H∗(A � Et)� t→∞��→ �. (�.��)

However, this statement concerns the completed agent measure P∞, and not the open-minded
agent’s actual assignments at each time, given by (�.��).�ese assignments P∞(A � Et) and
PEt(A)may not coincide.�e potential disagreement lies in the fact that P∞(A � Et) is already
in�uenced by what future hypotheses, formulated a�er Et but before A, say about A; whereas
PEt(A) only depends on the hypothesis set ΘEt .

Still, we do have by de�nition that these functions coincide on the one-step predictive probabilit-
ies. We have that P∞(Et+� � Et) = PEt(Et+�) for each outcome sequence Et and single outcome
Et+�, so that convergence statement (�.��) does imply convergence statement (�.��).��

��In fact, for any t, measures P∞(⋅ � Et
) and PEt coincide up to the smallest time ahead at which a new hypothesis

will be formulated; though this only implies weak convergence of the latter for d > � if this time horizon will eventually
always be at least d.
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�us, if we can show, for any given hypothesis and posterior scheme, that the open-minded
agent’s completed agent measure holds a grain of the truth, then we can derive a convergence
statement of form (iii) for weakmerger of the agent functions. Consequently, in the following,
we will work towards ensuring this property, that the completed agent measure holds a grain of
the truth, whenever the truth is formulated.

�e failure of holding a truth-grain

Consider again the hybrid open-minded agent. Connecting back to the discussion of sect. �.�.�,
it might seem that the completed agent measure should hold a grain of the truth as soon as
for every single Et , the retroactive prior function P�(⋅ � ΘEt) holds at least a grain p∗ of H∗;
that is, whenever all these P�(⋅ � ΘEt) uniformly retain at least the same grain of the truth.�is,
however, is not so.

�at this cannot be so is again already implied by example �.�.�is example in fact features
a (partially speci�ed) hypothesis and posterior scheme for over�tting hypothesis generation,
where every P�(⋅ � ΘEt) for t ≥ t∗ holds at least a grain p∗ of the truth. Yet we saw that the
agent (the completed agent measure) in that example fails to merge with H∗, which by the
contraposition of corollary � entails that the completed agent measure cannot hold a grain of
H∗.

Proposition �. For the hybrid open-minded Bayesian, there are hypothesis schemes with H∗ ∈
Θ� such that nevertheless the completed agent measure fails to hold a grain of the truth: there is
no a ∈ (�, �) with P∞(Et) ≥ a ⋅H∗(Et) for all Et .

Proof. Such a scheme is given by example �.�: see appendix �.A.� for details.

What, intuitively, explains this fact, that each P�(⋅ � ΘEt) can uniformly hold a grain of the
truth, yet P∞ does not?�e di�erence between each of the former functions and P∞ is that in
the latter, over�tting hypotheses are not represented in the predictive probabilities issued by
the agent until this hypothesis actually comes in. But by de�nition these over�tting hypotheses
have high likelihood (and thus issue high predictive probabilities) on these initial segments;
so taking them out will de�ate the agents’ predictive probabilities on these initial segments.
�e counterexample shows that this e�ect can be so strong that it destroys the grain of the
truth.

In our proposal of a forward-looking open-minded Bayesian, that we turn to now, we focus on
making sure that the completed agent measure does retain a grain of the truth, whenever the
truth is formulated, in order to derive a guarantee of truth-convergence.

�.�.� �e forward-looking open-minded Bayesian, proto-version
We �rst consider a version of an open-minded Bayesian, a proto-version of the forward-looking
open-minded Bayesian that we propose in sect. �.�.� below, that rests on the following simple
idea. Instead of a limited reservoir of probability for assigning priors to new hypotheses, the
agent has a limited reservoir of posterior mass to assign to new hypotheses.
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Speci�cation

�e forward-looking open-minded agent, in this proto-version, is like the silent open-minded
agent, in that we do not stipulate a catch-all or a limited absolute reservoir of prior probability.
However, we do stipulate a limited absolute reservoir of posterior probability: unlike the silent
open-minded Bayesian, that can assign any posterior to a new hypothesis, the agent must
shave o� a new posterior from this reservoir, thereby shrinking the reservoir for posterior
assignments to future new hypotheses. We assume that the starting reservoir holds a certain
real-valued mass d > � (we do not need to assume that this mass is bounded by �). In addition,
as a minimal restriction that facilitates the proof of truth-convergence, we assume that there is
a constant c < � such that agent is not allowed to assign a posterior greater than c to any single
new hypothesis.

In summary, the proto-version of the forward-looking open-minded Bayesian proceeds
as follows.

(t = �) N explicit hypotheses

As in the silent version, each explicit hypothesis Hi in ΘN receives a prior P�(Hi � ΘN) >
� conditional on ΘN , such that ∑i<N P�(Hi � ΘN) = �. In addition, there is assumed
a reservoir τN = d > � of posterior probability, and a maximal one-time probability
c < �.

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current hypothesis set ΘN .

(t > �)New hypothesis HN

As in the silent version, when a new hypothesisHN is formulated, extending the hypothesis
set to ΘN+� = ΘN ∪ {HN}, the posterior Pt(HN � ΘN+�) is directly set to a value pN ; but
now this value pN ≤ c must be obtained from decomposing the posterior reservoir τN into
pN and a remainder τN+� = τN − pN that is the new posterior reservoir.

Veri�cation

�e forward-looking open-minded Bayesian’s constraints in attributing posterior mass to
newly formulated hypotheses rules out a scenario like example �.�, where constrained prior
assignments still lead to high posterior values. As a matter of fact, the restriction on posterior
values results in a completed agent measure that does retain a grain of the truth, whenever it is
proposed.

�eorem �. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, the completed agent measure conditional on any Et with H∗ ∈ ΘEt

holds a grain of H∗.
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Proof. See appendix �.A.�.

Corollary �. For the proto-version of the forward-looking open-minded Bayesian, for any hypo-
thesis and posterior scheme, we have that H∗-a.s.

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �.

Discussion

As mentioned, this proto-version of a forward-looking Bayesian is a constrained version of the
silent open-minded Bayesian. More precisely, it is a constrained version, not of the retroactive,
but of the standard variant of the silent Bayesian.�e posteriors of new hypotheses are chosen
directly; and however this is done (within the constraint of the posterior reservoir), it is not
required to be (not part of the agent’s speci�cation to be) an explicit calculation of the posterior
from a chosen prior and the hypothesis’s likelihood on the past outcome sequence.

Again, the choice of posterior can always proceed like this: formally, any choice of posterior
corresponds, via the likelihood on the past data, to a choice of prior. But the constraint on the
posteriors does not translate into a simple constraint on the priors, depending as it does on the
contingent fact of the actually formulated hypotheses’ likelihoods, and so a retroactive variant
of the forward-looking Bayesian does not appear a natural option—as, of course, its name is
intended to suggest.

�at said, the idea of an absolute reservoir of posterior probability is not a terribly natural
conception. Unlike the idea of an absolute reservoir of prior probability, it cannot be coupled
to a conception of a prior assignment to a catch-all hypothesis, from which new hypotheses
may be shaven o�. Perhaps the best way to understand this is simply as a pragmatic device, that
is easy to understand and does the job of regaining the guarantee of truth-convergence.

However, we think there is yet a conceptually more pleasing option, that is formally very similar
to the current version but that has a more natural interpretation. In fact, this version, our actual
forward-looking Bayesian, does regain the idea of shaving prior mass from a catch-all, while
still looking forward.

�.�.� �e forward-looking open-minded Bayesian
An alternative way of defusing the threat of extreme posteriors of incoming hypotheses is to
place restrictions, not directly on the posteriors, but on the likelihoods of new hypotheses. Our
proposal is to introduce the stipulation that new hypotheses have some default likelihood on
past outcomes.

We will focus on an idea that we borrowed from the theory of competitive online learning��, and
that has important technical and conceptual advantages.�is idea is to identify the likelihood of

��See Cesa-Bianchi and Lugosi, ���� for a general account of competitive online learning or prediction with expert
advice.�e idea that we refer to, �rst proposed, within the setting of specialists (Freund et al., ����), by Chernov and
Vovk (����), is known as the specialist or abstention trick; also see Koolen, Adamskiy and Warmuth, ����; Mourtada
and Maillard, ����. An instance of this idea also appears in Romeijn (����, p. ���).
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new hypotheses on past data with the agent’s probability assignment to this data, induced from
its past predictive probabilities.�at is, a new hypothesis HN ’s likelihood HN(Et) on the data
sequence Et generated by its time t of formulation is set equal to the product∏t−�

s=� P�(Es+� �
Es ,ΘN(s)) of predictive probabilities. Note that this is precisely the completed agent measure’s
assignment P∞(Et).

�is is a natural way of modeling that a new hypothesis is only evaluated a�er its formulation; or
that with respect to this new hypotheses, the old evidence does not count.�e new hypotheses
is, to put it di�erently, at its time of formulation treated in a neutral fashion, in that it is supposed
to have had the same predictive success on the past data as the agent itself.�is also translates
in this new hypothesis having, for any chosen prior P�(HN � ΘN+�), at its time of formulation
t a posterior P�(HN � Et ,ΘN+�) that simply equals the prior.

Moreover, this allows us to recover the picture of a catch-all, or more precisely, the �xed well
of prior probability from which the agent must draw in its assignment to (new) hypotheses.
In combination with the restriction on prior assignments that this entails, this version of a
forward-looking Bayesian indeed regains truth-convergence.

Speci�cation

�e forward-looking open-minded Bayesian, in its current version, proceeds exactly as the
hybrid-open minded Bayesian, except for the crucial stipulation that each new hypothesis Ni
formulated at time ti satis�es

HNi (Et) ∶= P∞(Et) for all t ≤ ti . (�.��)

In summary, the forward-looking open-minded Bayesian proceeds as follows.

(t = �) N explicit hypotheses

As in the hybrid version, each explicit hypothesis Hi in ΘN receives a prior P�(Hi �
ΘN) > � conditional onΘN , such that∑i<N P�(Hi � ΘN) = �; and the catch-all hypothesis
ΘN = Θ �ΘN receives an unconditional prior P�(ΘN) ∶= τN , so that the unconditional
priors of the explicit hypothesis are given by P�(Hi) ∶= (� − τN) ⋅ P�(Hi � ΘN).

(t > �) Evidence Et

Updating proceeds in the usual way, conditional on the current hypothesis set ΘN .

(t > �)New hypothesis HN

As in the hybrid version, when a new explicit hypothesis HN is formulated, extending the
hypothesis set to ΘN+� = ΘN ∪ {HN}, the unconditional prior τN of the earlier catch-all is
decomposed into a value p < τN for the unconditional prior P�(HN) of the new hypothesis
and a remainder τN+� = τN − p for the unconditional prior P�(ΘN+�) of the new catch-all.
�e priors conditional on the new hypothesis set are obtained by renormalization, from
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which the conditional posteriors are obtained by the usual updating on their likelihoods,
where the new hypothesis’s likelihood HN(Et) is stipulated to equal P∞(Et).

Veri�cation

Although they di�er in their interpretation and also slightly in the precise shape of the con-
straints they impose, the forward-looking Bayesian and its proto-version share the formal
property of a constraint on new posterior assignments. In appendix �.A.� we give a general
proof that for both types of constraints shows that a completed agent measure will hold a grain
of the truth, whenever it is formulated, from which weak merger of the agent follows.��

�eorem �. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, the completed agent measure conditional on any Et with H∗ ∈ ΘEt holds a grain of H∗.

Proof. See appendix �.A.�.

Corollary �. For the forward-looking open-minded Bayesian, for any hypothesis and posterior
scheme, we have that H∗-a.s.

H∗ is formulated�⇒ sup
Et+�∈{�,�}

�PEt(Et+�) −H∗(Et+� � Et)� t→∞��→ �.

Beyond weak merger

Corollary � states, for the forward-looking agent, and as a consequence of the strong truth-
merger of the completed agent measure, the weak truth-merger (with d = �) of the agent
measures PEt . �e obvious further question is whether we also have strong merger, or at
least weak merger for any �nite d, for the agent measures PEt . We conjecture that already
strong merger does hold, but unfortunately we have no proof, and must leave this as an open

��An alternative proof proceeds by deriving from the abstention stipulation (�.��) that the forward-looking agent’s
probability P∞(Et

)must coincide with the retroactive prior probability P�(Et
� ΘNi ) for every ΘNi with ti+� > t.

�e additional stipulation of a �xed amount of prior mass guarantees again that these P�(Et
� ΘNi ) indeed uniformly

retain a grain of the truth, so that truth-merger follows. Recall from sect. �.�.� that the hybrid open-minded Bayesian’s
completed agent measure can fail to retain a grain of the truth even if every P�(⋅ � ΘNi ) for i ≥ i∗ uniformly does so:
stipulation (�.��) thus rules out this possibility.
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question.��

�.� Conclusion
We investigated the failure of truth-convergence for Wenmackers and Romeijn’s versions of
open-minded Bayesianism, and, towards reclaiming this property, proposed a forward-looking
open-minded Bayesian.�e general threat to convergence to the truth is the possibility of new
and false hypotheses that keep receiving too much posterior: either by direct assignment or by
retroactive calculation from a high likelihood on the past evidence.�e proto-version and the
�nal version of our forward-looking Bayesian implement the two respective ways of meeting
this threat: by restricting the posteriors, or by restricting the priors and likelihoods.

We think that the �nal version of our forward-looking agent, which is based on an idea from the
theory of competitive online learning, indeed provides an elegant account of how a Bayesian
agent should deal with newly formulated hypotheses.�e idea of identifying a new hypothesis’s
likelihood with the agent’s probability assignment on the past data is a graceful way of neut-
ralizing the impact of old evidence. Moreover, this idea has the pleasant consequence that the
stipulation of a limited reservoir of prior probability (with the associated interpretation of a
catch-all hypothesis) is su�cient to guarantee truth-convergence. Unlike the proto-version,
that we ourselves feel is mainly a technical device geared towards the aim of truth-convergence,
we think the �nal version makes intuitive sense quite independent of this aim.

�ere are a number of avenues for further investigation. Firstly, we proved, more precisely, the
forward-looking agent’s weak truth-merger, or convergence to the true one-step predictive
probabilities. We leave as an open question whether this may be extended to an arbitrary
�nite-length horizon, or even to strong merger, that includes all tail events. Secondly, a possible
lingering doubt is that in our convergence statement the measure-� class of sequences is depend-
ent on the hypothesis and posterior scheme.�is at least suggests an interpretation where the
latter quantities are somehow �xed prior to the inquiry, which, one might feel, does not sit well
with the original motivation for investigating an open-minded agent. Whether or not this is so,
we showed that in general we cannot avoid this dependence, as an analogue in fact already holds
in the case of the standard Bayesian. Nevertheless, it might be avoided as further re�nements
are added to our proposal. Perhaps, �nally, the main peculiarity about our approach is that in
the course of an inquiry hypotheses are not (should not be) introduced haphazardly.�ere will

��For any in�nite Eω in the measure-� class of in�nite streams on which we, for given hypothesis and posterior
scheme, have strong merger with H∗ of the completed agent measure, it might seem that strong truth-merger of
the agent functions PEt (⋅ � ΘEt ) on this Eω should follow, too: as the posterior reservoir is used up the measures
P∞(⋅ � Et

) and PEt (⋅ � ΘEt ) can di�er less and less. However, on any individual Eω , it is possible that the posterior
reservoir is not fully used up: this allows for a counterexample, on this particular stream, where the same constant
posterior keeps being assigned to new hypotheses on side-branches of Eω to force a di�erence between P∞(⋅ � Et

)

and PEt (⋅ � ΘEt ). Now one could push further and consider the measure-� class that is the countable intersection of
the previous class and, for every length s, the measure-� class of streams on which every measure PEs (⋅ � Es

), from
that point treated as a standard Bayesian, strongly merges with H∗. But even for a stream Eω in this class, it is still
consistent that the agent measures Pt(⋅ � Et

) do not strongly merge with H∗ on this particular Eω ; at the same time,
such a scenario is now so bizarre that it does not seem feasible to turn it into an actual counterexample, for which
this must actually happen with positive probability.�is invites the hope for some (martingale) argument that such
scenarios must indeed have probability �.
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normally only arise a need for formulating a new hypothesis if somemis�t between the data and
the current model is observed, which may indeed be regulated via a formal model veri�cation
procedure.�is raises the question how (our version of) an open-minded Bayesian inductive
logic may be extended beyond just how to incorporate externally proposed hypotheses, to also
include when to accept such new hypotheses, and how this interacts with the guarantee of
truth-convergence.
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�.A Calculations and proofs

�.A.� Notation
We introduce additional notation for use in the appendices.

For sequences Et and Es we write Et � Es if Et is an initial segment of Et , and Et � Es if Et � Es

and Et ≠ Es . We write Et � Es if neither Et � Es nor Es � Et . For the concatenation of sequences
Et and Es we write Et+s = EtEs . For sequences Et � Es we write Et∶s for the sequence Es minus
its initial segment Et .

Recall that an hypothesis and posterior scheme are given by a function P(⋅) that for given
sequence Et returns a distribution PEt = PEt(⋅ � ΘEt) over hypothesis set ΘEt .�is induces the
distribution PEt(⋅) = ∑H∈ΘEt

PEt(H) ⋅H(⋅ � Et) over events in the outcome space.

�e conditional distributions PEt(⋅ � Θ) forΘ ⊆ ΘEt are clearlywell-de�ned.One can also derive
from the speci�cations of any of the open-minded versions we discussed that for Es � Et

PEs(⋅ � ΘEt) = PEt(⋅ � Et∶s ,ΘEt), (�.��)

a fact that we will rely on in the proofs of lemma � and corollary ��, in �.A.� below.

�e conditional distributions PEt(⋅ � Θ) forΘ ⊃ ΘEt are not well-de�ned, because the posteriors
of the elements in Θ �ΘEt are not de�ned. Nevertheless, for the purpose of analyzing an open-
minded agent’s procedure of retro-actively setting a prior (as in the proof of lemma � in �.A.�
below), it will be useful to agree on the following. For Es � Et , the probability PEt(H � ΘEs)
is the posterior probability of H ∈ ΘEs a�er Et , retroactively calculated from the posterior
probability PEs(H � ΘEs) a�er Es . More precisely, we can de�ne for all H ∈ ΘEs ,

PEt(H � Et∶s ,ΘEs) ∶= PEs(H � ΘEs), (�.��)

from which the function PEt(⋅ � ΘEs), by using the likelihoods of all H ∈ ΘEs on Et∶s , can
unambiguously be retrieved.

�.A.� Calculations for example �.�
We want to ensure (�.��), that is,

P�(HNi � ΘNi+�) ⋅HNi (Eti )
∑H∈ΘNi+� P�(H � ΘNi+�) ⋅H(Eti )

> r. (�.��)

Write q ∶= P�(HNi � ΘNi+�) for the conditional prior, that by (�.��) equals

P�(Hi)
� − τNi+�

= �−i ⋅ τN�+�

� − (� −∑i
j=� �− j) ⋅ τN�+�

= �−i ⋅ τN�+�

� − �−i ⋅ τN�+�
. (�.��)

Since HNi (Eti ) = �, (�.��) translates into

q > r ⋅
�
�
q + �

H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti )
�
�
, (�.��)
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that is,
� − r
r
⋅ q > �

H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti ). (�.��)

Now assuming that there is positive δ such that all other hypotheses’ predictive probabilities
are no more than � − δ for each possible outcome from ti−� up to ti , so that

�
H∈ΘNi+��{HNi }

P�(H � ΘNi+�) ⋅H(Eti ) < (� − q) ⋅ (� − δ)t i−t i−� , (�.��)

it su�ces for (�.��) that
� − r
r
⋅ q
� − q

> (� − δ)t i−t i−� . (�.��)

Writing out

q
� − q

=
� �−i ⋅τN�+�
�−�−i ⋅τN�+� �

�� − �−i ⋅τN�+�
�−�−i ⋅τN�+� �

=
� �−i ⋅τN�+�
�−�−i ⋅τN�+� �

� �
�−�−i ⋅τN�+� �

= �−i ⋅ τN�+� , (�.��)

we thus require
� − r
r
⋅ �−i ⋅ τN�+� > (� − δ)

t i−t i−� , (�.��)

that is,

ti − ti−� >
− log (� − r) − (− log r) + i − log τN�+�

− log(� − δ)
. (�.��)

�.A.� Proof of proposition �
Let the truth H∗ ∈ Θ be Bernoulli-�/�, and put P(H∗) = ���. De�ne an in�nite series of
times t� , t� , t� , . . . by t� = �, ti+� = ti + i + �. For each time ti , let Eti

j be the j-th (� < j ≤ �t i )
outcome sequence of length ti . We will now de�ne a countable collection of hypothesesHi , j that
each over�t one particular sequence between two successive times ti−� and ti , and follow H∗
elsewhere. More precisely, we de�ne for each i, for each positive j ≤ �t i and the corresponding
j′ such that Eti−�

j′ � E
ti
j , the hypothesis Hi , j by

Hi , j(Es) =

�����������������

�−t i−� if Eti−�
j′ � E

s � Eti
j

� if Eti−�
j′ � E

s but Es � Eti
j

H∗(Es) ⋅ �t i−t i−� if Eti
j � E

s

H∗(Es) otherwise.

(�.��)

Given an in�nite outcome stream Eω . We can now assign positive prior to each of these
hypotheses as follows. Denote by (Eti

j )
C the sequence Eti

j with the very last outcome inverted,
� for � or vice versa. For each i, for each j ≤ �t i , let

P(Hi , j) =
�������

�−i−� if (Eti
j )

C � Eω

�−i−� ⋅ (�t i − �)−� otherwise.
(�.��)
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�is is a valid prior assignment because∑H∈Θ P(H) = �−� +∑i>�(�−i−�) = �.

Now we consider, on the stream Eω , for arbitrary i and the j such that Eti
j � E

ω , the error in
the agent’s predictive probability P(� � Eti−�

j ) a�er having observed all of Eti
j but the very last

outcome.�at is, we consider the distance

�P(� � Eti−�
j ) −H

∗(� � Eti−�
j )� . (�.��)

To this end, write Θ′ ∶= Θ � {Hi , j} and �rst consider the posterior ratio of P(Hi , j � Eti−�
j ),

write α, and P(Θ′ � Eti−�
j ) = � − α,

α
� − α

=
P(Hi , j � Eti−�

j )
P(Θ′ � Eti−�

j )
=

P(Hi , j) ⋅Hi , j(Eti−�
j )

P(Θ′) ⋅ P(Eti−�
j � Θ′)

. (�.��)

It follows from speci�cation (�.��) that all hypotheses in Θ′ assign true probability H∗(Eti−�
j )

to Eti−�
j , except for the over�tting hypotheses Hi′ , j′ for i′ ≤ i and j′ such that there is j′′ with

Eti′−�
j′′ � E

ti′
j′ , E

ω . But for each i′ < i, among these hypotheses Hi′ , j′ there is only one Hi′ ,k′ that
does not give probability � to Eti−�

j , and with assignment (�.��) each member of the majority
already holds at least as much prior as the single exception Hi′ ,k′ . Similarly, for i, it is, among
these Hi , j′ and apart from Hi , j , only the hypothesis Hi ,k for Eti

k � Eω that does not assign
probability � to Eti−�

j , and each other Hi , j′ already holds at least as much prior as Hi ,k . We thus
have that the likelihood of hypothesis set Θ′ satis�es

P(Eti−�
j � Θ′) = �

H∈Θ′
P(H � Θ′) ⋅H(Eti−�

j ) < H
∗(Eti−�

j ) = �
−t i+� , (�.��)

wherefore

α
� − α

> �−i−� ⋅ �−t i−�
(� − �−i−�) ⋅ �−t i+�

= �−i−�

(� − �−i−�) ⋅ �−(t i−t i−�)

= �−i−�

(� − �−i−�) ⋅ �−i−�

> �,

meaning that α > ���.

Finally, apart from Hi , j , it is only the hypothesis Hi ,k for Eti
k � Eω that is still included in

the posterior over Θ conditional on Eti−�
j (that did not assign probability � to Eti−�

j ) and
that gives a predictive probability Hi ,k(� � Eti−�

j ) di�erent from H∗(� � Eti−�
j ) = ���. Write

α′ ∶= P(Hi ,k � Eti−�
j ) for the posterior of Hi ,k , and abbreviate Θ i ; j ,k ∶= {Hi , j ,Hi ,k}. Since
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indeed Hi ,k(� � Eti−�
j ) = � −Hi , j(� � Eti−�

j ),

P(� � Eti−�
j ,Θ i ; j ,k) =

α
α + α′

⋅Hi , j(� � Eti−�
j ) +

α′

α + α′
⋅Hi ,k(� � Eti−�

j ) (�.��)

evaluates to either α
α+α′ = � −

α′
α+α′ or

α′
α+α′ . Using α

′ < ��� < α, it follows that

�P(� � Eti−�
j ,Θ i ; j ,k) −H∗(� � Eti−�

j )� = ��� −
α′

α + α′
. (�.��)

We can then rewrite (�.��) as

�(α + α′) ⋅ P(� � Eti−�
j ,Θ i ; j ,k) + (� − (α + α′)) ⋅H∗(� � Eti−�

j ) −H
∗(� � Eti−�

j )� , (�.��)

which simpli�es to

(α + α′) ⋅ �P(� � Eti−�
j ,Θ i ; j ,k) −H∗(� � Eti−�

j )� = (α + α
′) ⋅ ���� − α′

α + α′
�

= α + α′

�
− α′

> ��� − ��� ⋅ α′ .

But note that Hi , j and Hi ,k have the same likelihood Hi , j(Eti−�
j ) = Hi ,k(Eti−�

j ), so that by
assignment (�.��) the ratio

α
α′
=
P(Hi , j)
P(Hi ,k)

= �t i − �, (�.��)

which implies that α′ < (�t i − �)−� is arbitrarily small for large enough i.�at means that indeed
for any choice of ε > �, we have for in�nitely many i that

�P(� � Eti−�
j ) −H

∗(� � Eti−�
j )� > ��� − ε,

blocking convergence on the stream Eω . �

�.A.� Proof of proposition �
Consider example �.� with t� = �, ε′ > ���, and where a�er each ti all hypotheses HNj for j ≤ i
always give predictive probabilities (���, ���). Let the sequence of time points t� < t� < t� . . .
at which over�tting hypotheses are introduced satisfy (�.��), with prior assignments given by
(�.��).�is de�nes a hypothesis and posterior scheme, and thus induces a completed agent
measure.

Next, take an in�nite outcome stream Eω that is constructed as follows. For any i ≥ �, take for
the subsequence Eti+�∶t i+� any sequence of length ti+� − ti − �, and let Eti+� be the outcome with
Pti (Eti+� � ΘEti ) < ��� − ε′ = ��� (for E� take either � or �). Now the completed agent measure
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P∞ fails to hold a grain of H∗ on any such sequence Eω . Namely, for such a sequence Eω we
have by construction that for each t, with jmaximal such that t j < t, that

P∞(Et) < ��−��t− j ⋅ ��−�� j = �−t− j . (�.��)

But since �−t− j��−t = �− j goes to � as t hence j goes to in�nity, there is no positive a such that
P∞(Et) ≥ a ⋅H∗(Et) for all t. �

�.A.� Proof of theorems � and �

We show for both the forward-looking open-minded Bayesian agent and its proto-version that
for any hypothesis and posterior scheme, any �nite outcome sequence Et� , for any hypothesis
H ∈ ΘEt� , there is a constant a ∈ (�, �) such that for every outcome sequence Et � Et� it holds
that

P∞(Et� ∶t � Et�) ≥ a ⋅H(Et� ∶t � Et�). (�.��)

In words, for any outcome sequence Et� , the completed agent measure conditional on Et� holds
a positive grain of every hypothesis H in the hypothesis set ΘEt� . In particular, the completed
agent measure conditional on Et� holds a grain of the truth H∗, if H∗ is in ΘEt� .

Our proof consists of two main steps. First, we show that for any open-minded agent the
completed agent measure conditional on Et� dominates the agent function PEt� with a factor
that involves the posteriors assigned to new hypotheses (lemma � and corollary ��). Second,
we show for (the proto-version of) the forward-looking open-minded Bayesian that this latter
factor is indeed at least a positive constant (lemma � and �, respectively).

In all of the following statements we quantify over all Et� and Et � Et� , and in the accompanying
proofs we start by presupposing any such two sequences.�is allows for the following simpli�ed
notation, that unambiguously pertains to a particular instantiated Et and initial segment Et� .
We abbreviate Ps ∶= PEs and Θs ∶= ΘEs for all Es � Et . Moreover, we always let i ≥ � denote
the number of new hypotheses that are formulated along the sequence Et�+�∶t , and we write
p j ∶= Pt j(HEt j � Θt j) for the conditional posterior assigned to the j-th ( j ≤ i) such hypothesis
HEt j ∈ Θt j �Θt j−� , incoming at time t j .

Lemma �. For an open-minded agent, we have that for any hypothesis and posterior scheme, for
every Et� , every Et � Et� , every � ≤ j ≤ i,

Pt j(Et j ∶t � Θt j) ≥
∏ j−�

k=�(� − pk+�) ⋅ Pt�(E
t� ∶t � Θt�)

∏ j−�
k=� Ptk(Etk ∶tk+� � Θtk)

. (�.��)

Proof. We proceed by induction.�e base case, j = �, follows trivially from empty products.
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Next, assuming as induction hypothesis that (�.��) holds for given j < i, we derive for j + � that

Pt j+�(Et j+� ∶t � Θt j+�) = �
H∈Θ t j+�

Pt j+�(H � Θt j+�) ⋅H(Et j+� ∶t � Et j+�)

≥ (� − p j+�) �
H∈Θ t j

Pt j(H � Et j ∶t j+� ,Θt j) ⋅H(Et j+� ∶t � Et j+�)

= (� − p j+�) �
H∈Θ t j

Pt j(H � Θt j) ⋅H(Et j ∶t j+� � Et j)
Pt j(Et j ∶t j+� � Θt j)

⋅H(Et j+� ∶t � Et j+�)

= (� − p j+�) ⋅
∑H∈Θ t j

Pt j(H � Θt j) ⋅H(Et j ∶t � Et j)

Pt j(Et j ∶t j+� � Θt j)

=
(� − p j+�) ⋅ Pt j(Et j ∶t � Θt j)

Pt j(Et j ∶t j+� � Θt j)

≥
(� − p j+�) ⋅∏ j−�

k=�(� − pk+�) ⋅ Pt�(E
t� ∶t � Θt�)

Pt j(Et j ∶t j+� � Θt j) ⋅∏
j−�
k=� Ptk(Etk ∶tk+� � Θtk)

= ∏
j
k=�(� − pk+�) ⋅ Pt�(E

t� ∶t � Θt�)

∏ j
k=� Ptk(Etk ∶tk+� � Θtk)

.

Corollary ��. For an open-minded agent, we have that for any hypothesis and posterior scheme,
for every Et� , every Et � Et� ,

P∞(Et� ∶t � Et�) ≥
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et� ∶t � Θt�). (�.��)

Proof. We write out

P∞(Et� ∶t � Et�) =
t−�
�
s=t�

Ps(Es+� � Θs)

=
�
�

i−�
�
j=�

t j+�−�
�
s=t j

Ps(Es+� � Θs)
�
�

t−�
�
s=t i

Ps(Es+� � Θt i )

=
�
�

i−�
�
j=�

Pt j(Et j ∶t j+� � Θt j)
�
�
⋅ Pti (Eti ∶t � Θt i ),



�.A. Calculations and proofs ��

where the latter equality follows from the fact that for each j and t j ≤ t′j < t j+� we have

t′j
�
s=t j

Ps(Es+� � Θs) =
t′j
�
s=t j

Pt j(Es+� � Et j ∶s ,Θt j)

=
t′j
�
s=t j

Pt j(Et j ∶s+� � Θt j)
Pt j(Et j ∶s � Θt j)

=
Pt j(Et j ∶t j+� � Θt j)
Pt j(Et j ∶t j � Θt j)

= Pt j(Et j ∶t j+� � Θt j).

But applying lemma (�.��) for i = j then yields

P∞(Et � Et�) ≥
�
�

i−�
�
j=�

Pt j(Et j ∶t j+� � Θt j)
�
�
⋅
∏i−�

j=�(� − p j+�) ⋅ Pt�(Et � Θt�)
∏i−�

j=� Pt j(Et j+� � Θt j)

=
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et � Θt�).

Lemma �. For the proto-version of the forward-looking open-minded agent, we have that for
every hypothesis and posterior scheme, there is a constant b ∈ (�, �) such that for every Et� , every
Et � Et� ,

i
�
j=�
(� − p j) ≥ b. (�.��)

Proof. We have by speci�cation that � < p j ≤ c for each j and a positive constant c < �, and that
∑i

j=� p j ≤ d for some positive constant d. Using the standard inequality x−�
x ≤ ln x for x > �,

this allows us to derive

− ln
i
�
j=�
(� − p j) =

i
�
j=�
− ln(� − p j)

≤
i
�
j=�

p j

� − p j

≤ �
� − c

i
�
j=�

p j

≤ d
� − c

,

where the second inequality follows from the fact that � − c ≤ � − p j for all j.�us we have

i
�
j=�
(� − p j) ≥ exp�−

d
� − c
� , (�.��)
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yielding the desired statement with constant b = exp �− d
�−c � independent of E

t .

Lemma �. For the forward-looking open-minded agent, we have that for every hypothesis and
posterior scheme, there is a constant b ∈ (�, �) such that for every Et� , every Et � Et� ,

i
�
j=�
(� − p j) ≥ b. (�.��)

Proof. By speci�cation, and in particular the abstention trick (�.��), for each j the posterior
p j = Pt j(Ht j � Θt j) conditional on Θt j equals the prior P�(Ht j � Θt j) conditional on Θt j . But
the latter is calculated from a choice of absolute prior, denoted p′j , by

p j =
p′j

� − τ j
=
τ j−� − τ j
� − τ j

, (�.��)

where τ j is the probability of the catch-all a�er formulation of Ht j . We thus have

i
�
j=�
�� − p j� =

i
�
j=�
�� −

τ j−� − τ j
� − τ j

�

=
i
�
j=�
�
� − τ j−�
� − τ j

�

= � − τ�
� − τ i
≥ � − τ� ,

yielding the desired statement with constant b = � − τ� independent of Et .

Finally, combining the previous results, we obtain that for the (proto-version of) the forward-
looking open-minded Bayesian, for any hypothesis and posterior scheme, any Et� , any hypo-
thesis H ∈ ΘEt� , any Et � Et� , it holds that

P∞(Et� ∶t � Et�) ≥
i−�
�
j=�
(� − p j+�) ⋅ Pt�(Et� ∶t � Θt�)

≥ b ⋅ Pt�(Et� ∶t � Θt�)
≥ b ⋅ Pt�(H � Θt�) ⋅H(Et� ∶t � Et�),

yielding the desired statement (�.��) with constant a = b ⋅ Pt�(H � Θt�) independent of Et� ∶t .
�
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Why optional stopping is a problem
for Bayesians

Abstract
Recently, optional stopping has been a subject of debate in the Bayesian psychology community.
Rouder (����) argues that optional stopping is no problem for Bayesians, and even recommends
the use of optional stopping in practice, as do Wagenmakers et al. (����).�is article addresses
the question whether optional stopping is problematic for Bayesian methods, and speci�es
under which circumstances and in which sense it is and is not. By slightly varying and extending
Rouder’s (����) experiments, we illustrate that, as soon as the parameters of interest are equipped
with default or pragmatic priors — which means, in most practical applications of Bayes factor
hypothesis testing — resilience to optional stopping can break down. We distinguish between
three types of default priors, each having their own speci�c issues with optional stopping,
ranging from no-problem-at-all (Type � priors) to quite severe (Type II priors).

�.� Introduction
P-value based null-hypothesis signi�cance testing (NHST) is widely used in the life and behavi-
oral sciences, even though the use of p-values has been severely criticized for at least the last ��
years. During the last decade, within the �eld of psychology, several authors have advocated
the Bayes factor as the most principled alternative to resolve the problems with p-values. Sub-
sequently, these authors have made an admirable e�ort to provide practitioners with default
Bayes factors for common hypothesis tests (Rouder et al. (����), Jamil et al. (����) and Rouder
et al. (����) and many others).

We agree with the objections against the use of p-value based NHST and the view that this
paradigm is inappropriate (or at least far from optimal) for scienti�c research, and we agree
that the Bayes factor has many advantages. However, as also noted by Gigerenzer andMarewski,

��
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����, it is not the panacea for hypothesis testing that a lot of articles make it appear.�e Bayes
factor has its limitations (cf. also (Tendeiro and Kiers, ����)), and it seems that the subtleties
of when those limitations apply sometimes get lost in the overwhelming e�ort to provide a
solution to the pervasive problems of p-values.

In this article we elucidate the intricacies of handling optional stopping with Bayes factors,
primarily in response to Rouder (����). Optional stopping refers to ‘looking at the results so far
to decide whether or not to gather more data’, and it is a desirable property of a hypothesis test
to be able to handle optional stopping.�e key question is whether Bayes factors can or cannot
handle optional stopping. Yu et al. (����), Sanborn and Hills (����) and Rouder (����) tried
to answer this question from di�erent perspectives and with di�erent interpretations of the
notion of handling optional stopping. Rouder (����) illustrates, using computer simulations,
that optional stopping is not a problem for Bayesians, also citing Lindley (����) and Edwards,
Lindman and Savage (����) who provide mathematical results to a similar (but not exactly the
same) e�ect. Rouder used the simulations to concretely illustrate more abstract mathematical
theorems; these theorems are indeed formally proven by Deng, Lu and Chen (����) and, in
a more general setting, by Hendriksen, De Heide and Grünwald (����). Other early work
indicating that optional stopping is not a problem for Bayesians includes Savage (����) and
Good (����). We brie�y return to all of these in Section �.�.

All this earlier work notwithstanding, we maintain that optional stopping can be a problem
for Bayesians — at least for pragmatic Bayesians who are either willing to use so-called ‘default’,
or ‘convenience’ priors, or otherwise are willing to admit that their priors are imperfect and
are willing to subject them to robustness analyses. In practice, nearly all statisticians who use
Bayesian methods are ‘pragmatic’ in this sense.

Rouder (����) was written mainly in response to Yu et al. (����), and his main goal was to show
that Bayesian procedures retain a clear interpretation under optional stopping. He presents a
criterion which, if it holds for a given Bayesian method, indicates that, in some speci�c sense,
it performs as one would hope under optional stopping. �e main content of this article is
to investigate this criterion, which one may call prior-based calibration, for common testing
scenarios involving default priors. We shall encounter two types of default priors, and we
shall see that Rouder’s calibration criterion — while indeed providing a clear interpretation to
Bayesian optional stopping whenever de�ned — is in many cases either of limited relevance
(Type I priors) or unde�ned (Type II priors).

We consider a strengthening of Rouder’s check which we call strong calibration, and which
remains meaningful for all default priors.�en, however, we shall see that strong calibration
fails to hold under optional stopping for all default priors except, interestingly, for a special
type of priors (which we call “Type � priors”) on a special (but common) type of nuisance
parameters. Since these are rarely the only parameters incurring in one’s models, one has
to conclude that optional stopping is usually a problem for pragmatic Bayesians — at least
under Rouder’s calibration criterion of handling optional stopping.�ere exist (at least) two
other reasonable de�nitions of ‘handling optional stopping’, which we provide in Section �.�.
�ere we also discuss how, under these alternative de�nitions, Type I priors are sometimes less
problematic, but Type II priors still are. As explained in the conclusion (Section �.�), the overall
crux is that default and pragmatic priors represent tools for inference just as much or even more
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than beliefs about the world, and should thus be equipped with a precise prescription as to
what type of inferences they can and cannot be used for. A �rst step towards implementing this
radical idea is given by one of us in the recent paper Safe Probability (Grünwald, ����).

Readers who are familiar with Bayesian theory will not be too surprised by our conclusions:
It is well-known that what we call Type II priors violate the likelihood principle (Berger and
Wolpert, ����) and/or lead to (mild) forms of incoherence (Seidenfeld, ����) and, because of
the close connection between these two concepts and optional stopping, it should not be too
surprising that issues arise. Yet it is still useful to show how these issues pan out in simple
computer simulations, especially given the apparently common belief that optional stopping
is never a problem for Bayesians. �e simulations will also serve to illustrate the di�erence
between the subjective, pragmatic and objective views of Bayesian inference, a distinction
which matters a lot and which, we feel, has been underemphasized in the psychology literature
— our simulations may in fact serve to help the reader decide what viewpoint he or she likes
best.

In Section �.� we explain important concepts of Bayesianism and Bayes factors. Section �.�
explains Rouder’s calibration criterion and repeats and extends Rouder’s illustrative experiments,
showing the sense in which optional stopping is indeed not a problem for Bayesians. Section �.�
then contains additional simulations indicating the problems with default priors as summarized
above. In Section �.� we discuss conceptualizations of ‘handling optional stopping’ that are
di�erent from Rouder’s; this includes an explication of the purely subjective Bayesian viewpoint
as well as an explication of a frequentist treatment of handling optional stopping, which only
concerns sampling under the null hypothesis. We illustrate that some (not all!) Bayes factor
methods can handle optional stopping in this frequentist sense. We conclude with a discussion
of our �ndings in Section �.�.

�.� Bayesian probability and Bayes factors
Bayesianism is about a certain interpretation of the concept probability: as degrees of belief.
Wagenmakers (����) and Rouder (����) give an intuitive explanation for the di�erent views
of frequentists and Bayesians in statistics, on the basis of coin �ips.�e frequentists interpret
probability as a limiting frequency. Suppose we �ip a coin many times, if the probability of
heads is ���, we see a proportion of ��� of all those coin �ips with heads up. Bayesians interpret
probability as a degree of belief. If an agent believes the probability of heads is ���, she believes
that it will be � times more likely that the next coin �ip will result in heads than tails; we return
to the operational meaning of such a ‘belief ’ in terms of betting in Section �.�.

A Bayesian �rst expresses this belief as a probability function. In our coin �ipping example,
it might be that the agent believes that it is more likely that the coin is biased towards heads,
which the probability function thus re�ects. We call this the prior distribution, and we denote�
it by P(θ), where θ is the parameter (or several parameters) of the model. In our example, θ

�With some abuse of notation, we use P both to denote a generic probability distribution (de�ned on sets), and
to denote its associated probability mass function and a probability density function (de�ned on elements of sets);
whenever in this article we write P(z) where z takes values in a real-valued scalar or vector space, this should be read
as f (z) where f is the density of P.
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expresses the bias of the coin, and is a real number between � and �. A�er the speci�cation of
the prior, we conduct the experiment and obtain the data D and the likelihood P(D�θ). Now
we can compute the posterior distribution P(θ�D) with the help of Bayes’ theorem:

P(θ�D) = P(D�θ)P(θ)
P(D)

. (�.�)

Rouder (����) and Wagenmakers (����) provide a clear explanation of Bayesian hypothesis
testing with Bayes factors (Je�reys, ����; Kass and Ra�ery, ����), which we repeat here for
completeness. Suppose we want to test a null hypothesisH� against an alternative hypothesis
H�. A hypothesis can consist of a single distribution, for example: ‘the coin is fair’. We call
this a simple hypothesis. A hypothesis can also consist of two or more, or even in�nitely many
hypotheses, which we call a composite hypothesis. An example is: ‘the coin is biased towards
heads’, so the probability of heads can be any number between �.� and �, and there are in�nitely
many of those numbers. Suppose again that we want to testH� againstH�. We start with the
so called prior odds: P(H�)�P(H�), our belief before seeing the data. Let’s say we believe that
both hypotheses are equally probable, then our prior odds are �-to-�. Next we gather data D,
and update our odds with the new knowledge, using Bayes’ theorem (Eq. �.�):

post-odds�D = P(H��D)
P(H��D)

= P(H�)
P(H�)

P(D�H�)
P(D�H�)

. (�.�)

�e le� term is called posterior odds, it is our updated belief about which hypothesis is more
likely. Right of the prior odds, we see the Bayes factor, the term that describes how the beliefs
(prior odds) are updated via the data. If we have no preference for one hypothesis and set
the prior odds to �-to-�, we see that the posterior odds are just the Bayes factor. If we test a
compositeH� against a compositeH�, the Bayes factor is a ratio of two likelihoods in which
we have two or more possible values of our parameter θ. Bayesian inference tells us how to
calculate P(D �H j): we integrate out the parameter with help of a prior distribution P(θ), and
we write Eq. (�.�) as:

post-odds�D = P(H��D)
P(H��D)

= P(H�)
P(H�)

∫θ � P(D�θ�)P(θ�)dθ�
∫θ� P(D�θ�)P(θ�)dθ�

(�.�)

where θ� denotes the parameter of the null hypothesisH�, and similarly, θ� is the parameter of
the alternative hypothesisH�. If we observe a Bayes factor of ��, it means that the change in
odds from prior to posterior in favor of the alternative hypothesisH� is a factor ��. Intuitively,
the Bayes factor provides a measure of whether the data have increased or decreased the odds
onH� relative toH�.

�.� HandlingOptional stopping in theCalibrationSense
Validity under optional stopping is a desirable property of hypothesis testing: we gather some
data, look at the results, and decide whether we stop or gather some additional data. Informally
we call ‘peeking at the results to decide whether to collect more data’ optional stopping, but if



�.�. Handling Optional stopping in the Calibration Sense ��

we want to make more precise what it means if we say that a test can handle optional stopping,
it turns out that di�erent approaches (frequentist, subjective Bayesian and objective Bayesian)
lead to di�erent interpretations or de�nitions. In this section we adopt the de�nition of handling
optional stopping that was used by Rouder, and show, by repeating and extending Rouder’s
original simulation, that Bayesian methods do handle optional stopping in this sense. In the
next section, we shall then see that for ‘default’ and ‘pragmatic’ priors used in practice, Rouder’s
original de�nitionmay not always be appropriate— indicating there are problems with optional
stopping a�er all.

�.�.� Example �: Rouder’s example
We start by repeating Rouder’s (����) second example, so as to explain his ideas and re-state
his results. Suppose a researcher wants to test the null hypothesisH� that the mean of a normal
distribution is equal to �, against the alternative hypothesisH� that the mean is not �: we are
really testing whether µ = � or not. In Bayesian statistics, the composite alternativeH� ∶ µ ≠ �
is incomplete without specifying a prior on µ; like in Rouder’s example, we take the prior on
the mean to be a standard normal, which is a fairly standard (though by no means the only
common) choice (Berger, ����; Bernardo and Smith, ����).�is expresses a belief that small
e�ect sizes are possible (though the prior probability of the mean being exactly � is �), while a
mean as large as �.� is neither typical nor exceedingly rare. We take the variance to be �, such
that the mean equals the e�ect size. We set our prior odds to �-to-�: �is expresses a priori
indi�erence between the hypotheses, or a belief that both hypotheses are really equally probable.
To give a �rst example, suppose we observe n = �� observations Now we can observe the data
and update our prior beliefs. We calculate the posterior odds, in our case equal to the Bayes
factor, via Eq. (�.�) for data D = (x� , . . . , xn):

post-odds�x� , . . . , xn =
�
�
⋅
exp� n�x�

�(n+�)�√
n + �

(�.�)

where n is the sample size (�� in our case), and x is the sample mean. Suppose we observe
posterior odds of �.�-to-� in favor of the null.

Calibration, Mathematically As Rouder writes: ‘If a replicate experiment yielded a posterior
odds of �.�-to-� in favor of the null, then we expect that the null was �.� times as probable as
the alternative to have produced the data.’ In mathematical language, this can be expressed
as

post-odds�“post-odds�x� , . . . , xn = a” = a, (�.�)

for the speci�c case n = �� and a = ���.�; of course we would expect this to hold for general n
and a.�e quotation marks indicate that we condition on an event, i.e. a set of di�erent data
realizations; in our case this is the set of all data x� , . . . , xn for which the posterior odds are
a. We say that (�.�) expresses calibration of the posterior odds. To explain further, we draw the
analogy to weather forecasting: consider a weather forecaster who, on each day, announces
the probability that it will rain the next day at a certain location. It is standard terminology
to call such a weather forecaster calibrated if, on average on those days for which he predicts
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‘probability of rain is ��%’, it rains about ��% of the time, on those days for which he predicts
��%, it rains ��% of the time, and so on.�us, although his predictions presumably depend on
a lot of data such as temperature, air pressure at various locations etc., given only the fact that
this data was such that he predicts a, the actual probability is a. Similarly, given only the fact the
posterior odds based on the full data are a (but not given the full data itself), the posterior odds
should still be a (readers who �nd (�.�) hard to interpret are urged to study the simulations
below).

Indeed, it turns out that (�.�) is the case.�is can be shown either as a mathematical theorem,
or, as Rouder does, by computer simulation. At this point, the result is merely a sanity check,
telling us that Bayesian updating is not crazy, and is not really surprising. Now, instead of a
�xed n, let us consider optional stopping: we keep adding data points until the the posterior
odds are at least ��-to-� for either hypothesis, unless a maximum of �� data points was reached.
Let τ be the sample size (which is now data-dependent) at which we stop; note that τ ≤ ��.
Remarkably, it turns out that we still have

post-odds�“post-odds�x� , . . . , xτ = a” = a, (�.�)

for this (and in fact any other data-dependent) stopping time τ. In words, the posterior odds
remain calibrated under optional stopping. Again, this can be shown formally, as a mathematical
theorem (we do so in Hendriksen, De Heide and Grünwald, ����; see also Deng, Lu and Chen,
����).

Calibration, Proof by Simulation Following Yu et al. (����) and Sanborn and Hills (����),
Rouder uses computer simulations, rather than mathematical derivation, to elucidate the
properties of analytic methods. In Rouder’s words ‘this choice is wise for a readership of
experimental psychologists. Simulation results have a tangible, experimental feel; moreover,
if something is true mathematically, we should be able to see it in simulation as well’. Rouder
illustrates both (�.�) and (�.�) by a simulation which we now describe.

Againwe draw data from the null hypothesis: say n = �� observations from a normal distribution
with mean � and variance �. But now we repeat this procedure ��, ��� times, and we see the
distribution of the posterior odds plotted as the blue histogram on the log scale in Figure �.�a.
We also sample data from the alternative distributionH�: �rst we sample amean from a standard
normal distribution (readers that consider this ‘sampling from the prior’ to be strange are urged
to read on), and then we sample �� observations from a normal distribution with this just
obtained mean, and variance �. Next, we calculate the posterior odds from Eq. (�.�). Again, we
perform ��, ��� replicate experiments of �� data points each, and we obtain the pink histogram
in Figure �.�a. We see that for the null hypothesis, most samples favor the null (the values of the
Bayes factor are smaller than �), for the alternative hypothesis we see that the bins for higher
values of the posterior odds are higher.

In terms of this simulation, Rouder’s claim that, ‘If a replicate experiment yielded a posterior
odds of �.�-to-� in favor of the null, then we expect that the null was �.� times as probable as
the alternative to have produced the data’, as formalized by (�.�), now says the following: if we
look at a speci�c bin of the histogram, say at �.�, i.e. the number of all the replicate experiments
that yielded approximately a posterior odds of �.�, then the bin fromH� should be about �.�
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times as high as the bin fromH�. Rouder calls the ratio of the two histograms the observed
posterior odds: the ratio of the binned posterior odds counts we observe from the simulation
experiments we did. What we expect the ratio to be for a certain value of the posterior odds, is
what he calls the nominal posterior odds. We can plot the observed posterior odds as a function
of the nominal posterior odds, and we see the result in Figure �.�b.�e observed values agree
closely with the nominal values: all points lie within simulation error on the identity line, which
can be considered as a ‘proof of (�.�) by simulation’.

Rouder (����) repeats this experiment under optional stopping: he ran a simulation experiment
with exactly the same setup, except that in each of the ��, ��� simulations, sampling occurred
until the posterior odds were at least ��-to-� for either hypothesis, unless a maximum of ��
observations was reached.�is yielded a �gure indistinguishable from Figure �.�b, from which
Rouder concluded that ‘the interpretation of the posterior odds holds with optional stopping’;
in our language, the posterior odds remain calibrated under optional stopping— it is a proof, by
simulation, that (�.�) holds. From this and similar experiments, Rouder concluded that Bayes
factors still have a clear interpretation under optional stopping (we agree with this for what we
call below Type � and I priors, not Type II), leading to the claim/title ‘optional stopping is no
problem for Bayesians’ (for which we only agree for Type � and purely subjective priors).

Is sampling from the prior meaningful? When presenting Rouder’s simulations to other
researchers, a common concern is: ‘how can sampling a parameter from the prior in H� be
meaningful? In any real-life experiment, there is just one, �xed population value, i.e. one �xed
value of the parameter that governs the data.’�is is indeed true, and not in contradiction with
Bayesian ideas: Bayesian statisticians put a distribution on parameters in H� that expresses
their uncertainty about the parameter, and that should not be interpreted as something that
is ‘sampled’ from. Nevertheless, Bayesian posterior odds calculations are done by calculating
weighted averages via integrals, and the results aremathematically equivalent to what one gets
if, as above, one samples a parameter from the prior, and the data from the parameter, and then
takes averages over many repetitions. We (and Rouder) really want to establish (�.�) and (�.�)
(which can be interpreted without resorting to sampling a parameter from a prior), and we
note that it is equivalent to the curve in Figure �.�b coinciding with the diagonal.

Some readers of an earlier dra� of this paper concluded that, given its equivalence to an
experiment involving sampling from the prior, which feels meaningless to them, (�.�) is itself
invariably meaningless. Instead, they claim, because in real-life the parameter o�en has one
speci�c �xed value, one should look at what happens under sampling under �xed parameter
values. Below we shall see that if we look at such strong calibration, we sometimes (Example �)
still get calibration, but usually (Example �) we do not; so such readers will likely agree with
our conclusion that ‘optional stopping can be a problem for Bayesians’, even though they would
disagree with us on some details, because we do think that (�.�) can be a meaningful statement
for some, but not all priors. To us, the importance of the simulations is simply to verify (�.�)
and, later on (Example �), to show that (�.�), the stronger analogue of (�.�) that we would like
to hold for default priors, does not always hold.
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Figure �.�:�e interpretation of the posterior odds in Rouder’s experiment, from ��, ��� replicate experiments. (a)
�e empirical sampling distribution of the posterior odds as a histogram underH� andH� . (b) Calibration plot: the
observed posterior odds as a function of the nominal posterior odds.

�.�.� Example �: Rouder’s example with a nuisance parameter

We now adjust Rouder’s example to a case where we still want to test whether µ = �, but the
variance σ � is unknown. Posterior calibration will still be obtained under optional stopping;
the example mainly serves to gently introduce the notions of improper prior and strong vs.
prior calibration, that will play a central role later on. So,H� now expresses that the data are
independently normally distributed with mean � and some unknown variance σ �, and H�
expresses that the data are normal with variance σ �, and some mean µ, where the uncertainty
about µ is once again captured by a normal prior: the mean is distributed according to a normal
with mean zero and variance (again) σ � (this corresponds to a standard normal distribution
on the e�ect size). If σ � = �, this reduces to Rouder’s example; but we now allow for arbitrary
σ �. We call σ � a nuisance parameter: a parameter that occurs in both models, is not directly
of interest, but that needs to be accounted for in the analysis. �e setup is analogous to the
standard �-sample frequentist t-test, where we also want to test whether a mean is � or not,
without knowing the variance; in the Bayesian approach, such a test only becomes de�ned once
we have a prior for the parameters. For µ we choose a normal,� for the nuisance parameter
σ we will make the standard choice of Je�reys’ prior for the variance: P�(σ) ∶= ��σ (Rouder
et al., ����). To obtain the Bayes factor for this problem, we integrate out the parameter σ cf.

��e advantage of a normal is that it makes calculations relatively easy. A more common and perhaps more
defensible choice is a Cauchy distribution, used in the ‘default Bayesian t-test’, which we consider further below.
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Eq. (�.�). Again, we assign prior odds of �-to-�, and obtain the posterior odds:

post-odds�D = �
�

∫
∞

�
�
σ ∏

n
i=�

�
√

�πσ � exp�−
x�i
�σ � � dσ

∫
∞

�
�
σ ∫
∞

−∞

�
√

�πσ � exp �−
µ

�σ � �∏n
i=�

�
√

�πσ � exp�−
(xi−µ)�

�σ � � dµ dσ

= �√
n + �

�
�
� −
� �
n+� ∑

n
i=� xi�

�

�
n+� ∑

n
i=� x�i

�
�

−
n
�

Formally, Je�reys’ prior on σ is a ‘measure’ rather than a distribution, since it does not integrate
to �: clearly

�
∞

�
P�(σ)dσ = �

∞

�

�
σ
dσ =∞, (�.�)

Priors that integrate to in�nity are o�en called improper. Use of such priors for nuisance
parameters is not really a problem for Bayesian inference, since one can typically plug such
priors into Bayes’ theorem anyway, and this leads to proper posteriors, i.e. posteriors that do
integrate to one, and then the Bayesian machinery can go ahead. Since Je�reys’ prior is meant
to express that we have no clear prior knowledge about the variance, we would hope that
Bayes would remain interpretable under optional stopping, no matter what the (unobservable)
variance in our sampling distribution actually is. Remarkably, this is indeed the case: for all
σ �
� > �, we have the following analogue of (�.�):

post-odds�σ � = σ �
� , “post-odds�x� , . . . , xτ = a” = a, (�.�)

In words, this means that, given that the posterior odds (calculated based on Je�reys’ prior, i.e.
without knowing the variance) are equal to a and that the actual variance is σ �

� , the posterior
odds are still a, irrespective of what σ �

� actually is.�is statement may be quite hard to interpret,
so we proceed to illustrate it by simulation again.

To repeat Rouder’s experiment, we have to simulate data under bothH� andH�. To do this we
need to specify the variance σ � of the normal distribution(s) from which we sample. Whereas,
as in the previous experiment, we can sample the mean inH� from the prior, for the variance
we seem to run into a problem: it is not clear how one should sample from an improper prior.
θ. But we cannot directly sample σ from an improper prior. As an alternative, we can pick any
particular �xed σ � to sample from, as we now illustrate. Let us �rst try σ � = �. Like Rouder’s
example, we sample the mean of the alternative hypothesisH� from the aforementioned normal
distribution.�en, we sample �� data points from a normal distribution with the just sampled
mean and the variance that we picked. For the null hypothesisH� we sample the data from
a normal distribution with mean zero and the same variance. We continue the experiment
just as Rouder did: we calculate the posterior odds from ��, ��� replicate experiments of ��
generated observations for each hypothesis, and construct the histograms and the plot of the
ratio of the counts to see if calibration is violated. In Figure �.�a we see the calibration plot
for the experiment described above. In Figure �.�b we see the results for the same experiment,
except that we performed optional stopping: we sampled until the posterior odds were at least
��-to-� forH�, or the maximum of �� observations was reached. We see that the posterior odds
in this experiment with optional stopping are calibrated as well.
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Prior Calibration vs. Strong Calibration Importantly, the same conclusion remains valid
whether we sample data using σ � = �, or σ � = �, or any other value — in simulation terms (�.�)
simply expresses that we get calibration (i.e. all points on the diagonal) no matter what σ � we
actually sample from: even though calculation of the posterior odds given a sample makes use
of the prior P�(σ) = ��σ and does not know the ‘true’ σ , calibration is retained under sampling
under arbitrary ‘true’ σ . We say that the posterior odds are prior-calibrated for parameter µ and
strongly calibrated for σ �. More generally and formally, consider general hypothesesH� andH�
(not necessarily expressing that data are normal) that share parameters γ� , γ� and suppose that
(�.�) holds with γ� in the role of σ �.�en we say that γ� is prior-calibrated (to get calibration
in simulations we need to draw it from the prior) and γ� is strongly calibrated (calibration is
obtained when drawing data under all possible γ�).

Notably, strong calibration is a special property of the chosen prior. If we had chosen another
proper or improper prior to calculate the posterior odds (for example, the improper prior
P′(σ)∝ σ−� has sometimes been used in this context) then the property that calibration under
optional stopping is retained under any choice of σ � will cease to hold; we will see examples
below.�e reason that P�(σ)∝ ��σ has this nice property is that σ is a special type of nuisance
parameter for which there exists a suitable group structure, relative to which both models are
invariant (Eaton, ����; Berger, Pericchi and Varshavsky, ����; Dass and Berger, ����).�is
sounds more complicated than it is — in our example, the invariance is scale invariance: if we
divide all outcomes by any �xed σ (multiply by ��σ), then the Bayes factor remains unchanged;
similarly, one may have for example location invariances.

If such group structure parameters are equipped with a special prior (which, for reasons to
become clear, we shall term Type � prior), then we obtain strong calibration, both for �xed
sample sizes and under optional stopping, relative to these parameters.� Je�reys’ prior for the
variance P�(σ) is the Type � prior for the variance nuisance parameter. Dass and Berger (����)
show that such priors can be de�ned for a large class of nuisance parameters — we will see the
example of a prior on a commonmean rather than a variance in Example � below; but there also
exist cases with parameters that (at least intuitively) are nuisance parameters, for which Type �
priors do not exist; we give an example in Appendix �.A. For parameters of interest, including
e.g. any parameter that does not occur in both models, Type � priors never exist.

�.� When Problems arise: Subjective versus Pragmatic and
Default Priors

Bayesians view probabilities as degree of belief.�e degree of belief an agent has before con-
ducting the experiment, is expressed as a probability function.�is prior is then updated with
data from experiments, and the resulting posterior can be used to base decisions on. For one
pole of the spectrum of Bayesians, the pure subjectivists, this is the full story (De Finetti, ����;
Savage, ����): any prior capturing the belief of the agent is allowed, but it should always be

�Technically, the Type � prior for a given group structure is de�ned as the right-Haar prior for the group (Berger,
Pericchi and Varshavsky, ����): a unique (up to a constant) probability measure induced on the parameter space by
the right Haar measure on the related group. Strong calibration is proven in general by Hendriksen, De Heide and
Grünwald, ����, and Hendriksen, ���� for the special case of the �-sample t-test.



�.�. When Problems arise: Subjective versus Pragmatic and Default Priors ��

●
●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

● ●

●
●

●

1

100

1 100
Nominal Posterior Odds

O
bs

er
ve

d 
Po

st
er

io
r O

dd
s

(a)

●

●
●

●
●

● ●
●

●
●

●
●

● ●
●

● ●

●

● ●

● ●
●

1

100

1 100
Nominal Posterior Odds

O
bs

er
ve

d 
Po

st
er

io
r O

dd
s

(b)

Figure �.�: Calibration of the experiment of Section �.�.�, from ��, ��� replicate experiments. (a)�e observed posterior
odds as a function of the nominal posterior odds. (b)�e observed posterior odds as a function of the nominal posterior
odds with optional stopping.

interpreted as the agent’s personal degree of belief; in Section �.� we explain what such a ‘belief ’
really means. On the other end of the spectrum, the objective Bayesians (Je�reys, ����; Berger,
����) argue that degrees of belief should be restricted, ideally in such a way that they do
not depend on the agent, and in the extreme case boil down to a single, rational, probability
function, where a priori distributions represent indi�erence rather than subjective belief and
a posteriori distributions represent ‘rational degrees of con�rmation’ rather than subjective
belief. Ideally, in any given situation there should then just be a single appropriate prior. Most
objective Bayesians do not take such an extreme stance, recommending instead default priors
to be used whenever only very little a priori knowledge is available.�ese make a default choice
for the functional form of a distribution (e.g. Cauchy) but o�en have one or two parameters that
can be speci�ed in a subjective way.�ese may then be replaced by more informative priors
when more knowledge becomes available a�er all. We will see several examples of such default
priors below.

So what category of priors is used in practice? Recent papers that advocate the use of Bayesian
methods within psychology such as Rouder et al. (����), Rouder et al. (����) and Jamil et
al. (����) are mostly based on default priors. Within the statistics community, nowadays a
pragmatic stance is by far the most common, in which priors are used that mix ‘default’ and
‘subjective’ aspects (Gelman, ����) and that are also chosen to allow for computationally feasible
inference. Very broadly speaking, we may say that there is a scale ranging from completely
‘objective’ (and hardly used) via ‘default’ (with a few, say � or � parameters to be �lled in
subjectively, i.e. based on prior knowledge) and ‘pragmatic’ (with functional forms of the prior
based partly on prior knowledge, partly by defaults, and partly by convenience) to the fully
subjective.Within the pragmatic stance, one explicitly acknowledges that one’s prior distribution
may have some arbitrary aspects to it (e.g. chosen to make computations easier rather than
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re�ecting true prior knowledge). It then becomes important to do sensitivity analyses: studying
what happens if a modi�ed prior is used or if data are sampled not by �rst sampling parameters
θ from the prior and then data from P(⋅ � θ) but rather directly from a �xed θ within a region
that does not have overly small prior probability.�

�e point of this article is that Rouder’s view on what constitutes ‘handling optional stopping’
is tailored towards a fully subjective interpretation of Bayes; as soon as one allows default and
pragmatic priors, problems with optional stopping do occur (except for what we call Type �
priors). We can distinguish between three types of problems, depending on the type of prior
that is used. We now give an overview of type of prior and problem, giving concrete examples
later.

�. Type � Priors: these are priors on parameters freely occurring in both hypotheses for
which strong calibration (as with σ � in (�.�)) holds under optional stopping.�is includes
all right Haar priors on parameters that satisfy a group structure; Hendriksen, De Heide
and Grünwald (����) give a formal de�nition; Dass and Berger (����) and Berger,
Pericchi and Varshavsky (����) give an overview of such priors. We conjecture, but have
no proof, that such right Haar priors on group structure parameters are the only priors
allowing for strong calibration under optional stopping, i.e. the only Type � Priors. Some,
but not all so-called ‘nuisance parameters’ admit group structure/right Haar priors. For
example, the variance in the t-test setting does, but the mean in � × � contingency tables
(Appendix �.A) does not.

�. Type I Priors: these are default or pragmatic priors that do not depend on any aspects
of the experimental setup (such as the sample size) or the data (such as the values of
covariates) and are not of Type � above.�us, strong calibration under optional stopping
is violated with such priors— an example is the Cauchy prior in Example � of Section �.�.�
below.

�. Type II Priors: these are default and pragmatic priors that are not of Type � or I: the priors
may themselves depend on the experimental setup, such as the sample size, the covariates
(design), or the stopping time itself, or other aspects of the data. Such priors are quite
common in the Bayesian literature. Here the problem is more serious: as we shall see,
prior calibration is ill-de�ned, and correspondingly Rouder’s experiments cannot be
performed for such priors, and ‘handling optional stopping’ is in a sense impossible in
principle. An example is the g-prior for regression as in Example � below or Je�reys’
prior for the Bernoulli model as in Section �.�.� below.

We illustrate the problems with Type I and Type II priors by further extending Rouder’s
experiment to two extensions of our earlier setting, namely the Bayesian t-test, going back to
Je�reys (����) and advocated by Rouder et al. (����), and objective Bayesian linear regression,
following Liang et al. (����). Both methods are quite popular and use default Bayes factors
based on default priors, to be used when no clear or very little prior knowledge is readily
available.

�To witness, one of us recently spoke at the bi-annual OBAYES (Objective Bayes) conference, and noticed that a
substantial fraction of the talks featured such �xed θ-analyses and/or used priors of Type II below.
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�.�.� Example �: Bayesian t-test —�e Problem with Type I Priors
Suppose a researcher wants to test the e�ect of a new fertilizer on the growth of some wheat
variety.�e null hypothesisH� states that there is no di�erence between the old and the new
fertilizer, and the alternative hypothesisH� states that the fertilizers have a di�erent e�ect on
the growth of the wheat. We assume that the length of the wheat is normally distributed with
the same (unknown) variance under both fertilizers, and that with the old fertilizer, the mean
is known to be µ� = �meter. We now take a number of seeds and apply the new fertilizer to
each of them. We let the wheat grow for a couple of weeks, and we measure the lengths.�e
null hypothesisH� is thus: µ = µ� = �, and the alternative hypothesisH� is that the mean of the
group with the new fertilizer is di�erent from �meter: µ ≠ �.

Again we follow Rouder’s calibration check; again, the end goal is to illustrate a mathematical
result, (�.�) below, which will be contrasted with (�.�). And again, to make the result concrete,
we will �rst perform a simulation, generating data from both models and updating our prior
beliefs from this data as before. We do this using the Bayesian t-test, where Je�reys’ prior
P�(σ) = ��σ is placed on the standard deviation σ within both hypothesesH� andH�. Within
H� we set the mean to µ� = � and withinH�, a standard Cauchy prior is placed on the e�ect size
(µ − µ�)�σ ; details are provided by Rouder et al. (����). Once again, the nuisance parameter σ
is equipped with an improper Je�reys’ prior, so, like in Experiment � above and for the reasons
detailed there, for simulating our data, we will choose a �xed value for σ ; the experiments will
give the same result regardless of the value we choose.

We generate �� observations for each fertilizer under bothmodels: forH� we sample data from a
normal distribution with mean µ� = �meter and we pick the variance σ � = �. ForH� we sample
data from a normal distribution where the variance is � as well, and the mean is determined
by the e�ect size above. We adopt a Cauchy prior to express our beliefs about what values of
the e�ect size are likely, which is mathematically equivalent to the e�ect size being sampled
from a standard Cauchy distribution. We follow Rouder’s experiment further, and set our prior
odds onH� andH�, before observing the data, to �-to-�. We sample �� data points from each
of the hypotheses, and we calculate the Bayes factors. We repeat this procedure ����� times.
�en, we bin the ����� resulting Bayes factors and construct a histogram. In Figure �.�a we
see the distribution of the posterior odds when either the null or the alternative are true in
one �gure. In Figure �.�b we see the calibration plot for this data from which Rouder checks
the interpretation of the posterior odds: the observed posterior odds is the ratio of the two
histograms, where the width of the bins is �.� on the log scale.�e posterior odds are calibrated,
in accordance with Rouder’s experiments. We repeated the experiment with the di�erence that
in each of the ��, ��� experiments we sampled more data points until the posterior odds were
at least ��-to-�, or the maximum number of �� data points was reached.�e histograms for this
experiment are in Figure �.�c. In Figure �.�d we can see that, as expected, the posterior odds
are calibrated under optional stopping as well.

Since σ � is a nuisance parameter equipped with its Type � prior, it does not matter what value
we take when sampling data. We may ask ourselves what happens if, similarly, we �x particular
values of the mean and sample from them, rather than from the prior; for sampling fromH�,
this does not change anything since the prior is concentrated on the single point µ� = �; in
H�, this means we can basically pick any µ and sample from it. In other words, we will check
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Figure �.�: Calibration in the t-test experiment, Section �.�.�, from ��, ��� replicate experiments. (a)�e distribution
of posterior odds as a histogram underH� andH� in one �gure. (b)�e observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d)�e observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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whether we have strong calibration rather than prior-calibration not just for σ �, but also for
the mean µ. We now �rst describe such an experiment, and will explain its importance further
below.

We generate �� observations under both models.�e mean length of the wheat is again set to
be �meter with the old fertilizer, and now we pick a particular value for the mean length of
the wheat with the new fertilizer: ��� centimeters. For the variance, we again pick σ � = �. We
continue to follow Rouder’s experiment and set our prior odds onH� andH�, before observing
the data, to �-to-�. We sample ��, ��� replicate experiments with �� + �� observations each, ��
from one of the hypotheses (normal with mean � forH�) and �� from the other (normal with
mean µ = �.� forH�), and we calculate the Bayes factors. In Figure �.�a we see that calibration is,
to some extent, violated: the points follow a line that is still approximately, but now not precisely,
a straight line. Now what happens in this experiment under optional stopping? We repeated
the experiment with the di�erence that we sampled more data points until the posterior odds
were at least ��-to-�, or the maximum number of �� data points was reached. In Figure �.�b
we see the results: calibration is now violated signi�cantly — when we stop early the nominal
posterior odds (on which our stopping rule was based) are on average signi�cantly higher than
the actual, observed posterior odds. We repeated the experiment with various choices of µ’s
withinH�, invariably getting similar results.� In mathematical terms, this illustrates that when
the stopping time τ is determined by optional stopping, then, for many a and µ′,

post-odds�µ = µ′ , “post-odds�x� , . . . , xτ = a” is very di�erent from a, (�.�)

We conclude that strong calibration for the parameter of interest µ is violated somewhat for �xed
sample sizes, but much more strongly under optional stopping. We did similar experiments for
a di�erent model with discrete data (see Appendix �.A), once again getting the same result. We
also did experiments in which the means ofH� were sampled from a di�erent prior than the
Cauchy: this also yielded plots which showed violation of calibration. Our experiments are all
based on a one-sample t-test; experiments with a two-sample t-test and ANOVA (also with the
same overall mean for bothH� andH�) yielded severe violation of strong calibration under
optional stopping as well.

�e Issue Why is this important? When checking Rouder’s prior-based calibration, we
sampled the e�ect size from a Cauchy distribution, and then we sampled data from the realized
e�ect size. We repeated this procedure many times to approximate the distribution on posterior
odds by a histogram analogous to that in Figure �.�a. But do we really believe that such a histo-
gram, based on the Cauchy prior, accurately re�ects our beliefs about the data?�e Cauchy
prior was advocated by Je�reys for the e�ect size corresponding to a location parameter µ
because it has some desirable properties in hypothesis testing, i.e. when comparing two models
(Ly, Verhagen and Wagenmakers, ����). For estimating a one-dimensional location parameter
directly, Je�reys (like most objective Bayesians) would advocate an improper uniform prior on
µ.�us, objective Bayesians may change their prior depending on the inference task of interest,

�Invariably, strong calibration is violated both with and without optional stopping. In the experiments without
optional stopping, the points still lie on an increasing and (approximately) straight line; the extent to which strong
calibration is violated — the slope of the straight line — depends on the e�ect size. In the experiments with optional
stopping, strong calibration is violated more strongly in the sense that the points do not follow a straight line anymore.



�� Chapter �. Why optional stopping is a problem for Bayesians

● ●

●

●
●

●
●

● ●
● ● ●

●

● ● ●

● ●

●

1

100

1 100
Nominal Posterior Odds

O
bs

er
ve

d 
Po

st
er

io
r O

dd
s

(a)

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●
●

●

●

●
●

●

● ●

●
●

●
●

1

100

1 100
Nominal Posterior Odds

O
bs

er
ve

d 
Po

st
er

io
r O

dd
s

(b)

Figure �.�: Calibration in the t-test experiment with �xed values for the means ofH� andH� (Section �.�.�, from
��, ��� replicate experiments). (a)�e observed posterior odds as a function of the nominal posterior odds. (b)�e
observed posterior odds as a function of the nominal posterior odds with optional stopping.

even when they are dealing with data representing the same underlying phenomenon. It does
then not seem realistic to study what happens if data are sampled from the prior; the prior is
used as a tool in inferring likely parameters or hypotheses, and not to be thought of as something
that prescribes how actual data will arise or tend to look like. �is is the �rst reason why it is
interesting to study not just prior calibration, but also strong calibration for the parameter of
interest. One might object that the sampling from the prior done by Rouder, and us, was only
done to illustrate the mathematical expression (�.�); perhaps sampling from the prior is not
realistic but (�.�) is still meaningful? We think that, because of the mathematical equivalence, it
does show that the relevance of (�.�) is questionable as soon as we use default priors.

Prior calibration in terms of (�.�) — which indeed still holds� — would be meaningful if
a Cauchy prior really described our prior beliefs about the data in the subjective Bayesian
sense (explained in Section �.�). But in this particular setup, the Cauchy distribution is highly
unrealistic: it is a heavy tailed distribution, which means that the probability of getting very
large values is not negligible, and it is very much higher than with, say, a Gaussian distribution.
To make the intuition behind this concrete, say that we are interested in measuring the height of
a type of corn that with the old fertilizer reaches on average �meters.�e probability that a new
fertilizer would have a mean e�ect of �meters or more under a standard Cauchy distribution
would be somewhat larger than one in twenty. For comparison: under a standard Gaussian, this
is as small as �.�� ⋅ ��−��. Do we really believe that it is quite probable (more than one in twenty)
that the fertilizer will enable the corn to grow to �meters on average? Of course we could use a
Cauchy with a di�erent spread, but which one? Default Bayesians have emphasized that such
choices should be made subjectively (i.e. based on informed prior guesses), but whatever value

�Note though that strong calibration still fails.
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one choices, the chosen functional form of the prior (a Cauchy has, e.g., no variance) severely
restricts the options, making any actual choice to some extent arbitrary. While growing crops
(although a standard example in this context) may be particularly ill-suited to be modeled by
heavy-tailed distributions, the same issue will arise with many other possible applications for
the default Bayesian t-test: one will be practically sure that the e�ect size will not exceed certain
values (not too large, not too small, certainly not negative), but it may be very hard to specify
exactly which values. As a purely objective Bayesian, this need not be such a big problem -
one resorts to the default prior and uses it anyway; but one has to be aware that in that case,
sampling from the prior — as done by Rouder — is not meaningful anymore, since the data
one may get may be quite atypical for the underlying process one is modeling.

In practice, most Bayesians are pragmatic, striking a balance between ‘�at’, ‘uninformative’
priors, prior knowledge and ease of computation. In the present example, they might put a
Gaussian prior withmean µ on the e�ect size instead, truncated at � to avoid negativemeans. But
then there is the question what variance this Gaussian should have — as a pragmatic Bayesian,
one has to acknowledge that there will always be arbitrary or ‘convenience’ aspects about one’s
priors.�is is the second reason why it is interesting to study not just prior calibration, but also
strong calibration for the parameter of interest.

�us, both from a purely objective and from a pragmatic Bayesian point of view, strong cal-
ibration is important. Except for nuisance parameters with Type � priors, we cannot expect
it to hold precisely (see Gu, Hoijtink and Mulder, ���� for a related point) — but this is �ne;
like with any sensitivity or robustness test, we acknowledge that our prior is imperfect and we
merely ask that our procedure remains reasonable, not perfect. And we see that by and large
this is the case if we use a �xed sample size, but not if we perform optional stopping. In our
view this indicates that for pragmatic Bayesians using default priors, there is a real problem
with optional stopping a�er all. However, within the taxonomy de�ned above, we implicitly
used Type I priors (Cauchy) here. Default priors are o�en of Type II, and then, as we will see,
the problems get signi�cantly worse.

As a �nal note, we note that in our strong calibration experiment, we chose parameter values
here which we deemed ‘reasonable’, by this we mean values which reside in a region of large
prior density — i.e. we sampled from µ that are not too far from µ�. Sampling from µ in the
tails of the prior would be akin to ‘really disbelieving our own prior’, and would be asking for
trouble. We repeated the experiment for many other values of µ not too far from µ� and always
obtained similar results. Whether our choices of µ are truly reasonable is of course up to debate,
but we feel that the burden of proof that our values are ‘unreasonable’ lies with those who want
to show that Bayesian methods can deal with optional stopping even with default priors.

�.�.� Example �: Bayesian linear regression and Type II Priors
We further extend the previous example to a setting of linear regression with �xed design. We
employ the default Bayes factor for regression from the R package Bayesfactor (Morey and
Rouder, ����), based on Liang et al. (����) and Zellner and Siow (����), see also Rouder and
Morey (����). �is function uses as default prior Je�reys’ prior for the intercept µ and the
variance (P�(µ, σ) ∼ ��σ), and a mixture of a normal and an inverse-gamma distribution for
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the regression coe�cients, henceforth g-prior:

y ∼ N �µ + Xβ, σ �� ,
β ∼ N ��, gσ �n(X′X)−�� , (�.��)

g ∼ IG� �
�
,
√
�
�
� .

Since the publication of Liang et al. (����), this prior has become very popular as a default prior
in Bayesian linear regression. Again we provide an example concerning the growth of wheat.
Suppose a researcher wants to investigate the relationship between the level of a fertilizer, and
the growth of the crop. We can model this experiment by linear regression with �xed design.
We add di�erent levels of the fertilizer to pots with seeds: the �rst pot gets a dose of �.�, the
second �.�, ans so on up to the level �.�ese are the x-values (covariates) of our simulation
experiment. If we would like to repeat the examples of the previous sections and construct
the calibration plots, we can generate the y-values — the increase or decrease in length of the
wheat from the intercept µ — according to the proposed priors in Eq. (�.��). First we draw a g
from an inverse gamma distribution, then we draw a β from the normal prior that we construct
with the knowledge of the x-values, and we compute each yi as the product of β and xi plus
Gaussian noise.

As we can see in Equation �.��, the prior on β contains a scaling factor that depends on the
experimental set-up — while it does not directly depend on the observations (y-values), it
does depend on the design/covariates (x-values). If there is no optional stopping, then for
a pragmatic Bayesian, the dependency on the x-values of the data is convenient to achieve
appropriate scaling; it poses no real problems, since the whole model is conditional on X: the
levels of fertilizer we administered to the plants. But under optional stopping, the dependency
on X does become problematic, for it is unclear which prior she should use! If initially a design
with �� pots was planned (a�er each dose from �.� up to �, another row of pots, one for each
dose is added), but a�er adding three pots to the original twenty (so now we have two pots
with the doses �.�, �.� and �.�, and one with each other dose), the researcher decides to check
whether the results already are interesting enough to stop, should she base her decision on the
posterior reached with prior based the initially planned design with �� pots, or the design at the
moment of optional stopping with �� pots?�is is not clear, and it does make a di�erence, since
the g-prior changes as more x-values become available. In Figure �.�a we see three g-priors on
the regression coe�cient β for the same �xed value of g, the same x-values as described in the
fertilizer experiment above, but increasing sample size. First, each dose is administered to one
plant, yielding the black prior distribution for β. Next, � plants are added to the experiment,
with doses �.�, �.� and �.�, yielding the red distribution: wider and less peeked, and lastly,
another �� plants are added to the experiment, yielding the blue distribution which puts even
less prior mass close to zero.

�is problem may perhaps be pragmatically ‘solved’ in practice in two ways: either one could,
as a rule, base the decision to stop at sample size n always using the prior for the given design
at sample size n; or one could, as a rule, always use the design for the maximum sample
size available. It is very unclear though whether there is any sense in which any of these two
(or other) solutions ‘handle optional stopping’ convincingly. In the �rst case, the notion of
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Figure �.�: Default priors that depend on aspects of the experimental setup: (a) G-priors for the regression example
of Section �.�.� with di�erent sample sizes: n = �� (black), n = �� (red) and n = �� (blue). (b) Je�reys’ prior for the
Bernoulli model for the speci�c case that n is �xed in advance (no optional stopping): a Beta (���, ���) distribution.

prior calibration is ill-de�ned, since post-odds�x� , . . . , xτ in (�.�) is ill-de�ned (if one tried
to illustrate (�.�) by sampling, the procedure would be unde�ned since one would not know
what prior to sample from until a�er one has stopped); in the second, one can perform it (by
sampling β from the prior based on the design at the maximum sample size), but it seems
rather meaningless, for if, for some reason or other, even more data were to become available
later on, this would imply that the earlier sampled data were somehow ‘wrong’ and would have
to be replaced.

What, then, about strong calibration? Fixing particular, ‘reasonable’ values of β does seem
meaningful in this regression example. However (�gures omitted), when we pick reasonable
values for β instead of sampling β from the prior, we obtain again the conclusion that strong
calibration is, on one hand, violated signi�cantly under optional stopping (where the prior used
in the decision to stop can be de�ned in either of the two ways de�ned above); but on the other
hand, only violatedmildly for �xed sample size settings. Using the taxonomy above, we conclude
that optional stopping is a signi�cant problem for Bayesians with Type-II priors.

�.�.� Discrete Data and Type-II Priors

Now let us turn to discrete data: we test whether a coin is fair or not. �e data D consist of
a sequence of n� ones and n� zeros. Under H�, the data are i.i.d. Bernoulli(���); under H�
they can be Bernoulli(θ) for any � ≤ θ ≤ � except ���, θ representing the bias of the coin. One
standard objective and default Bayes method (in this case coinciding with anMDL (Minimum
Description Length) method, (Grünwald, ����)) is to use Je�reys’ prior for the Bernoulli model
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withinH�. For �xed sample sizes, this prior is proper, and is given by

P�(θ) =
��

θ(� − θ)
⋅ �
π
, (�.��)

where the factor ��π is for normalization; see Figure �.�b. If we repeat Rouder’s experiment, and
sample from this prior, then the probability that we would pick an extreme θ, within �.�� of
either � or �, would be about �� times as large as the probability that we would pick a θ within
the equally wide interval [�.��, �.��]. But, lacking real prior knowledge, do we really believe
that such extreme values are much more probable than values around the middle? Most people
would say we do not: under the subjective interpretation, i.e. if one really believes one’s prior
in the common interpretation of ‘belief ’ given in Section �.�, then such a prior would imply a
willingness to bet at certain stakes. Je�reys’ prior is chosen in this case because it has desirable
properties such as invariance under reparameterization and good frequentist properties, but
not because it expresses any ‘real’ prior belief about some parameter values being more likely
than others.�is is re�ected in the fact that in general, it depends on the stopping rule. Using
the general de�nition of Je�reys’ prior (see e.g. Berger (����)), we see, for example, that in the
Bernoulli model, if the sample size is not �xed in advance but depends on the data (for example,
we stop sampling as soon as three consecutive �s are observed), then, as a simple calculation
shows, Je�reys’ prior changes and even becomes improper (Jordan, ����).

In Appendix �.A we give another example of a common discrete setting, namely the � × �
contingency table. Here the null hypothesis is a Bernoulli model and its parameter θ is intuitively
a nuisance parameter, and thus strong calibration relative to this parameter would be especially
desirable. However, the Bernoulli model does not admit a group structure, and hence neither
Je�reys’ nor any other prior we know of can serve as a Type � prior, and strong calibration
can presumably not be attained — the experiments show that it is certainly not attained if the
default Gunel and Dickey Bayes factors (Jamil et al., ����) are used (these are Type-II priors,
so we need to be careful about what prior to use in the strong calibration experiment; see
Appendix �.Afor details).

�.� Other Conceptualizations of Optional Stopping
We have seen several problems with optional stopping under default and pragmatic priors. Yet
it is known from the literature that, in some senses, optional stopping is indeed no problem
for Bayesians (Lindley, ����; Savage, ����; Edwards, Lindman and Savage, ����; Good, ����).
What then, is shown in those papers? Interestingly, di�erent authors show di�erent things; we
consider them in turn.

�.�.� Subjective Bayes optional stopping
�e Bayesian pioneers Lindley (����) and Savage (����) consider a purely subjective Bayesian
setting, appropriate if one truly believes one’s prior (and at �rst sight completely disconnected
from strong calibration — but see the two quotations further below). But what does this mean?
According to De Finetti, one of the two main founding fathers of modern, subjective Bayesian
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statistics, this implies a willingness to bet at small stakes, at the odds given by the prior.� For
example, a subjective Bayesian who would adopt Je�reys’ prior P� for the Bernoulli model as
given by (�.��) would be willing to accept a gamble that pays o� when the actual parameter
lies close to the boundary, since the corresponding region has substantially higher probability,
cf. the discussion underneath Eq. (�.��). For example, a gamble where one wins �� cents if the
actual Bernoulli parameter is in the set [�, �.��] ∪ [�.��, �] and pays ��� cents if it is in the set
[�.��, �.��] and neither pays nor gains otherwise would be considered acceptable� because
this gamble has positive expected gain under P�. We asked several Bayesians who are willing
to use Je�reys’ prior for testing whether they would also be willing to accept such a gamble;
most said no, indicating that they do not interpret Je�reys prior the way a subjective Bayesian
would.�

Now, if one adopts priors one really believes in in the above gambling sense, then it is easy to
show that Bayesian updating from prior to posterior is not a�ected by the employed stopping
rule; one ends up with the same posterior if one had decided the sample size n in advance or if
it had been determined, for example, because one was satis�ed with the results at this n. In this
sense a subjective Bayesian procedure does not depend on the stopping rule (as we have seen,
this is certainly not the case in general for default Bayes procedures).�is is the main point
concerning optional stopping of Lindley (����), also made by e.g. Savage (����) and Bernardo
and Smith (����), among many others. A second point made by Lindley (����, p. ���) is that the
decisions a Bayesian makes will “not, on average, be in error, when ignoring the stopping rule”.
Here the “average” is really an expectation obtained by integrating θ over the prior, and then
the data D over the distribution P(D � θ), making this claim very similar to prior calibration
(�.�) — once again, the claim is correct, but works only if one believes that sampling (or taking
averages over) the prior gives rise to data of the type one would really expect; and if one would
not be willing to bet based on the prior in the above sense, it indicates that perhaps one doesn’t
really expect that data a�er all.

We cannot resist to add here that, while for a subjective Bayesian, prior-based calibration is
sensible, even the founding fathers of subjective Bayes gave a warning against taking such a
prior too seriously:��

“ Subjectivists should feel obligated to recognize that any opinion (so much more
the initial one) is only vaguely acceptable... So it is important not only to know the
exact answer for an exactly speci�ed initial problem, but what happens changing
in a reasonable neighborhood the assumed initial opinion” De Finetti, as quoted by
Dempster (����). — note that when we checked for strong calibration, we took

�Savage, the other father, employs a slightly di�erent conceptualization in terms of preference orderings over
outcomes, but that need not concern us here.

�One might object that actual Bernoulli parameters are never revealed and arguably do not exist; but one could
replace the gamble by the following essentially equivalent gamble: a possibly biased coin is tossed ��, ��� times, but
rather than the full data only the average number of �s will be revealed. If it is in the set [�, �.��] ∪ [�.��, �] one gains
�� cents and if it is in the set [�.��, �.��] one pays ��� cents. If one really believes Je�reys’ prior, this gamble would be
considered acceptable.

�Another example is the Cauchy prior with scale one on the standardized e�ect size (Rouder et al., ����), as most
would agree that this is not realistic in psychological research.�anks to an anonymous reviewer for pointing this out.

��Many thanks to Chris Holmes for bringing these quotations to our attention.
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parameter values µ which were not too unlikely under the prior, which one may
perhaps view as ‘a reasonable neighborhood of the initial opinion’.

“ ...in practice the theory of personal probability is supposed to be an idealization
of one’s own standard of behavior; the idealization is o�en imperfect in such a way
that an aura of vagueness is attached to many judgments of personal probability...”
(Savage, ����).

Hence, one would expect that even a subjectivist would be interested in seeing what happens
under a sensitivity analysis, for example checking for strong rather than prior-based calibration
of the posterior. And even a subjectivist cannot escape the conclusion from our experiments
that optional stopping leads to more brittle (more sensitive to the prior choice) inference than
stopping at a �xed n.

�.�.� Frequentist optional stopping underH�

Interestingly, some other well-known Bayesian arguments claiming that ‘optional stopping
is no problem for Bayesians’ really show that some Bayesian procedures can deal, in some
cases, with optional stopping in a di�erent, frequentist sense.�ese include Edwards, Lindman
and Savage (����) and Good (����) and many others (the di�erence between this justi�cation
and the above one by Lindley (����) roughly corresponds to Example � vs. Example � in the
appendix to (Wagenmakers, ����)).We now explain this frequentist notion of optional stopping,
emphasizing that some (but — contrary to what is claimed — by no means all!) tests advocated
by Bayesians do handle optional stopping in this frequentist sense.

�e (or at least, ‘a common’) frequentist interpretation of handling optional stopping is about
controlling the Type I error of an experiment. A Type I error occurs when we reject the null
hypothesis when it is true, also called a false positive. �e probability of a Type I error for a
certain test is called the signi�cance level, usually denoted by α, and in psychology the value of
α is usually set to �.��. A typical classical hypothesis test computes a test statistic from the data
and uses it to calculate a p-value. It rejects the null hypothesis if the p-value is below the desired
Type I error level α. For other types of hypothesis tests, it is also a crucial property to control
the Type I error, by which we mean that we can make sure that the probability of making a
Type I error remains below our chosen signi�cance level α.�e frequentist interpretation of
handling optional stopping is that the Type I error guarantee holds if we do not determine the
sampling plan — and thus the stopping rule — in advance, but we may stop when we see a
signi�cant result. As we know, see e.g. Wagenmakers (����), maintaining this guarantee under
optional stopping is not possible with most classical p-value based hypothesis tests.

At �rst sight none of this seems applicable to Bayesian tests, which output posterior odds rather
than a p-value. However, in the case thatH� is simple (containing just one hypothesis, as in
Example �), there is a well-known intriguing connection between Bayes factors and Type I
error probabilities: — if we reject H� i� the posterior odds in favor ofH� are smaller than some
�xed α, then we are guaranteed a Type I error of at most α. And interestingly, this holds not
just for �xed sample sizes but even under optional stopping.�us, if one adopts the rejection
rule above (reject i� the posterior odds are smaller than a �xed α), for simpleH�, frequentist
optional stopping is no problem for Bayesians. �is is what was noted by Edwards, Lindman
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and Savage (����) (using a di�erent terminology) and Good (����), based on what Sanborn
and Hills (����) call the universal bound, and what in probability theory is known as Doob’s
maximal inequality (Doob, ����); see also Vovk et al. (����) and Van der Pas and Grünwald
(����).

But what happens ifH� is composite? As was only shown very recently (Hendriksen, De Heide
and Grünwald, ����), the Bayes factor still handles optional stopping in the frequentist sense if
all free parameters inH� are nuisance parameters observing a group structure and equipped
with the corresponding Type � prior and are shared withH�, an example being Je�reys’ Bayesian
t-test of Section �.�.�. As explained by Hendriksen, De Heide and Grünwald (����), for general
priors and compositeH� though, this is typically not the case; for example, the Gunel-Dickey
default Bayes factors for� × � tables (another compositeH�) cannot handle optional stopping
in the frequentist sense.

An Empirical Frequentist Study of Bayesian Optional Stopping Schönbrodt et al. (����)
performed a thorough simulation study to analyze frequentist performance of optional stopping
with Bayes factors both underH� and underH�.�ey con�ned their analysis to the Bayesian t-
test, i.e. our Example �, and found excellent results for the Bayesian optional stopping procedure
under a certain frequentist interpretation of the Bayes factors (posterior odds). As to optional
stopping under H� (concerning Type I error), this should not surprise us: in the Bayesian
t-test, all free parameters inH� are equipped with Type � priors, which, as we just stated, can
handle optional stopping. We thus feel that one should be careful in extrapolating their results
to other models such as those for contingency tables, which do not admit such priors. As to
optional stopping underH�, the authors provide a table showing how, for any given e�ect size
δ and desired level of Type II error β, a threshold B can be determined such that the standard
Bayesian t-test with (essentially) the following optional stopping and decision rule, has Type II
error β:

Take at least �� data points. A�er that stop as soon as posterior odds are larger
than B or smaller than ��B; acceptH� if they are smaller than ��B, and rejectH�
if larger than B.

For example, if δ ≥ �.� and one takes B = � then the Type II error will be smaller than �%
(see their Table �).�ey also determined the average sample size needed before this procedure
stops, and noted that this is considerably smaller than with the standard t-test optimized for
the given desired levels of Type I and Type II error and a priori expected e�ect size.�us, if one
determines the optional stopping threshold B in the Bayesian t-test based on their table, one
can use this Bayesian procedure as a frequentist testing method that signi�cantly improves on
the standard t-test in terms of sample size. Under this frequentist interpretation (which relies
on the speci�cs of a table), optional stopping with the t-test is indeed unproblematic. Note that
this does not contradict our �ndings in any way: our simulations show that if, when sampling,
we �x an e�ect size inH�, then the posterior is biased under optional stopping, which means
that we cannot interpret the posterior in a Bayesian way.
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�.� Discussion and Conclusion
When a researcher using Bayes factors for hypothesis testing truly believes in her prior, she
can deal with optional stopping in the Bayesian senses just explained. However, these senses
become problematic for every test that makes use of default priors, including all default Bayes
factor tests advocated within the Bayesian Psychology community. Such ‘default’ or ‘objective’
priors cannot be interpreted in terms of willingness to bet, and sometimes (Type II priors)
depend on aspects of the problem at hand such as the stopping rule or the inference task of
interest. To make sense of such priors generally, it thus seems necessary to restrict their use to
their appropriate domain of reference — for example, Je�reys’ prior for the Bernoulli model as
given by (�.��) is okay for Bayes factor hypothesis testing with �xed sample size, but not for more
complicated stopping rules.�is idea, which is unfortunately almost totally lacking from the
modern Bayesian literature, is the basis of a novel theory of the very concept of probability called
Safe Probability which is being developed by one of us (Grünwald, ����; Grünwald, ����).�at
(mis)use of optional stopping is a serious problem in practice, is shown by, among others, John,
Loewenstein and Prelec (����b); however, that paper is (implicitly) mostly about frequentist
methods. It would be interesting to investigate to what extent optional stopping when combined
with default Bayesian methods is actually a problem not just in theory but also in practice.�is
would, however, require substantial further study and simulation.

Rouder (����) argues in response to Sanborn and Hills (����) that the latter ‘evaluate and
interpret Bayesian statistics as if they were frequentist statistics’, and that ‘the more germane
question is whether Bayesian statistics are interpretable as Bayesian statistics’. Given the betting
interpretation above, the essence here is that we need to make a distinction between the purely
subjective and the pragmatic approach: we can certainly not evaluate and interpret all Bayesian
statistics as purely subjective Bayesian statistics, what Rouder (����) seems to imply. He advises
Bayesians to use optional stopping — without any remark or restriction to purely subjective
Bayesians, and for a readership of experimental psychologists who are in general not familiar
with the di�erent �avors of Bayesianism — as he writes further on: ‘Bayesians should consider
optional stopping in practice. [...] Such an approach strikes me as justi�able and reasonable,
perhaps with the caveat that such protocols be made explicit before data collection’.�e crucial
point here is that this can indeed be done when one works with a purely subjective Bayesian
method, but not with the default Bayes factors developed for practical use in social science: both
strong calibration and the frequentist Type I-error guarantees will typically be violated, and for
Bayes factors involving Type II-priors, both prior and strong calibration are even unde�ned.
In Table �.� we provide researchers with a simpli�ed overview of four common default Bayes
factors indicating which forms of optional stopping they can handle.

While some �nd the purely subjective Bayesian framework unsuitable for scienti�c research
(see e.g. Berger (����)), others deem it the only coherent approach to learning from data per
se. We do not want to enter this discussion, and we do not have to, since in practice, nowadays
most Bayesian statisticians tend to use priors which have both ‘default’ and ‘subjective’ aspects.
Basically, one uses mathematically convenient priors (which one does not really believe, so
they are not purely subjective — and hence, prior calibration is of limited relevance), but they
are also chosen to be not overly unrealistic or to match, to some extent, prior knowledge one
might have about a problem.�is position is almost inevitable in Bayesian practice (especially
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Prior Cal. Strong Calibration Freq. OS
Default Bayes Factors

T-test (Rouder et al., ����) 3 but... (I) 3 for σ (�)
3

7 for δ (e�ect size) (I)

ANOVA (Rouder et al., ����) 3 but... (I) 3 for µ, σ (�)
3

7 for δ (e�ect size) (I)
Regression

7 (II) 3 for µ, σ (�)
3(Rouder and Morey, ����) 7 for β (e�ects) (II)

Contingency Tables
7 (II) 7 7(Jamil et al., ����)

Bayes Factors with proper, fully
3 N/A N/Asubjective priors (Rouder, ����)

Table �.�: Overview of several common default Bayes Factors (from the R-package BayesFactor (Morey and Rouder,
����)), and their robustness against di�erent kinds of optional stopping (proofs can be found in Hendriksen, De Heide
and Grünwald, ����). ‘Prior Cal.’ means ‘prior calibration’ and ‘Freq. OS’ means ‘frequentist optional stopping’. Between
parentheses is the type of prior used, in the taxonomy introduced in this paper.�e but.. indicates that, formally, prior
calibration works for the priors, yet, because we are in the default setting, the Bayes factor is not fully subjective, so
prior calibration is not too meaningful — which is just the main point of this paper.

since we would not like to burden practitioners with all the subtleties regarding objective and
subjective Bayes), and we have no objections to it — but it does imply that, just like frequentists,
Bayesians should be careful with optional stopping. For researchers who like to engage in
optional stopping but care about frequentist concepts such as Type I error and power, we
recommend the safe tests of Grünwald, De Heide and Koolen, ���� based on the novel concept
of S-values: S-values are related to, and sometimes coincide with, default Bayes factors, but
tests based on S-values invariably handle a variation of frequentist optional stopping. For
example, the three default Bayes factors that handle frequentist optional stopping in Table �.�
are also S-values, but there exist other S-values for these three settings that also handle optional
stopping but achieve higher frequentist power; and there also exists an S-value for contingency
tables that, unlike the default Bayes factor, handles frequentist optional stopping.

Open Practices Statement Since all the data involved in this paper was generated by straight-
forward computer simulations rather than ‘real-world’ experiments, we did not make the data
available. No experiments were done, and hence no experiments were preregistered.
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�.A Example �: An independence test in a �x� contingency
table

Suppose that a researcher considers two hypotheses: a null hypothesisH� that states that there
is no di�erence in voting preference (Democrat or Republican) between men and women,
and an alternative hypothesisH� stating that men’s voting preferences di�er from the women’s
preferences. Both hypotheses are composite — we may think of a Bernoulli model forH�: the
data are i.i.d. with a �xed probability of � (voting Democrat). We are however not interested
in the percentage of the persons voting for the Democrats. We are, instead, only interested
to learn if this percentage is equal for men and women or not.�us our null hypothesisH�
consists of all Bernoulli distributions (all possible biases of the coin, in�nitely many between �
and �) where the model for the men is the same as for the women. Our alternative hypothesis is
composite as well: all the sets of two Bernoulli distributions — one for the men and one for
the women — that are not equal.�us, the Bernoulli parameter inH� is not a parameter of
interest; instead, at least intuitively, it is a nuisance parameter similar to the variance in Example
�; however, it does not observe a group structure and a Type �-prior for this parameter does
not exist.

Once again we follow Rouder’s experiments closely. We now use the Default Gunel and Dickey
Bayes Factors for Contingency Tables (Jamil et al., ����), which employs speci�c default choices
for the priors withinH� andH�, depending on four di�erent sampling schemes (see Section �.A
for the details). We immediately run into a problem similar to the problems described with the
g-prior and Je�reys’ prior for Bernoulli: which prior we should choose depends on the sampling
plan itself. Based on earlier work by Gunel and Dickey, ���� (GD from now on), Jamil et al.
(����) provide di�erent default priors depending on whether the sample size n and/or some of
the four counts (number of men/women voting democratic/republican) are �xed in advance.
For the case that none of these are �xed in advance, they provide a prior which assumes that
the four counts are all Poisson distributed; see the next section for details. Intuitively, none of
these priors seem to be compatible with the very idea of ‘optional stopping’ and prior-based
calibration under optional stopping cannot be tested (since it is not clear what prior to sample
from— a Type II-problem in our earlier terminology). Still, to check the claim that ‘optional
stopping is no problem for Bayesians’ we will again check whether strong calibration holds
with and without optional stopping. We display here the results of an experiment with the
prior advocated for the case in which neither n nor any of the counts are assumed to be �xed
in advance, since this seems the choice least incompatible with optional stopping. To avoid
discussion on this issue though, we also performed the experiments with the priors advocated
for other sampling schemes and combinations of di�erent sampling schemes, which led to very
similar results.

We will again �x some ‘reasonable’ parameter values in each model: when sampling fromH�,
we really sample from θ = ���, i.e. we suppose that ��% of either gender prefers the Democrats.
When we sample fromH�, we suppose that ��% of the men prefers the Democrats, but for the
women it is as much as ��%. If there are equally many men as women, under both hypotheses
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the average percentage is equal. Like Rouder, we set our prior odds to �-to-�.

We simulate ��.��� replicate experiments of ��� + ��� samples each, from bothH� andH�,
and we calculate the Bayes Factors. We construct the histograms and the plots with the odds
as before. We can check the calibration in Figure �.�b: we can see that the nominal posterior
odds agree roughly with the observed posterior odds. In Figure �.�d however, we see the same
plot where we did the same experiment with optional stopping. We can clearly see that even
the rough linear relationship from Figure �.�b is completely gone. For this example, we can
conclude as well that strong calibration is violated.

We now revisit the example, but we change the proportions under both hypotheses and survey
only ��men and �� women, and we use a joint multinomial sampling scheme (the grand total,
n, is �xed). UnderH�, ��% of both men and women vote for the Democrats, and underH�,
��% of the men and ��% of the women do. We repeat exactly the same experiment (without
optional stopping), and we see the resulting plot in Figure �.�a. We see that the relationship
between the observed and nominal posterior odds looks linear, but the slope is o�. If we repeat
the same experiment with optional stopping, we see in Figure �.�b that additionally the linear
association is missing.

We do note that the objective priors used in the default Bayes Factor test for contingency tables
are proper, so we are able to sample from them. In Figure �.�c we see what happens if we do
exactly the same experiment as in Figure �.�a, but sampled from the prior: we see the observed
posterior odds plotted against the nominal posterior odds, and the points lie approximately on
the identity line, in contrast with Figure �.�a. Furthermore, we performed the same experiment
as in Figure �.�b in this subjective Bayesian way, and we see that (in Rouder’s terminology) the
interpretation of the posterior odds holds with optional stopping in Figure �.�d. As said, we
do not think this kind of sampling is very meaningful in default prior context; we just add the
experiment to show that invariably, if one can and wants to sample from priors, then Rouder’s
conclusions do hold.

Subjective vs. Objective Interpretation In their original paper, Gunel andDickey, ���� (GD)
give a subjective interpretation to their priors.�ese priors depend on the sampling scheme,
i.e. on whether the grand total, and/or one or both of the marginals are known or set by the
experimenter in advance. At �rst sight, this seems to be at odds with the fact that, with subjective
priors, Bayesian procedures do not depend on the stopping rule used, as we pointed out in
Section �.�. However, closer inspection reveals that if one follows the method under their
subjective interpretation, then the posterior indeed would not depend on the sampling scheme.
How is this possible? To see this, note that GD do not model their data as coming in sequentially,
but rather they consider a �xed, single datum D = (N� , . . . ,N�) consisting of the four entries in
the contingency table (see e.g. Table �.� below).�e di�erent versions of their model and prior
are then arrived at by calculating, for example, P(D � H�) for the case that no information
about the design is given, and P(D �H� , n) (where n = N� +N� +N� +N�) for the case that the
grand total (sample size) n is determined in the experiment design. In every case, the posterior
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Figure �.�: Calibration of the contingency table experiment, Section �.A, from ��.��� replicate experiments. (a)�e
distribution of posterior odds as a histogram underH� andH� . (b)�e observed posterior odds as a function of the
nominal posterior odds. (c) Distribution of the posterior odds with optional stopping. (d)�e observed posterior odds
as a function of the nominal posterior odds with optional stopping.
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Figure �.�:�e observed posterior odds as a function of the nominal posterior odds, from ��.��� replicate experiments.
(a) Contingency table experiment, without optional stopping. (b) Contingency table experiment, with optional stopping.
(c) Subjective Bayesian version of the experiment in a. (d) Subjective Bayesian version of the experiment in b.
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odds post-odds�D will remain the same; for they require the prior to be used when n is given,
P(H� � n), to be arrived at by conditioning the original prior P(H�) on the grand total n. In
particular, this means that a truly subjective Bayesian who follows the GD model would have
P(H� � n) ≠ P(H�), and could thus not use a (���, ���) ‘uninformative’ prior on (H� ,H�)
both when the grand total is known in advance and when it is not. In other words, the posterior
is not a�ected by the sampling scheme, but the prior is.

Details of the experiments For Example � above, we used the functioncontingencyTableBF.
�is function gives the user the option to choose between four di�erent so called sampling
schemes, implementing the Default Gunel and Dickey Bayes Factors for Contingency Tables
of Jamil et al. (����). Which of the four options to use, depends on which covariates in the
contingency table are to be treated as �xed or as random, depending on the design of the
experiment.

� � sum
� n� − k� n� − k� n − k
� k� k� k

sum n� n� n

Table �.�: �x� contingency table; the four entries correspond to the numbers N� ,N� , . . . ,N� above.

In the �rst sampling scheme, none of the cell counts in the contingency table are considered �xed,
and the assumption is made that each cell count is Poisson distributed.�e default prior for
this scheme is a conjugate gamma prior on the Poisson rate parameter, with hyperparameters
suggested by Gunel and Dickey. We use this sampling scheme for our �rst experiment in
Section �.A, but as we noted in our discussion in the same section, the question of ‘what is the
actual sampling scheme’ and hence ‘what is the right default prior’ for the type of experiment
we do — the same experiment with and without optional stopping — is really impossible to
answer.�us, we repeated the experiment with other (combinations of) sampling schemes, in
all cases obtaining similar results. Indeed, when we perform the experiment without optional
stopping, we sample a �xed number of men and women, whereupon one margin (n� , n�) and
the grand total (n) is �xed. For our second example (Figure �.�a and �.�b) we used the prior
advocated for the sampling scheme in which the grand total (n in Table �.�) is �xed. Under
this sampling scheme, the cell counts are assumed to be jointly multinomial distributed, and a
Dirichlet conjugate distribution with the suggested parameters (Jamil et al., ����) is used as
prior, which in our case amounts to a uniform prior on the Bernoulli parameter θ; see Jamil
et al. (����) for details. Again, using instead one of the priors advocated for one of the other
sampling schemes leads to very similar results.



Chapter �

Optional stopping with Bayes
Factors

Abstract
It is o�en claimed that Bayesian methods, in particular Bayes factor methods for hypothesis
testing, can deal with optional stopping. We �rst give an overview, using elementary probability
theory, of three di�erent mathematical meanings that various authors give to this claim: (�)
stopping rule independence, (�) posterior calibration and (�) (semi-) frequentist robustness to
optional stopping. We then prove theorems to the e�ect that these claims do indeed hold in
a general measure-theoretic setting. For claims of type (�) and (�), such results are new. By
allowing for non-integrable measures based on improper priors, we obtain particularly strong
results for the practically important case of models with nuisance parameters satisfying a group
invariance (such as location or scale). We also discuss the practical relevance of (�)–(�), and
conclude that whether Bayes factor methods actually perform well under optional stopping
crucially depends on details of models, priors and the goal of the analysis.

�.� Introduction
In recent years, a surprising number of scienti�c results have failed to hold up to continued
scrutiny. Part of this ‘replicability crisis’ may be caused by practices that ignore the assumptions
of traditional (frequentist) statistical methods (John, Loewenstein and Prelec, ����a). One of
these assumptions is that the experimental protocol should be completely determined upfront.
In practice, researchers o�en adjust the protocol due to unforeseen circumstances or collect
data until a point has been proven.�is practice, which is referred to as optional stopping, can
cause true hypotheses to be wrongly rejected much more o�en than these statistical methods
promise.

Bayes factor hypothesis testing has long been advocated as an alternative to traditional testing

��
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that can resolve several of its problems; in particular, it was claimed early on that Bayesian
methods continue to be valid under optional stopping (Lindley, ����; Rai�a and Schlaifer,
����; Edwards, Lindman and Savage, ����). In particular, the latter paper claims that (with
Bayesian methods) “it is entirely appropriate to collect data until a point has been proven or
disproven, or until the data collector runs out of time, money, or patience.” In light of the
replicability crisis, such claims have received much renewed interest (Wagenmakers, ����;
Rouder, ����; Schönbrodt et al., ����; Yu et al., ����; Sanborn and Hills, ����). But what do
they mean mathematically? It turns out that di�erent authors mean quite di�erent things by
‘Bayesian methods handle optional stopping’; moreover, such claims are o�en shown to hold
only in an informal sense, or in restricted contexts.�us, the �rst goal of the present chapter is to
give a systematic overview and formalization of such claims in a simple, expository setting and,
still in this simple setting, explain their relevance for practice: can we e�ectively rely on Bayes
factor testing to do a good job under optional stopping or not? As we shall see, the answer is
subtle.�e second goal is to extend the reach of such claims to more general settings, for which
they have never been formally veri�ed and for which veri�cation is not always trivial.

Overview In Section �.�, we give a systematic overview of what we identi�ed to be the three
main mathematical senses in which Bayes factor methods can handle optional stopping, which
we call τ-independence, calibration, and (semi-)frequentist. We �rst do this in a setting chosen
to be as simple as possible — �nite sample spaces and strictly positive probabilities — allowing
for straightforward statements and proofs of results. In Section �.�, we explain the practical
relevance of these three notions. It turns out that whether or not we can say that ‘the Bayes
factor method can handle optional stopping’ in practice is a subtle matter, depending on the
speci�cs of the given situation: what models are used, what priors, and what is the goal of the
analysis. We can thus explain the paradox that there have also been claims in the literature that
Bayesian methods cannot handle optional stopping in certain cases; such claims were made,
for example by Yu et al., ����; Sanborn and Hills, ����, and also by ourselves (De Heide and
Grünwald, ����). We also brie�y discuss safe tests (Grünwald, De Heide and Koolen, ����)
which can be interpreted as a novel method for determining priors that behave better under
frequentist optional stopping.�e chapter has been organized in such a way that these �rst two
sections can be read with only basic knowledge of probability theory and Bayesian statistics.
For convenience, we illustrate Section �.� with an informally stated example involving group
invariances, so that the reader gets a complete overview of what the later, more mathematical
sections are about.

Section �.� extends the statements and results to a much more general setting allowing for
a wide range of sample spaces and measures, including measures based on improper priors.
�ese are priors that are not integrable, thus not de�ning standard probability distributions
over parameters, and as such they cause technical complications. Such priors are indispensable
within the recently popularized default Bayes factors for common hypothesis tests (Rouder
et al., ����; Rouder et al., ����; Jamil et al., ����).

In Section �.�, we provide stronger results for the case in which both models satisfy the same
group invariance. Several (not all) default Bayes factor settings concern such situations; prom-
inent examples are Je�reys’ (����) Bayesian one- and two-sample t-tests, in which the models
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are location and location-scale families, respectively. Many more examples are given by Berger
and various collaborators (Berger, Pericchi and Varshavsky, ����; Dass and Berger, ����; Ba-
yarri et al., ����; Bayarri et al., ����).�ese papers provide compelling arguments for using
the (typically improper) right Haar prior on the nuisance parameters in such situations; for
example, in Je�reys’ one-sample t-test, one puts a right Haar prior on the variance. In particular,
in our restricted context of Bayes factor hypothesis testing, the right Haar prior does not su�er
from themarginalization paradox (Dawid, Stone and Zidek, ����) that o�en plagues Bayesian
inference based on improper priors (we brie�y return to this point in the conclusion).

Haar priors and group invariant models were studied extensively by Eaton, ����; Andersson,
����; Wijsman, ����, whose results this chapter depends on considerably. When nuisance
parameters (shared by bothH� andH�) are of suitable form and the right Haar prior is used, we
can strengthen the results of Section �.�: they now hold uniformly for all possible values of the
nuisance parameters, rather than in the marginal, ‘on average’ sense we consider in Section �.�.
However — and this is an important insight — we cannot take arbitrary stopping rules if we
want to handle optional stopping in this strong sense: our theorems only hold if the stopping
rules satisfy a certain intuitive condition, which will hold in many but not all practical cases:
the stopping rule must be “invariant” under some group action. For instance, a rule such as
‘stop as soon as the Bayes factor is ≥ ��’ is allowed, but a rule (in the Je�reys’ one-sample t-test)
such as ‘stop as soon as∑ x�i ≥ ��’ is not.

�e chapter ends with supplementary material, comprising Section �.A containing basic back-
groundmaterial about groups, and Section �.B containing all longermathematical proofs.

Scope and Novelty Our analysis is restricted to Bayesian testing and model selection using
the Bayes factor method; we do not make any claims about other types of Bayesian inference.
Some of the results we present were already known, at least in simple settings; we refer in each
case to the �rst appearance in the literature that we are aware of. In particular, our results in
Section �.�.� are implied by earlier results in the seminal work by Berger and Wolpert, ���� on
the likelihood principle; we include them any way since they are a necessary building block for
what follows.�e real mathematical novelties in the chapter are the results on calibration and
(semi-) frequentist optional stopping with general sample spaces and improper priors and the
results on the group invariance case (Section �.�.�–�.�).�ese results are truly novel, and —
although perhaps not very surprising— they do require substantial additional work not covered
by Berger and Wolpert, ����, who are only concerned with τ-independence. In particular, the
calibration results require the notion of the ‘posterior odds of some particular posterior odds’,
which need to be de�ned under arbitrary stopping times.�e di�culty here is that, in contrast
to the �xed sample sizes where even with continuous-valued data, the Bayes factor and the
posterior odds usually have a distribution with full support, with variable stopping times, the
support may have ‘gaps’ at which its density is zero or very near zero. An additional di�culty
encountered in the group invariance case is that one has to de�ne �ltrations based on maximal
invariants, which requires excluding certain measure-zero points from the sample space.
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�.� �e Simple Case
Consider a �nite set X and a sample space Ω ∶= X T where T is some very large (but in this
section, still �nite) integer. One observes a sample xτ ≡ x� , . . . , xτ , which is an initial segment
of x� , . . . , xT ∈ X T . In the simplest case, τ = n is a sample size that is �xed in advance; but,
more generally τ is a stopping time de�ned by some stopping rule (which may or may not be
known to the data analyst), de�ned formally below.

We consider a hypothesis testing scenario where we wish to distinguish between a null hypo-
thesis H� and an alternative hypothesis H�. Both H� and H� are sets of distributions on Ω, and
they are each represented by unique probability distributions P� and P� respectively. Usually,
these are taken to be Bayesian marginal distributions, de�ned as follows. First one writes, for
both k ∈ {�, �}, Hk = {Pθ �k � θ ∈ Θk} with ‘parameter spaces’ Θk ; one then de�nes or assumes
some prior probability distributions π� and π� on Θ� and Θ�, respectively.�e Bayesian mar-
ginal probability distributions are then the corresponding marginal distributions, i.e. for any
set A ⊂ Ω they satisfy:

P�(A) = �
Θ�

Pθ ��(A)dπ�(θ) ; P�(A) = �
Θ�

Pθ ��(A)dπ�(θ). (�.�)

For now we also further assume that for every n ≤ T , every xn ∈ X n , P�(Xn = xn) > � and
P�(Xn = xn) > � (full support), where here, as below, we use random variable notation, Xn = xn
denoting the event {xn} ⊂ Ω. We note that there exist approaches to testing and model choice
such as testing by nonnegative martingales (Shafer et al., ����; Van der Pas and Grünwald, ����)
and minimum description length (Barron, Rissanen and Yu, ����; Grünwald, ����) in which
the P� and P� may be de�ned in di�erent (yet related) ways. Several of the results below extend
to general P� and P�; we return to this point at the end of the chapter, in Section �.�. In all
cases, we further assume that we have determined an additional probability mass function π
on {H� ,H�}, indicating the prior probabilities of the hypotheses.�e evidence in favor of H�
relative to H� given data xτ is now measured either by the Bayes factor or the posterior odds.
We now give the standard de�nition of these quantities for the case that τ = n, i.e., that the
sample size is �xed in advance. First, noting that all conditioning below is on events of strictly
positive probability, by Bayes’ theorem, we can write for any A ⊂ Ω,

π(H� � A)
π(H� � A)

= P(A � H�)
P(A � H�)

⋅ π(H�)
π(H�)

, (�.�)

where here, as in the remainder of the chapter, we use the symbol π to denote not just prior, but
also posterior distributions on {H� ,H�}. In the case that we observe xn for �xed n, the event
A is of the form Xn = xn . Plugging this into (�.�), the le�-hand side becomes the standard
de�nition of posterior odds, and the �rst factor on the right is called the Bayes factor.

�.�.� First Sense of Handling Optional Stopping: τ-Independence
Now, in reality we do not necessarily observe Xn = xn for �xed n but rather Xτ = xτ where τ is
a stopping time that may itself depend on (past) data (and that in some cases may in fact be
unknown to us).�is stopping time may be de�ned in terms of a stopping rule f ∶ �T

i≥�X
i →
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{stop, continue}. τ ≡ τ(xT) is then de�ned as the random variable which, for any sample
x� , . . . , xT , outputs the smallest n such that f (x� , . . . , xn) = stop. For any given stopping time
τ, any � ≤ n ≤ T and sequence of data xn = (x� , . . . , xn), we say that xn is compatible with τ if
it satis�es Xn = xn ⇒ τ = n. We let X τ ⊂ �T

i=�X i be the set of all sequences compatible with
τ.

Observations take the form Xτ = xτ , which is equivalent to the event Xn = xn ; τ = n for some
n and some xn ∈ X n which of necessity must be compatible with τ. We can thus instantiate
(�.�) to

π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

= P(τ = n � Xn = xn ,H�) ⋅ π(H� � Xn = xn)
P(τ = n � Xn = xn ,H�) ⋅ π(H� � Xn = xn)

=

= π(H� � Xn = xn)
π(H� � Xn = xn)

. (�.�)

where in the �rst equality we used Bayes’ theorem (keeping Xn = xn on the right of the
conditioning bar throughout); the second equality stems from the fact that Xn = xn logically
implies τ = n, since xn is compatible with τ; the probability P(τ = n � Xn = xn ,Hj) must
therefore be � for j = �, �. Combining (�.�) with Bayes’ theorem we get:

γ(xn
)

����������������������������������������������������������������������������������������������������������������������������������������
π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

β(xn
)

����������������������������������������������������������������
P�(Xn = xn)
P�(Xn = xn)

⋅ π(H�)
π(H�)

(�.�)

where we introduce the notation γ(xn) for the posterior odds and β(xn) for the Bayes factor
based on sample xn , calculated as if n were �xed in advance.�

We see that the stopping rule plays no role in the expression on the right.�us, we have shown
that, for any two stopping times τ� and τ� that are both compatible with some observed xn , the
posterior odds one arrives at will be the same irrespective of whether xn came to be observed
because τ� was used or if xn came to be observed because τ� was used. We say that the posterior
odds do not depend on the stopping rule τ and call this property τ-independence. Incidentally,
this also justi�es that we write the posterior odds as γ(xn), a function of xn alone, without
referring to the stopping time τ.

�e fact that the posterior odds given xn do not depend on the stopping rule is the �rst
(and simplest) sense in which Bayesian methods handle optional stopping. It has its roots in
the stopping rule principle, the general idea that the conclusions obtained from the data by
‘reasonable’ statistical methods should not depend on the stopping rule used.�is principle
was probably �rst formulated by Barnard (����; ����); Barnard, ���� very implicitly showed
that, under some conditions, Bayesian methods satisfy the stopping rule principle (and hence
satisfy τ-independence). Other early sources are Lindley (����) and Edwards, Lindman and
Savage (����). Lindley gave an informal proof in the context of speci�c parametric models;

�A slightly di�erent way to get to (�.�), which some may �nd even simpler, is to start with P�(Xn
= xn , τ = n) =

P�(Xn
= xn) (since Xn

= xn implies τ = n), whence π(Hj � Xn
= xn , τ = n) ∝ P j(Xn

= xn , τ = n)π(Hj) =

P j(Xn
= xn)π(Hj).
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in Section �.�.� we show that, under some regularity conditions, the result indeed remains
true for general σ-�nite P� and P�. A special case of our result (allowing continuous-valued
sample spaces but not general measures) was proven by Rai�a and Schlaifer, ����, and a more
general statement about the connection between the ‘likelihood principle’ and the ’stopping rule
principle’ which implies our result in Section �.�.� can be found in the seminal work (Berger
and Wolpert, ����), who also provide some historical context. Still, even though not new in
itself, we include our result on τ-independence with general sample spaces and measures since
it is the basic building block of our later results on calibration and semi-frequentist robustness,
which are new.

Finally, we should note that both Rai�a and Schlaifer, ���� and Berger and Wolpert, ����
consider more general stopping rules, which can map to a probability of stopping instead of
just {stop, continue}. Also, they allow the stopping rule itself to be parameterized: one deals
with a collection of stopping rules { fξ ∶ ξ ∈ Ξ} with corresponding stopping times {τξ ∶ ξ ∈ Ξ},
where the parameter ξ is equipped with a prior such that ξ and Hj are required to be a priori
independent. Such extensions are straightforward to incorporate into our development as well
(very roughly, the second equality in (�.�) now follows because, by conditional independence,
we must have that P(τξ = n � Xn = xn ,H�) = P(τξ = n � Xn = xn ,H�)); we will not go into
such extensions any further in this chapter.

�.�.� Second Sense of Handling Optional Stopping: Calibration
An alternative de�nition of handling optional stopping was introduced by Rouder, ����. Rouder
calls γ(xn) the nominal posterior odds calculated from an obtained sample xn , and de�nes the
observed posterior odds as

π(H� � γ(xn) = c)
π(H� � γ(xn) = c)

as the posterior odds given the nominal odds. Rouder �rst notes that, at least if the sample
size is �xed in advance to n, one expects these odds to be equal. For instance, if an obtained
sample yields nominal posterior odds of �-to-� in favor of the alternative hypothesis, then it
must be � times as likely that the sample was generated by the alternative probability measure.
In the terminology of De Heide and Grünwald, ����, Bayes is calibrated for a �xed sample size
n. Rouder then goes on to note that, if n is determined by an arbitrary stopping time τ (based
for example on optional stopping), then the odds will still be equal — in this sense, Bayesian
testing is well-behaved in the calibration sense irrespective of the stopping rule/time. Formally,
the requirement that the nominal and observed posterior odds be equal leads us to de�ne the
calibration hypothesis, which postulates that c = P(H� � γ = c)�P(H� � γ = c) holds for any
c > � that has non-zero probability. For simplicity, for now we only consider the case with equal
prior odds for H� and H� so that γ(xn) = β(xn).�en the calibration hypothesis says that, for
arbitrary stopping time τ, for every c such that β(xτ) = c for some xτ ∈ X τ , one has

c = P(β(xτ) = c � H�)
P(β(xτ) = c � H�)

. (�.�)
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In the present simple setting, this hypothesis is easily shown to hold, becausewe canwrite:

P(β(Xτ) = c � H�)
P(β(Xτ) = c � H�)

=
∑y∈X τ

∶β(y)=c P({y} � H�)
∑y∈X τ ;β(y)=c P({y} � H�)

=
∑y∈X τ

∶β(y)=c cP({y} � H�)
∑y∈X τ

∶β(y)=c P({y} � H�)
= c.

Rouder noticed that the calibration hypothesis should hold as a mathematical theorem, without
giving an explicit proof; he demonstrated it by computer simulation in a simple parametric
setting. Deng, Lu and Chen, ���� gave a proof for a somewhat more extended setting yet
still with proper priors. In Section �.�.� we show that a version of the calibration hypothesis
continues to hold for general measures based on improper priors, and in Section �.�.�we extend
this further to strong calibration for group invariance settings as discussed below.

We note that this result, too, relies on the priors themselves not depending on the stopping time,
an assumption which is violated in several standard default Bayes factor settings. We also note
that, if one thinks of one’s priors in a default sense — they are practical but not necessarily fully
believed — then the practical implications of calibration are limited, as shown experimentally
by De Heide and Grünwald, ����. One would really like a stronger form of calibration in which
(�.�) holds under a whole range of distributions in H� and H�, rather than in terms of P� and
P� which average over a prior that perhaps does not re�ect one’s beliefs fully. For the case that
H� and H� share a nuisance parameter g taking values in some set G, one can de�ne this strong
calibration hypothesis as stating that, for all c with β(xτ) = c for some xτ ∈ X τ , all g ∈ G,

c = P(β(xτ) = c � H� , g)
P(β(xτ) = c � H� , g)

. (�.�)

where β is still de�ned as above; in particular, when calculating β one does not condition
on the parameter having the value g, but when assessing its likelihood as in (�.�) one does.
De Heide and Grünwald, ���� show that the strong calibration hypothesis certainly does
not hold for general parameters, but they also show by simulations that it does hold in the
practically important case with group invariance and right Haar priors (Example �.� provides
an illustration). In Section �.�.� we show that in such cases, one can indeed prove that a version
of (�.�) holds.

�.�.� �ird SenseofHandlingOptional Stopping: (Semi-)Frequentist
In classical, Neyman-Pearson style null hypothesis testing, a main concern is to limit the false
positive rate of a hypothesis test. If this false positive rate is bounded above by some α > �,
then a null hypothesis signi�cance test (NHST) is said to have signi�cance level α, and if the
signi�cance level is independent of the stopping rule used, we say that the test is robust under
frequentist optional stopping.

De�nition �.�. A function S ∶ �T
i=m X

i → {�, �} is said to be a frequentist sequential test with
signi�cance level α and minimal sample size m that is robust under optional stopping relative
to H� if for all P ∈ H�

P (∃n,m < n ≤ T ∶ S(Xn) = �) ≤ α,

i.e. the probability that there is an n at which S(Xn) = � (‘the test rejects H� when given sample
Xn ’) is bounded by α.
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In our present setting, we can take m = � (larger m become important in Section �.�.�), so n
runs from � to T and it is easy to show that, for any � ≤ α ≤ �, we have

P� �∃n, � < n ≤ T ∶
�

β(xn)
≤ α� ≤ α. (�.�)

Proof. For any �xed α and any sequence xT = x� , . . . , xT , let τ(xT) be the smallest n such that,
for the initial segment xn of xT , β(xn) ≥ ��α (if no such n exists we set τ(xT) = T).�en τ is a
stopping time, Xτ is a random variable, and the probability in (�.�) is equal to the P�-probability
that β(Xτ) ≥ ��α, which by Markov’s inequality is bounded by α.

It follows that, ifH� is a singleton, then the sequential test S that rejectsH� (outputs S(Xn) = �)
whenever β(xn) ≥ ��α is a frequentist sequential test with signi�cance level α that is robust
under optional stopping.

�e fact that Bayes factor testing with singletonH� handles optional stopping in this frequentist
way was noted by Edwards, Lindman and Savage (����) and also emphasized by Good, ����,
among many others. If H� is not a singleton, then (�.�) still holds, so the Bayes factor still
handles optional stopping in a mixed frequentist (Type I-error) and Bayesian (marginalizing
over prior within H�) sense. From a frequentist perspective, one may not consider this to be
fully satisfactory, and hence we call it ‘semi-frequentist’. In some quite special situations though,
it turns out that the Bayes factor satis�es the stronger property of being truly robust to optional
stopping in the above frequentist sense, i.e. (�.�) will hold for all P ∈ H� and not just ‘on average’.
�is is illustrated in Example �.� below and formalized in Section �.�.�.

�.� Discussion: why should one care?
Nowadays, even more so than in the past, statistical tests are o�en performed in an on-line
setting, in which data keeps coming in sequentially and one cannot tell in advance at what point
the analysis will be stopped and a decision will be made — there may indeed be many such
points. Prime examples include group sequential trials (Proschan, Lan and Wittes, ����) and
A�B-testing, to which all internet users who visit the sites of the tech giants are subjected. In
such on-line settings, it may or may not be a good idea to use Bayesian tests. But can and should
they be used? Together with the companion paper (De Heide and Grünwald, ����) (DHG from
now on— corresponding to Chapter � of this dissertation), the present chapter sheds some light
on this issue. Let us �rst highlight a central insight from DHG, which is about the case in which
none of the results discussed in the present chapter apply: in many practical situations, many
Bayesian statisticians use priors that are themselves dependent on parts of the data and/or the
sampling plan and stopping time. Examples are Je�reys prior with the multinomial model and
the Gunel-Dickey default priors for �x� contingency tables advocated by Jamil et al., ����. With
such priors, �nal results evidently depend on the stopping rule employed, and even though
such methods typically count as ‘Bayesian’, they do not satisfy τ-independence. �e results
then become non-interpretable under optional stopping (i.e. stopping using a rule that is not
known at the time the prior is decided upon), and as argued by De Heide and Grünwald, ����,
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the notions of calibration and frequentist optional stopping even become unde�ned in such a
case.

In such situations, one cannot rely on Bayesian methods to be valid under optional stopping
in any sense at all; in the present chapter we thus focus on the case with priors that are �xed
in advance, and that themselves do not depend on the stopping rule or any other aspects of
the design. For expository simplicity, we consider the question of whether Bayes factors with
such priors are valid under optional stopping in two extreme settings: in the �rst setting, the
goal of the analysis is purely exploratory— it should give us some insight in the data and/or
suggest novel experiments to gather or novel models to analyze data with. In the second setting
we consider the analysis as ‘�nal’ and the stakes are much higher — real decisions involving
money, health and the like are involved — a typical example would be a Stage � clinical trial,
which will decide whether a new medication will be put to market or not.

For the �rst, exploratory setting, exact error guarantees might neither be needed at all nor
obtainable anyway, so the frequentist sense of handling optional stopping may not be that
important. Yet, one would still like to use methods that satisfy some basic sanity checks for use
under optional stopping. τ-independence is such a check: any method for which it does not
hold is simply not suitable for use in a situation in which details of the stopping rule may be
unknown. Also calibration can be viewed as such a sanity check: Rouder, ���� introduced it
mainly to show that Bayesian posterior odds remainmeaningful under optional stopping: they
still satisfy some key property that they satisfy for �xed sample sizes.

For the second high stakes setting, mere sanity and interpretability checks are not enough:
most researchers would want more stringent guarantees, for example on Type-I and/or Type-II
error control. At the same time, most researchers would acknowledge that their priors are far
from perfect, chosen to some extent for purposes of convenience rather than true belief.� Such
researchersmay thus want the desired Type-I error guarantees to hold for all P ∈ H�, and not just
in average over the prior as in (�.�). Similarly, in the high stakes setting the form of calibration
(�.�) that can be guaranteed for the Bayes factor would be considered too weak, and one would
hope for a stronger form of calibration as explained at the end of Section �.�.�.

DHG show empirically that for some o�en-used models and priors, strong calibration can be
severely violated under optional stopping. Similarly, it is possible to show that in general, Type-I
error guarantees based on Bayes factors simply do not hold simultaneously for all P ∈ H� for
suchmodels and priors.�us, one should be cautious using Bayesianmethods in the high stakes
setting, despite adhortations such as the quote by Edwards, Lindman and Savage, ���� in the
introduction (or similar quotes by e.g. Rouder et al., ����): these existing papers invariably use
τ-independence, calibration or Type-I error control with simple null hypotheses as a motivation
to— essentially — use Bayes factor methods in any situation, including presumably high-stakes
situations and situations with composite null hypotheses.�

�Even De Finetti and Savage, fathers of subjective Bayesianism, acknowledged this: see Section � of DHG.
�Since the authors of the present chapter are inclined to think frequentist error guarantees are important, we

disagree with such claims, as in fact a subset of researchers calling themselves Bayesians would as well. To witness,
a large fraction of recent ISBA (Bayesian) meetings is about frequentist properties of Bayesian methods; also the
well-known Bayesian authors Good, ���� and Edwards, Lindman and Savage, ���� focus on showing that Bayes factor
methods achieve a frequentist Type-I error guarantee, albeit only for the simple H� case.
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Still, and this is equally important for practitioners, while frequentist error control and strong
calibration are violated in general, in some important special cases they do hold, namely if the
models H� and H� satisfy a group invariance. We proceed to give an informal illustration of
this fact, deferring the mathematical details to Section �.�.�.

Example �.�. Consider the one-sample t-test as described by Rouder et al., ����, going back
to Je�reys, ����.�e test considers normally distributed data with unknown standard deviation.
�e test is meant to answer the question whether the data has mean µ = � (the null hypothesis)
or some othermean (the alternative hypothesis). Following (Rouder et al., ����), a Cauchy prior
density, denoted by πδ(δ), is placed on the e�ect size δ = µ�σ .�e unknown standard deviation
is a nuisance parameter and is equipped with the improper prior with density πσ(σ) = �

σ under
both hypotheses.�is is the so-called right Haar prior for the variance.�is gives the following
densities on n outcomes:

p�,σ(xn) =
�

(�πσ �)n��
⋅ exp� �

�σ �

n
�
i=�

x�i � [ = p�,σ ,�(xn) ] (�.�)

p�,σ ,δ(xn) =
�

(�πσ �)n��
⋅ exp�−n

�
�� x

σ
− δ�

�
+ �

�
n ∑

n
i=�(xi − x)�

σ � ��� , where

x = �
n

n
�
i=�

xi ,

so that the corresponding Bayesian marginal densities are given by

p�(x
n) = �

∞

�
p�,σ(xn)πσ(σ)dσ ,

p�(x
n) = �

∞

�
�
∞

−∞

p�,σ ,δ(xn)πδ(δ)πσ(σ)dδ dσ = �
∞

�
p�,σ(xn)πσ(σ)dσ .

Our results in Section �.� imply that — under a slight, natural restriction on the stopping rules
allowed — the Bayes factor p�(xn)�p�(xn) is truly robust to optional stopping in the above
frequentist sense.�at is, (�.�) will hold for all P ∈ H�, i.e. all σ > �, and not just ‘on average’.
�us, we can give Type I error guarantees irrespective of the true value of σ . Similarly, strong
calibration in the sense of Section �.�.� holds for all P ∈ H�. �e use of a Cauchy prior is
not essential in this construction; the result will continue to hold for any proper prior on δ,
including point priors that put all mass on a single value of δ.

As we show in Section �.�, these results extend to a variety of settings, namely wheneverH� and
H� share a common so-called group invariance. In the t-test example, it is a scale invariance —
e�ectively this means that for all δ, all σ , the distributions of

X� , . . . , Xn under p�,σ ,δ , and σX� , . . . , σXn under p�,�,δ , coincide. (�.�)

For other models, one could have a translation invariance; for the full normal family, one has
both translation and scale invariance; for yet other models, onemight have a rotation invariance,
and so on. Each such invariance is expressed as a group—a set equipped with a binary operation
that satis�es certain axioms.�e group corresponding to scale invariance is the set of positive
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reals, and the operator is scalar multiplication or equivalently division; similarly, the group
corresponding to translation invariance is the set of all reals, and the operation is addition.

In the general case, one starts with a group G that satis�es certain further restrictions (detailed
in Section �.�), a model {p�,g ,θ ∶ g ∈ G , θ ∈ Θ} where g represents the invariant parameter
(vector) and the parameterization must be such that the analogue of (�.�) holds. In the example
above g = σ is the variance and θ is set to δ ∶= µ�σ . One then singles out a special value of θ,
say θ�, one sets H� ∶= {p�,g ,θ� ∶ g ∈ G}; within H� one puts an arbitrary prior on θ. For every
group invariance, there exists a corresponding right Haar prior on G; one equips both models
with this prior on G.�eorem �.� and �.� imply that in all models constructed this way, we
have strong calibration and Type-I error control uniformly for all g ∈ G. While this is hinted at
in several papers (e.g. (Bayarri et al., ����; Dass and Berger, ����)) and the special case for the
Bayesian t-test was implicitly proven in earlier work by Lai, ����, it seems to never have been
proven formally in general before.

Our results thus imply that in some situations (group invariance) with composite null hypo-
theses, Type-I error control for all P ∈ H� under optional stopping is possible with Bayes factors.
What about Type-II error control and composite null hypotheses that do not satisfy a group
structure?�is is partially addressed by the safe testing approach of Grünwald, De Heide and
Koolen, ���� (see alsoHoward et al., ����b for a related approach).�ey show that for completely
arbitrary H� and H�, for any given prior π� on H�, there exists a corresponding prior π� on H�,
the reverse information projection prior, so that, for all P ∈ H�, one has Type-I error guarantees
under frequentist optional continuation, a weakening of the idea of optional stopping. Further,
if one wants to get control of Type-II error guarantees under optional stopping/continuation,
one can do so by �rst choosing another special prior π∗� on H� and picking the corresponding
π∗� on H�. Essentially, like in ‘default’ or ‘objective’ Bayes approaches, one chooses special priors
in lieu of a subjective choice; but the priors one ends up with are sometimes quite di�erent
from the standard default priors, and, unlike these, allow for frequentist error control under
optional stopping.

�.� �e General Case
Let (Ω,F) be a measurable space. Fix some m ≥ � and consider a sequence of functions
Xm+� , Xm+� , . . . on Ω so that each Xn , n > m takes values in some �xed set (‘outcome space’)
X with associated σ-algebra Σ. When working with proper priors we invariably take m = �
and then we de�ne Xn ∶= (X� , X� , . . . , Xn) and we let Σ(n) be the n-fold product algebra of Σ.
When working with improper priors it turns out to be useful (more explanation further below)
to takem > � and de�ne an initial sample random variable �X(m)� on Ω, taking values in some
set �X m� ⊆ X m with associated σ-algebra �Σ(m)�. In that case we set, for n ≥ m, �X n� = {xn =
(x� , . . . , xn) ∈ X n ∶ xm = (x� , . . . , xm) ∈ �X m�}, and Xn ∶= (�X(m)�, Xm+� , Xm+� , . . . , Xn)
and we let Σ(n) be �Σ(m)� ×∏n

j=m+� Σ. In either case, we let F n be the σ-algebra (relative to
Ω) generated by (Xn , Σ(n)).�en (F n)n=m ,m+�, . . . is a �ltration relative to F and if we equip
(Ω,F) with a distribution P then �X(m)�, Xm+� , Xm+� , . . . becomes a random process adapted
to F . A stopping time is now generalized to be a function τ ∶ Ω → {m + �,m + �, . . .} ∪ {∞}
such that for each n > m, the event {τ = n} is F n-measurable; note that we only consider
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stopping a�er m initial outcomes. Again, for a given stopping time τ and sequence of data
xn = (x� , . . . , xn), we say that xn is compatible with τ if it satis�es Xn = xn ⇒ τ = n, i.e.
{ω ∈ Ω � Xn(ω) = xn} ⊂ {ω ∈ Ω � τ(ω) = n}.

H� and H� are now sets of probability distributions on (Ω,F). Again one writes Hj = {Pθ � j �
θ ∈ Θ j}where now the parameter setsΘ j (which, however, could itself be in�nite-dimensional)
are themselves equipped with suitable σ-algebras.

We will still represent both H� and H� by unique measures P� and P� respectively, which we
now allow to be based on (�.�) with improper priors π� and π� that may be in�nite measures.
As a result P� and P� are positive real measures that may themselves be in�nite. We also allow
X to be a general (in particular uncountable) set. Both non-integrability and uncountability
cause complications, but these can be overcome if suitable Radon-Nikodym derivatives exist.
To ensure this, we will assume that for all n ≥ max{m, �}, for all k ∈ {�, �} and θ ∈ Θk , P

(n)
θ �k ,

P
(n)
� and P

(n)
� are all mutually absolutely continuous and that the measures P

(n)
� and P

(n)
� are

σ-�nite.�en there also exists a measure ρ on (Ω,F) such that, for all such n, P
(n)
� , P

(n)
� and

ρ(n) are all mutually absolutely continuous: we can simply take ρ(n) = P(n)� , but in practice, it
is o�en possible and convenient to take ρ such that ρ(n) is the Lebesgue measure on Rn , which
is why we explicitly introduce ρ here.

�e absolute continuity conditions guarantee that all required Radon-Nikodym derivatives
exist. Finally, we assume that the posteriors πk(Θk � xm) (as de�ned in the standard manner in
(�.��) below; when m = � these are just the priors) are proper probability measures (i.e. they
integrate to �) for all xm ∈ �X m�.�is �nal requirement is the reason why we sometimes need to
consider m > � and nonstandard sample spaces �X n� in the �rst place: in practice , one usually
starts with the standard setting of a (Ω,F) where m = � and all Xi have the same status. In all
practical situations with improper priors π� and/or π� that we know of, there is a smallest �nite
j and a setX ○ ⊂ X j that has measure � under all probability distributions in H� ∪H�, such that,
restricted to the sample space X j �X ○, the measures P

( j)
� and P

( j)
� are σ-�nite and mutually

absolutely continuous, and the posteriors πk(Θk � x j) are proper probability measures. One
then sets m to equal this j, and sets �X m� ∶= X m �X ○, and the required properness will be
guaranteed. Our initial sample �X(m)� is a variation of what is called (for example, by Bayarri
et al. (����)) a minimal sample. Yet, the sample size of a standard minimal sample is itself a
random quantity; by restricting X m to �X m�, we can take its sample size m to be constant
rather than random, which will greatly simplify the treatment of optional stopping with group
invariance; see Example �.� and �.� below.

We henceforth refer to the setting now de�ned (with m and initial space �X m� satisfying the
requirements above) as the general case.

We need an analogue of (�.�) for this general case. If P� and P� are probability measures, then
there is still a standard de�nition of conditional probability distributions P(H � A) in terms of
conditional expectation for any given σ-algebraA; based on this, we can derive the required
analogue in two steps. First, we consider the case that τ ≡ n for some n > m. We know in
advance that we observe Xn for a �xed n: the appropriate A is then F n , π(H � A)(ω) is
determined by Xn(ω) hence can be written as π(H � Xn), and a straightforward calculation
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gives that

π(H� � Xn = xn)
π(H� � Xn = xn)

=
�
�
�
�
dP
(n)
� �dρ(n)

dP
(n)
� �dρ(n)

�
�
(xn)
�
�
⋅ π(H�)
π(H�)

(�.��)

where (dP(n)� �dρ(n)) and (dP
(n)
� �dρ(n)) are versions of the Radon-Nikodym derivatives

de�ned relative to ρ(n). �e second step is now to follow exactly the same steps as in the
derivation of (�.�), replacing β(Xn) by (�.��) wherever appropriate (we omit the details).�is
yields, for any n such that ρ(τ = n) > �, and for ρ(n)-almost every xn that is compatible with
τ,

γn
��������������������������������������������������
π(H� � xn)
π(H� � xn)

= π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

βn

���������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
dP
(n)
� �dρ(n)

dP
(n)
� �dρ(n)

�
�
(xn)
�
�
⋅ π(H�)
π(H�)

, (�.��)

where here, as below, for n ≥ m, we abbreviate π(Hk � Xn = xn) to π(Hk � xn).

�e above expression for the posterior is valid if P� and P� are probability measures; we will
simply take it as the de�nition of the Bayes factor for the general case. Again this coincides with
standard usage for the improper prior case. In particular, let us de�ne the conditional posteriors
and Bayes factors given �X(m)� = xm in the standard manner, by the formal application of
Bayes’ rule, for k = �, � and measurable Θ′k ⊂ Θk and F-measurable A,

πk(Θ′k � xm) ∶=
∫Θ′k

dP(m)θ�k
dρ(m) (x

m)dπk(θ)

∫Θk

dP(m)θ�k
dρ(m) (xm)dπk(θ)

(�.��)

Pk(A � xm) ∶= Pk(A � �X(m)� = xm) ∶= �
Θk

Pθ �k(A � �X(m)� = xm)dπk(θ � xm), (�.��)

where Pθ �k(A � �X(m)� = xm) is de�ned as the value that (a version of) the conditional
probability Pθ �k(A � Fm) takes when �X(m)� = xm , and is thus de�ned up to a set of ρ(m)-
measure �.

With these de�nitions, it is straightforward to derive the following coherence property, which
automatically holds if the priors are proper, and which in combination with (�.��) expresses
that �rst updating on xm and then on xm+� , . . . , xn (multiplying posterior odds given xm with
the Bayes factor for n outcomes given Xm = xm , which we denote by βn�m) has the same
result as updating based on the full x� , . . . , xn at once (i.e. multiplying the prior odds with the
unconditional Bayes factor βn for n outcomes):

π(H� � Xn = xn , τ = n)
π(H� � Xn = xn , τ = n)

=

βn�m
���������������������������������������������������������������������������������������������������������������������������
�
�
dP
(n)
� (⋅ � xm)

dP
(n)
� (⋅ � xm)

(xn)
�
�
⋅ π(H� � xm)
π(H� � xm)

. (�.��)
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�.�.� τ-independence, general case
�e general version of the claim that the posterior odds do not depend on the speci�c stopping
rule that was used is now immediate, since the expression (�.��) for the Bayes factor does not
depend on the stopping time τ.

�.�.� Calibration, general case
We will now show that the calibration hypothesis continues to hold in our general setting.
From here onward, we make the further reasonable assumption that for every xm ∈ �X m�,
P�(τ =∞ � xm) = P�(τ =∞ � xm) = � (the stopping time is almost surely �nite), and we de�ne
Tτ ∶= {n ∈ N>m � P�(τ = n) > �}.

To prepare further, let {Bj � j ∈ Tτ} be any collection of positive random variables such that for
each j ∈ Tτ , Bj is F j-measurable. We can de�ne the stopped random variable Bτ as

Bτ ∶=
∞

�
j=�

{τ= j}Bj =
∞

�
j=m+�

{τ= j}Bj , (�.��)

where we note that, under this de�nition, Bτ is well-de�ned even if EP�
[τ] =∞.

We can de�ne the induced measures on the positive real line under the null and alternative
hypothesis for any probability measure P on (Ω,F):

P[Bτ] ∶ B(R>�)→ [�, �] ∶ A� P �B−�τ (A)� . (�.��)

where B(R>�) denotes the Borel σ-algebra of R>�. Note that, when we refer to P[Bn], this is
identical to P[Bτ] for the stopping time τ which on all of Ω stops at n.�e following lemma is
crucial for passing from �xed-sample size to stopping-rule based results.

Lemma �. Let Tτ and {Bn � n ∈ Tτ} be as above. Consider two probability measures P� and
P� on (Ω,F). Suppose that for all n ∈ Tτ , the following �xed-sample size calibration property
holds:

for some �xed c > �, P�[Bn]-almost all b ∶ P�(τ = n)
P�(τ = n)

⋅ dP�
[Bn](⋅ � τ = n)

dP�[Bn](⋅ � τ = n)
(b) = c ⋅ b. (�.��)

�en we have

for P�[Bτ]-almost all b :
dP�[Bτ]

dP�[Bτ]
(b) = c ⋅ b. (�.��)

�e proof is in Section �.B in the supplementary material.

In this subsection we apply this lemma to the measures Pk(⋅ � xm) for arbitrary �xed xm ∈
�X m�, with their induced measures P

[γτ]
� (⋅ � xm), P

[γτ]
� (⋅ � xm) for the stopped posterior odds

γτ . Formally, the posterior odds γn as de�ned in (�.��) constitute a random variable for each n,
and, under our mutual absolute continuity assumption for P� and P�, γn can be directly written
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as dP(n)�

dP(n)�

⋅ π(H�)�π(H�). Since, by de�nition, the measures Pk(⋅ � xm) are probability measures,
the Radon-Nikodym derivatives in (�.��) and (�.��) are well-de�ned.

Lemma �. We have for all xm ∈ �X m�, all n > m:

for P
[γn]
� (⋅ � xm)-almost all b :

P
[γn]
� (τ = n � xm)

P
[γn]
� (τ = n � xm)

⋅ dP
[γn]
� (⋅ � xm)

dP
[γn]
� (⋅ � xm)

(b) = π(H� � xm)
π(H� � xm)

⋅ b.

(�.��)

Combining the two lemmas now immediately gives (�.��) below, and combining further with
(�.��) and (�.��) gives (�.��):

Corollary �. In the setting considered above, we have for all xm ∈ �X m�:

for P
[γτ]
� (⋅ � xm)-almost all b :

π(H� � xm)
π(H� � xm)

⋅ dP
[γτ]
� (⋅ � xm)

dP
[γτ]
� (⋅ � xm)

(b) = b, (�.��)

and also

for P
[γτ]
� (⋅ � xm)-almost all b :

π(H�)
π(H�)

⋅ dP
[γτ]
�

dP
[γτ]
�

(b) = b, (�.��)

Inwords, the posterior odds remain calibrated under any stopping rule τwhich stops almost surely
at times m < τ <∞.

For discrete and strictly positive measures with prior odds π(H�)�π(H�) = �, we always have
m = �, and (�.��) is equivalent to (�.�). Note that P

[γτ]
� (⋅ � xm)-almost everywhere in (�.��) is

equivalent to P
[γτ]
� (⋅ � xm)-almost everywhere because the two measures are assumed to be

mutually absolutely continuous.

�.�.� (Semi-)Frequentist Optional Stopping
In this section we consider our general setting as in the beginning of Section �.�.�, i.e. with the
added assumption that the stopping time is a.s. �nite, and with Tτ ∶= { j ∈ N>m � P�(τ = j) >
�}.

Consider any initial sample xm ∈ �X m� and let P� � xm and P� � xm be the conditional Bayes
marginal distributions as de�ned in (�.��). We �rst note that, by Markov’s inequality, for any
nonnegative random variable Z on Ω with, for all xm ∈ �X m�, EP� �xm [Z] ≤ �, we must have, for
� ≤ α ≤ �, P�(Z−� ≤ α � xm) ≤ EP� �xm [Z]�α−� ≤ α.

Proposition �. Let τ be any stopping rule satisfying our requirements. Let βτ�m be the stopped
Bayes factor given xm, i.e., in accordance with (�.��), βτ�m = ∑∞j=m+� {τ= j}β j�m with β j�m as
given by (�.��).�en βτ�m satis�es, for all xm ∈ �X m�, EP� �xm [βτ�m] ≤ �, so that, by the reasoning
above, P�( �

βτ�m ≤ α � x
m) ≤ α.
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Proof. We have

EP� �xm [γτ] = � bP
[γτ]
� (db � xm) =

�
dP
[γτ]
� (b � xm)

dP
[γτ]
� (b � xm)

⋅ π(H� � xm)
π(H� � xm)

P
[γτ]
� (db � xm) =

π(H� � xm)
π(H� � xm)

,

where the �rst equality follows by de�nition of expectation, the second follows from Corollary �,
and the third follows from the fact that the integral equals �.

But now note that

βτ�m =
∞

�
j=m+�

{τ= j}β j�m =
∞

�
j=m+�

{τ= j}γ j ⋅
π(H� � xm)
π(H� � xm)

= γτ ⋅
π(H� � xm)
π(H� � xm)

,

where the second equality follows from (�.��) together with the �rst equality in (�.��). Combin-
ing the two equations we get:

EP� �xm �βτ�m� = EP� �xm �γτ ⋅
π(H� � xm)
π(H� � xm)

� = �.

�e desired result now follows by plugging in a particular stopping rule: let S ∶ �∞i=m+�X
i →

{�, �} be the frequentist sequential test de�ned by setting, for all n > m, xn ∈ �X n�: S(xn) = �
if and only if βn�m ≥ ��α.

Corollary �. Let t∗ ∈ {m+ �,m+�, . . .}∪{∞} be the smallest t∗ > m for which β−�t�m ≤ α.�en
for arbitrarily large T, when applied to the stopping rule τ ∶=min{T , t∗}, we �nd that

P�(∃n,m < n ≤ T ∶ S(Xn) = � � xm) = P�(∃n,m < n ≤ T ∶ β−�n�m ≤ α � x
m) ≤ α.

�e corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to H� (De�nition �.�). Note that, just as in the simple case, the setting is really just
‘semi-frequentist’ whenever H� is not a singleton.

�.� Optional stopping with group invariance
Whenever the null hypothesis is composite, the previous results only hold under the marginal
distribution P� or, in the case of improper priors, under P�(⋅ � Xm = xm). When a group
structure can be imposed on the outcome space and (a subset of the) parameters that is joint to
H� and H�, stronger results can be derived for calibration and frequentist optional stopping.
Invariably, such parameters function as nuisance parameters and our results are obtained if
we equip them with the so-called right Haar prior which is usually improper. Below we show
how we then obtain results that simultaneously hold for all values of the nuisance parameters.
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Such cases include many standard testing scenarios such as the (Bayesian variations of the)
t-test, as illustrated in the examples below. Note though that our results do not apply to settings
with improper priors for which no group structure exists. For example, if Pθ �� expresses that
X� , X� , . . . are i.i.d. Poisson(θ), then from an objective Bayes or MDL point of view it makes
sense to adopt Je�reys’ prior for the Poisson model; this prior is improper, allows initial sample
size m = �, but does not allow for a group structure. For such a prior we can only use the
marginal results Corollary � and Corollary �. Group theoretic preliminaries, such as de�nitions
of a (topological) group, the right Haar measure, et cetera can be found in Section �.A of the
supplementary material.

�.�.� Background for �xed sample sizes
Here we prepare for our results by providing some general background on invariant priors
for Bayes factors with �xed sample size n on models with nuisance parameters that admit a
group structure, introducing the right Haar measure, the corresponding Bayes marginals, and
(maximal) invariants. We use these results in Section �.�.� to derive Lemma �, which gives us a
strong version of calibration for �xed n.�e setting is extended to variable stopping times in
Section �.�.�, and then Lemma � is used in this extended setting to obtain our strong optional
stopping results in Section �.�.� and �.�.�.

For now, we assume a sample space �X n� that is locally compact and Hausdor�, and that is
a subset of some product space X n where X is itself locally compact and Hausdor�. �is
requirement is met, for example, when X = R and �X n� = X n . In practice, the space �X n�
is invariably a subset of X n where some null-set is removed for technical reasons that will
become apparent below. We associate �X n� with its Borel σ-algebra which we denote as F n .
Observations are denoted by the random vector Xn = (X� , . . . , Xn) ∈ �X n�. We thus consider
outcomes of �xed sample size, denoting these as xn ∈ �X n�, returning to the case with stopping
times in Section �.�.� and �.�.�.

From now on we let G be a locally compact group G that acts topologically and properly� on
the right of �X n�. As hinted to before, this proper action requirement sometimes forces the
removal from X n of some trivial set with measure zero under all hypotheses involved.�is is
demonstrated at the end of Example �.� below.

Let P�,e and P�,e (notation to become clear below) be two arbitrary probability distributions
on �X n� that are mutually absolutely continuous. We will now generate hypothesis classes H�
and H�, both sets of distributions on �X n� with parameter space G, starting from P�,e and P�,e ,
where e ∈ G is the group identity element. �e group action of G on �X n� induces a group
action on these measures de�ned by

Pk ,g(A) ∶= (Pk ,e ⋅ g)(A) ∶= Pk ,e(A ⋅ g−�) = � {A}(x ⋅ g) Pk ,e(dx) (�.��)

for any set A ∈ F n , k = �, �. When applied to A = �X n�, we get Pk ,g(A) = �, for all g ∈ G,

�A group acts properly on a set Y if the mapping ψ ∶ Y × G � Y × Y de�ned by ψ(y, g) = (y ⋅ g , y) is a proper
mapping, i.e. the inverse image of ψ of each compact set in Y ×Y is a compact set in Y ×G. (Eaton (����), De�nition �.�)
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whence we have created two sets of probability measures parameterized by g, i.e.,

H� ∶= {P�,g � g ∈ G} ; H� ∶= {P�,g � g ∈ G}. (�.��)

In this context, g ∈ G, can typically be viewed as nuisance parameter, i.e. a parameter that
is not directly of interest, but needs to be accounted for in the analysis.�is is illustrated in
Example �.� and Example �.� below.�e examples also illustrate how to extend this setting to
cases where there are more parameters than just g ∈ G in either H� or H�. We extend the whole
setup to our general setting with non-�xed n in Section �.�.�.

We use the right Haar measure for G as a prior to de�ne the Bayes marginals:

Pk(A) = �
G
�
�X n�

{A} dPk ,g ν(dg) (�.��)

for k = �, � and A ∈ F n . Typically, the right Haar measure is improper so that the Bayes
marginals Pk are not integrable. Yet, in all cases of interest, they are (a) still σ-�nite, and, (b),
P�, P� and all distributions Pk ,g with k = �, � and g ∈ G are mutually absolutely continuous; we
will henceforth assume that (a) and (b) are the case.

Example �.� (continued) Consider the t-test of Example �.�. For consistency with the earlier
Example �.�, we abbreviate for general measures P on �X n�, (dP�dλ) (the density of distribu-
tion P relative to Lebesgue measure on Rn) to p. Normally, the one-sample t-test is viewed as a
test betweenH� = {P�,σ � σ ∈ R>�} andH′� = {P�,σ ,δ � σ ∈ R>� , δ ∈ R}, but we can obviously also
view it as test between H� and H� = {P�,σ} by integrating out the parameter δ to obtain

p�,σ(xn) = � p�,σ ,δ(xn)πδ(δ)dδ. (�.��)

�e nuisance parameter σ can be identi�ed with the group of scale transformations
G = {c � c ∈ R>�}. We thus let the sample space be �X n� = Rn � {�}n , i.e., we remove the
measure-zero set {�}n , such that the group action is proper on the sample space.�e group
action is de�ned by xn ⋅ c = c xn for xn ∈ �X n�, c ∈ G. Take e = � and let, for k = �, �, Pk ,e be the
distribution with density pk ,� as de�ned in (�.�) and (�.��).�e measures P�,g and P�,g de�ned
by (�.��) then turn out to have the densities p�,σ and p�,σ as de�ned above, with σ replaced by
g.�us, H� and H� as de�ned by (�.�) and (�.��) are indeed in the form (�.��) needed to state
our results.

In most standard invariant settings, H� and H� share the same vector of nuisance parameters,
and one can reduce H� and H� to (�.��) in the same way as above, by integrating out all other
parameters; in the example above, the only non-nuisance parameter was δ.�e scenario of
Example �.� can be generalized to a surprisingly wide variety of statistical models. In practice
we o�en start with a model H� = {P�,γ ,δ ∶ γ ∈ Γ, θ ∈ Θ} that implicitly already contains a
group structure, and we single out a special subset {P� , γ, θ� ∶ γ ∈ Γ}; this is what we inform-
ally described in Example �.�. More generally, we can start with potentially large (or even
nonparametric) hypotheses

H′k = {Pθ′�k ∶ θ′ ∈ Θ′k} (�.��)
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which at �rst are not related to any group invariance, but which we want to equip with an
additional nuisance parameter determined by a group G acting on the data. We can turn this
into an instance of the present setting by �rst choosing,for k = �, �, a proper prior density πk
on Θ′k , and de�ning Pk ,e to equal the corresponding Bayes marginal, i.e.

Pk ,e(A) ∶= � Pθ′�k(A) dπk(θ′). (�.��)

We can then generateHk = {Pk ,g � g ∈ G} as in (�.��) and (�.��). In the example above,H′� would
be the set of all Gaussians with a single �xed variance σ �

� andΘ′� = Rwould be the set of all e�ect
sizes δ, and the groupG would be scale transformation; but there aremany other possibilities. To
give but a few examples, Dass and Berger, ���� consider testing the Weibull vs. the log-normal
model, the exponential vs. the log-normal, correlations in multivariate Gaussians, and Berger,
Pericchi and Varshavsky, ���� consider location-scale families and linear models where H� and
H� di�er in their error distribution. Importantly, the group G acting on the data induces groups
Gk , k = �, �, acting on the parameter spaces, which depend on the parameterization. In our
example, the Gk were equal to G, but, for example, if H� is Weibull and H� is log-normal, both
given in their standard parameterizations, we get G� = {g�,b ,c � g�,b ,c(β, γ) = (bβc , γ�c), b >
�, c > �} and G� = {g�,b ,c � g�,b ,c(µ, σ) = (cµ + log(b), cσ), b > �, c > �}. Several more
examples are given by Dass, ����.

On the other hand, clearly not all hypothesis sets can be generated using the above approach.
For instance, the hypothesis H′� = {Pµ ,σ � µ = �, σ > �} with Pµ ,σ a Gaussian measure with
mean µ and standard deviation σ cannot be represented as in (�.��).�is is due to the fact that
for σ , σ ′ > �, σ ≠ σ ′, no element g ∈ R>� exists such that for any measurable set A ⊆ �X n� the
equality

P�,σ(A) = P�,σ ′(A ⋅ g−�)

holds.�is prevents an equivalent construction of H′� in the form of (�.��).

We now turn to the main ingredient that will be needed to obtain results on optional stopping:
the quotient σ-algebra.

De�nition �.� (Eaton (����), Chapter �). A group G acting on the right of a set Y induces
an equivalence relation: y� ∼ y� if and only if there exists g ∈ G such that y� = y� ⋅ g. �is
equivalence relation partitions the space in orbits:Oy = {y ⋅ g � g ∈ G}, the collection of which is
called the quotient space Y�G.�ere exists a map, the natural projection, from Y to the quotient
space which is de�ned by φY ∶ Y → Y�G ∶ y � {y ⋅ g � g ∈ G}, and which we use to de�ne the
quotient σ-algebra

Gn = {φ−��X n�(φ�X n�(A)) � A ∈ F n}. (�.��)

De�nition �.� (Eaton (����), Chapter �). A random element Un on �X n� is invariant if for all
g ∈ G, xn ∈ �X n�, Un(xn) = Un(xn ⋅ g).�e random element Un ismaximal invariant if Un is
invariant and for all yn ∈ �X n�, Un(xn) = Un(yn) implies xn = yn ⋅ g for some g ∈ G.

�us, Un is maximal invariant if and only if Un is constant on each orbit, and takes di�erent
values on di�erent orbits; φ�X n� is thus an example of a maximal invariant. Note that any
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maximal invariant is Gn-measurable. �e importance of this quotient σ-algebra Gn is the
following evident fact:

Proposition �. For �xed k ∈ {�, �}, every invariant Un has the same distribution under all
Pk ,g , g ∈ G.

Chapter � of (Eaton, ����) provides several methods and examples how to construct a concrete
maximal invariant, including the �rst two given below. Since βn is invariant under the group
action of G (see below), βn is an example of an invariant, although not necessarily of a maximal
invariant.

Example �.� (continued) Consider the setting of the one-sample t-test as described above
in Example �.�. A maximal invariant for xn ∈ �X n� is

Un(xn) = (x���x��, x���x��, . . . , xn��x��).

Example �.�. A second example, with a group invariance structure on two parameters, is the set-
ting of the two-sample t-test with the right Haar prior (which coincides here with Je�reys’ prior)
π(µ, σ) = ��σ (see Rouder et al. (����) for details): the group is G = {(a, b) � a > �, b ∈ R}. Let
the sample space be �X n� = Rn � span(en), where en denotes a vector of ones of length n
(this is to exclude the measure-zero line for which the s(xn) is zero), and de�ne the group
action by xn ⋅ (a, b) = axn + ben for xn ∈ �X n�.�en (Eaton (����), Example �.��) a maximal
invariant for xn ∈ �X n� is Un(xn) = (xn − xen)�s(xn), where x is the sample mean and
s(xn) = �∑n

i=�(xi − x)��
���
.

However, we can also construct a maximal invariant similar to the one in Example �.�, which
gives a special status to an initial sample:

Un (Xn) = � X� − X�

�X� − X��
,
X� − X�

�X� − X��
, . . . ,

Xn − X�

�X� − X��
� , n ≥ �.

�.�.� Relatively Invariant Measures and Calibration for Fixed n
Let Un be a maximal invariant, taking values in the measurable space (Un ,Gn). Although
we have given more concrete examples above, it follows from the results of Andersson, ����
that, in case we do not know how to construct a Un , we can always take Un = φ�X n�, the
natural projection. Since we assumemutual absolute continuity, the Radon-Nikodym derivative
dP[Un]

�,g �dP
[Un]
�,g must exist and we can apply the following theorem (note it is here that the use

of right Haar measure is crucial; a di�erent result holds for the le�Haar measure):�

�eorem Berger, Pericchi and Varshavsky, ����,�eorem �.� Under our previous de�ni-
tions of and assumptions on G, Pk ,g , Pk let β(xn) ∶= P�(xn)�P�(xn) be the Bayes factor based
on xn . Let Un be a maximal invariant as above, with (adopting the notation of (�.��)) marginal

��is theorem requires that there exists some relatively invariant measure µ on �X n
� such that for k = �, �, g ∈ G,

the Pk ,g all have a density relative to µ. Since the Bayes marginal P� based on the right Haar prior is easily seen to be
such a relatively invariant measure, the conditions for the theorem apply.
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measures P[Un]

k ,g , for k = �, � and g ∈ G.�ere exists a version of the Radon-Nikodym derivative
such that we have for all g ∈ G, all xn ∈ �X n�,

dP[Un]
�,g

dP[Un]
�,g

(Un(xn)) = β(xn). (�.��)

As a �rst consequence of the theorem above, we note (as did Berger, Pericchi and Varshavsky
(����)) that the Bayes factor βn ∶= β(XN) is Gn-measurable (it is constant on orbits) , and
thus it has the same distribution under P�,g and P�,g for all g ∈ G.�e theorem also implies the
following crucial lemma:

Lemma �. [Strong Calibration for Fixed n] Under the assumptions of the theorem above,
let Un be a maximal invariant and let Vn be a Gn-measurable binary random variable with
P�,g(Vn = �) > �, P�,g(Vn = �) > �. Adopting the notation of (�.��), we can choose the Radon-
Nikodym derivative dP[βn]

�,g (⋅ � Vn = �)�dP[βn]
�,g (⋅ � Vn = �) so that we have, for all xn ∈ �X n�:

P�,g(Vn = �)
P�,g(Vn = �)

⋅
dP[βn]

�,g (⋅ � Vn = �)

dP[βn]
�,g (⋅ � Vn = �)

(βn(xn)) = βn(xn), (�.��)

where for the special case with Pk ,g(Vn = �) = �, we get
dP[βn]

�,g

dP[βn]
�,g

(βn(xn)) = βn(xn).

�.�.� Extending toOurGeneral SettingwithNon-FixedSample Sizes
We start with the same setting as above: a group G on sample space �X n� ⊂ X n that acts
topologically and properly on the right of �X n�; two distributions P�,e and P�,e on (�X n�,F n)
that are used to generate H� and H�, and Bayes marginal measures based on the right Haar
measure P� and P�, which are both σ-�nite. We now denote Hk as H

(n)
k , Pk ,e as P

(n)
k ,e and Pk as

P
(n)
k , all P ∈ H(n)� ∪H(n)� are mutually absolutely continuous.

We now extend this setting to our general random process setting as speci�ed in the beginning
of Section �.�.� by further assuming that, for the same group G, for some m > �, the above
setting is de�ned for each n ≥ m. To connect the H(n)k for all these n, we further assume that
there exists a subset �X m� ⊂ X m that has measure � under P(n)k ,e (and hence under all P(n)g ,e )
such that for all n ≥ m:

�. We can write �X n� = {xn ∈ X n ∶ (x� , . . . , xm) ∈ �X m�}.

�. For all xn ∈ �X n�, the posterior ν � xn based on the right Haar measure ν is proper.

�. �e probability measures P(n)k ,e and P(n+�)k ,e satisfy Kolmogorov’s compatibility condition
for a random process.

�. �e group action ⋅ on the measures P(n)k ,e and P(n+�)k ,e is compatible, i.e. for every n > �,
for every A ∈ F n , every g ∈ G, k ∈ {�, �}, we have P(n+�)k ,g (A) = P

(n)
k ,g (A).
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Requirement �. simply imposes the condition that the group action considered is the same
for all n ∈ N. As a consequence of �. and �., the probability measures P(n)k ,g and P(n+�)k ,g satisfy
Kolmogorov’s compatibility condition for all g ∈ G, k ∈ {�, �} which means that there exists a
probabilitymeasure Pk ,g on (Ω,F) (under which �X(m)�, Xm+� , Xm+� , . . . is a randomprocess),
de�ned as in the beginning of Section �.�, whose marginals for n ≥ m coincide with P(n)k ,g , and

there exist measures P� and P� on (Ω,F) whose marginals for n ≥ m coincide with P
(n)
� and

P
(n)
� . We have thus de�ned a set H� and H� of hypotheses on (Ω,F) and the corresponding

Bayes marginals P� and P� and are back in our general setting. It is easily veri�ed that the �-
and �-sample Bayesian t-tests both satisfy all these assumptions: in Example �.�, take m = �
and �X m� = R � {�}; in Example �.�.�, take m = � and �X m� = R� � {(a, a) ∶ a ∈ R}. �e
conditions can also be veri�ed for the variety of examples considered by Berger, Pericchi and
Varshavsky (����) and Bayarri et al., ����. In fact, our initial sample xm ∈ �X m� is a variation
of what they call aminimal sample; by excluding ‘singular’ outcomes from X m to ensure that
the group acts properly on �X m�, we can guarantee that the initial sample is of �xed size.�e
size of the minimal sample can be larger, on a set of measure � under all P ∈ H� ∪H�, e.g. if,
in Example �.�.�, X� = X�. We chose to ensure a �xed size m since it makes the extension to
random processes considerably easier.

In Section �.�.�, underneath Example �.� we already outlined how a composite alternative
hypothesis can be reduced to a hypothesis with just a free nuisance parameter (or parameter
vector) g ∈ G, by putting a proper prior on all other parameters and integrating them out. A
similar construction for a single parameter alternative hypothesis in the form of (�.��) can be
applied in the non-�xed sample size case.

�.�.� Strong Calibration
Consider the setting, de�nitions and assumptions of the previous subsection, with the additional
assumptions and de�nitionsmade in the beginning of Section �.�.�, in particular the assumption
of a.s. �nite stopping time. For simplicity, from now on, we shall also assume equal prior odds,
π(H�) = π(H�) = ���. We will now show a strong calibration theorem for the Bayes factors
βn = (dP

(n)
� )�(dP

(n)
� )(Xn) de�ned in terms of the Bayes marginals P� and P� with the right

Haar prior.�us βτ is de�ned as in (�.��) with β in the role of B.

�eorem �.� (Strong calibration under optional stopping). Let τ be a stopping time satisfying
our requirements, such that additionally, for each n > m, the event {τ = n} is Gn-measurable.
�en, adopting the notation of (�.��), for all g ∈ G, for P[βτ]

�,g -almost every b > �, we have:

dP[βτ]
�,g

dP[βτ]
�,g

(b) = b.

�at means that the posterior odds remain calibrated under every stopping rule τ adapted to the
quotient space �ltration Gm ,Gm+� , . . ., under all P�,g .

Proof. Fix some g ∈ G. We simply �rst apply Lemma � with Vn = {τ=n}, which gives that the
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premise (�.��) of Lemma � holds with c = � and βn in the role of Bn (it is here that we need that
τn is Gn-measurable, otherwise we could not apply Lemma � with the required de�nition of
Vn). We can now use Lemma � with P�,g in the role of P� to reach the desired conclusion for
the chosen g. Since this works for all g ∈ G, the result follows.

Example �.�, Continued: Admissible and Inadmissible Stopping Rules We obtain strong
calibration for the one-sample t-test with respect to the nuisance parameter σ (see Example �.�
above) when the stopping rule is adapted to the quotient �ltration Gm ,Gm+� , . . .. Under each
Pk ,g ∈ Hk , the Bayes factors βm , βm+� , . . . de�ne a random process on Ω such that each βn is
Gn-measurable.�is means that a stopping time de�ned in terms of a rule such as ‘stop at the
smallest t at which βt > �� or t = ���’ is allowed in the result above. Moreover, if the stopping
rule is a function of a sequence of maximal invariants, like x���x��, x���x��, . . ., it is adapted to
the �ltration Gm ,Gm+� , . . . and we can likewise apply the result above. On the other hand, this
requirement is violated, for example, by a stopping rule that stops when ∑ j

i=�(xi)� exceeds
some �xed value, since such a stopping rule explicitly depends on the scale of the sampled
data.

�.�.� Frequentist optional stopping
�e special case of the following result for the one-sample Bayesian t-test was proven in the
master’s thesis (Hendriksen, ����). Here we extend the result to general group invariances.

�eorem �.� (Frequentist optional stopping for composite null hypotheses with group invari-
ance). Under the same conditions as in Section �.�.�, let τ be a stopping time such that, for each
n > m, the event {τ = n} is Gn-measurable.�en, adopting the notation of (�.��), for all g ∈ G,
the stopped Bayes factor satis�es EP�,g [βτ] = ∫R>� c dP

[βτ]
�,g (c) = �, so that, by the reasoning above

Proposition �, we have for all g ∈ G: P�,g( �
βτ
≤ α) ≤ α.

Proof. We have

�
R>�

c dP[βτ]
�,g (c) = �

R>�
dP[βτ]

�,g

dP[βτ]
�,g

(c)dP[βτ]
�,g (c) = �

R>�
dP[βτ]

�,g (c) = �.

where the �rst equality follows directly from�eorem �.� and the �nal equality follows because
P�,g is a probability measure, integrating to �.

Analogously to Corollary �, the desired result now follows by plugging in a particular stopping
rule: let S ∶ �∞i=m X

i → {�, �} be the frequentist sequential test de�ned by setting, for all n > m,
xn ∈ �X n�: S(xn) = � if and only if βn ≥ ��α.

Corollary ��. Let t∗ ∈ {m + �,m + �, . . .} ∪ {∞} be the smallest t∗ > m for which β−�t∗ ≤ α.
�en for arbitrarily large T, when applied to the stopping rule τ ∶= min{T , t∗}, we �nd that for
all g ∈ G:

P�,g(∃n,m < n ≤ T ∶ S(Xn) = � � xm) = P�,g(∃n,m < n ≤ T ∶ β−�n ≤ α � xm) ≤ α.
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�e corollary implies that the test S is robust under optional stopping in the frequentist sense
relative to H� (De�nition �.�).

Example�.� (continued) Whenwe choose a stopping rule that is (Gm ,Gm+� , . . .)-measurable,
the hypothesis test is robust under (semi-)frequentist optional stopping.�is holds for example,
for the one- and two-sample t-test (Rouder et al., ����), Bayesian ANOVA (Rouder et al.,
����), and Bayesian linear regression (Liang et al., ����). Again, for stopping rules that are
not (Gm ,Gm+� , . . .)-measurable, robustness under frequentist optional stopping cannot be
guaranteed and could reasonably be presumed to be violated.�e violation of robustness under
optional stopping is hard to demonstrate experimentally as frequentist Bayes factor tests are
usually quite conservative in approaching the asymptotic signi�cance level α.

�.� Concluding Remarks
We have identi�ed three types of ‘handling optional stopping’: τ-independence, calibration
and semi-frequentist. We extended the corresponding de�nitions and results to general sample
spaces with potentially improper priors. For the special case of models H� and H� sharing a
nuisance parameter with a group invariance structure, we showed stronger versions of calibra-
tion and semi-frequentist robustness to optional stopping. A couple of remarks are in order.
First, one of the remarkable properties of the right Haar prior is that, under some additional
conditions on P�,g and P�,g in (�.��), βm = β(xm) = � for all xm ∈ �X m�, implying that equal
prior odds lead to equal posterior odds a�er a minimal sample, no matter what the minimal
sample is (Berger, Pericchi and Varshavsky, ����). One might conjecture that our results rely
on this property, but this is not the case: in general, one can have β(xm) ≠ �, yet our results still
hold. For example, in the Bayesian t-test, Example �.�, m = � and β(x �) = � can be guaranteed
only if the prior πδ on δ is symmetric around �; but our calibration and frequentist robustness
results hold irrespective of whether it is symmetric or not.

Secondly, in multiple-parameter problems, the suitable transformation group acting on the
parameter space may not be unique, in which case there are multiple possible right Haar
priors, see Example �.� and �.� in (Berger, Bernardo, Sun et al., ����) and (Berger, Sun et al.,
����). However, in all examples we considered and further know of, this does not lead to
ambiguity, because di�erent transformation groups give rise to di�erent sets H� of invariant
null hypotheses.

As a third remark, it is worth noting that — as is immediate from the proofs — all our group-
invariance results continue to hold in the setting with H′k as in (�.��), and the de�nition of the
Bayes marginal Pk ,e relative to θ′ as in (�.��) replaced by a probability measure on (Ω,F) that
is not necessarily of the Bayes marginal form.�e results work for any probability measure;
in particular one can take the alternatives for the Bayes marginal with proper prior that are
considered in the the minimum description length and sequential prediction literature (Barron,
Rissanen and Yu, ����; Grünwald, ����) under the name of universal distribution relative to
{Pθ′ � θ′ ∈ Θ′}; examples include the prequential or ‘switch’ distributions considered by Van
der Pas and Grünwald, ����.
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As a fourth and �nal remark, a sizable fraction of Bayesian statisticians is wary of using improper
priors at all. An important (though not the only) reason is that their use o�en leads to some
form of themarginalization paradox described by Dawid, Stone and Zidek, ����. It is thus useful
to stress that in the context of Bayes factor hypothesis testing, the right Haar prior is immune at
least to this particular paradox. In an informal nutshell, the marginalization paradox occurs if
the following happens: (a) the Bayes posterior π(ζ � Xn) for the quantity of interest ζ based on
prior π(ζ , g) with improper marginal on g, only depends on the data Xn through the maximal
invariant Un , i.e. π(ζ � Xn) = f (Un(Xn)) for some function f , yet (b) there exists no prior π′
on ζ such that the corresponding posterior π′(ζ � Un(Xn)) = f (Un(Xn)). In words, the result
of Bayesian updating based on the full data Xn only depends on the maximal invariant Un ; but
Bayesian updating directly based on Un can never give the same result — a paradox indeed.
While in general, this can happen even if g is equipped with the right Haar prior [Case �, page
���](Dawid, Stone and Zidek, ����), Berger et. al.’s�eorem �.� (reproduced in Section �.�.�
in our chapter) implies that it does not occur in the context of Bayes factor testing, where
ζ ∈ {H� ,H�}, andH� andH� are null and alternatives satisfying the requirements of Section �.�.
Berger’s theorem expresses that for all values of the nuisance parameter g ∈ G, the likelihood
ratio dP[Un]

�,g �dP
[Un]
�,g (Un(Xn)) based on Un(Xn) is equal to the Bayes factor based on Xn

with the right Haar prior on g, so that the paradox cannot occur.
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�.A Group theoretic preliminaries
We start with some group-theoretical preliminaries; for more details, see e.g. (Eaton, ����;
Wijsman, ����; Andersson, ����).

De�nition �.� (Topological space). A non-empty set S together with a �xed collection of
subsets T is called a topological space T = (S , T ) if

�. S ,� ∈ T ,

�. U ∩ V ∈ T for any two sets U ,V ∈ T , and

�. S� ∪ S� ∈ T for any collections of sets S� , S� ⊆ T .

�e collection T is called a topology for S, and its members are called the open sets of T . A
topological space T is calledHausdor� if for any two distinct points x , y ∈ T there exist disjoint
open subsets U ,V of T containing one point each.

De�nition �.� ((Local) compactness). A topological space T is compact if every open cover,
that is, every collection C of open sets of T

T = �
U∈C

U ,

has a �nite subcover: a �nite subcollection F ∈ C such that

T = �
V∈F

V .

It is locally compact if for every x ∈ T there exist an open set U such that x ∈ U and the closure
of U , denoted by Cl(U), is compact, that is, the union of U and all its limit points in T is
compact. We can also formulate this as each x having a neighborhood U such that Cl(U) is
compact.

Example �.� (Locally compact Hausdor� spaces). �e reals R and the Euclidean spaces Rn

together with the Euclidean topology (also called the usual topology) are locally compact Haus-
dor� spaces. Rn (for n ∈ N) is locally compact because any open ball B(x , r) has a compact
closure Cl(B(x , r)) = {y ∈ Rn ; d(x , y) ≤ ε}, where d(x , y) is the Euclidean metric. Any
discrete space is locally compact and Hausdor� as well, as any singleton is a neighborhood
that equals its closure, and it is compact only if it is �nite. In�nite dimensional Banach spaces
(function spaces) are for example not locally compact.

De�nition �.� (Group). A set G together with a binary operation ○, o�en called the group law,
is called a group when

�. there exists an identity element e ∈ G for the group law ○,

�. for every three elements a, b, c ∈ G, we have (a ○ b) ○ c = a ○ (b ○ c) (associativity), and

�. for each element a ∈ G, there exists an inverse element, a† ∈ G, with a ○ a† = a† ○ a = e.
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Transformation groups A group that consists of a set G of transformations on some set S is
called a transformation group. We also say that the group G acts on the set S. A transformation is
a mapping from S to itself that preserves certain properties, such as isometries in the Euclidean
plane. Transformation groups are usually not commutative, that is a ○ b ≠ b ○ a for a, b ∈
G.

De�nition �.� (Topological group). A topological space G that is also a group is called a
topological group when the group operation ○ is continuous, that is, for a, b ∈ G, we have that
the operations of product

�. G ×G → G ∶ (a, b)� a ○ b, and taking the inverse

�. G → G : a � a†,

are continuous, where G ×G has the product topology.

A topological group for which the underlying topology is locally compact and Hausdor�, is
called a locally compact group.

De�nition �.� (Eaton (����), De�nition �.�). Let Y be a set, and let G be a group with identity
element e. A function F ∶ Y ×G → Y satisfying

�. F(y, e) = y, y ∈ Y

�. F(y, g�g�) = F(F(y, g�), g�), g� , g� ∈ G , y ∈ Y

speci�es G acting on the right of Y .

In practice, F is omitted: we will write y ⋅ g for a group element g acting on the right of y ∈ Y .
For a subset A ⊆ Y , we write A ⋅ g ∶= {a ⋅ g � a ∈ A}.

De�nition �.� (Conway (����), Example �.��). Let G be a locally compact topological group.
�en the right invariant Haar measure (in short: right Haar measure) for G is a Borel measure
ν satisfying

�. ν(A) > � for every nonempty open set A ⊆ G,

�. ν(K) <∞ for every compact set K ⊆ G,

�. ν(A ⋅ g) = ν(A) for every g ∈ G and every measurable A ⊆ G.

�.B Proofs Omitted fromMain Text

Proof. [of Lemma �] Let A ⊂ R>� be any Borel measurable set. In the equations below, the sum
and integral can be swapped due to the monotone convergence theorem and the fact that Bτ is
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a positive function.

�
A
dP�[Bτ] = �

Ω
{Bτ∈A} dP�

[Bτ]

=
∞

�
n=�
�
�X n�

{Bτ∈A} {τ=n} dP
(n)
�

(�)=
∞

�
n=�
�
�X n�

{Bn∈A} {τ=n} P
(n)
� (τ = n) ⋅ dP

(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} P
(n)
� (τ = n) ⋅ dP

(n)
� (⋅ � τ = n)

(�)=
∞

�
n=�
�
r>�

{r∈A} P
(n)
� (τ = n) ⋅ dP�

[Bn](⋅ � τ = n)

=
∞

�
n=�
�
r>�

{r∈A}
dP�[Bn](⋅ � τ = n)
dP�[Bn](⋅ � τ = n)

(r) P(n)� (τ = n) ⋅ dP�
[Bn](⋅ � τ = n)

(∗)=
∞

�
n=�
�
r>�

{r∈A}
P(n)� (τ = n)
P(n)� (τ = n)

⋅ r ⋅ P(n)� (τ = n) ⋅ dP�
[Bn](⋅ � τ = n)

=
∞

�
n=�
�
r>�

{r∈A}r P
(n)
� (τ = n) ⋅ dP�

[Bn](⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} ⋅ Bn ⋅ P(n)� (τ = n) ⋅ dP
(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bn∈A} {τ=n} ⋅ Bn ⋅ P(n)� (τ = n) ⋅ dP
(n)
� (⋅ � τ = n)

=
∞

�
n=�
�
�X n�

{Bτ∈A} {τ=n} ⋅ Bn dP(n)�

= �
Ω
{Bτ∈A} �

∞

�
n=�

{τ=n}Bn� dP�

= �
Ω
{Bτ∈A}Bτ dP�

(��)= �
A
tP�[Bτ](dt),

where (∗) follows because of our �xed n-calibration assumption. Furthermore, (�) follows
from the following equality for any C ∈ F

P(n)� (C ∩ {τ = n}) = P
(n)
� (τ = n) ⋅ P

(n)
� (C � τ = n), (�.��)

and in (�) we perform a change of variables where we integrate over the possible values of the
Bayes Factor instead of over the outcome space, which we repeat in (��).

We have shown that the function g de�ned by g(t) = t is the Radon-Nikodym

derivative
dP�[Bτ]

dP�[Bτ]
.
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Proof. [of Lemma �] Let A be any Borel subset of R>�. We have:

�
A
dP
[γn]
� (⋅ � xm , τ = n) = �

�X n�
{γn∈A} dP

(�)
n (⋅ � xm , τ = n)

= �
�X n�

{γn∈A}
�
�
dP
(�)
n (⋅ � xm , τ = n)

dP
(�)
n (⋅ � xm , τ = n)

�
�
dP
(�)
n (⋅ � xm , τ = n)

(∗)= �
�X n�

{γn∈A}γn ⋅ �
π(H� � xm , τ = n)
π(H� � xm , τ = n)

� dP(�)n (⋅ � xm , τ = n)

= �
�X n�

{γn∈A}γn �
P�(τ = n � xm)π(H�)
P�(τ = n � xm)π(H�)

� dP(�)n (⋅ � xm , τ = n)

= �P�(τ = n � xm)π(H� � xm)
P�(τ = n � xm)π(H� � xm)

� ⋅ �
A
γn dP

[γn]
� (⋅ � xm , τ = n),

where, for the case m = �, (∗) follows from (�.�), which can be veri�ed to be still valid in our
generalized setting.�e case m > � follows in exactly the same way, by shi�ing the data by m
places (so that the new x� becomes what was xm+�, and treating, for k = �, �, π(Hk � xm) as the
priors for this shi�ed data problem, and then applying the above with m = �).

We have shown that the Radon-Nikodym derivative
dP
[γn]
� (⋅ � xm)

dP
[γn]
� (⋅ � xm)

at γn is given by

γn ⋅
P�(τ = n � xm)π(H� � xm)
P�(τ = n � xm)π(H� � xm)

, which is what we had to show.

Proof. [of Lemma �] Let A′ denote the event Vn = � and let A ⊂ R>� be a Borel measurable
subset of the positive real numbers. We have that βn is a function of the maximal invariant Un
as de�ned in De�nition �.�, and we write βn(Un). With this notation, we have:

P[βn]
�,g (A � A

′) = �
R>� {A} dP

[βn]
�,g (⋅ � A

′)

(�)= �
Un

{βn(Un)∈A} dP
[Un]
�,g (⋅ � A

′)

= �
Un

{βn(Un)∈A}
dP[Un]

�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A

′)

(�)= �
Un

{βn(Un)∈A}
P(n)�,g (A′)

P(n)�,g (A′)

dP[Un]
�,g

dP[Un]
�,g

dP[Un]
�,g (⋅ � A

′)

(�)=
P(n)�,g (A′)

P(n)�,g (A′)
⋅ �
Un

{βn(Un)∈A}βn(Un) dP[Un]
�,g (⋅ � A

′)

=
P(n)�,g (A′)

P(n)�,g (A′)
⋅ �

R>� {A}t dP
[βn]
�,g A′(t),
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where step (�) holds because βn is Gn-measurable. On the set A′ we have

dP[Un]
�,g (⋅ � A′)

dP[Un]
�,g (⋅ � A′)

P(n)�,g (A′)

P(n)�,g (A′)
=

dP[Un]
�,g

dP[Un]
�,g

,

which explains step (�), and step (�) follows from the de�nition of βn in Equation (�.��).

We have shown that
P(n)�,g (A′)

P(n)�,g (A′)
⋅ t is equal to the Radon-Nikodym derivative

dP[βn]
�,g (⋅ � Vn = �)

dP[βn]
�,g (⋅ � Vn = �)

,

which is what we had to prove.



Chapter �

Safe Testing

Abstract
We develop the theory of hypothesis testing based on the �-value, a notion of evidence that, un-
like the �-value, allows for e�ortlessly combining results from several tests. Even in the common
scenario of optional continuation, where the decision to perform a new test depends on previous
test outcomes, ‘safe’ tests based on �-values generally preserve Type-I error guarantees. Our
main result shows that �-values exist for completely general testing problems with composite
null and alternatives. �eir prime interpretation is in terms of gambling or investing, each
�-value corresponding to a particular investment. Surprisingly, optimal “GROW” �-variables,
which lead to fastest capital growth, are fully characterized by the joint information projection
(JIPr) between the set of all Bayes marginal distributions onH� andH�.�us, optimal �-values
also have an interpretation as Bayes factors, with priors given by the JIPr.We illustrate the theory
using several ‘classic’ examples including a one-sample safe t-test and the � × � contingency
table. Sharing Fisherian, Neymanian and Je�reys-Bayesian interpretations, �-values and safe
tests may provide a methodology acceptable to adherents of all three schools.

�.� Introduction and Overview
We wish to test the veracity of a null hypothesis H�, o�en in contrast with some alternative
hypothesis H�, where both H� and H� represent sets of distributions on some given sample
space. Our theory is based on �-test statistics.�ese are simply nonnegative random variables
that satisfy the inequality:

for all P ∈H�: EP[E] ≤ �. (�.�)

We refer to �-test statistics as �-variables, and to the value they take on a given sample as the
�-value, emphasizing that they are to be viewed as an alternative to, and in many cases an
improvement of, the classical �-value. Note that large �-values correspond to evidence against
the null: for given �-variable E and � ≤ α ≤ �, we de�ne the threshold test corresponding to E
with signi�cance level α, as the test that rejects H� i� E ≥ ��α. We will see, in a sense to be

���
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de�ned, that this test is safe under optional continuation, which for brevity we will simply call
“safe”.

Motivation �-values and standard null hypothesis testing have come under intense scrutiny
in recent years (Wasserstein, Lazar et al., ����; Benjamin et al., ����). �-variables and safe
tests o�er several advantages. Most importantly, in contrast to �-values, �-variables behave
excellently under optional continuation, the highly common practice in which the decision
to perform additional tests partly depends on the outcome of previous tests; they thus seem
particularly promising when used in meta-analysis, avoiding the issue of ‘accumulation bias’
(Ter Schure and Grünwald, ����). A second reason is their enhanced interpretability, and a
third is their �exibility: �-variables based on Fisherian, Neyman-Pearsonian and Bayes-Je�reys’
testing philosophies all can be accommodated for. �ese three types of �-variables can be
freely combined, while preserving Type I error guarantees; at the same time, they keep a clear
(monetary) interpretation even if one dismisses ‘signi�cance’ altogether, as recently advocated
by Amrhein, Greenland and McShane, ����.

Contribution Our aim is to lay out the full theory of testing based on �-variables, both
methodologically and mathematically. Methodologically, we explain the advantages that �-
variables and safe tests o�er over traditional tests, �-values and (some) Bayes factors; we
introduce the GROW criterion de�ning optimal �-variables and provide speci�c (‘simple δ-
GROW’) �-variables that are well-behaved in terms of GROW and power, and easy to use
in practice. Mathematically, we show (�eorem �.�) that, for arbitrary composite, nonconvex
H� and H�, we can construct nontrivial �-variables. In many cases, (�eorem �.� and �.�)
we can even construct �-variables that are optimal in the strong GROW sense. �-variables
have been invented independently by (at least) Levin (����) and Zhang, Glancy and Knill
(����) and have been analyzed before by Shafer et al. (����) and Shafer and Vovk (����) and
Vovk and Wang (����), who emphasize that they can also be much more easilymerged than �-
values.�ey are close cousins of test martingales (Shafer et al., ����) which themselves underlie
AV (anytime-valid) �-values (Johari, Pekelis and Walsh, ����), AV tests and AV con�dence
sequences (Balsubramani and Ramdas, ����; Howard et al., ����b; Howard et al., ����a). As
such, our methodological insights are mostly variations of existing ideas; yet, they have never
before been worked out in full.�e mathematical results�eorem �.� and�eorem �.� are new,
although a special case of�eorem �.� was shown earlier by (Zhang, Glancy and Knill, ����);
see Section �.� for more on the novelty and related work.

Contents In this introductory section, we give an overview of the main ideas: Section �.�.�
provides three interpretations of �-variables and the idea of optional continuation. In Sec-
tion �.�.�, we discuss the GROW optimality theorem, and the use of our�eorem �.� to �nd
‘good’ Bayesian and/or GROW �-variables. Section �.�.� gives a �rst, extended example.�e
remainder of the paper is structured as follows. Section �.� explains how some �-value based
tests are not merely safe under optional continuation, but also under the more well-known
optional stopping, and explains the close relation between test martingales and �-variables.
Section �.� gives our �rst main result, �eorem �.�. Section �.� gives several examples, and
Section �.� reports some preliminary experiments.�e paper ends with a section providing
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more historical context and an overview of related work in Section �.�— including a discussion
that clari�es how testing based on �-values could provide a uni�cation of Fisher’s, Neyman’s
and Je�reys’ ideas. All longer proofs are delegated to the appendices, which start with Ap-
pendix �.A providing details about (standard but tacit) assumptions and notations from the
main text.

�.�.� �e three main interpretations of �-variables
�. First Interpretation: Gambling �e �rst and foremost interpretation of �-variables is in
terms ofmoney, or, more precisely, Kelly (����) gambling. Imagine a ticket (contract, gamble,
investment) that one can buy for ��, and that, a�er realization of the data, pays E �; one may buy
several and positive fractional amounts of tickets. (�.�) says that, if the null hypothesis is true,
then one expects not to gain any money by buying such tickets: for any r ∈ R+, upon buying r
tickets one expects to end up with rE[E] ≤ r �.�erefore, if the observed value of E is large, say
��, one would have gained a lot of money a�er all, indicating that something might be wrong
about the null.

�. Second Interpretation: Conservative �-Value, Type I Error Probability Recall that a
strict �-value is a random variable P such that for all � ≤ α ≤ �, all P� ∈H�,

P�(P ≤ α) = α. (�.�)

A conservative �-value is a random variable for which (�.�) holds with ‘=’ replaced by ‘≤’.�ere
is a close connection between (small) �- and (large) �-values:

Proposition �. For any given �-variable E, de�ne �[�] ∶= ��E.�en �[�] is a conservative �-value.
As a consequence, for every �-variable E, any � ≤ α ≤ �, the corresponding threshold-based test
has Type-I error guarantee α, i.e. for all P ∈H�,

P(E ≥ ��α) ≤ α. (�.�)

Proof. (of Proposition �)Markov’s inequality gives P(E ≥ α−�) ≤ αEP[E] ≤ α.

While �-variables are thus conservative �-values, standard �-values satisfying (�.�) are by no
means �-variables; if E is an �-variable and P is a standard �-value, and they are calculated
on the same data, then we will usually observe P � ��E so E gives less evidence against the
null; Section �.�.� and Section �.� will give some idea of the ratio between ��E and P in various
practical settings.

Combining �. and �.: Optional Continuation, GROW Propositions �, � below show that
multiplying �-variables E(�) , E(�) , . . . for tests based on respective samples Y(�), Y(�) , . . . (with
eachY( j) being the vector of outcomes for the j-th test), gives rise to new �-variables, even if the
decision whether or not to perform the test resulting in E( j) was based on the value of earlier
test outcomes E( j−�) , E( j−�) , . . .. As a result (Prop. �), the Type I-Error Guarantee (�.�) remains
valid even under this ‘optional continuation’ of testing. An informal ‘proof ’ is immediate from
our gambling interpretation: if we start by investing �� in E(�) and, a�er observing E(�), reinvest
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all our new capital �E(�) into E(�), then a�er observing E(�) our new capital will obviously
be �E(�) ⋅ E(�), and so on. If, under the null, we do not expect to gain any money for any of
the individual gambles E( j), then, intuitively, we should not expect to gain any money under
whichever strategy we employ for deciding whether or not to reinvest (just as you would not
expect to gain any money in a casino irrespective of your rule for re-investing and/or stopping
and going home).

�.�ird Interpretation: Bayes Factors For convenience, from now on we write the models
H� andH� as

H� = {Pθ ∶ θ ∈ Θ�} ; H� = {Pθ ∶ θ ∈ Θ�},
where for θ ∈ Θ� ∪ Θ�, the Pθ are all probability distributions on the same sample, all have
probability densities or mass functions, denoted as pθ , and we assume the parameterization is
�-to-� (see Appendix �.A for more details).Y = (Y� , . . . ,YN), a vector of N outcomes, represents
our data. N may be a �xed sample size n but can also be a random stopping time. In the Bayes
factor approach to testing, one associates bothH j with a prior Wj , which is simply a probability
distribution on Θ j , and a Bayes marginal probability distribution PWj , with density (or mass)
function given by

pWj(Y) ∶= �Θ j
pθ(Y)dWj(θ). (�.�)

�e Bayes factor is then given as:

BF ∶=
pW�(Y)
pW�(Y)

. (�.�)

WheneverH� = {P�} is simple, i.e., a singleton, then the Bayes factor is also an �-variable, since
in that case, we must have thatW� is degenerate, putting all mass on �, and pW� = p�, and then
for all P ∈H�, i.e. for P�, we have

EP[BF] ∶= � p�(y) ⋅
pW�(y)
p�(y)

dy = �. (�.�)

For such �-variables that are really simple-H�-based Bayes factors, Proposition � reduces to the
well-known universal bound for likelihood ratios (Royall, ����). WhenH� is itself composite,
most Bayes factors BF = pW��pW� will not be �-variables any more, since for BF to be an �-
variable we require (�.�) to hold for all Pθ , θ ∈ Θ�, whereas in general it only holds for P = PW� .
Nevertheless, our�eorem �.� implies that there always exist many special combinations ofW�
andW�, for which BF = pW��pW� is an �-variable a�er all, and that optimal �-values invariably
take on a Bayesian form (though sometimes with unusual priors).

�.�.� How to �nd Good �-Values
�. (Semi-) Bayesian Approach Suppose we take a Bayesian stance regardingH� and, condi-
tioned onH�, are prepared to represent our uncertainty by prior distributionW� on Θ�.

Suppose that the set of all probability distributionsW(Θ�) that one can de�ne on Θ�, contains
a prior W○

� that minimizes the KL divergence D(PW��PW○
�
) = minW�∈W(Θ�) D(PW��PW�) to

PW� . Following Barron and Li, ����, we call P○W�
the Reverse Information Projection (RIPr) of
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PW� onP(Θ�) = {PW� ∶W� ∈W(Θ�)}. Parts � and � of our main result�eorem �.� essentially
state the following:

Corollary of �eorem �.� Let W� be any prior on Θ� and let PW○
�
be the RIPr of PW� on

P(Θ�).�en the Bayes factor �∗W�
∶= pW�(Y)�pW○

�
(Y) is an �-variable.

�e RIPr idea can be extended to the case that the minimum minW�∈W(Θ�) D(PW��PW�) is
not achieved, and the theorem provides a W�-based �-variable for that case as well. We can
thus be fully Bayesian about H�, but any prior W� on H� that we wish to adopt forces us to
adopt a corresponding prior W○

� ∈ H�. In general this may feel ‘un-Bayesian’, but one may
perhaps consider it a small price to pay for creating a Bayes factor that should be acceptable
to frequentists as well — for the test corresponding to E∗W�

will preserve Type-I error bounds
under optional continuation under all P� ∈H�, no matter the priorW� one chose. Moreover,
in the standard case that the models are nested andH� is a sub-model ofH�, it is generally
recognized that the priors onH� andH� should somehow be ‘matched’ with each other (Berger,
Pericchi and Varshavsky, ����); we may view the RIPr construction as providing just such a
matching.

�. Frequentist (GROW) Approach We return to the monetary interpretation of �-values.
�e de�nition of �-variable ensures that we expect them to stay under � (one does not gain
money) under any P ∈H�. Analogously, one would like them to be constructed such that they
can be expected to grow large as fast as possible (one gets rich, gets evidence againstH�) under
all P ∈H�. Informally, �-variables with this property are called GROW. In its simplest form, for
H� andH� that are strictly separated, the GROW (growth-rate optimal in worst-case) criterion
tells us to pick, among all �-variables relative toH�, the one that maximizes expected capital
growth rate underH� in the worst case, i.e. the �-variable E∗ that achieves

max
E∶E is an �-variable

min
P∈H�

EP [log E] (�.�)

We give �ve reasons for using the logarithm rather than any other increasing function (such
as the identity) in Section �.�.�. Brie�y, when we keep using �-variables with additional data
batches as explained in Section �.� below, then optimizing for log E ensures that our capital
grows at the fastest rate. Optimality in terms of GROWmay be viewed as an analogue of the
classical frequentist concept of power.

Part � of�eorem �.� expresses that, under regularity conditions, the GROW �-variable is once
again a Bayes factor; remarkably, it is the Bayes factor between the Bayes marginals (P∗W�

, P∗W�
)

that form the joint information projection (JIPr), i.e. that are, among all Bayesmarginals indexed
by W(Θ�) and W ′� , the closest in KL divergence (Figure �.�). By joint convexity of the KL
divergence (Van Erven andHarremoës, ����), �nding the JIPr pair is thus a convex optimization
problem, tending to be computationally feasible.

�. δ-GROW �-values In Section �.�.� we consider the case thatH� andH� are neither sep-
arated nor do we have prior(s) on H� available. We can o�en parameterize the models as
Θ� = {(�, γ) ∶ γ ∈ Γ} and Θ� = {(δ, γ) ∶ δ ∈ ∆, γ ∈ Γ} where δ is a single scalar parameter of
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interest. We can then de�ne δ-GROW �-variables that are GROW relative to some suitable
H′� = {P(δ ,γ) ∶ γ ∈ Γ, δ ∈ ∆, �δ� ≥ δ}.�e development is analogous to the classical development
of tests that have either maximal power under a minimal relevant e�ect size, or that have
a uniformly most powerful property; and the resulting δ-GROW �-variables will also have
reasonable properties in terms of power. δ-GROW �-variables are again Bayes factors. O�en
the δ-GROW �-variable is simple in that it sets W∗

� to be a degenerate prior, putting all its
marginal mass on ∆ on a single δ (for a one-sided test) or on {−δ, δ} (two-sided). IfH� is a
one-dimensional exponential family, then δ-GROW �-values can be connected to the uniformly
most powerful Bayes factors of Johnson, ����b.

We work out simple δ-GROW �-variables for several standard settings: �-dimensional expo-
nential families, nonparametric tests such as Mann-Whitney, � × � contingency tables and
the setting of the �-sample t-test, each time applying�eorem �.� to show that the resulting
�-variable is GROW.We also provide ‘quick and dirty’ (non-GROW) �-variables for general
multivariate exponential familyH�. Bayesian t-tests with a standard (nondegenerate) prior
W[δ] on δ, while providing a GROW �-variable, are not δ-based in our sense. We present
a δ-GROW version of the Bayesian t-test that has signi�cantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with δ-GROW �-variables, if data comes fromH� rather thanH�, one needs less data to
�nd out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the t-test setting the e�ective amount of data needed is about the same as
with the standard frequentist t-test because one is allowed to do optional stopping.

�. Robust Bayesian view of�eorem �.� Wemay think of the previous Bayesian RIPr result
as a special case of the JIPr result: ifH� is composite, we can ‘collapse’ it into a single distribution
by adopting a priorW� on Θ� of our choice and re-de�ningH� to be the singletonH′� = {PW�}.
We are then in the setting of Figure �.� but withH� a singleton, and the JIPr becomes the RIPr.
�e �-variable E∗W○

�
= pW��pW○

�
can thus be thought of as the GROW �-variable relative to

H′�.

More generally, we may only be able to specify a prior distribution on some, but not all of
the parameters. For example, in Bayesian testing with nuisance parameters satisfying a group
invariance as proposed by Berger, Pericchi and Varshavsky, ���� one would like to specify
a prior W[δ] on the e�ect size (non-nuisance) parameter δ but make no assumptions at all
about the nuisance parameter vector γ (a special case is the Bayesian t-test, with γ representing
variance). �is is an instance of a ‘robust Bayesian’ approach (Grünwald and Dawid, ����)
in which prior knowledge is encoded as a set of priors (in this instance, it would be the set of
all priors on (δ, γ) whose marginal on δ coincides withW[δ]). Our�eorem �.� continues
to apply in this setting. Rather than a full modelH� as under �. above, or a single priorW� as
under �. above, we may replace the minimum over P ∈H� in (�.�) by a minimum overW ∈W ′�
over any convex set of priorsW ′� on Θ�, minP∈H� EP[. . .] becoming minW∈W ′

�
EPW [. . .]. For

essentially any suchW ′� , our�eorem �.� still holds.�is high level of generality is needed,
for example, in our treatment of the �-sample t-test. For this we formally show (in our second
main result,�eorem �.�, which enables us to use�eorem �.�) that the Bayes factor based
on the improper right Haar prior, advocated by Berger, Pericchi and Varshavsky, ����, has a
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PW∗�

P∗W�

P(Θ�)
P(Θ(δ))P(Θ�)

Figure �.�: �e Joint Information Projection (JIPr), with notation from Section �.�. Θ� ⊂ Θ� represent two nested
models, Θ(δ) is a restricted subset of Θ� that does not overlap with Θ� . P(Θ) = {PW ∶ W ∈W(Θ)}, andW(Θ)
is the set of all priors over Θ, so P(Θ) is the set of all Bayes marginals with priors on Θ.�eorem �.� says that the
GROW �-variable E∗Θ�(δ) between Θ� and Θ�(δ) is given by E∗Θ�(δ) = PW∗� �PW∗� , the Bayes factor between the two
Bayes marginals that minimize KL divergence D(PW��PW�)}.

GROW property.

�. Examples and Experiments Wework out simple δ-GROW �-variables for several standard
settings: �-dimensional exponential families, nonparametric tests such as Mann-Whitney, � × �
contingency tables and the setting of the �-sample t-test, each time applying�eorem �.� to
show that the resulting �-variable is GROW. We also provide ‘quick and dirty’ (non-GROW)
�-variables for the case that H� is a general multivariate exponential family. Speci�cally we
show that Bayes factors equipped with the right Haar prior on nuisance parameters provide �-
variables, despite the prior being improper.�e Bayesian t-test with a standard (nondegenerate)
prior W[δ] on δ thus gives an S-variable, but it is not δ-GROW in our sense. We present a
δ-GROW version of the Bayesian t-test that has signi�cantly better properties in terms of
statistical power than the standard versions. We provide a preliminary experiment suggesting
that with δ-GROW �-variables, if data comes fromH� rather thanH�, one needs less data to
�nd out than with standard Bayes factor tests, but a bit more data than with standard frequentist
tests. However, in the t-test setting the e�ective amount of data needed is about the same
as with the standard frequentist t-test because, in this setting, one is allowed to do optional
stopping.

�.�.� A First Example: the Gaussian Location Family
LetH� express that the Yi are i.i.d. ∼ N(�, �). According toH�, the Yi are i.i.d. ∼ N(µ, �) for
some µ ∈ Θ� = R. We perform a �rst test on initial sample Y ∶= Yn ∶= (Y� , . . . ,Yn). We consider
a standard Bayes factor test for this scenario, equiping Θ� with a priorW that for simplicity
we take to be normal with variance �, so thatW has density w(µ)∝ exp(−µ���).�e Bayes
factor is given by

E(�) ∶=
pW(Y)
p�(Y)

=
∫µ∈R pµ(Y)w(µ)dµ

p�(Y)
, (�.�)
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where pµ(Y) = pµ(Y� , . . . ,Yn) ∝ exp(−∑n
i=�(Yi − µ)���); by (�.�) we know that E(�) is an

�-value. By straightforward calculation:

log E = − �
�
log(n + �) + �

�
(n + �) ⋅ µ̆�n ,

where µ̆n = (∑i=� Yi)�(n + �) is the Bayes MAP estimator, which only di�ers from the ML
estimator by O(��n�): µ̆n − µ̂n = µ̂n�(n(n + �)). If we were to reject Θ� when E ≥ �� (giving,
by Proposition � a Type-I error guarantee of �.��), we would thus reject if

�µ̆n � ≥
�

�.�� + log(n + �)
n + �

, i.e. �µ̂n � �
�
(log n)�n,

where we used � log �� ≈ �.��. Contrast this with the standard Neyman-Pearson (NP) test,
which would reject (α ≤ �.��) if �µ̂n � ≥ �.���

√
n.�e δ-GROW �-variables for this problem

that we describe in Section �.�.� can be chosen so as to guarantee E∗ ≥ �� if �µ̂n � ≥ µ̃n with µ̃n =
cn�
√
n where cn > � is increasing and converges exponentially fast to

�
� log�� ≈ �.��.�us,

while the NP test itself de�nes an �-variable that scores in�nitely bad on our GROW optimality
criterion (Example �.�), we can choose a GROW E∗ that is qualitatively more similar to a
standard NP test than a standard Bayes factor approach. For general �-dimensional exponential
families, this δ-GROW E∗ coincides with a �-sided version of Johnson’s (����b; ����a) uni-
formly most powerful Bayes test, which uses a discrete prior W within H�: for the normal
location family,W({µ̃n}) =W({−µ̃n}) = ��� with µ̃n as above. Since the prior depends on
n, some statisticians would perhaps not really view this as ‘Bayesian’; and we also think of
such δ-GROW �-variables, despite their formally Bayesian form, as having �rstly a frequentist
motivation.

Optional Continuation: Compatibility with Bayesian Updating For arbitrary priorW on
Θ�, de�ne en ,W = pW(Yn)�p�(Yn) to be the Bayes factor with priorW for Θ� applied to data
Yn .�e Bayesian �-variable (�.�) can then be written as E(�) = eN(�) ,W(�)(Y(�)), with N(�) = n,
Y(�) = Y = Yn . Suppose we have adopted some inital priorW(�) (say a normal with variance �),
and initial observed data Y(�) = Yn , leading to a �rst �-value E(�) = ��—promising enough for
us to invest our resources into a subsequent trial. We decide to gather N(�) data points leading
to data Y(�) = (YN(�)+� , . . . ,YN(�)). We decide to use the following �-variable for this second
data batch:

E(�) ∶= eN(�) ,W(�) �Y
(�)� ∶=

pW(�) �Y(�)�
p� �Y(�)�

,

for a new prior W(�). Crucially, we are allowed to choose both N(�) and W(�) as a function
of past data Y(�). To see that E(�) gives an �-variable, note that, no matter how we choose
W(�), EY(�)∼P�[E(�)] = �, by a calculation analogous to (�.�). If we want to stick to the Bayesian
paradigm, we can chooseW(�) ∶=W(�)(⋅ � Y(�)), i.e.W(�) is the Bayes posterior for µ based on
data Y(�) and priorW(�). A simple calculation using Bayes’ theorem shows that multiplying
E(�) ∶= E(�) ⋅ E(�) (which gives a new �-variable by Proposition �), satis�es

E(�) = E(�) ⋅ E(�) =
pW(�)(Y(�)) ⋅ pW(�)(⋅�Y(�))(Y(�))

p�(Y(�))
=
pW(�)(Y� , . . . ,YN(�))
p�(Y� , . . . ,YN(�))

, (�.�)
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which is exactly what one would get by Bayesian updating.�is illustrates that, for simpleH�,
combining �-variables by multiplication can be done consistently with Bayesian updating if
the �-variables are based on Bayes factors with prior onH� given by the posterior based on
past data. To be precise, if, in Proposition � below, one takes as function g(Y) ∶=W(�) � Y, then
the resulting products E(k) =∏k

j=� E( j), k = �, �, . . . precisely correspond to the Bayes factors
based on priorW(�) a�er observing data Y� , . . . ,Y(k).

Optional Continuation: Beyond BayesianUpdating However, it might also be the case that
it is not us who get the additional funding to obtain extra data, but rather some research group
at a di�erent location. If the question is, say, whether a medication works, the null hypothesis
would still be that µ = � but, if it works, its e�ectiveness might be slightly di�erent due to
slight di�erences in population. In that case, the research group might decide to use a di�erent
test statistic E′

(�) which is again a Bayes factor, but now with an alternative priorW on µ (for
example, the original priorW(�) might be re-used rather than replaced byW(�)(⋅ � Y(�)). Even
though this would not be standard Bayesian, E(�) ⋅ E′(�) would still be a valid �-variable, and
Type-I error guarantees would still be preserved — and the same would hold even if the new
research group would use an entirely di�erent prior on Θ�. It is also conceivable that the group
performing the �rst trial was happy to adopt a Bayesian stance, adopting the normal priorW(�),
whereas the second group was frequentist, adopting a δ-GROW �-variable satisfying E∗

(�) ≥ ��
if �µ̂(Y(�)� � �.���

√
n, with µ̂(Y(�) the MLE based on the second sample. Still, basing decisions

on the product E∗
(�) ⋅ E

∗

(�) preserves Type-I error probability bounds. And, a�er the second
batch of data Y(�), one might consider obtaining a third sample, or even more samples, each
time using a di�erentW(k), that is always allowed to depend on the past. In the next section
we show how multiplying �-variables against such an arbitrarily long sequence of trials always
preserves Type-I error bounds.

Beyond the Normal Location Family Full compatibility of our approach with Bayesian
updating remains possible for all testing problems with simpleH�. IfH� becomes composite, it
cannot always be ensured: while we may still choose priorW(�) on Θ� to be the Bayes posterior
based on Y(�), the corresponding prior on Θ� to be used in the second batch of data may in
general not be equal to the posterior on Θ� based on Y(�).

�.� Optional Continuation
Suppose we have available a collection E = �n≥� En , with En = {en ,W ∶W ∈W}, where for each
n andW ∈Wn , en ,W de�nes a nonnegative test statistic for data Yn = (Y� , . . . ,Yn) of length n:
it is a function from Y n to R+� . We are mostly interested in the case that E really represents a
collection of �-variables, so that for all n,W ∈W , E ∶= en ,W(Yn) is an �-variable. For example,
we could take en ,w to be the �-variable in the example of Section �.�.�, which depends on the
prior W , each di�erent prior leading to a di�erent valid de�nition of E = en ,W(Y). More
generally though, the en ,W may not always have a direct Bayesian interpretation.

We observe a �rst sample (e.g., data of a �rst clinical trial), Y(�) = YN(�) = (Y� , . . . ,YN(�)),
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and measure our �rst test statistic E(�) based on Y(�).�at is, E(�) = EN(�) ,W(�)(Y(�)) for some
function EN(�) ,W(�) ∈ EN(�) .�en, if either the value of E(�) or, more generally of the underlying
dataY(�) is such that we (or some other research group) would like to continue testing, a second
data sample Y(�) = (YN(�)+� , . . . ,Yτ(�)) is obtained (e.g. a second clinical trial is done), and a
test statistic E(�) based on data Y(�) is measured. Here τ(�) ∶= N(�) + N(�), where N(�) is the
size of the second sample. We may choose E(�) to be any member from the set E , and N(�) to
be any sample size. As illustrated by the example in Section �.�.�, the particular choice we make
may itself depend on Y(�).�is means that N(�) and E(�) are determined via two functions
g ∶ �n≥� Y n →W ∪ {����} and h ∶ �n≥� Y n → N where, for any data Y(�), g determinesW(�),
and h determines N(�), so that together they determine the next �-variable to be used. A�er
observing Y(�), depending again on the value of Y(�), a decision is made either to continue
to a third test, or to stop testing for the phenomenon under consideration. In this way we
go on until either we decide to stop or until some maximum number kmax tests have been
performed.

�e decision whether to stop a�er k tests or to continue, and if so, what test statistic to use at
the k + �-st test, is conveniently encoded into g.�us, g(Y(k)) = ����means that the k-th test
was the �nal one to be performed. N(k), the size of the k-th batch of data, and τ(k) ∶= ∑k

j=� N( j),
the total sample size a�er k batches are determined as follows: we set N(k) ∶= h(Y(k−�)), where
Y(k) ∶= (Y(�) , . . . ,Y(k)), and Y(k) ∶= (Yτ(k−�)+� , . . . ,Yτ(k)), where we set τ(�) ∶= �. With this
notation, Y � = Y(�) is an ‘empty sample’ and N(�) ∶= h(Y �) is a data-independent sample size
for the �rst data batch; for convenience we also set E(�) ∶= �. E(k), the k-th test statistic to be
used is similarly determined via W(k) ∶= g(Y(k−�)) and then E(k) ∶= eN(k) ,W(k)(Y(k)). With
Y� ,Y� , . . . arriving sequentially, we can recursively use g to �rst determine N(�) and E(�); we can
then use g(Y(�)) to determine N(�) , τ(�) and E(�); we then use g(Y(�)) to determine N(�) , τ(�)
and E(�), and so on, until g(Y(k)) = ����.

Before presenting de�nitions and results, we generalize the setting to allow us to deal with
optional continuation rules that may be restricted (as needed for e.g. the Bayesian t-test (Sec-
tion �.�.�) and with data Y� ,Y� , . . . that are not i.i.d. according to all Pθ . For simple i.i.d testing
problems, one may simply set Vn = Yn everywhere for all n below, and skip directly to De�ni-
tion �.� and Proposition �, ignoring the word ‘conditional’ in all that follows.

For the general case, we �x a sequence of random variables V� ,V� , . . . such that for each n,
Vn takes values in a set Vn , and there is a function vn such that Vn = vn(Yn). We call each
Vn a coarsening of Yn and, borrowing terminology from measure theory, we call the process
V� ,V� , . . . a �ltration of Y � ,Y � , . . .. We now let E�(Vi)� = �n>�,m≥� En�m with En�m = {en�m ,W}
where en�m ,W are functions of Vn+m , parameterized not just by the sample size n of samples
to which they are to be applied but also by the sample size m of the past sample, a�er which
they are applied. We call such a conditional test statistic E ∶= en�m ,W(Vn+m) an �-variable
conditional on Vm relative to �ltration (Vi)i∈N if

for all P ∈H�: EP[E � Vm] ≤ �. (�.��)

We change the de�nition of the function g above by replacing all occurrences of the letter Y
with the corresponding instance of the letter V , and with now E(k) ∶= eN(k)�τ(k−�) ,W(k)(Y(k)).
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De�nition �.�. Let K���� ≥ � to be the smallest k for which g �V(k)� = ����, and K���� = kmax
if no such k exists. Let E�(Vi)� be a collection of nonnegative conditional test statistics as
above, de�ned relative to some �ltration (Vi)i∈N of (Yi)i∈N. We say that the threshold test based
on S is safe under optional continuation (for Type-I error probability, under multiplication) for
continuation rules based on (Vi), if for every g as above, with E(k) ∶=∏k

j=� E( j), for all P� ∈H�,
for every � ≤ α ≤ �,

P� �E(K����) ≥ α−�� ≤ α, (�.��)

i.e. the α-Type-I error probability bound is preserved under any optional continuation rule.

Henceforth we simply omit ‘for Type-I error, under multiplication’ from our descriptions. If for
all n, Vn = Yn , then we simply write ‘safe under optional continuation’.

A threshold test being safe under optional continuation implies that (�.��) even holds for the
most aggressive continuation rule h which continues until the �rst K is reached such that either
∏K

k=� E(k) ≥ α−� or K = kmax.�us, safety under optional continuation implies that under all
P� ∈ H�, the probability that there is any k ≤ kmax such that E(k) ≥ ��α is bounded by α. We
can now present our optional continuation result in its most basic form:

Proposition �. Take any (Vi)i∈N as above. If all elements of E are conditional �-variables as in
(�.��), then E(K����) is an �-variable, so that by Proposition �, the threshold test based on E(K����)

is safe under optional continuation for all continuation rules based on (Vi).

�e proposition gives the prime motivation for the use of �-variables and veri�es the claim
made in the introduction: the product of �-variables remains an �-variable, even if the decision
to observe additional data and record a new �-variable depends on previous outcomes. As a
consequence, Type-I error guarantees still hold for the combined (multiplied) test outcome.�e
de�nition of safety requires Type-I error probabilities to be preserved under arbitrary functions
g, yet a threshold test based on E(K����) can be applied without knowing the “o�-sample” details
of the actual function g that was used: we only need to know, for each k, once we are at the
end of the k-th trial, the value of g(Y(k)).�us, crucially, we can apply such tests, and have
Type-I error guarantees without knowing any other detail of the functions that have actually
been (implicitly, or unconsciously) used. For example, suppose that we continued to a second
sample Y(�) because the data looked promising, say we observed a �-value based on Y(�) equal
to �.��. We may not really know whether we would also have continued to gather a second
sample if we had observed � = �.��— but it does not matter, because irrespective of whether
a function g was used that continues if �(Y(�)) ∈ [�.��, �.��] or a function that continues if
�(Y(�)) ∈ [�.���, �.��], or any other g (e.g. based on E(�) instead of a �-value), safety under
optional continuation guarantees that our Type-I error guarantee is preserved — even without
us knowing such details concerning g.

A heuristic proof of Proposition � has already been given in the beginning of this paper: the
statement is essentially equivalent to ‘no matter what your role is for stopping and going home,
you cannot expect to win in a real casino’. We give an explicit elementary proof in Appendix �.B.
�ere we also generalize Proposition � in various ways: we include the conditional case where
each Pθ de�nes a conditional distribution for Yn given covariate information Xn and we allow
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the sample size of the j-th sample Y( j) to be not �xed in advance but itself determined by some
stopping rule. Finally, we also allow the decision whether or not to perform a new test to depend
on (nonstochastic) side-information such as ‘there is su�cient money to perform an additional
trial with �� subjects’.

�.�.� �-values vs.TestMartingales;OptionalContinuationvs. Stopping
�e purpose of this section is two-fold: this paper is about ‘safe testing’—not just under optional
continuation, but also under optional stopping, which we therefore must discuss. Second, the
prime tools for testing under optional stopping are test martingales, and these can be used to
‘generate’ useful �-variables, hence are important for us as well.

Optional Stopping We just formalized the idea of continuing from one trial (batch of data)
to the next, and potentially stopping at the end of each trial. Now we consider the closely related
‘dual’ question: we are sequentially observing data within a single trial, but we want to be able
to stop in the midst of it, without specifying at the beginning of the trial under what conditions
we should stop. For example, we originally planned for a sample size of n but our boss might
have peeked at interim results at n′ < n and concluded that these were so promising (or futile)
that she insists on stopping the experiment, without us having anticipated this in advance. We
cannot formalize this directly with �-values, because these are themselves de�ned for batches
of data Y = Yn of length n which may in fact come in without any particular order. Even if data
does come in a particular order, the number n (or a data-dependent, a priori speci�ed stopping
time N as in Appendix �.B) has to be speci�ed in advance to make an �-value well-de�ned, so
it will not always be clear what evidential value we should assign to the data if we want to stop
at n′ < n. To deal with optional stopping, we should thus not work with test statistics but rather
with test processes, each process SW de�ning an evidential value for each sample size.

Formally, a nonnegative test process S = (Si)i∈N relative to a �ltration (Vi)i∈N, is de�ned as a
sequence of nonnegative random variables S� , S� , . . . such that each Si = si(V i) can be written
as a function of V i for some function si . We de�ne a stopping rule g relative to (Vi) to be any
function g ∶ �n≥� Vn → {����, ��������} so that there exists an (arbitrarily large but �nite)
nmax such that g(vn) = ���� for all n ≥ nmax, all vn ∈ Vn . We let G��� be the set of all such
functions g.

De�nition �.�. Let (Si)i∈N be a nonnegative test process and let G ⊂ G��� be a set of stopping
rules. We say that the threshold test based on (Si) is safe under all stopping rules in G if for every
g ∈ G as de�ned above, all P� ∈H�, for every � ≤ α ≤ �:

P� �SN���� ≥ α−�� ≤ α, (�.��)

where the stopping time N���� is the smallest n at which g(vn) = ����.

As is well-known, test martingales lead to Type I error guarantees that are preserved under
optional stopping. Formally, a test martingale relative to �ltration (Vi) is a test statistic process
S� , S� , . . . where each Sn ∶= ∏n

i=� Si for another process S��� , S��� , S��� , . . . such that S��i is a
function of V i and satis�es, for all P� ∈H�, i ≥ �,

EP�[S��i−� � V i−�] ≤ �. (�.��)
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We call (S��i−�)i∈N a test martingale building block process. In the proposition below, for P ∈
H� ∪H�, P[Vn] denotes the marginal distribution of Vn under P, and we denote its density by
p′(Vn).�e following results are well-known:

Proposition �. Take any �ltration (Vi) as above.

�. Suppose that H� is a simple null for data coarsened to (Vi), i.e. for all P,Q ∈ H�, all
n, P[Vn] = Q[Vn].�en for every prior W onH�, the Bayes factor p′W�p′� de�nes a test
martingale, i.e. (p′W(V i)�p′�(V i))i∈N is a test martingale relative to (Vi)i∈N.

�. Now, take any test martingale (Si)i∈N relative to �ltration (Vi)i∈N.�en for all g ∈ G���,
SN���� is an �-variable, so that by Proposition �, the threshold test based on SN���� is safe
under optional stopping for all stopping rules that can be de�ned relative to (Vi).

Proof. �e �rst part follows by applying the cancellation trick as in (�.�) to the conditional
likelihood ratio p′W(Vi � V i−�)�p′�(Vi � V i−�); the second part is immediate by Doob’s optional
stopping theorem.

Test Martingales vs. �-Variables Part � of Proposition � shows that test martingales lead to
tests that are safe under optional stopping. Just as important for us, it shows that we can use any
given martingale and any stopping rule g to de�ne an �-variable. In recent work, A. Ramdas
and collaborators (Howard et al., ����b; Howard et al., ����a) have developed a large number of
practically most useful test martingales (some of these can be thought of as Bayes factors, and
some cannot; see Section �.� for many more references and history). All these test martingales
can thus be used to ‘generate’ useful �-variables (and in fact Part � of Proposition � can easily
be extended to also generate �-variables conditional on Vm for any desired m).

Conversely, wemay ask ourselves whether �-variables can also be used to de�ne test martingales
(and hence to allow for tests that are safe under optional stopping).�e answer is subtle, as we
now illustrate. For simplicity, we only consider unconditional �-variables to be used with data
that are i.i.d. under all P ∈H�. In the sections to come, we provide constructions of �-variables
for manyH�; all of these can be applied to data of arbitrary �xed sample sizes n. For any given
H�, they thus ‘automatically’ provide a test statistic process (Ei)i∈N with Ei = ei(V i).

�. A �rst idea is, for any givenH� and corresponding �-variables (ei(V i)), to de�ne the
process (Si)i∈N where S��i−� = e�(Vi), using only the ‘�rst’ �-variable. From (�.��) we
immediately see that (S��i−�)i∈N is now amartingale building block process and (Si)with
Si =∏n

i=� e�(Vi) is a test martingale. Since in this way, we can convert all �-variables into
martingales, allowing us to do optional stopping, it may seem we have made the concept
of �-variable super�uous. But this is not the case: for many of theH� we consider below,
this method leads to the useless test martingale with Si = S��i−� ≡ �, for all i, independent
of the data. For example, this is the case for the � × �-contingency tables (Section �.�.�),
for multivariate exponential families (Section �.�.�) and for the nonparametric test of
Example �.� — so that the above construction would lead to useless martingales that
almost surely remain � forever.

�. In some cases, the test statistic process (Ei)i∈N does turn out to give a test martingale.
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Examples are GROW �-variables for the case thatH� is simple (as in the one-parameter
exponential family case, Section �.�.�), or for the case that the GROW �-variable forH�
can be written as a function of (Vi) such thatH� is simple when data are coarsened to
(Vi) (as in the Bayesian t-test, Section �.�.�).�is can be used to modify, if so desired,
Ei to another �-variable EN���� based on some stopping rule g; see Section �.�.� where
this idea is used to improve statistical power of Ei .

�. Yet in other cases,H� is composite, and there is no natural coarsening/�ltration (Vi)
under which it becomes simple.�en, at least in general, the process (ei(V i)) is not a test
martingale. Counterexamples again include the �-values for the �× �-contingency tables,
multivariate exponential families and for the nonparametric test of Example �.�. We do
not see an easy way to obtain test martingales, and hence tests that are safe under ‘full’
optional stopping, for these settings. Still, sometimes tests based on the non-martingale
process (Ei)i∈N do allow for optional stopping under some non-trivial subset G ⊂ G���.
For example, it is easy to show that the �-values for multivariate exponential families that
we consider in Section �.�.� satisfy EP�[e(YN����) � xN����] ≤ � for all P� ∈H� as long as,
for each n, the stopping rule g(Yn) can be written as a �xed function of the su�cient
statistic θ̂�(Yn) forH�; the tests based on these �-values are thus safe under optional
stopping relative to (Vi)i∈N ∶= (Yi)i∈N under all such g.

�.� Main Result
From here onward we letW(Θ) be the set of all probability distributions (i.e., ‘proper priors’)
on Θ, for any Θ ⊂ Θ� ∪Θ�. Notably, this includes, for each θ ∈ Θ, the degenerate distribution
W which puts all mass on θ.

�.�.� What is a good �-Value?�e GROWCriterion
�e (semi-) Bayesian approach to �nding �-variables has already been treated in some detail
in Section �.�.�.�us, we focus on a frequentist perspective here, getting back to the Bayesian
approach later. We start with an example that tells us how not to design �-variables.

Example �.�. [Strict Neyman-Pearson �-Values: valid but useless] In strict Neyman-Pearson
testing (Berger, ����), one rejects the null hypothesis if the �-value P satis�es P ≤ α for the a
priori chosen signi�cance level α, but then one only reports “reject” rather than the �-value itself.
�is can be seen as a safe test based on a special �-variable E��: when P is a �-value determined
by data Y, we de�ne E�� = � if P > α and E�� = ��α otherwise. For any P� ∈H� we then have
EY∼P�[E��] = P�(P ≤ α)α−� ≤ �, so that E�� is an �-variable, and the ‘safe’ test that rejects if
E�� ≥ ��α obviously is identical to the test that rejects if P ≤ α. However, with this �-variable,
there is a positive probability α of losing all one’s capital. �e �-variable E�� leading to the
Neyman-Pearson test, i.e. the maximum power test, now thus corresponds to an irresponsible
gamble that has a positive probability of losing all one’s power for future experiments.�is also
illustrates that the �-variable property (�.�) is a minimal requirement for being useful under
optional continuation; in practice, one also wants guarantees that one cannot completely lose
one’s capital.
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In the Neyman-Pearson paradigm, one measures the quality of a test at a given signi�cance level
α by its power in the worst-case over all Pθ , θ ∈ Θ�. If Θ� is nested in Θ�, one �rst restricts Θ�
to a subset Θ′� ⊂ Θ� with Θ� ∩Θ′� = � of ‘relevant’ or ‘su�ciently di�erent from Θ�’ hypotheses.
For example, one takes the largest Θ′� for which at the given sample size a speci�c power can
be obtained. We develop analogous versions of this idea below; for now let us assume that we
have identi�ed such a Θ′� that is separated from Θ�.�e standard NP test would now pick, for
a given level α, the test which maximizes power over Θ′�.�e example above shows that this
corresponds to an �-variable with disastrous behavior under optional continuation. However,
we now show how to develop a notion of ‘good’ �-variable analogous to Neyman-Pearson
optimality by replacing ‘power’ (probability of correct decision under Θ′�) with expected capital
growth rate under Θ′�, which then can be linked to Bayesian approaches as well.

Taking, like NP, a worst-case approach, we aim for an �-variable with large EY∼Pθ [ f (E)] under
any θ ∈ Θ′�. Here f ∶ R+ → R is some increasing function. At �rst sight it may seem best to pick
f the identity, but this can lead to adoption of an �-variable such that Pθ(E = �) > � for some
θ ∈ Θ′�; we have seen in the example above that that is a very bad idea. A similar objection applies
to any polynomial f , but it does not apply to the logarithm, which is the single natural choice for
f : by the law of large numbers, a sequence of �-variables E� , E� , . . . based on i.i.d. Y(�) ,Y(�) , . . .
with, for all j, EY( j)∼P[log E j] ≥ L, will a.s. satisfy E�m� ∶= ∏m

j=� E j = exp(mL + o(m)), i.e. E
will grow exponentially, and L(log� e) lower bounds the doubling rate (Cover and �omas,
����). Such exponential growth rates can only be given for the logarithm, which is a second
reason for choosing it. A third reason is that it automatically gives �-variables an interpretation
within the MDL framework (Section �.�.�); a fourth is that such growth-rate optimal E can be
linked to power calculations a�er all, with an especially strong link in the one-dimensional
case (Section �.�.�), and a ��h reason is that some existing Bayesian procedures can also be
reinterpreted in terms of growth rate.

We thus seek to �nd �-variables E∗ that achieve, for some Θ′� ⊂ Θ� �Θ�:

inf
θ∈Θ′�

EY∼Pθ [log E
∗] = sup

E∈E(Θ�)

inf
θ∈Θ′�

EY∼Pθ [log E] =∶ ��(Θ
′

�), (�.��)

where E(Θ�) is the set of all �-variables that can be de�ned on Y for Θ�. We call this special
E∗, if it exists and is essentially unique, the GROW (Growth-Rate-Optimal-in-Worst-case) �-
variable relative to Θ′�, and denote it by E∗Θ′� (see Appendix �.C for the meaning of ‘essentially
unique’).

If we feel Bayesian about H�, we may be willing to adopt a prior W� on Θ�, and instead of
restricting to Θ′�, we may instead want to consider the growth rate under the priorW�. More
generally, as robust Bayesians or imprecise probabilists (Berger, ����; Grünwald and Dawid,
����; Walley, ����) we may consider a whole ‘credal set’ of priorsW ′� ⊂ W(Θ�) and again
consider what happens in the worst-case over this set. We are then interested in the GROW
�-variable E∗ that achieves

inf
W∈W ′

�

EY∼PW [log E∗] = sup
E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E]. (�.��)
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Again, if an �-variable achieving (�.��) exists and is essentially unique, then we denote it by E∗
W ′

�
.

IfW ′� = {W�} is a single prior, we denote the �-variable by E∗W�
. (�.��) then reduces to

EY∼PW�
[log E∗W�

] = sup
E∈E(Θ�)

EY∼PW�
[log E],

and �eorem �.�, Part � below implies that, under regularity conditions, in this case E∗W�
=

pW�(Y)�pW○
�
(Y) for some priorW○ on Θ�: the GROW E∗-variable relative to PW� is always a

Bayes factor with PW� in the denominator.

IfW ′� =W({θ�}) is a single prior that puts all mass on a singleton θ�, then we write E∗
W ′

�
as E∗θ � .

Linearity of expectation further implies that (�.��) and (�.��) coincide ifW ′� =W(Θ′�); thus
(�.��) generalizes (�.��).

All �-variables in the examples below, except for the ‘quick and dirty’ ones of Section �.�.�, are
of this ‘maximin’ form.�ey will be de�ned relative to setsW ′� with in one case (Section �.�.�)
W ′ representing a set of prior distributions on Θ�, and in other cases (Section �.�.�–�.�.�)
W ′� =W(Θ′�) for a ‘default’ choice of a subset of Θ�.

�.�.� �e JIPr is GROW
We now present our main result, illustrated in Figure �.�. We use D(P�Q) to denote the relative
entropy orKullback-Leibler (KL) Divergence between distributions P andQ (Cover and�omas,
����). We call an �-variable trivial if it is always ≤ �, irrespective of the data, i.e. no evidence
against H� can be obtained. �e �rst part of the theorem below implies that nontrivial �-
variables essentially always exist as long as Θ� ≠ Θ�.�e second part — really implied by the
third but stated separately for convenience — characterizes when such �-variables take the
form of a likelihood ratio/Bayes factor.�e third says that GROW �-variables for a whole set of
distributions Θ′� can be found by a joint KL minimization problem.

Part � of the theorem refers to a coarsening of Y. �is is any random variable V that can be
written as a function of Y, i.e. V = f (Y) for some function f ; in particular, the result holds
with f the identity and V = Y. For general coarsenings V, the distributions Pθ for Y induce
marginal distributions for V, which we denote by P[V]θ .

�eorem �.�. �. Let W� ∈W(Θ�) such that infW�∈W(Θ�) D(PW��PW�) <∞ and such that
for all θ ∈ Θ�, Pθ is absolutely continuous relative to PW� .�en the GROW �-variable E∗W�

exists, is essentially unique, and satis�es

EY∼PW�
[log E∗W�

] = sup
E∈E(Θ�)

EY∼PW�
[log E] = inf

W�∈W(Θ�)
D(PW��PW�)

�. Let W� be as above and suppose further that the inf/min is achieved by some W○

� , i.e.
infW�∈W(Θ�) D(PW��PW�) = D(PW��PW○

�
). �en the minimum is achieved uniquely by

this W○

� and the GROW �-variable takes a simple form: E∗W�
= pW�(Y)�pW○

�
(Y).

�. Now letΘ′� ⊂ Θ� and letW ′� be a subset ofW(Θ′�) such that for some coarseningV ofY (we
may have Y = V) the following holds: for all θ ∈ Θ�, all W� ∈W ′� , P

[V]
θ is absolutely con-
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tinuous relative to P[V]W�
, and the set {P[V]W�

∶W� ∈W ′�} is convex (this holds automatically
ifW ′� is convex). Suppose that

inf
W�∈W

′
�

inf
W�∈W�

D(PW��PW�) = min
W�∈W

′
�

min
W�∈W�

D(P[V]W�
�P[V]W�

) = D(P[V]W∗
�
�P[V]W∗

�
) <∞, (�.��)

the minimum being achieved by some (W∗

� ,W∗

� ) such that D(PW��PW∗
�
) < ∞ for all

W� ∈W ′� . If the minimum is achieved uniquely by (W∗

� ,W∗

� ), then the GROW �-variable
E∗
W ′

�
relative toW ′� exists, is essentially unique, and is given by

E∗
W ′

�
=
p′W∗

�
(V)

p′W∗
�
(V)

, (�.��)

where p′W is the density on V corresponding to P[V]W . Also, E∗
W ′

�
satis�es

inf
W∈W ′

�

EY∼PW [log E∗W ′
�
] = sup

E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E] = D(P[V]W∗
�
�P[V]W∗

�
). (�.��)

IfW ′� =W(Θ′�), then by linearity of expectation we further have E∗
W ′

�
= E∗Θ′� .

�e requirements that, for θ ∈ Θ�, the Pθ are absolutely continuous relative to the PW� , and,
in Part �, that D(PW��PW∗

�
) < ∞ for all W� ∈ W ′� are quite mild — in any case they hold in

all speci�c examples considered below, speci�cally if Θ� ⊂ Θ� represent general multivariate
exponential families, see Section �.�.�.

Since the KL divergence is strictly convex in both arguments if the other argument is held �xed,
and non-strictly jointly convex, we have that if (�.��) holds, then for each (W ′

� ,W ′

�) achieving
the minimum, eitherW ′

� =W∗

� ,W ′

� =W∗

� or bothW ′

� ≠W∗� andW ′

� ≠W∗

� . In the latter case,
all mixtures (� − α)(W ′

� ,W ′

�) + α(W� ,W�) also achieve the minimum.

Following Li, ����, we call PW○ as in Part � of the theorem, the Reverse Information Projection
(RIPr) of PW� on {PW ∶ W ∈ W(Θ�)}. Extending this terminology we call (PW∗

�
, PW∗

�
) the

joint information projection (JIPr) of {PW ∶ W ∈ W ′�} and {PW ∶ W ∈ W(Θ�)} onto each
other.

�e requirement for the full JIPr characterization (�.��), that the minima are both achieved is
strong in general, but it holds in the examples of Section �.�.� (�-dimensional) and �.�.� (� × �
tables) with V = Y. By allowing V to be a coarsening of Y, we make the condition considerably
weaker: it then also holds in the t-test example of Section �.�.�— that example will also illustrate
that {P[V]W�

∶W� ∈W ′�}may be convex even ifW ′� is not, and that in cases where the minimum
in (�.��) over PW� on Y does not exist, still its in�mum over PW� on Y may be equal to the
minimum over PW� de�ned on V, which does exist.

Proof Sketch of Parts � and � We give short proofs of parts � and � under the (weak) addi-
tional condition that we can exchange expectation and di�erentiation and the (strong) con-
dition that V is taken equal to Y. To prove parts � and � without these conditions, we need a
nonstandard minimax theorem; and to prove part � (which does not rely on minima being
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achieved) we need a deep result from Barron and Li (Li, ����); these extended proofs are in
Appendix �.C.

For Part �, consider anyW ′

� ∈W(Θ�) withW ′

� ≠W○

� , withW○

� as in the theorem statement.
Straightforward di�erentiation shows that the derivative (d�dα)D(PW��P(�−α)W○

� +αW
′
�
) at α = �

is given by f (α) ∶= � − EY∼PW′� [pW�(Y)�pW○
�
(Y)]. Since (� − α)W○

� + αW ′

� ∈ W(Θ�) for all
� ≤ α ≤ �, the fact that W○

� achieves the minimum over W(Θ�) implies that f (�) ≥ �,
but this implies that EY∼PW′� [pW�(Y)�pW○

�
(Y)] ≤ �. Since this reasoning holds for all W ′

� ∈
W(Θ�), we get that pW�(Y)�pW○

�
(Y) is an �-variable. To see that it is GROW, note that, for

every �-variable E = e(Y) relative to E(Θ�), we must have, with q(y) ∶= e(y)pW○
�
(y), that

∫ q(y)dy = EY∼PW○� [E] ≤ �, so q is a sub-probability density, and by the information inequality
of information theory (Cover and�omas, ����), we have

EPW�
[log E] = EPW�

�log q(Y)
pW○

�
(Y)
� ≤ EPW�

�log pW�(Y)
pW○

�
(Y)
� = EPW�

�log E∗W�
� ,

implying that E∗W�
is GROW.

For Part �, consider any W ′

� ∈ W ′� with W ′

� ≠ W∗

� , W∗

� ,W∗

� as in the theorem statement.
Straightforward di�erentiation and reasoning analogously to Part � above shows that the
derivative (d�dα)D(P(�−α)W∗

� +αW
′
�
�PW∗

�
) at α = � is nonnegative i� there is no α > � such

that EP(�−α)W∗� +αW′� [log pW
∗
�
(Y)�pW∗

�
(Y)] ≤ EPW∗� [log pW

∗
�
(Y)�pW∗

�
(Y)]. Since this holds for all

W ′

� ∈ W ′� , and since D(PW∗
�
�PW∗

�
) = infW∈W ′

�
D(PW�PW∗

�
), it follows that

infW∈W ′
�
EPW [log E∗W ′

�
] = D(PW∗

�
�PW∗

�
), which is already part of (�.��).Note thatwe also have

inf
W∈W ′

�

EY∼PW [log E∗W ′
�
] ≤ sup

E∈E(Θ�)

inf
W∈W ′

�

EY∼PW [log E]

≤ inf
W∈W ′

�

sup
E∈E(Θ�)

EY∼PW [log E]

= inf
W∈W ′

�

sup
E∈E(W(Θ�))

EY∼PW [log E]

≤ inf
W∈W ′

�

sup
E∈E({W∗

� })

EY∼PW [log E]

≤ sup
E∈E({W∗

� })

EY∼PW∗� [log E].

where the �rst two and �nal inequalities are trivial, the third one follows from de�nition of
�-variable and linearity of expectation, and the fourth one follows because, as is immediate
from the de�nition of �-variable, for any setW� of priors on Θ�, the set of �-variables relative
to any setW ′ ⊂W� must be a superset of the set of �-variables relative toW�.

It thus su�ces if we can show that supE∈E({W∗
� })

EY∼PW∗� [log E] ≤ D(PW∗
�
�PW∗

�
). For this,

consider �-variables E = e(Y) ∈ E({W∗

� }) de�ned relative to the singleton hypothesis {W∗

� }.
Since EY∼PW∗� [e(Y)] ≤ � we can write e(Y) = q(Y)�pW∗

�
(Y) for some sub-probability density



�.�. Main Result ���

q, and

sup
E∈E({PW∗� })

EPW∗� [log E] = supq
EY∼PW∗� �log

q(Y)
pW∗

�

� (�.��)

= D(PW∗
�
�PW∗

�
),

where the supremum is over all sub-probability densities on Y and the �nal equality is the
information (in)equality again (Cover and�omas, ����).�e result follows.

�.�.� δ-GROW and simple δ-GROW �-Values
To apply�eorem �.� to design �-variables with good frequentist properties in the case that
Θ� � Θ�, we must choose a subsetΘ′� withΘ′�∩Θ� = �. Usually, we �rst carve upΘ� into nested
subsetsΘ(ε). A convenient manner to do this is to pick a divergence measure d ∶ Θ�×Θ� → R+�
with d(θ��θ�) = �⇔ θ� = θ�, and, de�ning d(θ) ∶= inf θ�∈Θ� d(θ , θ�) (examples below) so
that

Θ(ε) ∶= {θ ∈ Θ� ∶ d(θ) ≥ ε}. (�.��)

In the examples below we are interested in GROW �-variables E∗Θ(ε) for a given measure d for
some particular value of ε.�is is in full analogy to classical frequentist testing, where we look
for tests with worst-case optimal power with alternatives restricted to sets Θ(ε); we merely
replace ‘power’ by ‘growth rate’.

In some cases such �-variables E∗Θ(ε) take on a particularly simple form, as Bayes factors with
all mass in Θ� concentrated on the boundary ��(Θ(ε)) = {θ ∈ Θ� ∶ d(θ) = ε}.

To develop these ideas further, for simplicity we restrict attention to the common case with
just a single scalar parameter of interest δ ∈ ∆ ⊆ R so that H� ,H� can be parameterized as
Θ� = {(δ, γ) ∶ δ ∈ ∆, γ ∈ Γ} and Θ� = {(�, γ) ∶ γ ∈ Γ}, with Γ representing all distributions in
H�.We can then simply take d((δ, γ)) = �δ� so thatΘ(δ) = {(δ, γ) ∶ δ ∈ ∆, �δ� ≥ δ, γ ∈ Γ}.�en
the �-variable E∗Θ(δ) with δ > � will be referred to as the δ-GROW �-variable for short.

Further de�ning E∗δ ∶= E∗{(δ ,γ)∶�δ�=δ ,γ∈Γ}, we call E
∗

Θ(δ) simple if

E∗Θ(δ) = E
∗

δ (�.��)

In all examples below, the δ-GROW � is also simple, making it particularly easy to deal
with.

To illustrate, consider �rst the one-sided case with ∆ ⊆ R+� . �en, applying �eorem �.�,
Part � with Θ = {(δ, γ) ∶ γ ∈ Γ} and assuming the KL-in�mum is achieved, we must have
E∗δ = pδ ,W∗

� [γ](Y)�p�,W∗
� [Γ](Y) for some priorsW∗

� [γ],W∗

� [γ] on γ. We see that (�.��) holds
i�

sup
E∈E({�})

inf
θ∈Θ(δ)

EY∼Pθ [log E] = inf
θ∈Θ(δ)

EY∼PθE[log E
∗

δ ] (�.��)

= D(Pδ ,W∗
� [γ]�P�,W∗

� [γ]). (�.��)
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In Appendix �.D, Proposition � we provide some su�cient conditions for (�.��) to hold.

Now consider the two-sided case with scalar parameter space∆′ an interval containing � in its in-
terior. Since, by linearity of expectation,mixtures of �-variables are obviously �-variables,

E○δ ∶=
�
�
E∗δ +

�
�
E∗
−δ (�.��)

is a simple �-variable. While E○δ will be seen to be δ-GROW in the two-sided Gaussian location
and t-test setting, in general, we have no guarantee that it is δ-GROW. Still, in Appendix �.D
we show that if its constituents are one-sided GROW, i.e. (�.��) holds for the �-sided case with ∆
set to ∆+ and with ∆ set to −∆−, then the worst-case growth rate achieved by E○δ is guaranteed
to be close (within log �) of the two-sided δ-based GROW �-variable E∗Θ(δ). In such cases we
may think of E○δ as a simple δ-almost-GROW �-variable. E○δ may be much easier to compute
than the actual two-sided GROW �-variable E∗Θ(δ).

�.� Examples

�.�.� Point null vs. one-parameter exponential family
Let {Pθ � θ ∈ Θ} with Θ ⊂ R represent a �-parameter exponential family for sample space Y ,
given in its mean-value parameterization, such that � ∈ Θ, and take Θ� to be some interval
(t′ , t) for some −∞ ≤ t′ ≤ � < t ≤ ∞, such that t′ , � and t are contained in the interior of
Θ. Let Θ� = {�}. Both H� = {P�} and H� = {Pθ ∶ θ ∈ Θ�} are extended to outcomes in
Y = (Y� , . . . ,Yn) by the i.i.d. assumption. For notational simplicity we set

D(θ��) ∶= D(Pθ(Y)�P�(Y)) = nD(Pθ(Y�)�P�(Y�)). (�.��)

We consider the δ-GROW �-variables E∗Θ(δ) relative to sets Θ(δ) as in (�.��). Since H� is
simple, we can simply take θ to be the parameter of interest, hence ∆ = Θ� and Γ plays no role,
so that Θ(δ) = {θ ∈ Θ� ∶ �θ� ≥ δ}.

One-Sided Test: simple GROW �-Variable Here we set t′ = � so that Θ(δ) = {θ ∈ Θ� ∶ θ ≥
δ}. We show in Appendix �.D that this is a case in which (�.��) holds: the δ-GROW �-variable
is simple, and can be calculated as a likelihood ratio E∗Θ(δ) = pδ(Y)�p�(Y) between two point
hypotheses, even though Θ(δ) is composite.

GROW �-Variables andUMPBayes tests We now show that, for this �-sided testing case, for
a speci�c value of δ, E∗Θ(δ) coincides with the uniformly most powerful Bayes tests of Johnson,
����b, giving further motivation for their use and an indication of how to choose δ if no a priori
knowledge is available. Note �rst that, since Θ� = {�} is a singleton, by�eorem �.�, Part �, we
have that E∗W = pW(Y)�p�(Y), i.e. for allW ∈W(Θ�), the GROW �-variable relative to {W}
is given by the Bayes factor pW�p�.�e following result is a direct consequence of Johnson,
����b, Lemma �.
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�eorem �.� (Uniformly Most Powerful Bayes Test (Johnson, ����b)). Consider the setting
above. Fix any � < α < � and assume that there is δ ∈ Θ� with D(δ��) = − log α. �en among
the class of all threshold-based tests based on local Bayes factors, i.e. all tests of the form “reject
i� pW(Y)�p�(Y) ≥ ��α” for some W ∈W(Θ�), the Type-II error is uniformly minimized over
Θ� by setting W to a degenerate distribution putting all mass on δ:

for all θ ∈ Θ� ∶ min
W∈W(Θ�)

Pθ �
pW(Y)
p�(Y)

≥ �
α
� = Pθ �

pδ(Y)
p�(Y)

≥ �
α
� ,

and with the test that rejects i� pδ(Y)�p�(Y) ≥ ��α,H� will be rejected i� the ML estimator θ̂
satis�es θ̂ ≥ δ.

�eorem �.� shows that, in the context of �-sided testing with �-parameter exponential families,
if a GROW �-variable is to be used in a safe test with given signi�cance level α and one is
further interested in maximizing power among all GROW �-variables (i.e. with respect to any
setW ′� of priors onΘ�), then one should use the simple �-variable E∗δ withD(Pδ(Y�)�P�(Y�)) =
(− log α)�n since this will lead to the uniformly most powerful GROW test.

Example �.�. [Normal Location, �- and �-sided] Consider the normal location setting of
Section �.�.� withΘ� = {�} as before, and µ ∈ Θ�, the mean, the parameter of interest. First take
Θ� = R+, i.e. a one-sided test. �en E∗Θ(µ) = pµ(Y)�p�(Y) and has ��(Θ(µ)) = D(µ��) =
(n��)�µ��. We now see that the uniformly most powerful δ-GROW �-variable at sample size n
is given by the µ̃n with D(µ̃n��) = − log α, so that µ̃n =

�
�(− log α)�n.�us (unsurprisingly),

this GROW �-variable is a likelihood ratio test between � and µ̃n at distance to � of order ��
√
n,

and we expect to gain (at least) − log α in capital growth if data are sampled from µ ≥ µ̃n .

In the two-sided case, with Θ� = R, we can pick the almost-δ-GROW simple �-value (�.��), i.e.
E○µ = �(���)pµ(Y) + (���)p−µ(Y)� �p�(Y). Using the distributions’ symmetry around �, we
can show (Appendix �.D) that in this case, E○µ = E∗µ , i.e. E○µ is in fact GROW for Θ(µ) = {Pµ ∶
�µ� ≥ µ}. Even though in this �-sided case we have no proof that it results in a uniformly most
powerful δ-GROW �-variable, we can still, when aiming for a high-power test, take our cue
from the �-sided cases and pick E○µ̃n

for the µ̃n such that ��(Θ(µ̃n)) = − log α.�is leads to
the test we described in Section �.�.� with threshold

�
cn�n → �.���

√
n.

�.�.� Nonparametric �-Variables
Some of the most well-known classical nonparametric tests are based on identifying a statistic
U = f (Y) that has the same distribution P�[U] under all θ ∈ Θ�. �is U is then the test
statistic on which a �-value is based. At the same time, it is common to report an (empirical)
e�ect size δ̂(U) for such a test, giving an indication of the found deviation from the null; the
precise de�nition of δ̂ varies from case to case. For any distribution P for Y and any given
de�nition of δ̂ we will write δ(P) ∶= EU∼P[δ̂(U)] for the population e�ect size. For simplicity
we restrict ourselves to cases in which δ̂ is a monotonically increasing function of U and
δ(P�) = �. Assuming we have chosen a test statistic U and a de�nition for δ̂, we can extend
the previous de�nitions to δ-GROW �-variables based on U or equivalently, δ̂. �e idea is
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thatH� andH� are so large that a GROW (or uniformly-most-powerful) �-variable among
all �-variables forH� andH� does not exist or is too hard to �nd; instead we make life easier
by searching for the �-variable that is GROW among all �-variables that can be written as a
function of U, which is a strict subset of those that can be written as a function of Y .�is is
easier since U has the same distribution P�[U] under all P� ∈H�. To this end, assume P�[U]
has density p� against some background measure µ. We de�ne Pλ as the distribution with
density pλ(u)∝ exp(λδ̂(u))p�(u). Let Λ be the set of λ for which Pλ is well-de�ned, i.e. for
which ∫ p�(u) exp(λδ̂(u))dµ(u) <∞.�en P ∶= {Pλ ∶ λ ∈ Λ} is an exponential family given
in its natural parameterization, and by a standard property of exponential families, EPλ [δ̂(U)]
is monotonically increasing in λ. Rephrasing in the mean-value parameterization we can thus
write P[δ] ∶= Pλδ where λδ is the λ such that EPλ [δ̂(U)] = δ.

Consider a one-sided test withH� representing δ(P) > �. Since we have reduced the problem to
the �-sided �-dimensional exponential family case of Section �.�.�, we can once again conclude
(�.��).�at is, for δ > � such that P[δ][U] is well-de�ned, we have that E∗ = p[δ](U)�p[�](U) is
a simple �-variable that is GROWrelative to the set {P ∈H� ∶ δ(P) ≥ δ}, for data coarsened toU.
We can then de�ne a simple two-sided �-variable analogously to Example �.�. Also,�eorem �.�
for �-dimensional exponential families above tells us that, for δ chosen so that

D �P[δ][U]�P[�][U]� = − log α, (�.��)

the uniformly-most-powerful GROW safe test is the test that rejects i� E∗ ≥ ��α, under the
assumption that U ∼ Pδ for δ ≠ �. While by construction we can assume that U ∼ P� under the
null, we cannot assume that U ∼ Pδ for some δ under the alternative; our constructed model
may be misspeci�ed. Whether E∗ still has a UMP property is thus an interesting question for
future research.

Example �.�. In theMann-WhitneyU test, we are given n = na+nb outcomes, with na outcomes
in group a and nb in group b. �is can be represented as n pairs (Xi ,Yi) with Xi ∈ {a, b},
Yi ∈ R, Xi indicating the group of the ith outcome, and n j = ∑n

i=� �Xi= j , for j ∈ {a, b}. Under
H�, all outcomes in group a are i.i.d., all outcomes in group b are i.i.d., but the two distributions
are not the same; underH�, all outcomes are i.i.d. with the same distribution.

�e Mann-Whitney U test is based on the Mann-Whitney U statistic (see any text book for
a de�nition). For every �xed na and nb , under all P ∈ H�, i.e all distributions such that
Y = (Y� , . . . ,Yna+nb) is i.i.d. with Yi ⊥ Xi , U has the same discrete distribution P[�][U] with
mass function p[�](u) with some �nite support U . U is normally used to calculate a �-value.
Instead, we use it to calculate an �-value in the manner indicated above: a standard e�ect size
for the Mann-Whitney test is U�(nanb). Instead for convenience we take δ̂ = U�(nanb) − ���,
so that EP�[δ̂] = �. De�ne

pλ(u) ∶=
p�(u) ⋅ eλδ̂(u)

∑u′∈U p�(u′)eλδ̂(u′)

Since U has a �nite range, pλ is well-de�ned for λ ∈ R and it is the probability mass function
of the Pλ de�ned earlier.�en P[δ](U) = Pλ(U) for the λ with EPλ [U] = δ, and the GROW
�-variables relative to {P ∈H� ∶ δ(P) ≥ δ} are simple: they are likelihood ratios for coarsened
data U of the form p[δ](U)�p[�](U).
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�.�.� �e Bayesian t-test and the simple δ-GROW t-test
Je�reys, ���� proposed a Bayesian version of the t-test; see also (Rouder et al., ����). We
start with the modelsH� andH� for data Y = (Y� , . . . ,Yn) given asH� = {P�,σ(Y) � σ ∈ Γ};
H� = {Pδ ,σ(Y) � (δ, σ) ∈ Θ�}, where ∆ = R, Γ = R+, Θ� ∶= ∆ × Γ and Θ� = {(�, σ) ∶ σ ∈ Γ},
and Pδ ,σ has density

pδ ,σ(y) =
exp�− n

� ��
y
σ − δ�

�
+ �

�
n ∑

n
i=�(yi−y)�
σ � ���

(�πσ �)n��
,

with y = �
n ∑

n
i=� yi .

Je�reys proposed to equip H� with a Cauchy prior W�[δ] on the e�ect size δ, and both H�
and H� with the scale-invariant prior measure with density wH(σ) ∝ ��σ on the variance.
Below we �rst show that, even though this prior is improper (whereas the priors appearing in
�eorem �.� are invariably proper), the resulting Bayes factor is an �-variable. We then show
that, for priorsW[δ]with more than �moments, it is in fact even the GROW �-variable relative
to all distributions inH� compatible withW[δ].�us, GROW optimality holds for most priors
W[δ] one might want to use, including standard choices (such as a standard normal) and
nonstandard choices (such as the two-point prior we will suggest further below) but ironically
not to the moment-less Cauchy proposed by Je�reys.

Almost Bayesian Case: prior on δ available For any proper prior distribution W[δ] on δ
and any proper prior distributionW[σ] on σ , we de�ne

pW[δ],W[σ](y) = �
δ∈∆
�
σ∈Γ

pδ ,σ(y)dW[δ]dW[σ],

as the Bayes marginal density under the product priorW[δ] ×W[σ]. In case thatW[σ] puts
all its mass on a single σ , this reduces to:

pW[δ],σ(y) = �
δ∈∆

pδ ,σ(y)dW[δ]. (�.��)

For convenience later on we set the sample space to be Y n = (R � {�}) × Rn−�, assuming
beforehand that the �rst outcome will not be �— an outcome that has measure � under all
distributions in H� and H� anyway. Now we de�ne V ∶= (V� , . . . ,Vn) with Vi = Yi��Y��. We
have that Y determines V, and (V,Y�) determines Y = (Y� ,Y� , . . . ,Yn).�e distributions in
H� ∪H� can thus alternatively be thought of as distributions on the pair (V,Y�). V is “Y with
the scale divided out”: it is well-known (and easy to check, see Appendix �.E) that under all
P ∈ H�, i.e. all P�,σ with σ > �, V has the same distribution P�[V] with density p′�. Similarly,
one shows that under all PW[δ],σ with σ > �, V has the same pdf p′W[δ] (which therefore does
not depend on the prior on σ). We now get that, for all σ > �,

E∗W[δ]�V� ∶=
p′W[δ](V)
p′�(V)

(�.��)
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satis�es EV∼P[E∗W[δ]�V�] = � for all P ∈H�, hence it is an �-variable. Here we introduced the
notation E∗W[δ]�V� for �-variables that are GROW relative toW for data ‘at level’ V, i.e among
all �-variables that can be written as functions of V (see Appendix �.A for further explanation).
Remarkably, this ‘scale-free’ �-variable coincides with the Bayes factor one gets if one uses, for
σ , the prior wH(σ) = ��σ suggested by Je�reys, and treats σ and δ as independent.�at is, as
shown in Appendix �.E, we have

∫σ pW[δ],σ(Y)wH(σ)dσ

∫σ p�,σ(Y)wH(σ)dσ
=
p′W[δ](V)
p′�(V)

= E∗W[δ]�V�. (�.��)

Despite its improperness, wH induces a valid �-variable when used in the Bayes factor.�e
equivalence of this Bayes factor to E∗W[δ]�V� simply means that it manages to ignore the
‘nuisance’ part of the model and models the likelihood of the scale-free V instead.�e reason
this is possible is that wH coincides with the right-Haar prior for this problem (Eaton, ����;
Berger, Pericchi and Varshavsky, ����), about which we will say more below. Amazingly, it turns
out that the �-variable (�.��) is GROW (among all �-variables for data Y, not just the coarsened
V!) under the weak condition that the priorW[δ] has a (� + ε)th moment.�is follows from
Part � of our secondmain result,�eorem �.� below. Its proof is by nomeans straightforward (at
least, we did not �nd a simple proof). Let, for priorsW[δ],W[σ], P[V]W[δ],W[σ] be the marginal
distribution on V, i.e. the distribution with density p′W[δ],W[σ].

�eorem �.�. Let W[δ] be a distribution on δ such that for some ε > �, Eδ∼W[δ][�δ��+ε] < ∞
for some ε > � (in particular this includes all degenerate priors with mass � on a single δ). Let
W[Γ] be the set of all distributions W[σ] on the variance σ . We have:

inf
W′[σ],W[σ]∈W(Γ)

D(PW[δ],W′[σ]�P�,W[σ]) = inf
W[σ]∈W(Γ)

D(PW[δ],W[σ]�P�,W[σ])

= D(P[V]W[δ]�P
[V]
� ). (�.��)

More generally, �x a convex set of distributions W[δ] on δ such that, for some ε > �, each
W[δ] ∈ W[δ] satis�es Eδ∼W[δ][�δ��+ε] < ∞. Let W ′� be a set of probability distributions on
δ × σ such that, for each W[δ] ∈W[δ] and each distribution W[σ] ∈W(Γ) on σ ,W ′ contains
a distribution whose marginal on δ coincides with W[δ] and whose marginal on σ coincides
with W[σ]. We then have:

inf
W∈W ′

�

inf
W[σ]∈W[Γ]

D(PW�P�,W[σ]) = inf
W[δ]∈W[δ]

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ])

= inf
W[δ]∈W[δ]

D(P[V]W[δ]�P
[V]
� ). (�.��)

Part � of this theorem allows us to use Part � of�eorem �.� to conclude that E∗W[δ]�V� = E
∗

W�
:

the Bayes factor based on the right Haar prior, is not just an �-variable, but even the GROW
�-variable relative to the set of all priors on δ × σ that are compatible withW[δ].
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Simple GROW safe t-test: prior on δ not available What if we have no clear idea on how
to choose a marginal prior on δ? In that case, we can once again use the δ-GROW �-variable
for δ. First, consider �-sided tests. In Appendix �.D we show that (�.��) holds in this case, i.e.
minW∈W(Θ(δ)) D(P

[Y]
W �P

[Y]
� ) is achieved for the degenerate prior that puts mass � on δ, i.e.

the δ-GROW �-variable is simple. We can then use�eorem �.� above to infer that the Bayes
factor based on the right Haar prior wH on σ and this point prior on δ, i.e. E∗δ = p′δ(V)�p′�(V)
is equal to the GROW �-variable relative to Θ(δ). Mutatis mutandis, the same holds for the
�-sided test: as shown in Appendix �.D, with the GROW set Θ(δ) = {δ ∶ �δ� ≥ δ} we get that
the δ-GROW �-variable is simple, and given by the Bayes factor with, forH�, the prior on δ
that puts mass ��� on δ and ��� on −δ.

Optional Stopping For any priorW[δ], E∗W[δ] de�nes a test statistic process (E
∗

W[δ]�V
i�)i∈N

with E∗W[δ]�V i� = p′W[δ](V
i)�p′�(V i). Notably, tests based on this process are safe for optional

stopping under De�nition �.�: by Proposition �, this process de�nes a test martingale and hence,
by the same proposition, the threshold test based on (E∗W[δ]�V

i�)i∈N preserves Type I error
guarantees also under optional stopping. As indicated by (Hendriksen, De Heide and Grünwald,
����), this test does not necessarily preserve Type-I error guarantees under optional stopping
with stopping rules that can only be written as function of Y� ,Y� , . . . and not of V� ,V� , . . .. But,
since E∗W[δ]�V

i� is a function of the Vi , it does allow for the prototypical instance of optional
stopping, where we stop at the smallest t at which E∗W[δ]�V

t� > �� = ��α.�e insight that E∗W[δ]
provides a test martingale is not new: as we learned from A. Ramdas, it was already considered
by Robbins, ����.

Extension to General Group Invariant Bayes Factors In a series of papers (Berger, Pericchi
and Varshavsky, ����; Dass and Berger, ����; Bayarri et al., ����), Berger and collaborators
developed a theory of Bayes factors forH� = {P�,γ ∶ γ ∈ Γ} andH� = {Pδ ,γ ∶ δ ∈ ∆, γ ∈ Γ}with a
nuisance parameter (vector) γ that appears in both models and that satis�es a group invariance;
the Bayesian t-test is the special case with γ = σ , Γ = R+ and with the scalar multiplication
group and δ an ‘e�ect size’. Other examples include regression based on mixtures of g-priors
(Liang et al., ����) and the many examples given by e.g. Berger, Pericchi and Varshavsky, ����;
Dass and Berger, ����, such as testing a Weibull vs. the log-normal or an exponential vs. the
log-normal.�e reasoning of the �rst part of this section straightforwardly generalizes to all
such cases: under some conditions on the prior on δ, the Bayes factor based on using the right
Haar measure on γ in both models gives rise to an �-variable. We furthermore conjecture that in
all such testing problems, the resulting Bayes factor is even GROW relative to a suitably de�ned
setW�; i.e. that a suitable analogue of �eorem �.� holds. �e proof of this theorem seems
extendable to the general group invariant setting, with the possible exception of Lemma �� in
Appendix �.E which uses particular properties of the variance of a normal; generalizing this
lemma (which also requires us to handle models with a nonunique right Haar prior (Sun and
Berger, ����), for which it is not immediately clear how a generalization would look like) is a
major goal for future work.
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�.�.� Contingency Tables
Let Y n = {�, �}n and let X = {a, b} represent two categories. We start with a multinomial
model G� on Z = X ×Y , extended to n outcomes by independence. We want to test whether
the Yi are dependent on the Xi . To this end, we condition every distribution in G� on a �xed,
given, X = x = (x� , . . . , xn), and we letH� be the set of (conditional) distributions on Z that
thus result.

We thus assume the design of X n to be set in advance, but N�, the number of ones, to be
random; alternative choices are possible and would lead to a di�erent analysis. Conditioned on
X = x, the counts n, na = Na(x) and nb (see Table �.�), the likelihood of an individual sequence
y � x with statistics Na� ,Nb� ,Nb� ,Nb� becomes:

pµ��a ,µ��b(y � x) = pµ��a ,µ��b(y � x, na , nb , n) (�.��)

= µNa�
��a (� − µ��a)

Na� ⋅ µNb�
��b (� − µ��b)

Nb�

�ese densities de�ne the alternative modelH� = {Pµ��a ,µ��b ∶ (µ��a , µ��b) ∈ Θ�}withΘ� = [�, �]�.
H�, the null model, simply has X = (X� , . . . , Xn) and Y = (Y� , . . . ,Yn) independent, with
Yi , . . . ,Yn i.i.d. Ber(µ�) distributed, µ� ∈ Θ� ∶= [�, �], i.e.

pµ�(y � x) = pµ�(y) = µN�
� (� − µ�)

N� .

To test H� against H�, we numerically calculate the GROW �-variable E∗Θ(ε) where Θ(ε)

� � sum
a µa� µa� µa
b µb� µb� µb

sum µ� µ� �

� � sum
a Na� Na� na
b Nb� Nb� nb

sum N� N� n

Table �.�: �x� contingency table: parameters and counts. µi j is the (unconditional) probability of observing category i
and outcome j, and Ni j is the corresponding count in the observed sample.

is de�ned via (�.��) for two di�erent divergence measures detailed further below. In both
cases, Θ(ε) will be compact, so that by the joint lower-semi-continuity of the KL divergence
(Posner, ����), minD(PW��PW�) is achieved by some unique (W∗

� ,W∗

� ), and we can use Part
� of�eorem �.� to infer that the GROW �-variable is given by E∗

W(Θ(ε)) = E
∗

Θ(ε) = pW∗
�
(Y �

X)�pW∗
�
(Y). Note that the ‘priors’ W∗

� and W∗

� may depend on the observed x = xn , in
particular on na and nb , since we take these as given throughout. We can further employ
Carathéodory’s theorem (see Appendix �.E.� for details) to give us thatW∗

� andW∗

� must have
�nite support, which allows us to �nd them reasonably e�ciently by numerical optimization;
we give an illustration in the next section.

We now consider two de�nitions of Θ(ε). �e �rst option is to think of µ� as a ‘nuisance’
parameter: we want to test for independence, and are not interested in the precise value of µ�, but
rather in the ‘e�ect size’ δ ∶= �µ��a−µ��b �.We can then, once again, use the δ-GROW �-variable for
parameter of interest δ. To achieve this, we re-parameterize the model in a manner that depends
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Figure �.�:�e Beam: Graphical depiction of the GROW Θ(δ).

on x via na and nb . For given µ��a and µ��b , we set µ� = (naµ��a +nbµ��b)�n, and δ as above, and
we de�ne p′δ ,µ�(y�x) (the probability in the new parameterization) to be equal to pµ��a ,µ��b(y�x)
as de�ned above. As long as x (and hence na and nb) remain �xed, this re-parameterization is
�-to-�, and all distributions in the null modelH� correspond to a p′δ ,µ� with δ = �. In Figure �.�
we show, for the case na = nb = ��, the sets Θ(δ) for δ = {�.��, �.��, �.��, �.��, �.��}. For
example, for δ = �.��, Θ(δ) is given by the region on the boundary, and outside of, the ‘beam’
de�ned by the two depicted lines closest to the diagonal. We numerically determined the JIPr,
i.e., the prior (PW∗

�
, PW∗

�
) for each choice of δ.�is prior has �nite support, the support points

are depicted by the dots; in line with intuition, we �nd that the support points for priors on
the set Θ(δ) are always on the line(s) of points closest to the null model, i.e. the δ-GROW
�-variable is simple. Variations of this de�nition of Θ(δ) and corresponding GROW �-values
have been considered by Turner, ����, who showed that for one-sided testing, one can calculate
the above JIPr analytically; moreoever, if data comes in as pairs of each group, so that all Xi are
give by (a, b) and Yi = (yia , yib) ∈ {�, �}�, then on this rougher �ltration, (where na = nb at all
sample points), the JIPR for each n de�nes a test martingale and, along the lines of Proposition �,
we can use it for testing that is safe under optional stopping.�e second option for de�ning
Θ(ε) is to take the original parameterization, and have d in (�.��)) be the KL divergence.�is
choice is motivated in Appendix �.F.�en Θ(ε) is the set of (µ��a , µ��b) with

inf
µ′�∈[�,�]

D(Pµ��a ,µ��b�Pµ′�)
n

=
D(Pµ��a ,µ��b�Pµ�)

n
≥ ε.

Note that the scaling by ��n is just for convenience — since Pµ�. are de�ned as distributions of
samples of length n, the KL grows with n and our scaling ensures that, for given µ��a , µ��b and
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Figure �.�:�e Lemon: Graphical depiction of the KL-divergence based GROW Θ(ε).

n�a , n�,b , the set Θ(ε) does not change if we multiply n�a and n�b by the same �xed positive
integer. Note also that the distributions Pµ��a ,µ��b and Pµ� are again conditional on the given
x (and hence na and nb), and µ� = (naµ��a + nbµ��b)�n as before. We can now numerically
determine Θ(ε) for various values of ε; this is done in Figure �.�, where, for example, the set
Θ(ε) for ε ∈ {log ��, log ��, . . . , log���} is given by all points on and outside of the inner-
mostly depicted ‘lemon’. Again, we can calculate the corresponding JIPr; the support points of
the corresponding priors are also shown in Figure �.�.

�.�.� General Exponential Families
�e contingency table setting is an instance of a test between two nested (conditional) expo-
nential families. We can extend the approach of de�ning GROW sets Θ(ε) relative to distance
measures d and numerically calculating corresponding JIPrs (PW∗

�
, PW∗

�
) straightforwardly to

this far more general setting. As long as�eorem �.�, Part � can be applied withW ′� =W(Θ(ε)),
the resulting Bayes factor pW∗

�
(Y)�pW∗

�
(Y)will be a GROW �-variable.�e main condition for

Part � is the requirement that D(PW′
�
�PW∗

�
) <∞ for allW ′ ∈W(Θ(ε)), which automatically

holds if D(Pθ�PW∗
�
) <∞ for all θ ∈ Θ(ε). Since, for exponential families, D(Pθ�Pθ′) <∞ for

all θ , θ′ in the interior of the parameter space Θ = Θ�, this condition can o�en be enforced to
hold though, if we take a divergence measure d such that for each ε > �, Θ(ε) is a compact
subset of Θ� and for each θ ∈ Θ� that is not on the boundary, there is an ε > � such that
θ ∈ Θ(ε).

For large n though, numerical calculation of GROW �-variables may be time consuming, and



�.�. Testing Our GROW Tests ���

one may wonder whether there exists other nontrivial (but perhaps not GROW, or at least
not GROW relative to any intuitive sets Θ(ε)) �-variables that take less computational e�ort.
It turns out that these exist: one can calculate a conditional GROW-�-variable. We illustrate
this for the contingency table setting. Fix an arbitrary function g mapping x toW(Θ�), the
set of priors on Θ�. Conditional on the su�cient statistic relative to H�, µ̂�(Y) = N��n, all
distributions in H� assign the same probability mass p�(y � µ̂�(y)) = ��� nN�

� to all y with
µ̂�(y) = µ̂�(Y).�e conditional �-variable based on g is then given by

E =
pg(x)(Y � µ̂�(Y), x)
p�(Y � µ̂�(Y))

= � n
N�
� ⋅

pg(x)(Y � x)
pg(x)(µ̂�(Y) � x)

. (�.��)

�is gives a conditional (and hence also unconditional) �-variable for every choice of function
g(x). In fact it coincides with what has been called a method for obtaining ‘clean’ evidence
for the � × � table setting by eliminating the nuisance parameter µ̂� (Royall, ����). In settings
with optional stopping based on the value of µ̂�, it has a GROW-like optimality property for
certain choices of g which we will further explore in future work. In settings with �xed n, it is
not GROW and may perhaps be seen as a ‘quick and dirty’ approach to design an �-variable.
It clearly can be extended to any combination ofH� (not necessarily an exponential family)
and any exponential familyH� such that the ML estimator θ̂�(y) is almost surely well-de�ned
under all P ∈H�, whereas at the same time, θ̂�(Y) is a su�cient statistic forH�, i.e. there is a
�-to-� correspondence between the ML estimator θ̂�(Y) and the su�cient statistic �(Y).�is
will hold for most exponential families encountered in practice (to be precise,H� has to be a
regular or ‘aggregate’ Barndor�-Nielsen, ����, page ���-��� exponential family). In such cases,
if, for example, a reasonable priorW� on Θ� is available, we can e�ciently calculate nontrivial
�-variables based on taking g(x) =W�, but whether these are su�ciently strong approximations
of the GROW �-variable will have to be determined on a case-by-case, i.e. model-by-model
basis; we did some experiments for the contingency table, with W� a Beta prior, and there
we found them to be noncompetitive in terms of GROW and power with respect to the full
JIPr�.

�.� Testing Our GROWTests
We perform some initial experiments with GROW �-variables for compositeH� nested within
H�. We consider two common settings: in one setting, we want to perform the most sensitive
test possible for a given sample size n; we illustrate this with the contingency table test. In the
second setting, we are given aminimum clinically relevant e�ect size δ and we want to �nd the
smallest sample size n for which we can expect good statistical (power) properties.

�.�.� Case �: Fixed n, ε unknown
Mini-Simulation-Study �: �e �x� Table We �rst consider the GROW �-variables E∗Θ(δ)
relative to parameter of interest δ = �µ��a − µ��b �, the �rst option considered in Section �.�.�. For

�Although it was not connected to �-variables, the idea to modify Bayes factors for nested exponential families by
conditioning on the smaller model’s su�cient statistic was communicated to us by T. Seidenfeld, ����.
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a grid of δ’s in the range [�.�, �.�] we looked at the best power that can be achieved by GROW
�-variable E∗Θ(δ∗), i.e. we looked for the δ∗ (again taken from a grid in the range [�.�, �.�])
such that

� − β(δ, δ∗) ∶= inf
θ∈Θ((δ))

Pθ �log E∗Θ((δ∗)) ≥ − log α� (�.��)

is maximized. We summarized the results in Table �.�. We see that, although we know of no

δ ��(Θ(δ)) = D(PW∗
�
�PW∗

�
) δ∗ power � − β

�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��
�.�� �.����� �.�� �.��

Table �.�: Relating δ, δ∗, power and capital growth ��(Θ(δ)) for na = nb = �� for the GROW �-variables. For
example, the row with �.�� in the �rst column corresponds to the two black lines in Figure �.� which represent all
θ� = (µ��a , µ��b) with δ = �.��.

analogue to Johnson’s�eorem �.� here, something like a “uniformly most powerful δ-GROW
safe test” does seem to exist — it is given by E∗Θ(δ∗) with δ∗ = �.��; and we can achieve power
�.� for all θ ∈ Θ(δ) with δ � �.�.�e same exercise is repeated with the GROW �-variables
de�ned relative to the KL divergence in Table �.�, again indicating that there is something
like a uniformly most powerful δ-GROW safe test. We now compare four hypothesis tests
for contingency tables for the na = nb = �� design: Fisher’s exact test (with signi�cance level
α = �.��), the default Bayes Factor for contingency tables (Gunel and Dickey, ����; Jamil
et al., ����) (which is turned into a test by rejecting if the Bayes factor ≥ �� = − log α), the
‘uniformly most powerful’ GROW �-variable E∗Θ(δ∗) with δ∗ = �.�� (see Table �.�) which
we call GROW(Θ(δ)) and the ‘uniformly most powerful’ KL-GROW �-variable E∗Θ(ε∗) with
ε∗ = log �� (see Table �.�) which we call (Θ(ε)). �e �.�-iso-power lines are depicted in
Figure �.�; for example, if θ� = (µ��a , µ��b) is on or outside the two curved red lines, then Fisher’s
exact test achieves power �.� or higher.�e di�erence between the four tests is in the shape:
Bayes and the δ-based JIPr yield almost straight power lines, the KL-based JIPr and Fisher
curved. Fisher gives a power ≥ �.� in a region larger than the KL-based JIPr, which makes sense
because the corresponding test is not safe; the δ-GROW and default Bayes factor behave very
similarly, but they are not the same: in larger-scale experiments we do �nd di�erences. We see
similar �gures if we compare the rejection regions rather than the iso-power lines of the four
tests (�gures omitted).
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log nε ��(Θ(ε)) = D(PW∗
�
�PW∗

�
) log nε∗ power

� �.����� �� �.��
� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
�� �.����� �� �.��
��� �.����� �� �.��
��� �.����� �� �.��
��� �.����� �� �.��
��� �.����� �� �.��

Table �.�: Relating ε, ε∗, power and capital growth ��(Θ(ε)) for na = nb = �� for the KL-GROW �-variables. For
example, the row with �� in the �rst column corresponds to the two curved red lines in Figure �.� which represent all
θ� = (µ��a , µ��b) with inf µ∈[�,�] D(Pθ ��Pµ) = log ��.
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�.�.� Case �: n to be determined, δ known
Consider δ-GROW �-variables for some scalar parameter of interest δ. Whereas in Case �, the
goal was implicitly to detect the ‘smallest detectable deviation’ fromH�, in Case � we know
beforehand that we are only really interested in rejectingH� if δ ≥ δ. Here δ > � is the minimum
value at which the statement ‘�δ� ≥ δ’ has any practical repercussions.�is is common inmedical
testing in which one talks about theminimum clinically relevant e�ect size δ.

Assuming that generating data costs money, we would like to �nd the smallest possible n at
which we have a reasonable chance of detecting that �δ� ≥ δ. Proceeding analogously to Case
�, we may determine, for given signi�cance level α and desired power � − β, the smallest n at
which there exist δ∗ such that the safe test based on �-variable E∗Θ(δ∗) has power at least � − β
for all θ ∈ Θ(δ). Again, both n and δ∗ may have to be determined numerically (note that δ∗ is
not necessarily equal to δ).

Mini-Simulation-Study �: �-Sample t-test In this simulation study, we test whether the
mean of a normal distribution is di�erent from zero, when the variance is unknown. We
determine, for a number of tests, the minimum n needed as a function of minimal e�ect size
δ to achieve power at least �.� when rejecting at signi�cance level α = �.��. We compare the
classical t-test, the Bayesian t-test (with Cauchy prior on δ, turned into a test that is safe under
optional continuation by rejecting when BF ≥ �� = ��α) and our safe test based on the GROW
�-variable E∗Θ(δ∗)�V

n� = E∗δ∗�Vn� that maximizes power while having a GROW property. For
the standard t-test we can just compute the required (batch) sample size.�is is plotted (black
line) in Figure �.� as a function of δ, where we also plot the corresponding required sample
sizes for the Bayesian t-test (larger by a factor of around �.� − �.�) and our maximum power
δ∗-GROW t-test (larger by a factor of around �.� − �.�).

However, these three lines do not paint the whole picture: we have already indicated in Sec-
tion �.�.� that for any priorW[δ], the threshold test based on (E∗W[δ]�V

i�)i∈N is safe also under
optional stopping. Since both the Bayesian t-test and our δ-GROW t-test are an instance of
E∗W[δ] as given by (�.��), we preserve Type-I error guarantees if we stop at the smallest t at
which E∗W[δ]�V

t� > �� = ��α. We can now compute an e�ective sample size under optional
stopping in two steps, for given δ. First, we determine the smallest n at which the δ∗-GROW
�-variable E∗Θ(δ∗) which optimizes power achieves a power of at least �.� = � − β; we call this
nmax. We then draw data sequentially and record the E∗W[δ]�V

t� until either this �-variable
exceeds ��α or t = nmax.�is new procedure still has Type I error at most α, and it must have
power ≥ �.�.�e ‘e�ective sample size’ is now the sample size we expect if data are drawn from
a distribution with e�ect size at δ and we do optional stopping in the above manner (‘stopping’
includes both the occasions on whichH� is accepted and t = nmax, and the occasions whenH�
is rejected and t ≤ nmax). In Figure �.� we see that this e�ective sample size is almost equal to
the �xed sample size we need with the standard t-test to obtain the required power.�us, quite
unlike the classical t-test, our δ-GROW t-test �-variable preserves Type I error probabilities
under optional stopping; it needs more data than the classical t-test in the worst-case, but
hardly more on average underH�. For a Neyman-Pearsonian hypothesis tester, this should be a
very good reason to adopt it!
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for the t-test is �.� (E∗ with o.s.), �.� (Bayes t-test with o.s.), �.� (E∗ with �xed sample size) and �.� (Bayes t-test with
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the tradition t-test thus increases in δ within the given range.�e two lines indicated as ‘nmax (o.s.)’ are explained in
the main text.
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�.� Earlier, Related and Future Work
�-Variables, Test Martingales, General Novelty As seen in Section �.�, �-variables are close
cousins of test martingales, which go back to Ville, ����, the paper that introduced the modern
notion of a martingale. �-variables themselves have probably been originally introduced by
Levin (of P vs NP fame) (����) (see also (Gács, ����)) under the name test of randomness, but
Levin’s abstract context is quite di�erent from ours. Independently discovered by Zhang, Glancy
and Knill, ����, they were later analyzed by Shafer et al., ����; Shafer and Vovk, ����; Vovk
and Wang, ����; all these authors used di�erent names for the concept. While we originally
called them ‘S-value’, the paper (Vovk and Wang, ����), which appeared a�er the �rst version
of the present paper, called them �-variables, a name which we decided to adopt for its better
motivation (� can stand both for expectation, just like the � in �-value stands for probability;
but also for ‘evidence’).

Test martingales themselves have been thoroughly investigated by Shafer et al., ����; Shafer and
Vovk, ����.�ey themselves underlie AV (anytime-valid) �-values (Johari, Pekelis and Walsh,
����), AV tests (which we call ‘tests that are safe for optional stopping’) and AV con�dence
sequences.�e latter were recently developed in great generality byA. Ramdas and collaborators;
see e.g. (Balsubramani and Ramdas, ����; Howard et al., ����b; Howard et al., ����a). Both
AV tests and con�dence sequences have �rst been developed by H. Robbins and his students
(Darling and Robbins, ����; Lai, ����; Robbins, ����). Like we do for �-variables, Ramdas et
al. (and also e.g. Pace and Salvan, ����) stress the promise of the AV notions for a safer kind
of statistics that is signi�cantly more robust than standard testing and con�dence interval
methodology.

Just like regular tests can be turned into con�dence intervals by varying the null and ‘inverting’
the resulting tests, AV con�dence intervals can be created by starting with a collection of test
martingales, one for each null, and then varying the null and inverting the AV test based on
the test martingale for each null. We can do (and plan to investigate in future work) the same
thing with �-variables. More generally, the work on AV tests and con�dence sequences is very
similar in spirit to ours, with our work stressing analysis at the level of batches of data rather
than individual data points.�us, we do not claim any real novelty for the ‘safe’ or ‘always valid’
setting.�e real novelty is in�eorem �.� and �.�. However, as we discovered a�er posting
the �rst version of the present paper, a special case of �eorem �.� was already formulated
and proved� by Zhang, Glancy and Knill, ���� (see also (Zhang, ����)) who show that GROW
�-variables can be constructed for discrete outcome spaces, simple (singleton)H� and convex
H�.�eorem �.� extends this to its full generality, showing that nontrivial �-variables always
exist and that optimal ones can o�en be constructed, for nonconvexH� andH� that are both
composite — that insight is the main novelty of this paper.

Relation to Sequential Testing Sequential testing (Lai, ����), pioneered by Wald and Barn-
ard and developed much further by H. Robbins and his students, is mathematically similar
to testing based on test martingales and (therefore) �-variables. Sequential tests are based on

�Zhang, Glancy and Knill, ���� was in turn inspired by Van Dam, Gill and Grunwald, ����, co-authored by one of
us, which identi�es the importance of the KL divergence in test design but falls short of de�ning �-values.
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random processes (Si)i∈N that are a likelihood ratio of (potentially coarsened) data under all P
in bothH� andH�. By this we mean that there is a coarsening {Vi} of the {Yi} so that both the
null and the alternative are simple for data coarsened to {Vi}, as in Proposition �, so that for
each n, all distributions in P� ∈H� induce the same distribution Q�[Vn] on Vn with density q′�,
and all distributions P� ∈H� induce the same distribution Q�[Vn] on Vn with density q′�, and
Sn = q′�(Vn)�q′�(Vn).�e setting can be extended to the case whereH� contains additional
distributions inH� andH�, as long as for all P� ∈H�, Q�[Sn], the marginal distribution of Sn
under Q�[Vn], stochastically dominates P�[Vn], and under all P� ∈H�, Q�[S−�n ], the marginal
distribution of ��Sn under Q�[Vn], stochastically dominates P�[Vn].

For such likelihood ratio processes, S� , S� , . . . has the property of being a test martingale under
bothH� and (a�er inversion) underH�.�e sequential test based on S� , S� , . . . with prespeci�ed
parameters α, β proceeds by calculating S� , S� , . . . and stopping at τ∗, the smallest τ at which
either Sτ ≥ (� − β)�α (‘accept’) or Sτ ≤ (� − α)�β (‘reject’). Wald showed that this test has Type
I error probability bounded by α and Type II error bounded by β.�e reason one can stop at a
smaller threshold ((� − β)�α rather than ��α) is that one has to stop at τ∗,�us, the method
does not allow for optional stopping in our sense: the probability that there is some n with
Sn ≥ (� − β)�α is strictly larger than α.

Still, since S� , S� , . . . forms a test martingale underH�, it can be used to generate useful �-values
as explained in Section �.�.�. �us, much of the work in sequential testing can be re-cycled
to obtain test martingales and �-values. Of course, as discussed in that section, not all useful
(δ-GROW) �-variables derive from martingales, let alone from ‘two-sided’ martingales.

Conditional Frequentist Tests In a series of papers starting with the landmark (Berger,
Brown and Wolpert, ����), Berger, Brown, Wolpert (BBW) and collaborators, extending initial
ideas by Kiefer, ���� develop a theory of frequentist conditional testing that “in spirit” is very
similar to ours (see also Wolpert, ����; Berger, ����) — one can view the present paper as a
radicalization of the BBW stance. Yet in practice there are important di�erences. For example,
our link between posteriors and Type I error is slightly di�erent (Bayes factors, i.e. posterior
ratios vs. posterior probabilities), in our approach there are no ‘no-decision regions’, in the BBW
papers there is no direct link to optional continuation.

Related Work on Relating �-values and �-variables Shafer and Vovk, ���� give a general
formula for calibrators f . �ese are decreasing functions f ∶ [�, �] → [�,∞] so that for any
�-value P, E ∶= �� f (P) is an �-variable. Let f��(P) ∶= −eP log P, a quantity sometimes called
the Vovk-Sellke bound (Bayarri et al., ����)), having roots in earlier work by by Vovk, ���� and
Sellke et al. (Sellke, Bayarri and Berger, ����). All calibrators satisfy limP↓� f (P)� f��(P) =∞,
and calibrators f advocated in practice additionally satisfy, for all P ≤ ��e, f (P) ≥ f��(P).
For example, for any calibrator f suggested for practice, rejection under the safe test with
signi�cance level α = �.��, so that E ≥ ��, would then correspond to reject only if P ≤
f −�(�.��) > f −��� (�.��) ≈ �.����, requiring a substantial amount of additional data for rejection
under a given alternative. Note that the �-variables we developed for givenmodels in previous
sections are more sensitive than such generic calibrators though. For example, in Section �.�.�
the threshold �.���

√
n corresponding to α = �.�� corresponds roughly to p = �.���, a factor
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� larger. Experiments in the master’s study (Hu, ����) indicate a similar phenomenon for
nonparametric tests: GROW �-values designed speci�cally for a given H� and H� achieve
higher growth rate and higher power than calibration �-values based on �-values for theseH�
andH�.

RelatedWork: Testing based on Data-Compression and MDL

Example �.�. Ryabko and Monarev, ���� show that bit strings produced by standard random
number generators can be substantially compressed by standard lossless data compression
algorithms such as zip, which is a clear indication that the bits are not so random a�er all.�us,
the null hypothesis states that data are ‘random’ (independent fair coin �ips).�ey measure
‘amount of evidence againstH� provided by data y = y� , . . . , yn ’ as

n − Lzip(y),

where Lzip(y) is the number of bits needed to code y using (say) zip. Now, de�ne p�(y) =
�−Lzip(y). Via Kra�’s inequality (Cover and�omas, ����) one can infer that∑y∈{�,�}n p�(y) ≤ �
(for this particular case, see the extended discussion by Grünwald, ����, Chapter ��). At the
same time, for the null we have H� = {P�}, where P� has mass function p� with for each n,
y ∈ {�, �}, p�(y) = �−n . De�ning E ∶= p�(Y)�p�(Y) we thus �nd

EY∼P�[E] = �
y∈{�,�}n

p�(y) ≤ � ; log E = n − Lzip(Y).

�us, the Ryabko-Monarov codelength di�erence is the logarithm of an �-variable. Note that
in this example, there is no clearly de�ned alternative; being able to compress by zip simply
means that the null hypothesis is false; it certainly does not mean that the ‘sub-distribution’ p�
is true (if one insists on there being an alternative, one could view p� as a representative of a
nonparametricH� consisting of all distributions P� with EY∼P�[log E] > �, a truly huge and not
so intuitive set).

More generally, by the same reasoning, for singletonH� = {P�}, any test statistic of the form
p�(Y)�p�(Y), with p� the density of P� and p� a density or sub-density (integrating to less
than �) is an �-variable. Such �-variables have been considered extensively within theMinimum
Description Length (MDL) and prequential approaches to model selection (Rissanen, ����;
Dawid, ����; Barron, Rissanen and Yu, ����; Grünwald and Roos, ����). In these approaches
there usually is a clearly de�ned alternativeH�, so that a Bayesian would choose p� ∶= pW� to be
a Bayes marginal density. In contrast, the MDL and prequential approach allow more freedom
in the choice of p�. MDL merely requires p� to be a ‘universal distribution’ such as a Bayes
marginal, a normalized maximum likelihood, prequential plug-in or a ‘switch’ distribution
(Grünwald, ����). With simple H�, all such ‘MDL factors’ also constitute �-variables; but
with compositeH�, just as with Bayes factors, the standard MDL approach may fail to deliver
�-variables.

FutureWork,OpenProblems In Section �.�.�we indicated that standard δ-GROW �-variables
o�en turn out to be ‘simple’ (and therefore easy to implement): they are de�ned to be GROW
relative to a large set, but they end up as Bayes factors pW∗

�
�pW∗

�
in whichW∗

� puts all mass
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on the boundary of Θ�. We aim to investigate the generality of this phenomenon in future
work.

We already indicated that it may be possible to extend �eorem �.� to show that the Bayes
factor based on the right Haar prior can be GROW in more general group invariant settings;
showing or disproving this is a major goal for future work. Also, just as we propose to fully
base testing on a method that has a sequential gambling/investment interpretation, Shafer and
Vovk have suggested, even more ambitiously, to base the whole edi�ce of probability theory
on sequential-gambling based game theory rather than measure theory (Shafer and Vovk,
����; Shafer and Vovk, ����); see also (Shafer, ����) who emphasizes the ease of the betting
interpretation. Obviously our work is related, and it would be of interest to understand the
connections more precisely.

�.� A�eory of Hypothesis Testing

�.�.� A Common Currency for Testers adhering Je�reys’, Neyman’s and
Fisher’s Testing Philosophies

�e three main approaches towards null hypothesis testing are Je�reys’ Bayes factor methods,
Fisher’s �-value-based testing and the Neyman-Pearson method. Berger, ����, based on earlier
work, e.g. (Berger, Brown and Wolpert, ����), was the �rst to note that, while these three meth-
odologies seem super�cially highly contradictory, there exist methods that have a place within
all three. Our proposal is in the same spirit, yet more radical; it also di�ers in many technical
respects from Berger’s. Let us brie�y summarize how �-variables and the corresponding safe
tests can be �t within the three paradigms:

Concerning the Neyman-Pearson approach: �-variables lead to tests with Type-I error guar-
antees at any �xed signi�cance level α, which is the �rst requirement of a Neyman-Pearson
test.�e second requirement is to use the test that maximizes power. But we can use GROW
�-variables designed to do exactly this, as we illustrated in Section �.�.�e one di�erence to the
NP approach is that we optimize power under the constraint that the �-variable is GROW—
which is essential to make the results of various tests of the same null easily combinable, and
preserve Type I error probabilities under optional stopping. Note though that this constraint
is major: as shown in Example �.�, the standard NP tests lead to useless �-variables under the
GROW criterion.

Concerning the Fisherian approach: we have seen that �-variables can be reinterpreted as
(quite) conservative �-values. But much more importantly within this discussion, �-variables
can be de�ned, and have a meaningful (monetary) interpretation, even if no clear (or only a
highly nonparametric/nonstationary) alternative can be de�ned.�is was illustrated in the data
compression setting of Example �.�.�us, in spirit of Fisher’s philosophy, we can use �-variables
to determine whether there is substantial evidence againstH�, without predetermining any
alternative: we simply postulate that the larger E, the more evidence againstH� without having
speci�c frequentist error guarantees. �e major di�erence though is that these �-variables
continue to have a clear (monetary) interpretation even if we multiply them over di�erent tests,
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and even if the decision whether or not to perform a test (gather additional data) depends on
the past.

Concerning the Bayesian approach: despite their monetary interpretation, all �-variables that
we encountered can also be written as likelihood ratios, although (e.g. in Example �.� or
Section �.�.�) either H� or H� may be represented by a distribution that is di�erent from a
Bayes marginal distribution. Still, all GROW (optimal) �-variables we encountered are in fact
equivalent to Bayes factors, and�eorem �.� Part � strongly suggests that this is a very general
phenomenon. While the point priors arising in the δ-GROW �-variables may be quite di�erent
from priors commonly adopted in the Bayesian literature, one can also obtain �-variables by
using priors on H� that do re�ect prior knowledge or beliefs — we elaborate on this under
Hope vs. Belief below.

�e Dream With the massive criticisms of �-values in recent years, there seems a consensus
that �-values should be used not at all or, at best, with utter care (Wasserstein, Lazar et al.,
����; Benjamin et al., ����), but otherwise, the disputes among adherents of the three schools
continue — intuitions among great scientists still vary dramatically. For example, some highly
accomplished statisticians reject the idea of testing without a clear alternative outright; others
say that such goodness-of-�t tests are an essential part of data analysis. Some insist that sig-
ni�cance testing should be abolished altogether (Amrhein, Greenland and McShane, ����),
others (perhaps slightly cynically) acknowledge that signi�cance may be silly in principle, yet
insist that journals and conferences will always require a signi�cance-style ‘bar’ in practice
and thus such bars should be made as meaningful as possible. Finally, within the Bayesian
community, the Bayes factor is sometimes presented as a panacea for most testing ills, while
others warn against its use, pointing out for example that with di�erent default priors that have
been proposed, one can get quite di�erent answers.

Wouldn’t it be nice if all these accomplished but disagreeing people could continue to go their way,
yet would have a common language or ‘currency’ to express amounts of evidence, and would be
able to combine their results in a meaningful way?�is is what �-variables can provide: consider
three tests with the same null hypothesisH�, based on samples Y(�), Y(�) and Y(�) respectively.
�e results of a δ-based �-variable test aimed to optimize power on sample Y(�), an �-variable
test for sampleY(�) based on a Bayesian priorW� onH� and a Fisherian �-variable test in which
the alternativeH� is not explicitly formulated, can all be multiplied — and the result will be
meaningful.

Hope vs. Belief In a purely Bayesian set-up, optional stopping is justi�ed if θ viewed as a
random variable is independent of the stopping time N under the prior W . In that case, a
celebrated result going back to Barnard, ���� (see Hendriksen, De Heide and Grünwald, ����
for an overview) says that the posterior does not depend on the stopping rule used; hence it
does not matter how N was determined (as long as it does not depend on future data). If Bayes
factors are ‘local’, based on priors that depend on the design and thus on the sample size n, then,
from a purely Bayesian perspective, optional (early) stopping is not allowed: since the prior
depends on n, when stopping at the �rst T < n at which pW�(yT)�pW�(yT) > ��, neither the
original prior based on the �xed n nor the prior based on the observed T (which treats the



�.�. A�eory of Hypothesis Testing ���

random T as �xed in advance) is correct any more.�is happens, for example, for the default
(Gunel and Dickey, ����) Bayes factors for � × � contingency tables advocated by Jamil et al.,
����— from a Bayesian perspective, these do not allow for optional stopping.

�e same holds for the UMP Bayes factors that we considered in Section �.�.�.�ese generally
are ‘local’, the priorW� (and, presuming the idea can be extended to compositeH�, potentially
also W�) depending on the sample size n. For example, for the �-sided test with the normal
location family, Example �.�, we set all priormass on µ̃n =

�
�(− log α)�n; a similar dependence

holds for the prior on δ∗ in the δ∗-based GROW t-test if we choose δ∗ tomaximize power.�us,
while from a purely Bayesian perspective such �-variables/Bayes factors are not suitable for
optional stopping, in Section �.�, both the δ-based GROW �-variable for the normal location
family and for the t-test setting do allow for optional stopping under our de�nition: one may
also stop and report the Bayes factor at any time one likes during the experiment, and still Type
I error probabilities are preserved (Hendriksen, De Heide and Grünwald, ����).�is is what
we did in the experiment of Figure �.�: the pre-determined n (called there nmax) on which the
priorW� on δ (that puts mass ��� on δ∗, and ��� on −δ∗) is based is determined there such that,
if we stop at any �xed T = n′, the statistical power of the test is optimal if n′ = nmax; but the
likelihood ratio e(YT) ∶= pW�(YT)�pW�(YT) remains an �-variable even if T = n′ ≠ nmax or
even if one stops at the �rst T ≤ nmax such that E(YT) ≥ ��.�us, we should make a distinction
between prior beliefs as they arise in Bayesian approaches, and what one may call ‘prior hope’
as it arises in the �-variable approach.�e purely Bayesian approach relies on the beliefs being,
in some sense, adequate. In the �-variable based approach, one can use priors that represent
subjective a priori assessments; for example, in the Bayesian t-test, one can use any priorW� on
δ one likes as long as it has more than two moments, and still the resulting Bayes factor with
the right Haar prior on σ will be a GROW �-variable (�eorem �.�). IfH� is the case, and the
data behave as one would expect according to the prior W�, then the �-variable will tend to be
large – it GROWs fast. But if the data come from a distribution inH� in a region that is very
unlikely underW�, E(Y) will tend to be smaller — but it is still an �-variable, hence leads to
valid Type-I error guarantees and can be interpreted when multiplied across experiments.�us,
from the �-variable perspective, the prior onW� represents something more like ‘hope’ than
‘belief ’ — if one is lucky and data behave likeW� suggests, one gets better results; but one still
gets valid and safe results even ifW� is chosen badly (corresponds to false beliefs).

�is makes the �-variable approach part of what is perhaps among the most under-recognized
paradigms in statistics and machine learning: methods supplying results that have frequentist
validity under a broad range of conditions (in our case: as long asH� orH� is correct), but that
can give much stronger results if one is ‘lucky’ on the data at hand (e.g. the data matches the
prior). It is, for example, the basis of the so-called PAC-Bayesian approach to classi�cation in
machine learning (McAllester, ����; Grünwald andMehta, ����), which itself, via Shawe-Taylor
and Williamson, ����, can be traced back to be inspired by the conditional testing approach of
Kiefer, ���� that also inspired the BBW approach to testing. It also connects to the general idea
of ‘safe’ inference (Grünwald, ����; Grünwald, ����).
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�.�.� Possible Objections
By the nature of the subject, the relevance of this work is bound to be criticized. We would like
to end this paper by brie�y anticipating three potential criticisms.

Where does all this leave the poor practitioner? A natural question is, whether the �-
variable based approach is not much too di�cult and mathematical. Although the present,
initial paper is quite technical, we feel the approach in general is in fact easier to understand
than any approach based on �-values.�e di�culty is that one has to explain it to researchers
who have grown up with �-values — we are con�dent that, to researchers who neither know
�-values nor �-variables, the �-variables are easier to explain, via the direct analogy to gambling.
Also, we suggested δ-based ‘default’ �-variables that (unlike some default Bayes factors) can be
used in absence of strong prior knowledge about the problem yet still have a valid monetary
interpretation and valid Type I Error guarantees. Finally, if, as suggested above, practitioners
really were to be forced, when starting an analysis, to think about optional stopping, optional
continuation and misspeci�cation — this would make life di�cult, but would make practice all
the better.

No Binary Decisions, Part I: Removing Signi�cance �ere is a growing number of in�uen-
tial researchers who hold that the whole concept of ‘signi�cance’, and ensuing binary ‘reject’ or
‘accept’ decisions, should be abandoned altogether (see e.g. the ��� co-signatories of the recent
Amrhein, Greenland and McShane, ����, or the call to abandon signi�cance by McShane et al.,
����).�is paper is not the place to take sides in this debate, but we should stress that, although
we strongly emphasized Type-I and Type-II error probability bounds here, �-variables still
have a meaningful interpretation, as amount of evidence measured in monetary terms, even if
one never uses them to make binary decisions; and we stress that, again, this monetary inter-
pretation remains valid under optional continuation, also in the absence of binary decisions.
We should also stress here that we do not necessarily want to adopt ‘uniformly most powerful
�-variables, even though our comparison to Johnson’s uniformly most powerful Bayes tests
in Section �.� and the experiments in Section �.�might perhaps suggest this. Rather, our goal
is to advocate using GROW �-variables relative to some prior W on Θ� or a subset of Θ(δ)
of Θ� — the GROW criterion leaves open some details, and our point in these experiments is
merely to compare our approach to classical, power-optimizing Neyman-Pearson approaches —
to obtain the sharpest comparison, we decided to �ll in the details (the priorW on Θ(δ)) for
which the two approaches (�-variables vs. classical testing) behave most similarly.

No Binary Decisions, Part II: Towards Safe Con�dence Intervals Another group of re-
searchers (e.g. Cumming, ����) has been advocating for generally replacing testing by estim-
ation accompanied by con�dence intervals; or, more generally (McShane et al., ����), that
researchers should always provide an analysis of the behavior of and uncertainty inherent in
one or more estimators for the given data. While we sympathize with the latter point of view, we
stress that standard con�dence intervals (as well as other measures of uncertainty of estimators
such as standard errors) su�er from a similar problem as �-values: they are not safe under
optional continuation.�e aforementined anytime-valid con�dence sequences developed by
Lai and later Ramdas and collaborators (Lai, ����; Howard et al., ����b; Howard et al., ����a)
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do allow for optional stopping and hence, if subsequent experimenters keep using the same
underlying test martingales, optional continuation. We strongly feel that if one really wants to
replace testing by con�dence approaches, one should adopt anytime-valid rather than standard
con�dence intervals, even though the former ones are invariably a bit broader. In future work
we hope to study whether it is useful to consider ‘safe con�dence intervals’, merely allowing for
optional continuation rather than optional stopping (at each data point).



��� Chapter �. Safe Testing

�.A Proof Preliminaries
In the next sections we prove our theorems. To make all statements in the main text mathem-
atically rigorous and their notations mutually compatible, we �rst provide a few additional
de�nitions and notation.

Sample Spaces and σ-Algebras In all mathematical results and examples in the main text,
we tacitly make the following assumptions: all random elements mentioned in the main text
are de�ned on some measurable space (Ω,A). We assume that {Yi}i∈I and {Ri}i∈I are two
collections of measurable functions fromΩ to measurable spaces (Y ,A′) and (R,A′′) respect-
ively, where either I = {�, �, . . . , nmax} for some �nite nmax or I = N. We additionally assume
that each Yi takes values in Y ⊆ Rm for some �nite m, and we equip (Ω,A) with the �ltration
(Fi)i∈I where Fi is the σ-algebra generated by (Y i , Ri).

For each θ ∈ Θ ∶= Θ�∪Θ�, in the unconditional case, Pθ is a distribution for the random process
(Yi)i∈I . In the conditional case, we assume �nite I and existence of a �xed function � and
another collection of functions {Xi}i∈I such that for all i ∈ I, Xi = �(Ri), with Xi taking values
in some set X . For each xn ∈ X n , Pθ(⋅ � Xn = xn) is then a distribution on (Y� , . . . ,Ynmax). We
assume throughout that Pθ(Yn � Xn = xn) = Pθ(Yn � Xm = xm) for every n,m > n, xm ∈ X m :
present data is independent of future covariates given present covariates. Whenever we refer to
a random variable such as Y without giving an index, it stands for Yn = (Y� , . . . ,Yn); similarly
for all other time-indexed random variables.

We stated in the main text that we assume that the parameterization is �-to-�. By this we mean
that for each θ , θ′ ∈ Θ with θ ≠ θ′, the associated distributions are also di�erent, so that
Pθ ≠ Pθ′ . We also assume thatΘ� andΘ� are themselves associated with appropriate σ-algebras.
In general, Θ j need not be �nite-dimensional, so we allow non-parametric settings.

(In)-Dependence and Densities In Section �.� on optional continuation we make no fur-
ther assumptions about Pθ . Speci�cally, the Yi need not be independent. In all other sections,
unless we explicitly state otherwise, we assume independence. Speci�cally, when the Pθ rep-
resent unconditional distributions, then we assume that the random variables Y� ,Y� , . . . are
independent under each Pθ with θ ∈ Θ, and that for all i, the marginal distribution Pθ(Yi)
has a density relative to some underlying measure λ�. �at is, we for each j we can write
pθ(Y j) = pθ(Y� , . . . ,Yj) =∏ j

i=� p
′

θ , i(Yi) as a product density where p′θ , i is a density relative to
λ�. In all our examples, λ� is either a probability mass function on Y or a density on Y relative
to Lebesgue measure, but the theorems work for general λ�.�en pθ(Y) =∏n

i=� p′θ , i(Yi) is a
density relative to λ ∶= λn , de�ned as the n-fold product measure of λ�.

With the exception of the contingency table setting of Section �.�.� and the conditional expo-
nential family setting that we brie�y mentioned in Section �.�.� (the only sections in which the
+Pθ are conditional (on x) distributions), we assume that the Yi are not just independent but
also identically distributed, hence p′θ , i = p′θ ,� for all i.

Notational Conventions When we mention a distribution Pθ without further quali�cation,
we mean that it is the distribution of Y = (Y� , . . . ,Yn) = Yn de�ned on Ω; and we use pθ for its
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density as de�ned above. We sometimes refer to the marginal distribution of a random variable
U under Pθ , whereU is a function (coarsening) of Y. We denote this distribution as Pθ[U], and
its density by p′θ(u� , . . . , un), avoiding the cumbersome pθ[U](u� , . . . , un).

We generically use E∗. . . to denote �-variables that are GROW relative to some prior, set, or
set of priors, e.g. E∗W�

, E∗Θ(Θ), E
∗

W�
, and so on. If we consider �-variables that can be written

as a function of a coarsened random variable V = f (Y), and that are also GROW on the
‘coarsened’ level of distributions on V rather than Y, then we write E∗. . .�V�. �us, standard
GROW �-variables could equivalently be written as E∗. . .�Y�.

�.B Optional Continuation with Side-Information
Proof of Proposition � Although Proposition � is easily proved using Doob’s optional stop-
ping theorem, it may be useful to give a direct proof:

Proof. (sketch)We �rst consider the case with K���� = kmax. Under all Pθ , we have

E �E(k)� = E �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅ . . . ⋅ eh�V(k−�)��τ(k−�) ,g(V(k−�)) �V
(k)��

= EV(�)∼PθEV(�)∼Pθ �V(�) . . .EV(k)∼Pθ �V(k−�) �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅

eh�V(�)��τ(�) ,g(V(�)) �V
(�)� ⋅ . . . ⋅ eh�V(k−�)��τ(k−�) , g(V(k−�)) �V

(k)��

= EV(�)∼Pθ �eh(V �)�τ(�) ,g(V �) �V(�)� ⋅ EV(�)∼Pθ �V(�) �eh�V(�)��τ(�) ,g(V(�)) �V
(�)� ⋅

. . . ⋅ EV(k)∼Pθ �V(k−�) �eh�V(k−�)��τ(k−�) , g(V(k−�)) �V
(k)�� . . .�� .

By de�nition of �-variables, all factors in the product are bounded by �, and the result follows.
For general K���� ≤ kmax, note that without loss of generality we may assume thatW contains
the parameter �, where for all n,m, en�m ,� is the trivial �-variable en�m ,�(vn+m) ≡ � for all
vn+m ∈ Vn+m . For any sequence v� , v� . . . we modify g , h to g′ , h′ recursively as follows: we let
h′(v(�)) ∶= h(v(�)), h′(v(�)) = h(v(�)), . . ., similarly for g′ and g, until we reach the smallest
k such that g(v(k)) = ����. �en we set g′(vn) = g′(v� , . . . , vn) = � and h′(yn) = � for
all n ≥ τ(k) and all vn that are extensions of vτ(k) . �e E′ based on the new g′, h′ will have
E′(kmax) = E(K). It follows from (a) that E′(kmax) is an �-variable, so the result follows.

Extending Proposition � We want to extend the proposition to allow for two possibilities,
First, the sample size for the j-th batch of data may be determined by a stopping time N( j),
which generalizes the N( j) used in the main text to the case that the sample size of the j-th
sample Y( j) is not �xed in advance. For example, in the � × � table (Example �.�.�) we might
continue sampling until we have obtained �� new examples of category a. Second, we want
to model the idea of ‘side information’. For this, we assume we make additional observations
Z(�) , Z(�) , Z(�) , . . ..�e idea is that at the end of analyzing the k-th data batch Y(k), we also
get some side information Z(k) which may in�uence our decision whether or not to take into
account a new data batch Y(k+�). We want to make as few assumptions as possible about this
side-information; speci�cally, we will not assume that is itself of stochastic nature (i.e. will
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assume no distribution on it), and the Z(k) may take values in an unspeci�ed countable set
Z(k).�us, whereas the data Y(k) can always be viewed as a vector (Yτ(k−�)+� , . . . ,Yτ(k)), we do
not assume that Z(k) has such (or any other) sub-structure. To make this compatible with the
measure-theoretic setting of the previous section, we assume that all Z( j) are random variables
on (Ω,A). Whereas before, the �ltration (Fi)i∈I was de�ned by setting Fi to be the σ-algebra
generated by (Y i , Ri), we now set Fi to be the σ-algebra generated by (Y i , Ri , Z(J i)) where
Ji is the largest J ≥ � such that τ(J) ≤ i, where τ(J) is de�ned as below. Since τ(�) = �, Ji is a
measurable function. It represents ‘which batch sample size i is part of ’. For example, if the �rst
batch has sample size N(�) = � and the second N(�) = ��, then, for � ≤ i ≤ �, before observing Yi ,
the available information is Y i−� , Ri−� , Z(�).�en, for � ≤ i ≤ ��, we are ‘in the second batch’,
and the available information is Y i−� , Ri−� , Z(�). A�erwards, Z(�) becomes available, and so on
.

As formalized in (�.��) below, we will assume that past outcomesmay in�uence the value of Z(k),
but Z(k) should be independent of any futureY(k+ j). Our optional continuation result continues
to hold irrespective of the actual de�nition of Z(k) andZ(k), as long as these independences hold.
�us, we may think of Z(k) as encoding information that is di�cult to think of stochastically,
such as ‘more money to perform future tests is available’. Still, the con�nements of classical
probability theory (or rather the measure theory on which it is based) force us to assume the
existence of sets of possible outcomes Z(k), even if we do not need to specify them. It seems
that even this can be avoided by re-expressing the optional continuation result in terms of the
open protocols enabled by the Game-�eoretic�eory of Probability due to Shafer and Vovk,
����; but that would really go beyond the scope of this paper.

Batch Stopping Times To further incorporate Z(k) into our framework together with sample
sizes N( j) that are not �xed in advance, we need a slight generalization of the idea of stopping
time and stopping rule. In our context, a stopping rule for the k-th batch with start time t is a col-
lection of functions f(k),t , i , i ∈ N, where f(k),t , i maps (Z(k−�) , Xt+i ,V t+i) to {����, ��������}
such that for every z ∈ Z(k−�), every sequence (x� , v�), (x� , v�), . . ., there is an i > t such
that

f(k),t , i(z, ((x� , v�), . . . , (xt+i , vt+i)) = ����.
�us, we require stopping times that are �nite on all sample paths rather than the more usual
‘almost surely �nite’ stopping times because the Xi and Z(k) do not have a distribution associated
with them.

We now de�ne τ(k) as the stopping time for the k-th batch in terms of stopping rules f(k) de�ned
above. We set τ(�) ∶= N(�) to be the smallest i such that f(�),�, i(Z(�), Xi ,V i) = ����, and more
generally, we set τ(k) to be τ(k−�) + N(k), where N(k) is the smallest i such that

f(k),τ(k−�) , i(Z
(k−�) , Xτ(k−�)+i ,V τ(k−�)+i) = ����.

To make all required probabilities and expectations well-de�ned we set, for all i ≥ �,

Pθ(Yτ( j)+� , . . . ,Yτ( j)+i � Z
( j) ,Y( j) , Xτ( j)+i) ∶= Pθ(Yτ( j)+� , . . . ,Yτ( j)+i � Y

( j) , Xτ( j)+i). (�.��)

�at is, according to all distributions Pθ under consideration, the ‘side-information’ Z( j) avail-
able a�er the j-th data batch cannot in�uence future outcomes Yτ( j)+i ; on the other hand,



�.C. Elaborations and Proofs for Section �.� ���

the formulation allows that all data obtained up to and including Y( j) may in�uence the
side-information Z( j).

�e de�nition below evidently generalizes (�.��), and the proposition evidently generalizes
Proposition �:

De�nition �.� (Conditional �-Variables). Let Xi ,Yi ,Vi and τ(�) , . . . , τ(k) with � ≤ k ≤ kmax
be as above. Let E(k) be a nonnegative random variable that can be written as a function of
(X(k) ,V (k)). We call E(k) an �-variable for V(k) conditional on X(k) ,V(k−�) if it satis�es, for
all P ∈H�,

EP[E(k) � X(k) ,V(k−�)] ≤ �. (�.��)

Proposition �. [Optional Continuation with Side-Information] Let τ(�) , . . . , τ(k) with k ≤
kmax and τ∗ be generalized stopping times as above such that on all sample paths, τ∗ coincides
with τ( j) for some j = �..k. Let E(�) , E(�) , . . . , E(k) be a sequence of randomvariables such that for
each j = �..k, E( j) is an �-variable for V( j) conditional on X( j) ,V( j−�). Let the random variable
K���� be such that τ∗ = τ(K����). �en E(K����) is an �-variable, so that under all P� ∈ H�, for
every � ≤ α ≤ �, (�.��) of Proposition � and all its consequences hold.

Proof. (sketch) By (�.��), E( j) being an �-variable conditional onX( j) ,V( j−�) implies that E( j)
is also an �-variable conditional on X( j) ,V( j−�) , Z( j−�).�en, since E( j−�) can be written as a
function of X( j−�) ,V( j−�) , Z( j−�), we have, under all P ∈H�, for j ≥ �,

EP[E( j) � X( j) ,V( j−�) , Z( j−�)] = EP[E( j) ⋅ E( j−�) � X( j) ,V( j−�) , Z( j−�)]
= EP[E( j) � X( j) ,V( j−�) , Z( j−�)] ⋅ E( j−�) ≤ E( j−�) ,

where the �nal step is just the de�nition of conditional �-variable.�is shows that the process
E(�) , E(�) , . . . constitutes a nonnegative supermartingale relative to the process
X(�) ,V(�) , Z(�) ,X(�) ,V(�) , Z(�) , . . ..�e result now follows by Doob’s optional stopping the-
orem.

�.C Elaborations and Proofs for Section �.�
Meaning of “E∗ as de�ned by achieving (�.��) is essentially unique” ConsiderΘ′� ⊂ Θ� and
Θ�, as in the main text in Section �.�. Suppose that there exists an �-variable E∗ achieving the
in�mum in (�.��). We say that E∗ is essentially unique if for any other �-variable E○ achieving
the in�mum in (�.��), we have Pθ(E∗ = E○) = �, for all θ ∈ Θ′� ∪ Θ�. �us, if the GROW
�-variable exists and is essentially unique, any two GROW �-variables will take on the same
value with probability � under all hypotheses considered, and then we can simply take one of
these GROW �-variables and consider it the ‘unique’ one.

�.C.� Proof of�eorem �.�
For Part � of the result, we �rst need the following lemma. We call a measure Q on Ym a
sub-probability distribution if � < Q(Ym) ≤ �. Note that the KL divergence D(P�Q) remains
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well-de�ned even if themeasureQ is not a probabilitymeasure (e.g.Q could be a sub-probability
distribution or might not be integrable), as long as P and Q both have a density relative to a
common underlying measure (the de�nition of KL divergence does require the �rst argument
P to be a probability measure though).

Lemma �. Let {QW ∶ W ∈ W�} be a set of probability measures where each QW has a dens-
ity qw relative to some �xed underlying measure λ. Let Q be any convex subset of these pdfs.
Fix any pdf p (de�ned relative to measure λ) with corresponding probability measure P so that
infQ∈Q D(P�Q) <∞ and so that all Q ∈ Q are absolutely continuous relative to P.�en:

�. �ere exists a unique sub-distribution Q○ with density q○ such that

D(P�Q○) = inf
Q∈Q

D(P�Q), (�.��)

i.e. Q○ is the Reverse Information Projection of P onQ.

�. For q○ as above, for all Q ∈ Q, we have

EY∼Q �
p(Y)
q○(Y)

� ≤ �. (�.��)

We note that we may have Q○ �∈ Q.

�. Let Q� be a probability measure in Q with density q�. �en: the in�mum in (�.��) is
achieved by Q�⇔ Q○ = Q�⇔ (�.��) holds for q○ = q�.

Proof. �e existence and uniqueness of a measure Q○ (not necessarily a probability measure)
with density q○ that satis�es D(P�Q○) = infQ∈Q D(P�Q), and furthermore has the property

for all q that are densities of some Q ∈ Q: EY∼P �
q(Y)
q○(Y)

� ≤ �. (�.��)

follows directly from Li, ����,�eorem �.�. But by writing out the integral in the expectation
explicitly we immediately see that we can rewrite (�.��) as:

for all Q ∈ Q: EY∼Q �
p(Y)
q○(Y)

� ≤ �.

Li’s�eorem �.� still allows for the possibility that ∫ q○(y)dλ(y) > �. To see that in fact this is
impossible, i.e. q○ de�nes a (sub-) probability density, use Lemma �.� of Li, ����.�is shows
Part � and � of the lemma. �e third part of the result follows directly from Lemma �.� of
Li, ����). (additional proofs of (extensions of) Li’s results can be found in the refereed paper
Grünwald and Mehta, ����).

We shall now prove�eorem �.� itself.�roughout the proof, λ stands for the n-fold product
measure as de�ned in the introduction of this appendix, so that all distributions PW with
W ∈W ′� ∪W(Θ�) have a density pW relative to λ, and whenever we speak of a ‘density’ we
mean ‘a density relative to λ’.
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Proof of �eorem �.�, Part � Let W� ∶= W(Θ�) and let Q = {PW ∶ W ∈ W(Θ�)} and
P ∶= PW� . We see thatQ is convex so we can apply Part � and � of the lemma above to P andQ
and we �nd that E∗W�

∶= pw�(Y)�q○(Y) is an �-variable, and that it satis�es

EPW�
�log E∗W�

� = EPW�
�log pW�(Y)

q○(Y)
� = D (PW��Q○) = inf

W�∈W(Θ�)
D (PW��PW�) ,

where the second equality is immediate and the third is from (�.��). It only remains to show
that (a)

sup
E∈E(Θ�)

EY∼PW�
[log E] ≤ EPW�

�log E∗W�
�

and (b) that E∗W�
is essentially unique. To show (a), �x any �-variable E = e(Y) in E(Θ�). Now

further �x ε > � and �x aW(ε) ∈W(Θ�) with D(PW��PW(ε)) ≤ infW�∈W(Θ�) D(PW��PW�) + ε.
We must have, with q(y) ∶= e(y)pW(ε)(y), that ∫ q(y)dλ = EY∼PW(ε) [E] ≤ �, so q is a sub-
probability density, and by the information inequality of information theory (Cover and�omas,
����), it follows:

EPW�
[log E] = EPW�

�log q(Y)
pW(ε)(Y)

�

≤ EPW�
�log pW�(Y)

pW(ε)(Y)
�

= D(PW��PW(ε))
≤ inf

W�∈W(Θ�)
D(PW��PW�) + ε.

Since we can take ε to be arbitrarily close to �, it follows that

EPW�
[log E] ≤ inf

W�∈W(Θ�)
D(PW��PW�) = EPW�

[log E∗W�
],

where the latter equality was shown earlier.�is shows (a).

To show essential uniqueness, let E be any �-variable with EPW�
[log E] = EPW�

[log E∗W�
]. By

linearity of expectation, E′ = (���)E∗W�
+ (���)E is then also an �-variable, and by Jensen’s

inequality applied to the logarithm we must have EPW�
[log E′] > EPW�

[log E∗W�
] unless PW�(E =

E∗W�
) = �. Since we have already shown that for any �-variable E′, EPW�

[log E′] ≤ EPW�
[log E∗W�

],
it follows that PW�(E ≠ E∗W�

) = �. But then, by our assumption of absolute continuity, we also
have Pθ�(E ≠ E∗W�

) = � so E∗W�
is essentially unique.

Proof of�eorem �.�, Part � �e general result of Part � (without the di�erentiability con-
dition imposed in the proof in the main text) is now a direct extension of Part � which we
just proved above: by Part � of the lemma above, we must have that Q○ = PW∗

�
and everything

follows.
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Proof of�eorem �.�, Part � �e proof consists of two sub-parts, Part �(a) relying on Part �
above (and the RIPr-construction, which works for the case thatW ′� is a singleton), Part �(b)
relying on a minimax theorem from Grünwald and Dawid, ���� (relying heavily on an earlier
result from Topsøe, ����) that itself works for the case that Θ� is a singleton.

Part �(a).We show the following inequalities:

D(P[V]W∗
�
�P[V]W∗

�
) = inf

W�∈W
′
�

inf
W�∈W�

D(PW��PW�) ≥ sup
E∈E(Θ�)

inf
W∈W ′

�

EPW [log E] ≥ inf
W∈W ′

�

EPW [log E∗W ′
�
].

(�.��)
�e �rst equality follows by assumption of the�eorem. For the �rst inequality, note that by
�eorem �.�, Part �, we have for each �xedW� ∈W ′� that

inf
W�∈W�

D(PW��PW�) = sup
E∈E(Θ�)

EPW�
[log E]

and this directly implies the inequality by a standard “inf sup ≥ sup inf” argument (the
trivial side of the minimax theorem).�e second inequality is then immediate since E∗

W ′
�
∈

E(Θ�).

Part (�(b). From (�.��) we see that it now su�ces to show that

D(P[V]W∗
�
�P[V]W∗

�
) ≤ inf

W∈W ′
�

EPW [log E∗W ′
�
], (�.��)

where by the assumptions of the theorem we may assume that minW�∈W
′
�
D(P[V]W�

�P[V]W∗
�
) =

D(P[V]W∗
�
�P[V]W∗

�
). Since all distributions occurring in (�.��) are marginals on V, and E∗ can be

written as a function of V, we will from now on simply refer to the marginal densities on
V corresponding to PW as pW (rather than p′W as in the main text), and we will omit the
superscripts [V] from P; thus we take as our basic outcome now V rather than Y.

We will show the stronger statement that (�.��) holds with equality. For this, letW∗

� andW∗

� be
as in the statement of the theorem. Let P be a probability measure that is absolutely continuous
with respect to P∗W�

. Such P must have a density p and the logarithmic score of p relative to
measure PW∗

�
is de�ned, in the standard manner, as L(z, p) ∶= − log p(v)�pW∗

�
(v), which is

P-almost surely �nite, so that, following standard conventions for expectations of random
variables that are unbounded both from above and from below (see Grünwald and Dawid, ����,
Section �.�), HW∗

�
(P) ∶= EV∼P[L(V, p)] = −D(P�PW∗

�
), the standard de�nition of entropy

relative to PW∗
�
, is well-de�ned and nonpositive.

Wewill apply theminimax�eorem �.� of (Grünwald andDawid, ����) with L as de�ned above.
For this, we need to verify Conditions �.�–�.� of that paper, where Γ in Condition �.� and �.�
is set to be ourW ′� , and the setQmentioned in Condition �.�must be a superset of Γ. We will
takeQ to be the set of all probability distributions absolutely continuous relative to PW∗

�
; note

that each Q ∈ Q then has a density q; we letQ���� be the set of all densities corresponding to
Q. By our requirement that D(PW��PW∗

�
) <∞ for allW� ∈W ′� , we then have thatW ′� = Γ ⊂ Q

as required. By our de�nition of Q, Condition �.� then follows from Proposition A.�. from
the same paper (Grünwald and Dawid, ����) (with µ in the role of PW∗

�
), and it remains to
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verify Condition �.� and �.�, which, taken together, in our notation together amount to the
requirements (a)W ′� is convex, (b�) for everyW� ∈W ′� , PW� has a Bayes act relative to L and
(b�) HW∗

�
(PW�) > −∞, and (c) there existsW∗

� with HW∗
�
(PW∗

�
) = supW�∈W

′
�
HW∗

�
(PW�) <∞.

Now, (a) holds by de�nition; (b�) holds because L is a proper scoring rule so the density p
of any P is an L-Bayes act for P (see Grünwald and Dawid, ���� for details); (b�) holds by
our assumption that −HW∗

�
(PW�) = D(PW��PW∗

�
) <∞ and (c) holds because for allW� ∈W ′� ,

HW∗
�
(PW�) = −D(PW��PW∗

�
) ≤ �.

�eorem �.� of Grünwald and Dawid, ���� together with Lemma �.� of that same paper then
gives

HW∗
�
(PW∗

�
) = sup

W∈W ′
�

EV∼PW �− log
pW(V)
pW∗

�
(V)
� = sup

W∈W ′
�

inf
q∈Q����

EY∼PW �− log
q(V)

pW∗
�
(V)
�

= inf
q∈Q����

sup
W∈W ′

�

EV∼PW �− log
q(V)

pW∗
�
(V)
� = sup

W∈W ′
�

EV∼PW �− log
pW∗

�
(V)

pW∗
�
(V)
� , (�.��)

where, to be more precise, the �rst equality is immediate from the fact that −HW∗
�
(PW∗

�
) =

D(PW∗
�
�PW∗

�
) = infW�∈W

′
�
D(PW��PW∗

�
) (which we may assume as stated underneath (�.��).

�e second follows because the W∗

� -logarithmic score is a proper scoring rule, the third is
�eorem �.� of Grünwald and Dawid, ����; this�eorem also gives that the in�mummust be
achieved by someW ′

� ∈W ′� , and Lemma �.� of that paper then gives that it must be equal to
W∗

� , which gives the fourth equality.

But, because the �rst and last terms in (�.��) must be equal, and using again that
HW∗

�
= −D(⋅�PW∗

�
), (�.��) implies (�.��), which is what we had to prove.

�.D Proofs that δ-GROW �-variables claimed to be simple
really are simple

All our results will rely on the following proposition, which we state and prove �rst:

Proposition �. [stochastic dominance and simple �-variables] Let Θ� = {�}, let, for δ >
�, Θ(δ) be de�ned as in (�.��) and let ��(Θ(δ)) be the boundary ��(Θ(δ)) = {θ ∈ Θ� ∶
d(θ�Θ�) = δ}. Suppose thatminW∈W(��(Θ(δ))) D(PW�P�) is achieved by some W∗

� (note that
this will automatically be the case if ��(Θ(δ)) is a �nite set), so that by �eorem �.�, Part �,
E∗��(Θ(δ)) = pW∗

�
(Y)�p�(Y).�en the following statements are equivalent:

�.

inf
θ∈Θ(δ)

EY∼Pθ �log
pW∗

�
(Y)

p�(Y)
� = inf

θ∈��(Θ(δ))
EY∼Pθ �log

pW∗
�
(Y)

p�(Y)
� . (�.��)

�. For all W� ∈W(Θ(δ)), we have D(PW��P�) ≥ D(PW∗
�
�P�).

�. We have E∗Θ(δ) = E
∗

��(Θ(δ)) which, ifΘ� andΘ� are as above (�.��), is equivalent to (�.��).
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Furthermore, suppose that there exist a function t, a random variable T = t(Y) (whose density
under θ we denote by p′θ ), a θ∗ ∈ ��(Θ(δ)) and a strictly increasing function f such that
log pW∗

�
(Y)�p�(Y) = log p′θ∗(t(Y))�p′�(t(Y)) = f (t(Y)) and such that for all θ ∈ Θ(δ) �

��(Θ(δ)), Pθ[T], the distribution of T under Pθ , �rst-order stochastically dominates Pθ∗[T]
(i.e. for all t, Fθ(t) ≤ Fθ∗(t) where Fθ is the distribution function of Pθ[T]).�en (�.��) holds.

Proof. (�) ⇒ (�)We �rst note that the conditions of the proposition imply that for all θ ∈
��(Θ(δ)),

EY∼Pθ �log
pW∗

�
(Y)

p�(Y)
� ≥ EY∼PW∗� �log

pW∗
�
(Y)

p�(Y)
� = D(PW∗

�
�P�), (�.��)

as is immediate from�eorem �.�, Part �, which gives that PW∗
�
is the information projection

on the set W ′� = W(��(Θ(δ))). Now, �x any W� ∈ W(Θ(δ)) and consider the function
f (α) = D((� − α)PW∗

�
+ αPW��P�) on α ∈ [�, �]. Straightforward di�erentiation gives the

following: the second derivative of f is nonnegative, so f is convex on [�, �].�e �rst derivative
of f (α) at α = � is given by

EY∼PW�
�log

pW∗
�
(Y)

p�(Y)
� − EY∼PW∗� �log

pW∗
�
(Y)

p�(Y)
� ≥

EY∼PW�
�log

pW∗
�
(Y)

p�(Y)
� − inf

θ∈��(Θ(δ))
EY∼Pθ �log

pW∗
�
(Y)

p�(Y)
� , (�.��)

where the �rst expression is just di�erentiation and the inequality follows from (�.��). So, if we
can show that, no matter howW� was chosen, the right-hand side of (�.��) is nonnegative, we
must have f (�) ≥ f (�) and the desired result follows. But nonnegativity of (�.��) follows by the
premise (�.��) and linearity of expectation.

(�)⇒ (�) Since infW�∈W(Θ(δ)),W�∈W(Θ�) D(PW��P�) = D(PW∗
�
�P�) we can apply�eorem �.�,

Part �, which gives the required result.

(�)⇒ (�) is immediate using the de�nitions of E∗Θ(δ) and E∗��(Θ(δ))

For the second part, note that, by a general property of stochastic dominance (Pomatto, Strack
and Tamuz, ����) we have for arbitrary distributions P[T]: if P[T] stochastically dominates
Pθ∗[T], then we must also have EP[T][ f (T)] ≥ EPθ∗ [ f (T)]. �is immediately implies the
result.

Proofs that δ-GROW �-variables claimed to be simple are simple We need to show this
for four cases mentioned in the main text. In all these cases we show this by establishing the
existence of a statistic T as needed to apply the second part of Proposition �.

�. One-Sided Exponential Families (Section �.�.�) In this case ��(Θ(δ)) is a singleton, soW∗

�
is the degenerate distribution putting all mass on δ. We take T = t(Y) to be the su�cient
statistic for the family at the given sample size.�at is, we re-represent our exponential family
in the canonical parameterization, and let βδ be the canonical parameter corresponding to
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δ > �; we can choose the parameterization such that β� = �. With T = t(Y) the su�cient
statistic, we then have log pδ(Y)�p�(Y) = βδ t(Y) + log(Z(�)�Z(βδ)) = f (t(Y)); here Z(⋅)
is the normalization function. Since βδ is strictly increasing with δ (another general property
of exponential families) and β� = �, we have that f (T) is increasing in T . It thus remains to
show that P[T]δ stochastically dominates P[T]δ for δ > δ. But this is immediate by basic rewriting,

giving Fβ(t) = ∫
t
−∞

exp(βt)dP[T]� (t)� ∫
∞

−∞
exp(βt)dP[T]� , and then taking derivatives.

�. Two-Sided Normal Location Family (Section �.�.�)We take T = µ̂�, the square of the empirical
mean.�e result then follows by reasoning similarly to �. below but is easier, hence we omit
details.

�. One-Sided normal with unknown variance (Section �.�.�) Note �rst that E∗δ = p′δ(V)�p′�(V).
�us, by expressing �-variables in terms of V we can re-represent the problem as having a
simpleH� so that we can use Proposition �. We take T = ts(Y) to be the Student’s T-statistic.
Straightforward rewriting gives that, for δ > �, for all σ , pδ(V)�p�(V) = f (T) for some
increasing function f of T . We thus need to show that the distribution of T under P[T]δ is

stochastically dominated by its distribution under P[T]δ′ , for δ′ > δ. But these are just two
noncentral t-distributions with ν ∶= n − � degrees of freedom and noncentrality parameter
µ =
√
nδ vs. µ =

√
nδ′ respectively. Since a noncentral t distribution with parameters (ν, µ)

can be viewed as the distribution of (Z + µ)�
�
V�ν where Z is standard normal and V is

an independent χ� random variable, stochastic dominance is immediate from the fact that
δ > �.

�. Two-sided normal with unknown variance (Section �.�.�)�is case is similar to the previous
one but now we take T = (ts(Y))� to be the absolute value of Student’s t-statistic ts(Y).
Symmetry considerations dictate that E∗δ = ((���)p′−δ(V) + (���)p′δ(V))�p′�(V). It is easy to
verify that this quantity only depends on T and is strictly increasing in T . Again by symmetry,
the distribution of T under Pδ[T] is the same as its distribution under P−δ[T] and then
also the same as its distribution under P(���)δ−(���)δ[T]. It thus su�ces to show that Pδ[T] is
stochastically dominated by Pδ′[T] for δ′ > δ > �. But the distribution of T under Pδ is now
the ratio of two independent χ� distributions, a noncentral χ� with one degree of freedom and
noncentrality δ and a central χ� with n − � degrees of freedom. By independence, it is su�cient
to prove that noncentral χ�’s with one degree of freedom and noncentrality δ′ > δ dominates a
noncentral χ� with one degree of freedom and noncentrality δ. But this is straightforward by
di�erentiating the cumulative distribution functions.

Relating E○Θ(δ) and E∗Θ(δ) in the two-sided case We have, on all samples,

log E○Θ(δ) ≥max{log(���)E∗δ , log(���)E∗−δ},
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so that

inf
θ ∶�θ �≥δ

EY∼Pθ [log E
○

Θ(δ)] ≥ inf
θ ∶�θ �≥δ

max�EY∼Pθ [log
�
�
E∗δ ],EY∼Pθ [log

�
�
E∗
−δ]� (�.��)

≥max� inf
θ ∶�θ �≥δ

EY∼Pθ [log
�
�
E∗δ ], inf

θ ∶�θ �≥δ
EY∼Pθ [log

�
�
E∗
−δ]�

≥max� inf
θ ∶θ≥δ

EY∼Pθ [log
�
�
E∗δ ], inf

θ ∶θ≤−δ
EY∼Pθ [log

�
�
E∗
−δ]�

=max�EY∼Pδ [log
�
�
E∗δ ],EY∼P−δ [log

�
�
E∗
−δ]� ,

where the �nal equality is just condition (�.��) of the proposition above again for the one-sided
case, which above we already showed to hold for �-dimensional exponential families. On the
other hand, lettingWδ be the prior that puts mass ��� on δ and ��� on −δ, we have:

inf
θ ∶�θ �≥δ

EY∼Pθ [log E
∗

Θ(δ)] ≤ Eθ∼WδEY∼Pθ [log E
∗

Θ(δ)] (�.��)

≤ Eθ∼WδEY∼Pθ �log
PWδ(Y)
P�(Y)

�

= Eθ∼WδEY∼Pθ �log E
○

Θ(δ)�

= �
�
Eδ[log

�
�
E∗δ ] +

�
�
E−δ[log

�
�
E∗
−δ] + εn

≤max�EY∼Pδ [log
�
�
E∗δ ],EY∼P−δ [log

�
�
E∗
−δ]� + εn ,

where the �rst inequality is linearity of expectation and the second inequality follows because,
since E∗Θ(δ) is an �-variable relative to {P�}, we can set q ∶= E∗Θ(δ) ⋅ p�; then ∫ q(Y)dλ ≤ � and
E∗Θ(δ) = q(Y)�p�(Y), and the inequality follows by the information inequality of information
theory. εn above is de�ned as:

εn =
�
�
⋅ �Eδ[log E○Θ(δ) − log

�
�
E∗δ ] + E−δ[log E○Θ(δ) − log

�
�
E∗
−δ]�

= log � + �
�
⋅ �Eδ[log E○Θ(δ)�E

∗

δ ] + E−δ[log E○Θ(δ)�E
∗

−δ]�

= log � − �
�
�D(Pδ(Y)�PWδ(Y)) + D(P−δ(Y)�PWδ(Y))� .

Together, (�.��) and (�.��) show that E○Θ(δ) is an �-variable whose worst-case growth rate is
always within εn ≤ log � (‘� bit’) of that of the minimax optimal E∗Θ(δ); moreover, for �xed δ, εn
quickly converges to �, since, for θ ∈ {δ,−δ}, if Y ∼ Pθ , then with high probability, P−θ�Pθ will
be exponentially small in n, so that D(Pθ(Y)�PWδ(Y)) ≈ − log(���) = log �.

�.E Proofs and Details for Section �.�.�
We �rst walk through the claims made in Section �.�.�.�e �rst claim is that under all P�,σ with
σ > �, V has the same distribution, say P�, and under all PW[δ],σ with σ > �, V has the same
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distribution, say PW[δ](V). To show this, it is su�cient to prove that for all σ , all δ ∈ R, under
all Pδ ,σ , the distribution ofV only depends on δ but not on σ . But this follows easily: for i ∈ �..n,
we de�ne Y ′i = Yi�σ .�en Y ′i is ∼ N(δ, �). But we can write V as a function of (Y ′� , . . . ,Y ′n),
hence the distribution of V does not depend on σ either (note that at this stage, symmetry of
the prior is not yet required).

(�.��) (we only need to show the �rst equality) is straightforward to show: one �rst notes that,
for every c > �,

∫σ pW[δ],σ(Y�c)wH(σ)dσ

∫σ p�,σ(Y�c)wH(σ)dσ
= ∫σ

pW[δ],σ(Y)wH(σ)dσ

∫σ p�,σ(Y)wH(σ)dσ
,

which follows easily by changing the domain of integration in the le�most expression in both
numerator and denominator from σ to cσ and noting that this incurs the same factor cn in
both numerator and denominator, which therefore cancels. Since we assume Y� ≠ �, the �rst
equality in (�.��) now follows by setting c ∶= Y�.

Proof of�eorem �.� Part �. For � < a < b <∞, denote byW[a ,b] the restricted Haar prior,
i.e. the probability distribution on σ with density

w[a ,b](σ) ∶=
�������

�
σ ⋅

�
log b�a if σ ∈ [a, b],

� otherwise.

For notational convenience we abbreviate the joint distribution of σ and Y for e�ect size prior
W[δ] and restricted Haar priorW[a ,b] on σ to PW[δ],[a ,b] ∶= PW[δ],W[a ,b][σ].�e Bayes factor
for e�ect size priorW[δ] vs. e�ect size � at sample size n based on using the restricted Haar
priorW[a ,b] in bothH� andH� and data Y will be denoted as

B[a ,b](Y) =
∫σ∈[a ,b] pW[δ],σ(Y)w[a ,b](σ)dσ

∫σ∈[a ,b] p�,σ(Y)w[a ,b](σ)dσ
.

�e Bayes factor based on the right Haar prior can then be written as B[�,∞](Y). From (�.��),
we have for all σ > � that

D �P[V]W[δ]�P
[V]
� � = EV∼PW[δ] �

p′W[δ](V)
p′�(V)

� = EY∼PW[δ],σ �logB[�,∞](Y)� . (�.��)

Since V is a coarsening of Y, by the information inequality (Cover and�omas, ����), we must
also have, for all priorsW[σ],W[σ ′]:

D �PW[δ],W′[σ]�P�,W[σ]� ≥ D �P
[V]
W[δ],W′[σ]�P

[V]
�,W[σ]� = D �P

[V]
W[δ]�P

[V]
� � , (�.��)

where we also used that the marginal distributions onV do not depend on σ . Combining (�.��)
and (�.��), we �nd that it su�ces to prove the following lemma, which is done further below.
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Lemma ��. For all W[δ] satisfying the condition of�eorem �.�, for all σ > �, we have:

lim
i→∞

D �PW[δ],[��i , i]�P�,[��i , i]� = EY∼PW[δ],σ �logB[�,∞](Y)� . (�.��)

Part �. Fix W[δ] as in the theorem statement, and any corresponding W ′� as above. We
have:

inf
W[δ]∈W[δ]

D �P[V]W[δ]�P
[V]
� � ≤ inf

W∈W ′
�

inf
W[σ]∈W[Γ]

D(PW�P�,W[σ])

≤ inf
W[δ]∈W[δ]

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ]) = inf
W[δ]∈W[δ]

D �P[V]W[δ]�P
[V]
� � . (�.��)

Here the �rst inequality is based on (�.��), the second is immediate and the third follows by
noting that, by Part �, for any �xedW[δ] ∈W[δ], we have

inf
W[σ]∈W[Γ]

D(PW[δ],W[σ]�P�,W[σ]) = D �P
[V]
W[δ]�P

[V]
� � .

But (�.��) is equivalent to the desired result.

�.E.� Proof of Lemma ��
De�ne random variables U ∶=

�
n−�∑Y �

i , Y ∶= n−�∑Yi and T ∶= Y�U ∈ [−�, �] is an invariant,
i.e. a function of V. We will sometimes express U and T as functions of Y and freely write
U(Y), T(Y) when this notation is more convenient.

�e Bayes factor B[a ,b](Y) depends on Y only through the functions U(Y) and T(Y). We
will therefore also write it, whenever convenient, as a function of these random variables, and
denote it as B[a ,b](U , T).

�e proof will combine the following two (sub-) lemmas, whose proof is deferred to further
below.�e �rst lemma allows us to conclude that, when restricted to events of small (marginal)
probability, the expectation of the log Bayes factor is also small.

�e second lemma allows us to conclude that, as i →∞, the expected log Bayes factor uniformly
converges on y ∈ Ai , where Ai is a set that itself grows towards Rn . �us, while uniform
convergence for all y ∈ Rn is too much to ask for, remarkably we do get uniform convergence
on a ‘noncompact’ sequence of sets: the sets Ai are not included in any compact set.

Lemma ��. [Uniform Integrability-Flavored Lemma] Let A be ameasurable subset ofRn.We
have for all � < a < b <∞, W[δ] as in the theorem statement, that:

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �− logB[�,∞](Y)�� ≤ PW[δ],[a ,b](Y ∈ A) log
�

PW[δ],[a ,b](Y ∈ A)
(�.��)

Suppose further that Eδ∼W[δ][�δ��+ε] <∞ for some ε > �.�en

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ logB[a ,b](Y)� ≤ PW[δ],[a ,b](Y ∈ A)
ε�(�−ε) ⋅ C (�.��)

were C is a constant depending on W[δ], n (but not on a, b).
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Lemma ��. [Uniform Convergence Beyond Compactness] Let (ai , bi , ci , ci)i∈N be a se-
quence of numbers in R+ such that for all i, c i > � and ci < �, c i ai < cibi (hence also ai < bi),
and limi→∞ ai = �, limi→∞ bi =∞, limi→∞ ci =∞, limi→∞ ci = �, lim(cibi − ci ai) =∞ (For
example, take ai = ��i , bi = i , ci = log(i + �), ci = �� log(i + �)).�en:

lim sup
i→∞

sup
t∈[−�,�],u∈[ai c i ,bi c i]

�logB[ai ,bi](u, t) − logB[�,∞](u, t)� = �.

�e proof of Lemma �� is itself based on another key observation, which is an immediate
consequence of the fact thatW[a ,b] is proportional to the Haar measure on [a, b]:

Proposition ��. [Change-of-Variables] We have for all u > �, all t ∈ [−�, �], B[a ,b](u, t) =
B[a�u ,b�u](�, t).

We now �rst show how the two lemmas imply the main result. Take any sequence (ai , bi , ci , ci)
satisfying the requirements of Lemma ��. Let

Ai = {Y ∈ Rn ∶ ci ai ≤ U(Y) ≤ cibi}.

and let Ai ⊂ Rn be its complement. We have

EY∼PW[δ],[ai ,bi ] �logB[ai ,bi](Y) − logB[�,∞](Y)� = f (i) + g(i),

where

f (i) = EY∼PW[δ],[ai ,bi ] � {Y∈Ai} ⋅ log
B[ai ,bi](Y)
B[�,∞](Y)

� ,

g(i) = EY∼PW[δ],[ai ,bi ] � {Y∈Ai}
⋅ log

B[ai ,bi](Y)
B[�,∞](Y)

� .

Now, take ai = ��i , bi = i , ci = log(i + �), ci = �� log(i + �). We already indicated in Lemma ��
that this choice allows us to apply Lemma �� to f (i), whichwill therefore converge to � as i →∞.
It thus remains to show that g(i)→ �. By Lemma �� we have g(i) = o(PW[δ],[ai ,bi](Y ∈ Ai)).
It thus su�ces to show that PW[δ],[ai ,bi](Y ∈ Ai)→ �. For this, note that we can write:

PW[δ],[ai ,bi](Y ∈ Ai) = Eσ∼W[ai ,bi ]EY∼PW[δ],� � {(σY� , . . . ,σYn)∈Ai}
�

= Eσ∼W[ai ,bi ]EY∼PW[δ],� � {σU(Y)<c i ai∨σU(Y)>c i bi}�

≤W[ai ,bi](σ < ci ai ∨ σ > cibi) + Eσ∼W[ai ,bi ] � {c i ai<σ<c i bi} ⋅ EY∼PW[δ],� � {σU(Y)<c i ai∨σU(Y)>c i bi}��

=W[ai ,bi](σ < ci ai) +W[ai ,bi](σ > cibi) + PW[δ],�(U < ci ai) + PW[δ],�(U > cibi),

where we used the union bound. Now, by our choice of (ai , bi , ci , ci), the �rst two probabilities
go to � as i →∞. And, since ai ci → � and cibi →∞ and U has a �xed distribution which has
no mass at U ≤ � (to be precise, nU �

has a noncentral χ� distribution), the third and fourth
term go to � as well.�e result is proved.
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Remaining Proofs underlying Lemma ��

Proof. (of Proposition ��) Changing the integration variable from σ to ρ ∶= σ�u, we have:

B[a ,b](u, t) =
∫δ ∫

σ=b
σ=a

�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[δ]

∫
b
a

�
σ e−(n��)⋅u

��σ � dσ

=
∫δ ∫

ρ=b�u
ρ=a�u

�
uρ e

n⋅(− �
� δ

�
+δut�(uρ)− �

� u
�
�(u�ρ�)) � dσ

dρ � dρ dW[δ]

∫
ρ=b�u
ρ=a�u

�
uρ e−(n��)⋅u

��(u�ρ�) � dσ
dρ � dρ

,

and the result follows by rewriting.

Proof. (of Lemma ��)Part �.LetW[a ,b] � y be the posterior distribution on (δ, σ) based on prior
W[δ] ×W[a ,b]. By straightforward rewriting we can re-express ��B[a ,b](y) as an expectation
over the posterior W[a ,b] � y. We do this in the second step below, and then continue using
Jensen’s inequality:

logB[a ,b](y) = − log
∫δ ∫σ∈[a ,b] e

−n(y���σ �
+δ���−δ⋅y�σ)+n(δ���−δ⋅y�σ) dσ dW[δ]

e−n(y���σ �+δ���−δ⋅y�σ) dσ dW[δ]
= − logE(δ ,σ)∼W[a ,b]�y �e

n⋅( �
� δ

�
−δy�σ)�

≤ − �
�
⋅ nδ� + �

�
n ⋅ E(δ ,σ)∼W[a ,b]�y [y ⋅ δ�σ] ≤

�
�
n ⋅ E(δ ,σ)∼W[a ,b]�y [�y� ⋅ �δ��σ] .

We thus have, by Hölder’s inequality, for q, r > � with ��r + ��q = �:

EY � {Y∈A} ⋅ logB[a ,b](Y,W[δ])� ≤ �EY � q
{Y∈A}��

��q
⋅ �EY �E(δ ,σ)∼W[a ,b]�Y �(n��)�Y��δ��σ��

r�
��r

≤ P(Y ∈ A)��q ⋅ (n��) ⋅ �EYE(δ ,σ)∼W[a ,b]�Y ��Y��δ��σ�
r�

��r
,

where in the �nal line we once again used Jensen.�e expectation can be rewritten as:

EYE(δ ,σ)∼Wa ,b �Y ��Y��δ��σ�
r = Eδ∼W[δ],σ∼W[a ,b]EY� , . . . ,Yn i.i.d.∼Pδ ,σ ��Y��δ��σ�

r

= Eδ∼W[δ]Eσ∼W[a ,b]EY′∼N(δ�n ,��n) (�Y′��δ�)
r

= n−rEδ∼W[δ]�δ�rEY′∼N(δ ,�)�Y′�r

≤ �rn−rEδ∼W[δ]�δ�rEY′∼N(�,δ)[(�Y′ − δ� + �δ�)r]
≤ �rn−rEδ∼W[δ] ��δ��r + �δ�rCr� ,

where we used that �a + b�r ≤ (�max{�a�, �b�})r ≤ �r(�a�r + �b�r) and that, if Y ∼ N�,�, then
E[�Y�r] ≤ Cr for a constant Cr that does not depend on δ.�e result follows.
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Part �. Recall that V denotes the maximal invariant. Its marginal distribution does not depend
on σ , so for any � < a′ < b′ we can write:

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �− logB[�,∞](Y)�� =

EY∼PW[δ],[a ,b] � {Y∈A} ⋅ �log
p[a ,b],�(V(Y))

pW[δ],[a ,b](V(Y))
�� =

PW[δ],[a ,b](Y ∈ A) ⋅ EY∼PW[δ],[a ,b]�Y∈A �log
p[a ,b],�(V(Y) � Y ∈ A)

pW[δ],[a ,b](V(Y) � Y ∈ A)
+ log

P[a ,b],�(Y ∈ A)
PW[δ],[a ,b](Y ∈ A)

� ≤

PW[δ],[a ,b](Y ∈ A) ⋅ �log P[a ,b],�(Y ∈ A) − log PW[δ],[a ,b](Y ∈ A)� ≤
− PW[δ],[a ,b](Y ∈ A) log PW[δ],[a ,b](Y ∈ A)

where we used Jensen’s inequality.

Proof. (of Lemma ��) Using Proposition �� and its consequence that B[�,∞] depends on the
invariant only, i.e. for all u > �, B[�,∞](u, t) = B[�,∞](�, t), we can rewrite the supremum as

sup
t∈[−�,�], u∈[ai c i ,bi c i]

�logB[ai�u ,bi�u](�, t) − logB[�,∞](�, t)� ≤

sup
t∈[−�,�], �<c<��c i , c′>��c i

�logB[c ,c′](�, t) − logB[�,∞](�, t)� ≤

sup
�<c<��c i , c′>��c i

�log�
∞

�

�
σ
e−(n��)σ

−�
dσ − log�

c′

c

�
σ
e−(n��)σ

−�
dσ� ≤

�log�
∞

�

�
σ
e−(n��)σ

−�
dσ − log�

��c i

��c i

�
σ
e−(n��)σ

−�
dσ� = f (ci , ci)

for some function f (c, c) with limc→∞,c↓� f (c, c) = � (note that the dependence on t has
disappeared); the result follows. Here we used that, for general u, t, � < a < b,

logB[a ,b](u, t) − logB[�,∞](u, t) =

log ∫δ ∫
b
σ=a

�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[δ]

∫
b
a

�
σ e−(n��)⋅u

��σ � dσ
− log ∫δ ∫

∞

σ=�
�
σ e

n⋅(− �
� δ

�
+δut�σ− �

� u
�
�σ �
) dσ dW[σ]

∫
∞

�
�
σ e−(n��)⋅u

��σ � dσ
≤

log�
∞

�

�
σ
e−(n��)⋅u

�
�σ �

dσ − log�
b

a

�
σ
e−(n��)⋅u

�
�σ �

dσ .

�.E.� WhyW∗

� andW∗

� are achieved andhave�nite support in Section �.�.�
�e minima are achieved because of the joint lower-semi-continuity of KL divergence (Posner,
����). To see that the supports are �nite, note the following: for given sample size n, the
probability distribution PW is completely determined by the probabilities assigned to the
su�cient statistics N��a ,N��b .�is means that for each priorW ∈W(Θ�), the Bayes marginal
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PW can be identi�ed with a vector of Mn ∶= (na + �) ⋅ (nb + �) real-valued components. Every
such PW can also be written as a mixture of Pθ ’s for θ = (µa�� , µb��) ∈ Θ�, a convex set. By
Carathéodory’s theorem we need at most Mn components to describe an arbitrary PW .

�.F Motivation for use of KL to de�ne GROW sets
If there is more than a single parameter of interest, then a natural (but certainly not the
only reasonable!) divergence measure to use in (�.��) is to set d equal to the KL divergence
D(θ��Θ�) ∶= inf θ�∈Θ� D(θ��θ�).

To seewhy, note that ε indicates the easiness of testingΘ(ε) vs.Θ�: the larger ε, the ‘further’Θ(ε)
from Θ� and the larger the value of ��(ε).�e KL divergence is the only divergence measure
in which ‘easiness’ of testing Θ(ε) is consistent with easiness of testing individual elements
of Θ�. By this we mean the following: suppose there exist θ� , θ′� ∈ Θ� with θ� ≠ θ′� achieving
equal growth rates ��({θ′�}) = ��({θ�}) in the tests of the individual point hypotheses {θ�}
vs Θ� and {θ′�} vs. Θ� �en if d is not the KL it can happen that, for some ε > �, θ� ∈ Θ(ε) yet
θ′� �∈ Θ(ε). With d equal to KL this is impossible.�is follows immediately from�eorem �.�,
Part �, which tells us D(θ��Θ�) = ��({θ�}).
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Safe-Bayesian generalized linear
regression

Abstract
We study generalized Bayesian inference under misspeci�cation, i.e. when the model is ‘wrong
but useful’. Generalized Bayes equips the likelihood with a learning rate η. We show that for
generalized linear models (GLMs), η-generalized Bayes concentrates around the best approx-
imation of the truth within the model for speci�c η ≠ �, even under severely misspeci�ed noise,
as long as the tails of the true distribution are exponential. We derive MCMC samplers for
generalized Bayesian lasso and logistic regression and give examples of both simulated and
real-world data in which generalized Bayes substantially outperforms standard Bayes.

�.� Introduction
Over the last ten years it has become abundantly clear that Bayesian inference can behave quite
badly under misspeci�cation, i.e., if the model F under consideration is ‘wrong but useful’
(Grünwald and Langford, ����; Erven, Grünwald and Rooij, ����; Müller, ����; Syring and
Martin, ����; Yao et al., ����; Holmes and Walker, ����; Grünwald and Van Ommen, ����). For
example, Grünwald and Langford (����) exhibit a simple nonparametric classi�cation setting
in which, even though the prior puts positive mass on the unique distribution in F that is
closest in KL divergence to the data generating distribution P, the posterior never concentrates
around this distribution. Grünwald and Van Ommen (����) give a simple misspeci�ed setting
in which standard Bayesian ridge regression, model selection and model averaging severely
over�t small-sample data.

Grünwald and Van Ommen (����) also propose a remedy for this problem: equip the likelihood
with an exponent or learning rate η (see (�.�) below). Such a generalized Bayesian (also known
as fractional or tempered Bayesian) approach was considered earlier by e.g. Barron and Cover,

���
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����; Walker and Hjort, ����; Zhang, ����b. In practice, η will usually (but not always — see
Section �.�.� below) be chosen smaller than one, making the prior have a stronger regularizing
in�uence. Grünwald and VanOmmen (����) show that for Bayesian ridge regression andmodel
selection/averaging, this results in excellent performance, being competitive with standard
Bayes if the model is correct and very signi�cantly outperforming standard Bayes if it is not.
Extending Zhang’s (����a; ����b) earlier work, Grünwald and Mehta (����) (GM from now
on) show that, under what was earlier called the η-central condition (De�nition �.� below),
generalized Bayes with a speci�c �nite learning rate η (usually ≠ �) will indeed concentrate in
the neighborhood of the ‘best’ f ∈ F with high probability. Here, the ‘best’ f means the one
closest in KL divergence to P.

Yet, three important parts of the story are missing in this existing work: (�) Can Grünwald-Van
Ommen-type examples, showing failure of standard Bayes (η = �) and empirical success of
generalized Bayes with the right η, be given more generally, for di�erent priors π (say of lasso-
type (π( f ) ∝ exp(−λ� f ��)) rather than ridge-type π( f ) ∝ exp(−λ� f ���)), and for di�erent
models, say for generalized linear models (GLMs)? (�) Can we �nd examples of generalized
Bayes outperforming standard Bayes with real-world data rather than with toy problems such
as those considered by Grünwald and Van Ommen? (�) Does the central condition — which
allows for good theoretical behavior of generalized Bayes — hold for GLMs, under reasonable
further conditions?

We answer all three questions in the a�rmative: in Section �.�.� below, we give (a) a toy
example on which the Bayesian lasso and the Horseshoe estimator fail; later in the chapter, in
Section �.� we also (b) give a toy example on which standard Bayes logistic regression fails,
and (c) two real-world data sets on which Bayesian lasso and Horseshoe regression fail; in all
cases, (d) generalized Bayes with the right η shows much better performance. In Section �.�,
we show (e) that for GLMs, even if the noise is severely misspeci�ed, as long as the distribution
of the predictor variable Y has exponentially small tails (which is automatically the case in
classi�cation, where the domain of Y is �nite), the central condition holds for some η > �. In
combination with (e), GM’s existing theoretical results suggest that generalized Bayes with this
η should lead to good results — this is corroborated by our experimental results in Section �.�.
�ese �ndings are not obvious: one might for example think that the sparsity-inducing prior
used by Bayesian lasso regression circumvents the need for the additional regularization induced
by taking an η < �, especially since in the original setting of Grünwald and Van Ommen,
the standard Bayesian lasso (η = �) succeeds. Yet, Example �.� below shows that under a
modi�cation of their example, it fails a�er all. In order to demonstrate the failure of standard
Bayes and the success of generalized Bayes, we devise (in Section �.�) MCMC algorithms (f)
for generalized Bayes posterior sampling for Bayesian lasso and logistic regression. (a)-(f) are
all novel contributions.

In Section �.� we �rst de�ne our setting more precisely. Section �.�.�) gives a �rst example
of bad standard-Bayesian behavior and Section �.�.�) recalls a theorem from GM indicating
that under the η-central condition, generalized Bayes for η < η should perform well. We



�.�. �e setting ���

present our new theoretical results in Section �.�. We next (Section �.�), present our algorithms
for generalized Bayesian posterior sampling, and we continue (Section �.�) to empirically
demonstrate how generalized Bayes outperforms standard Bayes under misspeci�cation. All
proofs are in Appendix �.A.

�.� �e setting
A learning problem can be characterized by a tuple (P, `,F), whereF is a set of predictors, also
referred to as amodel, P is a distribution on sample spaceZ , and ` ∶ F ×Z → R∪{∞} is a loss
function.We denote by ` f (z) ∶= `( f , z) the loss of predictor f ∈ F under outcome z ∈ Z . If Z ∼
P, we abbreviate ` f (Z) to ` f . In all our examples,Z = X ×Y . We obtain e.g. standard (random-
design) regression with squared loss by taking Y = R and F to be some subset of the class of all
functions f ∶ X → R and, for z = (x , y), ` f (x , y) = (y − f (x))�; logistic regression is obtained
by taking F as before, Y = {−�, �} and ` f (x , y) = log(� + exp(−y f (x)). We get conditional
density estimation by taking {p f (Y � X) ∶ f ∈ F} to be a family of conditional probability
mass or density functions (de�ned relative to some measure µ), extended to n outcomes by the
i.i.d. assumption, and taking conditional log-loss ` f (x , y) ∶= − log p f (y � x).

We are given an i.i.d. sample Zn ∶= Z� , Z� , . . . , Zn ∼ P where each Zi takes values in Z , and
we consider, as our learning algorithm, the generalized Bayesian posterior, also known as the
Gibbs posterior, Πn on F , de�ned by its density

πn( f ) ∶=
exp �−η∑n

i=� ` f (zi)� ⋅ π�( f )

∫F exp �−η∑n
i=� ` f (zi)� ⋅ π�( f )dρ( f )

, (�.�)

where η > � is the learning rate, and π� is the density of some prior distributionΠ� onF relative
to an underlying measure ρ. Note that, in the conditional log-loss setting, we get that

πn( f )∝
n
�
i=�
(p f (yi � xi))ηπ�( f ), (�.�)

which, if η = �, reduces to standardBayesian inference.WhileGM’s result (quoted as�eorem �.�
below) works for arbitrary loss functions, �eorem �.� and our empirical simulations (this
chapter’s new results) revolve around (generalized) linear models. For these models, (�.�) can
be equivalently interpreted either in terms of the original loss functions ` f or in terms of
the conditional likelihood p f . For example, consider regression with ` f (x , y) = (y − f (x))�
and �xed η. �en (�.�) induces the same posterior distribution πn( f ) over F as does (�.�)
with the conditional distributions p f (y�x) ∝ exp(−(y − f (x))�, which is again the same as
(�.�) with ` f replaced by the conditional log-loss `′f (x , y) ∶= − log p f (y�x), giving a likelihood
corresponding to Gaussian errors with a particular �xed variance; an analogous statement holds
for logistic regression.�us, all our examples can be interpreted in terms of (�.�) for a model
that is misspeci�ed, i.e., the density of P(Y �X) is not equal to p f for any f ∈ F . As is customary
(see e.g. Bartlett, Bousquet and Mendelson (����)), we assume throughout that there exists an
optimal f ∗ ∈ F that achieves the smallest risk (expected loss) E[` f ∗(Z)] = inf f ∈F E[` f (Z)].
If F is a GLM, the risk minimizer again has additional interpretations: �rst, f ∗ minimizes,
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among all f ∈ F , the conditional KL divergence E(X ,Y)∼P[log �p(Y �X)�p f (Y �X)�] to the true
distribution P. Second, if there is an f ∈ F with EX ,Y∼P[Y � X] = f (X) (i.e.F contains the true
regression function, or equivalently, true conditional mean), then the risk minimizer satis�es
f ∗ = f .

�.�.� Bad Behavior of Standard Bayes
Example �.�. We consider a Bayesian lasso regression setting (Park and Casella, ����) with
random design, with a Fourier basis. We sample data Zi = (Xi ,Yi) i.i.d. ∼ P, where P is de�ned
as follows: we �rst sample preliminary (X′i ,Y ′i ) with X′i

i . i .d .∼ Uniform([−�, �]); the dependent
variable Y ′i is set to Y ′i = � + ε i , with ε i ∼N (�, σ �) for some �xed value of σ , independently of
X′i . In other words: the true distribution for (X′i ,Y ′i ) is ‘zero with Gaussian noise’. Now we toss
a fair coin for each i. If the coin lands heads, we set the actual (Xi ,Yi) ∶= (X′i ,Y ′i ), i.e. we keep
the (X′i ,Y ′i ) as they are, and if the coin lands tails, we put the pair to zero: (Xi ,Yi) ∶= (�, �).

We model the relationship between X and Y with a pth order Fourier basis.�us, F = { fβ ∶
β ∈ R�p+�}, with fβ(x) given by

�β, �
π
⋅ ��−��� , cos(x), sin(x), cos(�x), . . . , sin(px)�� ,

and the η-posterior is de�ned by (�.�) with ` fβ(x , y) = (y − fβ(x))�; the prior is the Bayesian
lasso prior whose de�nition we recall in Section �.�.�. Since our ‘true’ regression function
E[Yi � Xi] is �, in an actual sample around ��% of points will be noiseless, easy points, lying on
the true regression function. Since the actual sample of (Xi ,Yi) has less noise then the original
sample (X′i ,Y ′i ), we would expect Bayesian lasso regression to learn the correct regression
function, but as we see in the blue line in Figure �.�, it over�ts and learns the noise instead
(later on (Figure �.� in Section �.�.�) we shall see that, not surprisingly, this results in terrible
predictive behavior). By removing the noise in half the data points, we misspeci�ed the model:
we made the noise heteroscedastic, whereas the model assumes homoscedastic noise.�us, in
this experiment the model is wrong. Still, the distribution in F closest to the true P, both in
KL divergence and in terms of minimizing the squared error risk, is given by the conditional
distribution corresponding to Yi = � + ε i , where ε i is i.i.d. ∼N (�, σ �). While this element of
F is in fact favored by the prior (the lasso prior prefers β with small �β��), nevertheless, for
small samples, the standard Bayesian posterior puts most if its mass at f with many nonzero
coe�cients. In contrast, the generalized posterior (�.�) with η = �.�� gives excellent results
here. To learn this η from the data, we can use the Safe-Bayesian algorithm of Grünwald (����).
�e result is depicted as the red line in Figure �.�. Implementation details are in Section �.�.�
and Appendix �.D; the details of the �gure are in Appendix �.E.

�e example is similar to that of Grünwald and Van Ommen (����), who use multidimensional
X and a ridge (normal) prior on �β�; in their example, standard Bayes succeeds when equipped
with a lasso prior; by using a trigonometric basis we can make it ‘fail’ a�er all. Grünwald and
Van Ommen (����) relate the potential for the over�tting-type of behavior of standard Bayes, as
well as the potential for full inconsistency (i.e. even holding as n →∞) as noted by Grünwald
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Figure �.�: Predictions of standard Bayes (blue) and SafeBayes (red), n = ��, p = ���.

and Langford (����) to properties of the Bayesian predictive distribution

p(Yn+� � Xn+� , Zn) ∶= �
F

p f (Yn+� � Xn+�)πn( f � Zn)dρ( f ).

Being a mixture of f ∈ F , p(Yn+� � Xn+�), is a member of the convex hull of densities F but
not necessarily of F itself. As explained by Grünwald and Van Ommen, severe over�tting may
take place if p(Yn+� � Xn+� , Zn) is ‘far’ from any of the distributions in F . It turns out that
this is exactly what happens in the lasso example above, as we see from Figure �.� (details in
Appendix �.E).�is �gure plots the data points as (Xi , �) to indicate their location; we see that
the predictive variance of standard Bayes �uctuates, being small around the data points and
large elsewhere. However, it is obvious that for every density p f in our model F , the variance
is �xed independently of X, and thus p(Yn+� � Xn+� , Zn) is indeed very far from any particular
p f with f ∈ F . In contrast, for the generalized Bayesian lasso with η = �.��, the corresponding
predictive variance is almost constant; thus, at the level η = �.�� the predictive distribution
is almost ‘in-model’ (in machine learning terminology, we may say that p is ‘proper’ (Shalev-
Shwartz and Ben-David, ����), and the over�tting behavior then does not occur anymore.

�.�.� When Generalized Bayes Concentrates
Having just seen bad behavior for η = �, we now recall some results from GM. Under some
conditions, GM show that generalized Bayes, for appropriately chosen η, does concentrate at
fast rates even under misspeci�cation. We �rst recall (a very special case of) the asymptotic
behavior under misspeci�cation theorem of GM. GM bound (a) themisspeci�cation metric dη
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Figure �.�: Variance of Predictive Distribution p(Yn+� � Xn+� , Zn
) for a single run with n = ��.

in terms of (b) the information complexity.�e bound (c) holds under a simple condition on
the learning problem that was termed the central condition by Van Erven et al. (����). Before
presenting the theorem we explain (a)–(c). As to (a), we de�ne themisspeci�cation metric dη
in terms of its square by

d�
η( f , f

′) ∶= �
η
�� −�

�
p f ,η(z)p f ′ ,η(z)dµ(z)�

which is the (��η-scaled) squared Hellinger distance between p f ,η and p f ′ ,η . Here, a density
p f ,η is de�ned as

p f ,η(z) ∶= p(z)
exp(−ηL f (z))

E[exp(−ηL f (Z))]
,

where L f = ` f − ` f ∗ is the excess loss of f . GM show that dη de�nes a metric for all η > �. If
η = �, ` is log-loss, and the model is well-speci�ed, then it is straightforward to verify that
p f ,η = p f , and so (���) ⋅ dη becomes the standard squared Hellinger distance.

As to (b), we denote by ICn ,η(Π�) the information complexity, de�ned as:

ICn ,η(Π�) ∶= E f∼Πn �
�
n

n
�
i=�

L f (Zi)� +
KL(Πn �Π�)

η ⋅ n
=

− �
ηn

log�
F

π�( f )e−η∑
n
i=� ` f (Zi)dρ( f ) −

n
�
i=�

` f ∗(Zi), (�.�)

where f denotes the predictor sampled from the posterior Πn and KL denotes KL divergence;
we suppress dependency of IC on f ∗ in the notation.�e fact that both lines above are equal
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(noticed by, among others, Zhang (����b); GM give an explicit proof) allows us to write the
information complexity in terms of a generalized Bayesian predictive density which is also
known as extended stochastic complexity (Yamanishi, ����). It also plays a central role in the
�eld of prediction with expert advice as themix-loss (Van Erven et al., ����; Cesa-Bianchi and
Lugosi, ����) and coincides with the minus log of the standard Bayesian predictive density if
η = � and ` is log-loss. It can be thought of as a complexity measure analogous to VC dimension
and Rademacher complexity.

As to (c), GM’s result holds under the central condition ((Li, ����); name due to Van Erven et al.,
����) which expresses that, for some �xed η > �, for all �xed f , the probability that the loss of f
exceeds that of the optimal f ∗ by a�η is exponentially small in a:

De�nition �.� (Central Condition, Def. � of GM). Let η > �. We say that (P, `,F) satis�es the
η-strong central condition if, for all f ∈ F : E �e−ηL f � ≤ �.

As straightforward rewriting shows, this condition holds automatically, for any η ≤ � in the
density estimation setting, if the model is correct; Van Erven et al. (����) provide some other
cases in which it holds, and show that many other conditions on ` and P that allow fast rate
convergence that have been considered before in the statistical and on-line learning literature,
such as exp-concavity (Cesa-Bianchi and Lugosi, ����), the Tsybakov and Bernstein conditions
(Bartlett, Bousquet and Mendelson, ����; Tsybakov, ����) and several others, can be viewed as
special cases of the central condition; yet they don’t discuss GLMs. Here is GM’s result:

�eorem �.� (�eorem �� from GM). Suppose that the η-strong central condition holds.�en
for any � < η < η, the metric dη satis�es

EZn∼PE f∼Πn �d
�
η( f

∗ , f )� ≤ Cη ⋅ EZn∼P �ICn ,η(Π�)�

with Cη = η�(η − η). In particular, Cη <∞ for � < η < η, and Cη = � for η = η��.

�us, we expect the posterior to concentrate at a rate dictated by E[ICn ,η] in neighborhoods
of the best (risk-minimizing, KL optimal, or even true regression function) f ∗.�e misspe-
ci�cation metric d�

η on the le� hand side is a weak metric, however, in Appendix �.B we show
that we can replace it by stronger notions such as KL-divergence, squared error or logistic
loss.�eorem �.� generalizes previous results (e.g. Zhang (����a) and Zhang (����b)) to the
misspeci�ed setting. In the well-speci�ed case, Zhang, as well as several other authors (Walker
and Hjort, ����; Martin, Mess and Walker, ����), state a result that holds for any η < � but not
η = �.�is suggests that there is an advantage to taking η slightly smaller than one even when
the model is well-speci�ed (for more details see Zhang (����a)).

To make the theorem work for GLMs under misspeci�cation, we must verify (a) that the
central condition still holds (which is in general not guaranteed) and that (b) the information
complexity is su�ciently small. As to (a), in the following section we show that the central con-
dition holds (with η usually ≠ �) for �-dimensional exponential families and high-dimensional
generalized linear models (GLMs) if the noise is misspeci�ed, as long as P has exponentially
small tails; in particular, we relate η to the variance of P. As to (b), if the model is correct (the
conditional distribution P(Y � X) has density f equal to p f with f ∈ F), where F represents
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a d-dimensional GLM, then it is known (see e.g. Zhang (����b)) that, for any prior Π� with
continuous, strictly positive density on F , the information complexity satis�es

EZn∼P �ICn ,η(Π�)� = O �
d
n
⋅ log n� , (�.�)

which leads to bounds within a log-factor of the minimax optimal rate (among all possible
estimators, Bayesian or not), which is O(d�n). While such results were only known for the
well-speci�ed case, in Proposition � below we show that, for GLMs, they continue to hold for
the misspeci�ed case.

�.� Generalized GLM Bayes
Below we �rst show that the central condition holds for natural univariate exponential families;
we then extend this result to the GLM case, and establish bounds in information complexity of
GLMs. Let the classF = {pθ ∶ θ ∈ Θ} be a univariate natural exponential family of distributions
on Z = Y , represented by their densities, indexed by natural parameter θ ∈ Θ ⊂ R (Barndor�-
Nielsen, ����).�e elements of this restricted family have probability density functions

pθ(y) ∶= exp(θy − F(θ) + r(y)), (�.�)

for log-normalizer F and carrier measure r. We denote the corresponding distribution as Pθ .
In the �rst part of the theorem below we assume that Θ is restricted to an arbitrary closed
interval [θ , θ] with θ < θ that resides in the interior of the natural parameter space Θ =
{θ ∶ F(θ) <∞}. Such Θ allow for a simpli�ed analysis because within Θ the log-normalizer
F as well as all its derivatives are uniformly bounded from above and below; see (�.�) in
Appendix �.B. As is well-known (see e.g. Barndor�-Nielsen (����)), exponential families can
equivalently be parameterized in terms of the mean-value parameterization: there exists a �-to-�
strictly increasing function µ ∶ Θ → R such that EY∼Pθ [Y] = µ(θ). As is also well-known,
the density p f ∗ ≡ pθ∗ within F minimizing KL divergence to the true distribution P satis�es
µ(θ∗) = EY∼P[Y], whenever the latter quantity is contained in µ(Θ) (Grünwald, ����). In
words, the best approximation to P in F in terms of KL divergence has the same mean of Y as
P.

�eorem �.�. Consider a learning problem (P, `,F) with `θ(y) = − log pθ(y) the log loss and
F = {pθ ∶ θ ∈ Θ} a univariate exponential family as above.
(�). Suppose thatΘ = [θ , θ] is compact as above and that θ∗ = argminθ∈Θ D(P�Pθ) lies inΘ. Let
σ � > � be the true variance EY∼P(Y −E[Y])� and let (σ∗)� be the variance EY∼Pθ∗ (Y −E[Y])�
according to θ∗.�en

(i) for all η > (σ∗)��σ �, the η-central condition does not hold.

(ii) Suppose there exists η○ > � such that C ∶= EP[exp(η○�Y �)] <∞.�en there exists η > �,
depending only on η○, C , θ and θ such that the η-central condition holds. Moreover,

(iii), for all δ > �, there is an ε > � such that, for all η ≤ (σ∗)��σ �−δ, the η-central condition
holds relative to the restricted model Fε = {pθ ∶ θ ∈ [θ∗ − ε, θ∗ + ε]}.
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(�). Suppose that P is Gaussian with variance σ � > � and thatF indexes a full Gaussian location
family.�en the η-central condition holds i� η ≤ (σ∗)��σ �.

We provide (iii) just to give insight — ‘locally’, i.e. in restricted models that are small neighbor-
hoods around the best-approximating θ∗, the smallest η for which the central condition holds
is determined by a ratio of variances. �e �nal part shows that for the Gaussian family, the
same holds not just locally but globally (note that we do not make the compactness assumption
on Θ there); we warn the reader though that the standard posterior (η = �) based on a model
with �xed variance σ∗ is quite di�erent from the generalized posterior with η = (σ∗)��σ � and
a model with variance σ � (Grünwald and Van Ommen, ����). Finally, while in practical cases
we o�en �nd η < � (suggesting that Bayes may only succeed if we learn ‘slower’ than with the
standard η = �, i.e. the prior becomes more important), the result shows that we can also very
well have η > �; we give a practical example at the end of Section �.�. �eorem �.� is new and
supplements Van Erven et al.’s (����) various examples ofF which satisfy the central condition.
In the theorem we require that both tails of Y have exponentially small probability.

Central Condition: GLMs Let F be the generalized linear model (McCullagh and Nelder,
����) (GLM) indexed by parameter β ∈ B ⊂ Rd with link function g ∶ R→ R. By de�nition this
means that there exists a set X ⊂ Rd and a univariate exponential familyQ = {pθ ∶ θ ∈ Θ} on
Y of the form (�.�) such that the conditional distribution of Y given X = x is, for all possible
values of x ∈ X , a member of the familyQ, with mean-value parameter g−�(�β, x�).�en the
class F can be written as F = {pβ ∶ β ∈ B}, a set of conditional probability density functions
such that

pβ(y � x) ∶= exp�θx(β)y − F(θx(β)) + r(y)�, (�.�)

where θx(β) ∶= µ−�(g−�(�β, x�)), and µ−�, the inverse of µ de�ned above, sends mean para-
meters to natural parameters. We then have EPβ [Y � X] = g−�(�β, X�), as required.

Proposition �. Under the following three assumptions, the learning problem (P, `,F) with F
as above satis�es the η-central condition for some η > � depending only on the parameters of the
problem:

�. (Conditions on g): the inverse link function g−� has bounded derivative on the domain
B ×X , and the image of the inverse link on the same domain is a bounded interval in the
interior of the mean-value parameter space {µ ∈ R ∶ µ = EY∼q[Y] ∶ q ∈ Q} (for all
standard link functions, this can be enforced by restrictingB andX to an (arbitrarily large
but still) compact domain).

�. (Condition on ‘true’ P): for some η > � we have
supx∈XEY∼P[exp(η�Y �) � X = x] <∞.

�. (Well-speci�cation of conditionalmean): there exists β○ ∈ B such thatE[Y � X] = g−�(�β○ , X�).

A simple argument (di�erentiation with respect to β) shows that under the third condition, it
must be the case that β○ = β∗, where β∗ ∈ B is the index corresponding to the density p f ∗ ≡ pβ∗
within F that minimizes KL divergence to the true distribution P.�us, our conditions imply
that F contains a β∗ which correctly captures the conditional mean (and this will then be the
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risk minimizer); thus, as is indeed the case in Example �.�, the regression function must be
well-speci�ed but the noise can be severely misspeci�ed.

We stress that the three conditions have very di�erent statuses. �e �rst is mathematically
convenient; it can be enforced by truncating parameters and data, which is awkward but may
not lead to substantial deterioration in practice. Whether it is even really needed or not is not
clear (and may in fact depend on the chosen exponential family). �e second condition is
really necessary — as can immediately be seen from De�nition �.�, the strong central condition
cannot hold if Y has polynomial tails and for some f and x, ` f (x ,Y) increases polynomially in
Y (in Section � of their paper, GM consider weakenings of the central condition that still work
in such situations). For the third condition, however, we suspect that there are many cases in
which it does not hold yet still the strong central condition holds; so then the GM convergence
result would still be applicable under ‘full misspeci�cation’; investigating this will be the subject
of future work.

GLM Information Complexity To apply�eorem �.� to get convergence bounds for expo-
nential families and GLMs, we need to verify that the central condition holds (which we just
did) and we need to bound the information complexity, which we proceed to do now. It turns
out that the bound on ICn ,η of O((d�n) log n) of (�.�) continues to hold unchanged under
misspeci�cation, as is an immediate corollary of applying the following proposition to the
de�nition of ICn ,η given above (�.�):

Proposition �. Let (P, `,F) be a learning problem with F a GLM satisfying Conditions �–�
above.�en for all f ∈ F , EX ,Y∼P[L f ] = EX ,Y∼Pf∗ [L f ].

�is result follows almost immediately from the ‘robustness property of exponential families’
(Chapter �� of Grünwald (����)); for convenience we provide a proof in Appendix �.B.�e
result implies that any bound in ICn ,η(Π�) for a particular prior in the well-speci�ed GLM case,
in particular (�.�), immediately transfers to the same bound for the misspeci�ed case, as long
as our regularity conditions hold, allowing us to apply�eorem �.� to obtain the parametric
rate for GLMs under misspeci�cation.

�.� MCMC Sampling
Below we devise MCMC algorithms for obtaining samples from the η-generalized posterior dis-
tribution for two problems: regression and classi�cation. In the regression context we consider
one of the most commonly used sparse parameter estimation techniques, the lasso. For classi-
�cation we use the logistic regression model. In our experiments in Section �.�, we compare
the performance of generalized Bayesian lasso with Horseshoe regression (Carvalho, Polson
and Scott, ����).�e derivations of samplers are given in Appendix �.D.

�.�.� Bayesian lasso regression
Consider the regression model Y = Xβ + ε, where β ∈ Rp is the vector of parameters of
interest, Y ∈ Rn , X ∈ Rn×p , and ε ∼N (�, σ �In) is a noise vector.�e Least Absolute Shrinkage
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and Selection Operator (LASSO) of Tibshirani (����) is a regularization method used in
regression problems for shrinkage and selection of features.�e lasso estimator is de�ned as
β̂lasso ∶= argminβ �Y−Xβ���+λ�β�� , where �⋅�� , �⋅�� are l� and l� norms correspondingly. It can
be interpreted as a Bayesian posterior mode (MAP) estimate when the priors on β are given by
independent Laplace distributions. As discovered by Park andCasella (����), the same posterior
on β is also obtained by the following Gibbs sampling scheme: set η = � and denote Dτ ∶=
diag(τ� , . . . , τn). Also, let a ∶= η

� (n−�)+
p
� +α and bτ ∶= η

� (Y − Xβ)
T(Y − Xβ)+ �

� β
TDτ

−�β+γ,
where α, γ > � are hyperparameters.�en the Gibbs sampler is constructed as follows.

β ∼N �ηMτXTY , σ �Mτ� ,
σ � ∼ Inv-Gamma (a, bτ) ,

τ−�j ∼ IG�
�

λ�σ ��β�j , λ
�� ,

where IG is the inverse Gaussian distribution andMτ ∶= (ηXTX +Dτ
−�)−�. Following Park and

Casella (����), we put a Gamma prior on the shrinkage parameter λ. Now, in their paper Park
and Casella only give the scheme for η = �, but, as is straightforward to derive from their paper,
the scheme above actually gives the η-generalized posterior corresponding to the lasso prior for
general η (more details in Appendix �.D). We will use the Safe-Bayesian algorithm for choosing
the optimal η developed by Grünwald and Van Ommen (����) (see Appendix �.D.�).�e code
for Generalized- and Safe-Bayesian lasso regression can be found in the CRAN R-package
‘SafeBayes’ (De Heide, ����).

Horseshoe estimator �e Horseshoe prior is the state-of-the-art global-local shrinkage prior
for tackling high-dimensional regularization, introduced by Carvalho, Polson and Scott (����).
Unlike the Bayesian lasso, it has �at Cauchy-like tails, which allow strong signals to remain
unshrunk a posteriori. For completeness we include the horseshoe in our regression comparison,
using the implementation of Van der Pas et al. (����).

�.�.� Bayesian logistic regression

Consider the standard logistic regression model { fβ ∶ β ∈ Rp}, the data Y� , . . . ,Yn ∈ {�, �}
are independent binary random variables observed at the points X ∶= (X� , . . . , Xn) ∈ Rn×p

with

Pfβ(Yi = � � Xi) ∶= p fβ(� � Xi) ∶=
eX

T
i β

� + eXT
i β

.

�e standard Bayesian approach involves putting a Gaussian prior on the parameter β ∼
N (b, B) with mean b ∈ Rp and the covariance matrix B ∈ Rp×p . To sample from the η-
generalized posterior we modify a Pólya–Gamma latent variable scheme described in Polson,
Scott and Windle (����). We �rst introduce latent variables ω� , . . . ,ωn ∈ R, which will be
sampled from Pòlya-Gamma distribution (constructed to yield a simple Gibbs sampler for
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Bayesian logistic regression, for more details see Polson, Scott and Windle (����)). Let

Ω ∶= diag{ω� , . . . ,ωn},
κ ∶= (Y� − ���, . . . ,Yn − ���)T ,

Vω ∶= (XTΩX + B−�)−� , and
mω ∶= Vω(ηXTκ + B−�b).

�en the Gibbs sampler for η-generalized posterior is given by

ω i ∼ PG(η, XT
i β), β ∼N (mω ,Vω),

where PG is the Pòlya-Gamma distribution.

�.� Experiments
Below we present the results of experiments that compare the performance of the derived Gibbs
samplerswith their standard counterparts.More details/experiments are inAppendix �.E.

�.�.� Simulated data
Regression In our experiments we focus on prediction, and we run simulations to determine
the square-risk (expected squared error loss) of our estimate relative to the underlying distri-
bution P: E(X ,Y)∼P(Y − Xβ)�, where Xβ would be the conditional expectation, and thus the
square-risk minimizer, if β would be the true parameter (vector).

Consider the data generated as described in Example �.�. We study the performance of the
η-generalized Bayesian lasso with η chosen by the Safe-Bayesian algorithm (we call it the
Safe-Bayesian lasso) in comparison with two popular estimation procedures for this context:
the Bayesian lasso (which corresponds to η=�), and the Horseshoe method. In Figure �.� the
simulated square-risk is plotted as a function of the sample size for all threemethods.We average
over enough samples so that the graph appears to be smooth (�� iterations for SafeBayes, ����
for the two standard Bayesian methods). It shows that both the standard Bayesian lasso and the
Horseshoe perform signi�cantly worse than the Safe-Bayesian lasso. Moreover we see that the
risks for the standard methods initially grows with the sample size (additional experiments not
reported here suggest that Bayes will ‘recover’ at very large n).

Classi�cation We focus on �nding coe�cients β for prediction, and our error measure
is the expected logarithmic loss, which we call log-risk: E(X ,Y)∼P �− log Liβ(Y �X)�, where
Liβ(Y �X) ∶= eYXT β�(� + eX

T β). We start with an example that is very similar to the previous
one. We generate a n× pmatrix of independent standard normal random variables with p = ��.
For every feature vector Xi we sample a corresponding Zi ∼ N (�, σ �), as before, and we
misspecify the model by putting approximately half of the Zi and the corresponding Xi ,� to
zero. Next, we sample the labels Yi ∼ Binom(exp(Zi)�(� + exp(Zi)). We compare standard
Bayesian logistic regression (η = �) to a generalized version (η = �.���). In Figure �.� we plot
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Figure �.�: Simulated squared error risk (test error) with respect to P as function of sample size for the wrong-model
experiments of Section �.�.� using the posterior predictive distribution of the standard Bayesian lasso (green, solid), the
Safe-Bayesian lasso (red, dotted), both with standard improper priors, and the Horseshoe (blue, dashed); and ��� Fourier
basis functions.

the log-risk as a function of the sample size. As in the regression case, the risk for standard
Bayesian logistic regression (η = �) is substantially worse than the one for generalized Bayes
(η = �.���). Even for generalized Bayes, the risk initially goes up a little bit, the reason being
that the prior is too good: it is strongly concentrated around the risk-optimal β∗ = �. �us,
the �rst prediction made by the Bayesian predictive distribution coincides with the optimal
(β = �) prediction, and in the beginning, due to noise in the data, predictions will �rst get
slightly worse.�is is a phenomenon that also applies to standard Bayes with well-speci�ed
models; see for example Grünwald and Halpern, ����, Example �.�.

Even for the well-speci�ed case it can be bene�cial to use η ≠ �. It is easy to see that the max-
imum a posteriori estimate for generalized logistic regression corresponds to the ridge logistic
regressionmethod (which penalizes large �β��) with the shrinkage parameter λ = η−�. However,
when the the prior mean is zero but the risk minimizer β∗ is far from zero, penalizing large
norms of β is ine�cient, and we �nd that the best performance is achieved with η > �.

�.�.� Real World Data
We present two examples with real world data to demonstrate that bad behavior under mis-
speci�cation also occurs in practice. For these data sets, we compare the performance of
Safe-Bayesian lasso and standard Bayesian lasso. As the �rst example we consider the data of
the daily maximum temperatures at Seattle Airport as a function of the time and date (source:
R-package weatherData, also available at www.wunderground.com). A second example is
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Figure �.�: Simulated logistic risk as function of sample size for wrong-model experiments of Section �.�.� using posterior
predictive distribution of standard Bayesian logistic regression (green, solid), and generalized Bayes (η = �.���, red, dotted)
with �� noise dimensions.

Horse-shoe Bayesian lasso SafeBayes lasso
MSE ((○C)�) �.�� �.�� �.��
MSE ((ppm)�) ���� ���� ����

Table �.�: Mean square errors for predictions on the Seattle and London data sets of Section �.�.�.

London air pollution data (source: R-package Openair, for more details see Carslaw and Rop-
kins (����) and Carslaw (����)). Here the quantity of interest is the concentration of nitrogen
dioxide (NO�), again as a function of time and date. In both settings we divide the data into
a training set and a test set and focus on the prediction error. In both examples, SafeBayes
picks an η̂ strictly smaller than one. Also, for both data sets the Safe-Bayesian lasso clearly
outperforms the standard Bayesian lasso and the Horseshoe in terms of mean square prediction
error, as seen from Table �.� (details in Appendix �.E).

�.� Future work
We provided both theoretical and empirical evidence that η-generalized Bayes can signi�cantly
outperform standard Bayes for GLMs. However, the empirical examples are only given for
Bayesian lasso linear regression and logistic regression. In future work we would like to devise
generalized posterior samplers for other GLMs and speed up the sampler for generalized
Bayesian logistic regression, since our current implementation is slow and (unlike our linear
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regression implementation) cannot deal with high-dimensional (and thus, real-world) data
yet. Furthermore, the Safe-Bayesian algorithm of Grünwald, ����, used to learn η, enjoys good
theoretical performance but is computationally very slow. Since learning η for which the central
condition holds (preferably the largest possible value, since small values of η mean slower
learning) is essential for using generalized Bayes in practice, there is a necessity for speeding
up SafeBayes or �nding an alternative. A potential solution might be using cross-validation
to learn η, but its theoretical properties (e.g. satisfying the central condition) are yet to be
established.
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�.A Proofs

�.A.� Proof of�eorem �.�
�e second part of the theorem about the Gaussian location family is a straightforward calcula-
tion, which we omit. As to the �rst part (Part (i)—(iii)), we will repeatedly use the following fact:
for every Θ that is a nonempty compact subset of the interior of Θ, in particular for Θ = [θ , θ]
with θ < θ both in the interior of Θ, we have:

−∞ < inf
θ∈Θ

F(θ) < sup
θ∈Θ

F(θ) <∞

−∞ < inf
θ∈Θ

F′(θ) < sup
θ∈Θ

F′(θ) <∞

� < inf
θ∈Θ

F′′(θ) < sup
θ∈Θ

F′′(θ) <∞.

(�.�)

Now, let θ , θ∗ ∈ Θ. We can write

E �e−η(`θ−`θ∗)� = EY∼P ��
pθ(Y)
pθ∗(Y)

�
η

� = exp (−G(η(θ − θ∗)) + ηF(θ∗) − ηF(θ)) . (�.�)

where G(λ) = − logEY∼P [exp(λY)]. If this quantity is −∞ for all η > �, then (i) holds trivially.
If not, then (i) is implied by the following statement:

lim sup
ε→�

�η ∶ for all θ ∈ [θ∗ − ε, θ∗ + ε], E[exp(ηLpθ )] ≤ �� =
(σ∗)�

σ � . (�.�)

Clearly, this statement also implies (iii). To prove (i), (ii) and (iii), it is thus su�cient to prove
(ii) and (�.�). We prove both by a second-order Taylor expansion (around θ∗) of the right-hand
side of (�.�).

Preliminary Facts. By our assumption there is a η○ > � such that E[exp(η○�Y �)] = C <∞. Since
θ∗ ∈ Θ = [θ , θ] we must have for every � < η < η○�(��θ − θ�), every θ ∈ Θ,

E[exp(�η(θ − θ∗) ⋅ Y)] ≤ E[exp(�η�θ − θ∗� ⋅ �Y �)]
≤ E[exp(η○(�θ − θ∗���θ − θ�) ⋅ �Y �)]
≤ C
<∞. (�.��)

�e �rst derivative of the right of (�.�) is:

ηE �(Y − F′(θ)) exp�η�(θ − θ∗)Y + F(θ∗) − F(θ)��� . (�.��)

�e second derivative is:

E ��−ηF′′(θ) + η�(Y − F′(θ))�� ⋅ exp�η�(θ − θ∗)Y + F(θ∗) − F(θ)��� . (�.��)
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We will also use the standard result (Grünwald, ����; Barndor�-Nielsen, ����) that, since we
assume θ∗ ∈ Θ,

E[Y] = EY∼Pθ∗ [Y] = µ(θ
∗); for all θ ∈ Θ: F′(θ) = µ(θ); F′′(θ) = EY∼Pθ (Y − E(Y))

� ,
(�.��)

the latter two following because F is the cumulant generating function.

Part (ii).We use an exact second-order Taylor expansion via the Lagrange form of the remainder.
We already showed there exist η′ > � such that, for all � < η ≤ η′, all θ ∈ Θ, E[exp(�η(θ −
θ∗)Y)] <∞. Fix any such η. For some θ′ ∈ {(� − α)θ + αθ∗∶ α ∈ [�, �]}, the (exact) expansion
is:

E �e−η(`θ−`θ∗)� = � + η(θ − θ∗)E [Y − F′(θ∗)] − η
�
(θ − θ∗)�F′′(θ′) . . .

. . . ⋅ E �exp�η�(θ′ − θ∗)Y + F(θ∗) − F(θ′)��� . . .

. . . + η�

�
(θ − θ∗)�E �(Y − F′(θ′))� ⋅ exp�η�(θ′ − θ∗)Y + F(θ∗) − F(θ′)��� .

De�ning ∆ = θ′ − θ, and since F′(θ∗) = E[Y] (see (�.��)), we see that the central condition is
equivalent to the inequality:

ηE �(Y − F′(θ′))�eη∆Y� ≤ F′′(θ′)E �eη∆Y� .

From Cauchy-Schwarz, to show that the η-central condition holds it is su�cient to show
that

η �(Y − F′(θ′))��L�(P)
�eη∆Y�L�(P)

≤ F′′(θ′)E �eη∆Y� ,

which is equivalent to

η ≤
F′′(θ′)E �eη∆Y�

�
E [(Y − F′(θ′))�]E [e�η∆Y]

. (�.��)

We proceed to lower bound the RHS by lower bounding each of the terms in the numerator and
upper bounding each of the terms in the denominator. We begin with the numerator. F′(θ) is
bounded by (�.�). Next, by Jensen’s inequality,

E [exp(η∆Y)] ≥ exp(E[η∆ ⋅ Y]) ≥ exp(−η○�θ − θ��µ(θ∗)�)

is lower bounded by a positive constant. It remains to upper bound the denominator. Note that
the second factor is upper bounded by the constant C in (�.��).�e �rst factor is bounded by
a �xed multiple of E�Y �� + E[F′(θ)�].�e second term is bounded by (�.�), so it remains to
bound the �rst term. By assumption E[exp(η○�Y �)] ≤ C and this implies that E�Y �� ≤ a� + C
for any a ≥ e such that a� ≤ exp(η○a); such an a clearly exists and only depends on η○.

We have thus shown that the RHS of (�.��) is upper bounded by a quantity that only depends
on C , η○ and the values of the extrema in (�.�), which is what we had to show.

Proof of (iii). We now use the asymptotic form of Taylor’s theorem. Fix any η > �, and pick any
θ close enough to θ∗ so that (�.�) is �nite for all θ′ in between θ and θ∗; such a θ ≠ θ∗ must
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exist since for any δ > �, if �θ − θ∗� ≤ δ, then by assumption (�.�) must be �nite for all η ≤ η○�δ.
Evaluating the �rst and second derivative (�.��) and (�.��) at θ = θ∗ gives:

E �e−η(`θ−`θ∗)� = � + η(θ − θ∗)E [Y − F′(θ∗)] . . .

. . . − �η
�
(θ − θ∗)�F′′(θ∗) − η�

�
(θ − θ∗)� ⋅ E �(Y − F′(θ∗))��� + h(θ)(θ − θ∗)�

= � − η
�
(θ − θ∗)�F′′(θ∗) + η�

�
(θ − θ∗)�E �(Y − F′(θ∗))�� + h(θ)(θ − θ∗)� ,

where h(θ) is a function satisfying limθ→θ∗ h(θ) = �, where we again used (�.��), i.e. that
F′(θ∗) = E [Y]. Using further that σ � = E �(Y − F′(θ∗))�� and F′′(θ∗) = (σ∗)�, we �nd that
E �e−η(`θ−`θ∗)� ≤ � i�

−η
�
(θ − θ∗)�(σ∗)� + η�

�
(θ − θ∗)�σ � + h(θ)(θ − θ∗)� ≤ �.

It follows that for all δ > �, there is an ε > � such that for all θ ∈ [θ∗− ε, θ∗+ ε], all η > �,
η�

�
σ � ≤ η

�
(σ∗)� − δ⇒ E �e−η(`θ−`θ∗)� ≤ � (�.��)

η�

�
σ � ≥ η

�
(σ∗)� + δ⇒ E �e−η(`θ−`θ∗)� ≥ � (�.��)

�e condition in (�.��) is implied if:

� < η ≤ (σ
∗)�

σ � − �δ
ησ � .

Setting C = �σ ��(σ∗)� and ηδ = (� − Cδ)(σ∗)��σ � we �nd that for any δ < (σ∗)��(�σ �),
we have � − Cδ ≥ ��� and thus ηδ > � so that in particular the premise in (�.��) is satis�ed
for ηδ . �us, for all small enough δ, both the premise and the conclusion in (�.��) hold for
ηδ > �; since limδ↓� ηδ = (σ∗)��σ �, it follows that there is an increasing sequence η(�) , η(�) , . . .
converging to (σ∗)��σ � such that for each η( j), there is ε( j) > � such that for all θ ∈ [θ∗ −
ε( j) , θ∗ + ε( j)], E �e−η( j)(`θ−`θ∗)� ≤ �. It follows that the lim sup in (�.�) is at least (σ∗)��σ �. A
similar argument (details omitted) using (�.��) shows that the lim sup is at most this value; the
result follows.

�.A.� Proof of Proposition �
For arbitrary conditional densities p′(y � x) with corresponding distribution P′ � X for
which

EP′[Y �X] = g−�(�β, X), (�.��)
and densities p f ∗ = pβ∗ and pβ with β∗ , β ∈ B, we can write:

EX∼PEY∼P′�X �log
pβ∗(Y � X)
pβ(Y �X)

� = EE �(θX(β∗) − θX(β))Y − log
F(θX(β∗))
F(θX(β))

� X�

= EX∼P �(θX(β∗) − θX(β))g−�(�β, X�d� . . .
. . . − log F(θX(β∗)) + log F(θX(β)) � X] ,
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where the latter equation follows by (�.��).�e result now follows because (�.��) both holds for
the ‘true’ P and for Pf ∗ .

�.A.� Proof of Proposition �
�e fact that under the three imposed conditions the η-central condition holds for some η > �
is a simple consequence of �eorem �.�: Condition � implies that there is some compact Θ
such that for all x ∈ X , β ∈ B, θx(β) ∈ Θ. Condition � then ensures that θx(β) lies in the
interior of this Θ. And Condition � implies that η in�eorem �.� can be chosen uniformly for
all x ∈ X .

�.B Excess risk and KL divergence instead of generalized
Hellinger distance

�e misspeci�cation metric/generalized Hellinger distance dη appearing in �eorem �.� is
rather weak (it is ‘easy’ for two distributions to be close) and lacks a clear interpretation for
general, non-logarithmic loss functions. Motivated by these facts, GM study in depth under
what additional conditions the (square of this) metric can be replaced by a stronger and more
readily interpretable divergencemeasure.�ey come upwith a new, surprisingly weak condition,
the witness condition, under which dη can be replaced by the excess risk EP[L f ], which is the
additional risk incurred by f as compared to the optimal f ∗. For example, with the squared
error loss, this is the additional mean square error of f compared to f ∗; and with (conditional)
log-loss, it is the well-known generalized KL divergence EX ,Y∼P[log

p f∗(Y �X)
p f (Y �X)

], coinciding with
standard KL divergence if themodel is correctly speci�ed. Bounding the excess risk is a standard
goal in statistical learning theory; see for example (Bartlett, Bousquet and Mendelson, ����;
Van Erven et al., ����).

�e following de�nition appears (with substantial explanation including the reason for its
name) as De�nition �� in GM:

De�nition �.� (Empirical Witness of Badness). We say that (P, `,F) satis�es the (u, c)-
empirical witness of badness condition (or witness condition) for constants u > � and c ∈ (�, �]
if for all f ∈ F

E �(` f − ` f ∗) ⋅ {⋅}` f − ` f ∗ ≤ u� ≥ cE[` f − ` f ∗].

More generally, for a function τ ∶ R+ → [�,∞) and constant c ∈ (�, �) we say that (P, `,F)
satis�es the (τ, c)-witness condition if for all f ∈ F , E[` f − ` f ∗] <∞ and

E �(` f − ` f ∗) ⋅ {⋅}` f − ` f ∗ ≤ τ(E[` f − ` f ∗])� ≥ cE[` f − ` f ∗].

It turns out that the (τ, c)-witness condition holds in many practical situations, including our
GLM-under-misspeci�cation setting. Before elaborating on this, let us review (a special case
of) �eorem �� of GM, which is the analogue of �eorem �.� but with the misspeci�cation
metric replaced by the excess risk.



��� Chapter �. Safe-Bayesian generalized linear regression

First, let, for arbitrary � < η < η, cu ∶= �
c
ηu+�
�− η

η
. Note that for large u, cu is approximately linear in

u�c.

�eorem �.�. [Specialization of�eorem �� of GM] Consider a learning problem (P, `,F).
Suppose that the η-strong central condition holds. If the (u, c)-witness condition holds, then for
any η ∈ (�, η),

EZn∼PE f∼Πn �E[L f ]� ≤ cu ⋅ EZn∼P �ICn ,η (Π�)� , (�.��)

with cu as above. If instead the (τ, c)-witness condition holds for some nonincreasing function τ
as above, then for any λ > �,

EZn∼PE f∼Πn �E[L f ]� ≤ λ + cτ(λ) ⋅ EZn∼P �ICn ,η (Π�)� .

�e actual theorem given by GM generalizes this to an in-probability statement for general
(not just generalized Bayesian) learning methods. If the (u, c)-witness condition holds, then,
as is obvious from (�.��) and�eorem �.�, the same rates can be obtained for the excess risk
as for the squared misspeci�cation metric. For the (τ, c)-witness condition things are a bit
more complicated; the following lemma (Lemma �� of GM) says that, under an exponential tail
condition, (τ, c)-witness holds for a su�ciently ‘nice’ function τ, for which we loose at most a
logarithmic factor:

Lemma �. De�ne Mκ ∶= sup f ∈F E �eκL f � and assume that the excess loss L f has a uniformly
exponential upper tail, i.e. Mκ <∞.�en, for themap τ ∶ x � �∨ κ−�log �Mκ

κx = O(�∨ log(��x)),
the (τ, c)-witness condition holds with c = ���.

As an immediate consequence of this lemma, GM’s theorem above gives that for any η ∈ (�, η),
(using λ = ��n), there is Cη <∞ such that

EZn∼PE f∼Πn �E[L f ]� ≤
�
n
+ Cη ⋅ (log n) ⋅ EZn∼P �ICη ,n � f ∗ �Π��� , (�.��)

so our excess risk bound is only a log factor worse than the bound that can be obtained for the
squared misspeci�cation metric in�eorem �.�. We now apply this to the misspeci�ed GLM
setting:

Generalized Linear Models andWitness Recall that the central condition holds for general-
ized linear models under the three assumptions made in Proposition �. Let `β ∶= `β(X ,Y) =
− log pβ(Y � X) be the loss of action β ∈ B on random outcome (X ,Y) ∼ P, and let β∗ denote
the risk minimizer over B.�e �rst two assumptions taken together imply, via (�.�), that there
is a κ > � such that

sup
β∈B

EX ,Y∼P �eκ(`β−`β∗)� ≤ sup
β∈B ,x∈X

EY∼P�X=x �eκ(`β−`β∗)�

= sup
β∈B ,x∈X

�
Fθx(β)

Fθx(β∗)
�
κ

⋅ EY∼P�X=x �eκ�Y �� <∞.
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�e conditions of Lemma � are thus satis�ed, and so the (τ, c)-witness condition holds for the
τ and c in that lemma. From (�.��) we now see that we get an O((log n)��n) bound on the
expected excess risk, which is equal to the parametric (minimax) rate up to a (log n)� factor.
�us, fast learning rates in terms of excess risks and KL divergence under misspeci�cation with
GLMs are possible under the conditions of Proposition �.

�.C Learning rate > � for misspeci�ed models
In what follows we give an example of a misspeci�ed setting, where the best performance is
achieved with the learning rate η > �. Consider a model {Pβ , β ∈ [�.�, �.�]}, where Pβ is a
Bernoulli distribution with Pβ(Y = �) = β. Let the data Y� , . . . ,Yn be sampled i.i.d. from P�, i.e.
Yi = � for all i = �, . . . , n. In this case the log-likelihood function is given by

log p(Y� , . . . ,Yn � β) = n log(� − β).

Observe that in this setting β� = �.�. Now assume that the model is correct and data Y ′� , . . . ,Y ′n
is sampled i.i.d. from Pβ with β = �.�.�en the log-likelihood is

log p(Y ′� , . . . ,Y ′n � β = �.�) ≈ �.�n log �.�+�.�n log �.�� n log �.� = log p(Y� , . . . ,Yn � β = �.�).

�us, the data are more informative about the best distribution than they would be if the model
were correct.�erefore, we can a�ord to learn ‘faster’: let the data be more important and the
(regularizing) prior be less important.�is is realized by taking η >> �

�.D MCMC sampling

�.D.� �e η-generalized Bayesian lasso
Here, following Park and Casella (����) we consider a slightly more general version of the
regression problem:

Y = µ + Xβ + ε,
where µ ∈ Rn is the overall mean, β ∈ Rp is the vector of parameters of interest, y ∈ Rn , X ∈ Rn×p ,
and ε ∼ N(�, σ �In) is a noise vector. For a given shrinkage parameter λ > � the Bayesian lasso
of Park and Casella (����) can be represented as follows.

Y �µ, X , β, σ � ∼ N(µ + Xβ, σ �In) , (�.��)
β�τ�� , . . . , τ�p , σ � ∼ N(�, σ �Dτ), Dτ = diag(τ�� , . . . , τ�p) ,

τ�� , . . . , τ
�
p ∼

p

�
j=�

λ�

�
e−λ

�τ�j ��dτ�j , τ�� , . . . , τ
�
p > � ,

σ � ∼ π(σ �) dσ � .

In this model formulation the µ on which the outcome variables Y depend, is the overall mean,
from which Xβ are deviations. �e parameter µ can be given a �at prior and subsequently
integrated out, as we do in the coming sections.



��� Chapter �. Safe-Bayesian generalized linear regression

We will use the typical inverse gamma prior distribution on σ �, i.e. for σ � > �

π(σ �) = γα

Γ(α)
σ−�α−�e−γ�σ

�
,

where α, γ > � are hyperparameters. With the hierarchy of (�.��) the joint density for the
posterior with the likelihood to the power η becomes

( f (Y �µ, β, σ �))η π(σ �) π(µ)
p

�
j=�

π(β j �τ�j , σ �) π(τ�j )

= � �
(�πσ �)n��

e
�

�σ�
(Y−µ�n−Xβ)T(Y−µ�n−Xβ)�

η

. . .

. . .
γα

Γ(α)
σ−�α−�e−

γ
σ�

p

�
j=�

�
(�σ �τ�j )���

e
−

�
�σ� τ�j

β�
j λ�

�
e−λ

�τ�j �� . (�.��)

Let Ỹ be Y − Y . If we integrate out µ, the joint density marginal over µ is proportional to

σ−η(n−�) e−
η

�σ�
(Ỹ−Xβ)T(Ỹ−Xβ) σ−�α−� e−

γ
σ�

p

�
j=�

�
(σ �τ�j )���

e
−

�
�σ� τ�j

β�
j
e−λ

�τ�j �� . (�.��)

First, observe that the full conditional for β is multivariate normal: the exponent terms involving
β in (�.��) are

− η
�σ � (Ỹ − Xβ)

T(Ỹ − Xβ) − �
�σ � β

TDτ
−�β

= − �
�σ � �(β

T(ηXTX + Dτ
−�)β − �ηỸXβ + ηỸ T Ỹ)� . (�.��)

If we now write Mτ = (ηXTX + Dτ
−�)−� and complete the square, we arrive at

− �
�σ � �(β − ηMτXTỸ)TM−�τ (β − ηMτXTỸ) + Ỹ T(ηIn − η�X−�MτXT)Ỹ� .

Accordingly we can see that β is conditionally multivariate normal with mean ηMτXTỸ and
variance σ �Mτ .

�e terms in (�.��) that involve σ � are:
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(σ �){−η(n−�)��−p��−α−�} exp� − η
�σ � (Ỹ − Xβ)

T(Ỹ − Xβ) − �
�σ � β

TDτ
−�β − γ

σ � �.

We can conclude that σ � is conditionally inverse gamma with shape parameter

η
n − �
�
+ p
�
+ α and scale parameter

η
�
(Ỹ − Xβ)T(Ỹ − Xβ) + βTDτ

−�β�� + γ.

Since τ�j is not involved in the likelihood, we need not modify the implementation of it and
follow Park and Casella (����):

�
τ�j
∼ IG�

�
λ�σ ��β�j , λ

�� .

Summarizing, we can implement a Gibbs sampler with the following distributions:

β ∼ N �η(ηXTX + Dτ
−�)−�XTỸ , σ �(ηXTX + Dτ

−�)−�� , (�.��)

σ � ∼ Inv-Gamma�η
�
(n − �) + p�� + α, η

�
(Ỹ − Xβ)T(Ỹ − Xβ) + βTDτ

−�β�� + γ� , (�.��)

�
τ�j
∼ IG�

�
λ�σ ��β�j , λ

�� . (�.��)

�ere are several ways to deal with the shrinkage parameter λ. We follow the hierarchical
Bayesian approach and place a hyperprior on the parameter. In our implementation we provide
three ways to do so: a point mass (resulting in a �xed λ), a gamma prior on λ� following Park
and Casella (����) and a beta prior following De los Campos et al. (����), details about the
implementation of the latter two priors can be found in those papers respectively.

�.D.� �e η-generalized Bayesian logistic regression
We follow the construction of the Pólya–Gamma latent variable scheme for constructing a
Bayesian estimator in the logistic regression context described in Polson, Scott and Windle,
����.

First, for b > � consider the density function of a Pólya-Gamma randomvariable PG(b, �)

p(x � b, �) = �b−�

Γ(b)

∞

�
n=�
(−�)n Γ(n + b)

Γ(n + �)
(�n + b)√

�πx�
e−

(�n+b)�
�x .

�e general class PG(b, c) (b, c > �) is de�ned through an exponential tilting of the PG(b, �)
and has the density function

p(x � b, c) = e− c� x
� p(x�b, �)

E [e]−
c�ω
�

,

where ω ∼ PG(b, �).
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To derive our Gibbs sampler we use the following result from Polson, Scott and Windle,
����.

�eorem �.D.�. Let pb ,�(ω) denote the density of PG(b, �).�en for all a ∈ R

(eψ)a

(� + eψ)b
= �−b eκψ �

∞

�
e−ωψ

�
��pb ,�(ω)dω,

where κ = a − b��.

According to�eorem �.D.� the likelihood contribution of the observation i taken to the power
η can be written as

Li ,η(β) =
�����
(eX

T
i β)

yi

� + eXT
i β

�����

η

∝ eηκ i X
T
i β �

∞

�
e−ω i

(XTi β)�
� p(ω i � η, �),

where κ i ∶= yi − ��� and p(ω i � η, �) is the density function of PG(η, �).

Let

X ∶= (X� , . . . , Xn)T , Y ∶= (Y� , . . . ,Yn)T , κ ∶= (κ� , . . . , κn)T ,
ω ∶= (ω� , . . . ,ωn)T , Ω ∶= diag(ω� , . . . ,ωn).

Also, denote the density of the prior on β by π(β).�en the conditional posterior of β given ω
is

p(β �ω,Y)∝ π(β)
n
�
i=�

Li ,η(β �ω i) = π(β)
n
�
i=�

eηκ i X
T
i β−ω i

(XTi β)�
� ∝ π(β)e−

�
� (z−Xβ)TΩ(z−Xβ) ,

where z ∶= η( κ�ω�
, . . . , κn

ωn
). Observe that the likelihood part is conditionally Gaussian in β.

Since the prior on β is Gaussian, a simple linear-model calculation leads to the following
Gibbs sampler. To sample from the the η-generalized posterior one has to iterate these two
steps

ω i � β ∼PG(η, XT
i β), (�.��)

β �Y ,ω ∼N (mω ,Vω), (�.��)

where

Vω ∶=(XTΩX + B−�)−� ,
mω ∶=Vω(ηXTκ + B−�b).

To sample from the Pólya-Gamma distribution PG(b, c) we adopt a method from (Windle,
Polson and Scott, ����), which is based on the following representation result. According
to Polson, Scott and Windle, ���� a random variable ω ∼ PG(b, c) admits the following
representation

ω d=
∞

�
n=�

gn
dn

,
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where gn ∼ Ga(b, �) are independent Gamma distributed random variables, and

dn ∶= �π�(n + �
�
)� + �c� .

�erefore, we approximate the PG random variable by a truncated sum of weighted Gamma
random variables. (Windle, Polson and Scott, ����) shows that the approximation method per-
forms well with the truncation level N = ���. Furthermore, we performed our own comparison
of the sampler with the STAN implementation for Bayesian logistic regression, which showed
no di�erence between the methods (for η = �).

�.D.� �e Safe-Bayesian Algorithms
�e version of the Safe-Bayesian algorithm we are using for the experiments is called R-log-
SafeBayes, more details and other versions can be found in Grünwald and Van Ommen (����).
�e η̂ is chosen from a grid of learning rates η that minimizes the cumulative Posterior-Expected
Posterior-Randomized log-loss:

n
�
i=�

Eβ ,σ �∼Π�z i−� ,η �− log f (Yi �Xi , β, σ �)� .

Minimizing this comes down to minimizing

n−�
�
i=�

��
�����
�
�
log �πσ �

i ,η +
�
�
(Yi+� − Xi+�β i ,η)�

σ �
i ,η

�����
.

�e loss between the brackets is averaged over many draws of (β i ,η , σ �
i ,η) from the posterior,

where β i ,η (or σ �
i ,η) denotes one random draw from the conditional η-generalized posterior

based on data points zi . For the sake of completeness we present the algorithm below.

Algorithm ��e R-Safe-Bayesian algorithm
�: Input: data z� , . . . zn , modelM = { f (⋅�θ)�θ ∈ Θ}, prior Π on Θ, step-size K���� , max. exponent K��� , loss

function `θ(z)
�: Sn ∶= {�, �−KSTEP , �−�KSTEP , �−�KSTEP , . . . , �−KMAX , }
�: for all η ∈ Sn do
�: sη ∶= �
�: for i = � . . . n do
�: Determine generalized posterior Π(⋅�zi−� , η) of Bayes with learning rate η.
�: Calculate posterior-expected posterior-randomized loss of predicting actual next outcome:

r ∶= `Π�z i−� ,η(zi) = Eθ∼Π�z i−� ,η [`θ(zi)] (�.��)

�: sη ∶= sη + r
�: end for
��: end for
��: Ouput: Learning rate η̂
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Figure �.�: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, η = �.�) with n = ���, p = ���.

�.E Details for the experiments and �gures
Below we present the results of additional simulation experiments for Section �.�.�
(Appendix �.E.�) and the description of experiments with real-world data (Appendix �.E.�).
We also give details for Figure �.� in Appendix �.E.�.

�.E.� Additional Figures for Section �.�.�
Consider the regression context described in Section �.�.�. Here, we explore di�erent choices of
the number of Fourier basis functions, showing that regardless of the choice Safe-Baysian lasso
outperforms its standard counterpart. In Figures �.� and �.� we see conditional expectations
E [Y � X] according to the posteriors of the standard Bayesian lasso (blue) and the Safe-Bayesian
lasso (red, η̂ = �.�) for the wrong-model experiment described in Section �.�.�, with ��� data
points. We take ��� and �� Fourier basis functions respectively.

Nowwe consider logistic regression setting and show that even for somewell-speci�ed problems
it is bene�cial to choose η ≠ �. In Figure �.� we see a comparison of the log-risk for η = � and
η = � in the well-speci�ed logistic regression case (described in Section �.�.�). Here p = � and
β = �.

�.E.� Real-world data
Seattle Weather Data �e R-package weatherData (Narasimhan, ����) loads weather data
available online from www.wunderground.com. Besides data from many thousands of per-
sonal weather stations and government agencies, the website provides access to data from
Automated Surface Observation Systems (ASOS) stations located at airports in the US, owned
and maintained by the Federal Aviation Administration. Among them is a weather station at
Seattle Tacoma International Airport, Washington (WMO ID �����). From this station we
collected the data for this experiment.
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Figure �.�: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, η = �.�) with n = ���, p = ��.
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Figure �.�: Simulated logistic risk as a function of the sample size for the correct-model experiments described in Section
�.�.� according to the posterior predictive distribution of standard Bayesian logistic regression (η = �), and generalized
Bayes (η = �).
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�e training data are the maximum temperatures for each day of the year ���� at Seattle
airport. We divided the data randomly in a training set (��� measurements) and a test set
(��measurements). First, we sampled the posterior of the standard Bayesian lasso with a ���-
dimensional Fourier basis and standard improper priors on the training set, and we did the
same for the Horseshoe. Next, we sampled the generalized posterior with the learning rate η̂
learned by the Safe-Bayesian algorithm, with the same model and priors on the same training
set. �e grid of η’s we used was �, �.�, �.�, �.�, �.�, �.�. We compare the performance of the
standard Bayesian lasso and Horseshoe and the Safe-Bayesian versions of the lasso (SB) in terms
of mean square error. In all experiments performed with di�erent partitions, priors and number
of iterations, SafeBayes never picked η̂ = �. We averaged over �� runs. Moreover, whichever
learning rate was chosen by SafeBayes, it always outperformed standard Bayes (with η = �) in
an unchanged set-up. Experiments with di�erent priors for λ yielded similar results.

London Air Pollution Data As training set we use the following data. We start with the �rst
four weeks of the year ����, starting at Monday January � at midnight. We have a measurement
for (almost) every hour until Sunday February �rd, ��.��. We also have data for the �rst four
weeks of ����, starting at Monday January � at midnight, until Sunday February �nd, ��.��.
For each hour in the four weeks we randomly pick a data point from either ���� or ����. We
remove the missing values. We predict for the same time of year in ����: starting at Monday
January � at midnight, until Sunday February �st at ��.��. We do this with a (Safe-)Bayesian
lasso and Horseshoe with a ���-dimensional Fourier basis and standard improper priors.�e
grid of η’s we used for the Safe-Bayesian algorithm was again �, �.�, �.�, �.�, �.�, �.�. We look
at the mean square prediction errors, and average the errors over �� runs of the generalized
Bayesian lasso with the η learned by SafeBayes, and the standard Bayesian lasso and Horseshoe.
Again we �nd that SafeBayes clearly performs better than standard Bayes.

�.E.� Details for Figure �.�
Here we sampled the posteriors of the standard and generalized Bayesian lasso (η = �.��) on ��
model-wrong data points (approximately half easy points) with ��� Fourier basis functions, and
estimated the predictive variance on a grid of new data points Xnew = {−�.��,−�.��, . . . , �.��}
with the Monte Carlo estimate:

����(Ynew � Xnew, Zold) = Eθ �Zold [���(Ynew � θ)] +���� [E(Ynew � θ)] , (�.��)

where

Eθ �Zold [���(Ynew � θ)] =
�
m

m
�
k=�

σ �[k] = σ � ,

���� [E(Ynew � θ)] =���� [Xnewβ] =
�
m

m
�
k=�
�Xnewβ[k]�

�
− �Xnewβ�

�
.

Here β is the posterior mean of the parameter for the coe�cients and σ � is the posterior mean
of the variance.



Chapter �

Fixed-con�dence guarantees for
Bayesian best-arm identi�cation

Abstract
We investigate and provide new insights on the sampling rule called Top-Two �ompson
Sampling (TTTS). In particular, we justify its use for �xed-con�dence best-arm identi�cation.
We further propose a variant of TTTS calledTop-TwoTransportationCost (T3C), which disposes
of the computational burden of TTTS. As our main contribution, we provide the �rst sample
complexity analysis of TTTS and T3C when coupled with a very natural Bayesian stopping
rule, for bandits with Gaussian rewards, solving one of the open questions raised by Russo
(����). We also provide new posterior convergence results for TTTS under two models that
are commonly used in practice: bandits with Gaussian and Bernoulli rewards and conjugate
priors.

�.� Introduction
In multi-armed bandits, a learner repeatedly chooses an arm to play, and receives a reward
from the associated unknown probability distribution. When the task is best-arm identi�cation
(BAI), the learner is not only asked to sample an arm at each stage, but is also asked to output a
recommendation (i.e., a guess for the arm with the largest mean reward) a�er a certain period.
Unlike in another well-studied bandit setting, the learner is not interested in maximizing the
sum of rewards gathered during the exploration (or minimizing regret), but only cares about the
quality of her recommendation. As such, BAI is a particular pure exploration setting (Bubeck,
Munos and Stoltz, ����).

Formally, we consider a �nite-arm bandit model, which is a collection of K probability distri-
butions, called armsA � {�, . . . ,K}, parametrized by their means µ� , . . . , µK . We assume the
(unknown) best arm is unique and we denote it by I� � argmaxi µi . A best-arm identi�cation

���
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strategy (In , Jn , τ) consists of three components.�e �rst is a sampling rule, which selects an
arm In at round n. At each round n, a vector of rewards Yn = (Yn ,� ,�,Yn ,K) is generated for all
arms independently from past observations, but only Yn ,In is revealed to the learner. Let Fn be
the σ-algebra generated by (U� , I� ,Y�,I� ,U� ,�, In ,Yn ,In ,Un), then In isFn−�-measurable, i.e., it
can only depend on the past n − � observations, and some exogenous randomness, materialized
into Un−� ∼ U([�, �]). �e second component is a Fn-measurable recommendation rule Jn ,
which returns a guess for the best arm, and thirdly, the stopping rule τ, a stopping time with
respect to (Fn)n∈N, decides when the exploration is over.

BAI is studied within several theoretical frameworks. In this chapter we consider the �xed-
con�dence setting, introduced by Even-dar,Mannor andMansour, ����. Given a risk parameter
δ ∈ [�, �], the goal is to ensure that the probability to stop and recommend a wrong arm,
P [Jτ ≠ I� ∧ τ <∞], is smaller than δ, while minimizing the expected total number of samples
to make this accurate recommendation, E [τ].�e most studied alternative setting is the �xed-
budget setting for which the stopping rule τ is �xed to some (known) maximal budget n, and
the goal is to minimize the error probability P [Jn ≠ I�] (Audibert and Bubeck, ����). Note
that these two frameworks are very di�erent in general and do not share transferable regret
bounds (see Carpentier and Locatelli ���� for an additional discussion).

Most existing sampling rules for the �xed-con�dence setting depend on the risk parameter
δ. Some of them rely on con�dence intervals such as LUCB (Kalyanakrishnan et al., ����),
UGapE (Gabillon, Ghavamzadeh and Lazaric, ����), or lil’UCB (Jamieson et al., ����); others
are based on eliminations such as SuccessiveElimination (Even-dar,Mannor andMansour,
����) and ExponentialGapElimination (Karnin, Koren and Somekh, ����).�e �rst known
sampling rule for BAI that does not depend on δ is the tracking rule proposed by Garivier and
Kaufmann, ����, which is proved to achieve the minimal sample complexity when combined
with the Cherno� stopping rule when δ goes to zero. Such an anytime sampling rule (neither
depending on a risk δ or a budget n) is very appealing for applications, as advocated by Jun and
Nowak, ���� who introduce the anytime best-arm identi�cation framework. In this chapter, we
investigate another anytime sampling rule for BAI: Top-Two Thompson Sampling (TTTS), and
propose a second anytime sampling rule: Top-Two Transportation Cost (T3C).

�ompson Sampling (�ompson, ����) is a Bayesian algorithm well known for regret minim-
ization, for which it is now seen as a major competitor to UCB-typed approaches (Burnetas
and Katehakis, ����; Auer, Cesa-Bianchi and Fischer, ����; Cappé et al., ����). However, it
is also well known that regret minimizing algorithms cannot yield optimal performance for
BAI (Bubeck, Munos and Stoltz, ����; Kaufmann and Garivier, ����) and as we opt�ompson
Sampling for BAI, then its adaptation is necessary. Such an adaptation, TTTS, was given by
Russo (����) along with two other top-two sampling rules TTPS and TTVS. By choosing between
two di�erent candidate arms in each round, these sampling rules enforce the exploration of
sub-optimal arms, which would be under-sampled by vanilla�ompson sampling due to its
objective of maximizing rewards.

While TTTS appears to be a good anytime sampling rule for �xed-con�dence BAI when coupled
with an appropriate stopping rule, so far there is no theoretical support for this employment.
Indeed, the (Bayesian-�avored) asymptotic analysis of Russo, ���� shows that under TTTS, the
posterior probability that I� is the best arm converges almost surely to � at the best possible
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rate. However, this property does not by itself translate into sample complexity guarantees.
Since the result of Russo, ����, Qin, Klabjan and Russo (����) proposed and analyzed TTEI,
another Bayesian sampling rule, both in the �xed-con�dence setting and in terms of posterior
convergence rate. Nonetheless, similar guarantees for TTTS have been le� as an open question
by Russo, ����. In the present chapter, we answer the question whether we can obtain �xed-
con�dence guarantees and optimal posterior convergence rates for TTTS. In addition, we
propose T3C, a computationallymore favorable variant of TTTS and extend the �xed-con�dence
guarantees to T3C as well.

Contributions (�) We propose a new Bayesian sampling rule, T3C, which is inspired by TTTS

but easier to implement and computationally advantageous (�) We investigate two Bayesian
stopping and recommendation rules and establish their δ-correctness for a bandit model with
Gaussian rewards.� (�) We provide the �rst sample complexity analysis of TTTS and T3C for a
Gaussian model and our proposed stopping rule. (�) Russo’s posterior convergence results for
TTTS were obtained under restrictive assumptions on the models and priors, which exclude
the two mostly used models in practice: Gaussian bandits with Gaussian priors and bandits
with Bernoulli rewards� with Beta priors. We prove that optimal posterior convergence rates
can be obtained for those two as well.

Outline In Section �.�, we restate TTTS and introduce T3C along with our proposed recom-
mendation and stopping rules.�en, in Section �.�, we describe in detail two important notions
of optimality that are invoked in this chapter.�e main �xed-con�dence analysis follows in Sec-
tion �.�, and further Bayesian optimality results are given in Section �.�. Numerical illustrations
are given in Section �.�.

�.� Bayesian BAI Strategies
In this section, we give an overview of the sampling rule TTTS and introduce T3C. We provide
details for Bayesian updating for Gaussian and Bernoulli models respectively, and introduce
associated Bayesian stopping and recommendation rules.

�.�.� Sampling rules
Both TTTS and T3C employ a Bayesian machinery and make use of a prior distribution Π�
over a set of parameters Θ, which is assumed to contain the unknown true parameter vector µ.
Upon acquiring observations (Y�,I� ,�,Yn−�,In−�), we update our beliefs according to Bayes’ rule
and obtain a posterior distribution Πn which we assume to have density πn w.r.t. the Lebesgue
measure. Russo’s analysis is requires strong regularity properties on the models and priors,
which exclude two important useful cases we consider in this chapter: (�) the observations of
each arm i follow a Gaussian distributionN (µi , σ �) with common known variance σ �, with
imposed Gaussian priorN (µ�, i , σ �

�, i), (�) all arms receive Bernoulli rewards with unknown
means, with a uniform (Beta(�, �)) prior on each arm.

�Herea�er Gaussian bandits or Gaussian model.
�Herea�er Bernoulli bandits.
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Gaussian model For Gaussian bandits with a N (�, κ�) prior on each mean, the posterior
distribution of µi at round n is Gaussian with mean and variance that are respectively given
by

∑n−�
`=� 1{I` = i}Y`,I`
Tn , i + σ ��κ�

and
σ �

Tn , i + σ ��κ�
,

where Tn , i � ∑n−�
`=� 1{I` = i} is the number of selections of arm i before round n. For the sake

of simplicity, we consider improper Gaussian priors with µ�, i = � and σ�, i = +∞ for all i ∈ A,
for which

µn , i =
�

Tn , i

n−�
�
`=�

1{I` = i}Y`,I` and σ �
n , i =

σ �

Tn , i
.

Observe that in this case the posterior mean µn , i coincides with the empirical mean.

Beta-Bernoullimodel For Bernoulli bandits with a uniform (Beta(�, �)) prior on eachmean,
the posterior distribution of µi at round n is a Beta distribution with shape parameters αn , i =
∑n−�

`=� 1{I` = i}Y`,I` + � and βn , i = Tn , i −∑n−�
`=� 1{I` = i}Y`,I` + �.

Now we brie�y recall TTTS and introduce T3C.�e pseudo-code of TTTS and T3C are shown
in Algorithm �.

Description of TTTS At each time step n, TTTS has two potential actions: (�) with probability
β, a parameter vector θ is sampled from Πn , and TTTS chooses to play I(�)n � argmaxi∈A θ i , (�)
and with probability �−β, the algorithm continues sampling new θ′ until we obtain a challenger
I(�)n � argmaxi∈A θ′i that is di�erent from I(�)n , and TTTS chooses to play I(�)n .

Description of T3C One drawback of TTTS is that, in practice, when the posteriors become
concentrated, it takes many�ompson samples before the challenger I(�)n is obtained. We thus
propose a variant of TTTS, called T3C, which alleviates this computational burden. Instead of
re-sampling from the posterior until a di�erent candidate appears, we de�ne the challenger as
the arm that has the lowest transportation cost Wn(I(�)n , i) with respect to the �rst candidate
(with ties broken uniformly at random).

Let µn , i be the empirical mean of arm i and µn , i , j � (Tn , i µn , i + Tn , j µn , j)�(Tn , i + Tn , j), then
we de�ne

Wn(i , j) � �
� if µn , j ≥ µn , i ,
Wn , i , j +Wn , j , i otherwise, (�.�)

whereWn , i , j � Tn , i d �µn , i , µn , i , j� for any i , j and d(µ; µ′)denotes theKullback-Leibler between
the distribution with mean µ and that of mean µ′. In the Gaussian case, d(µ; µ′) = (µ −
µ′)��(�σ �) while in the Bernoulli case d(µ; µ′) = µ ln(µ�µ′) + (� − µ) ln(� − µ)�(� − µ′). In
particular, for Gaussian bandits

Wn(i , j) =
(µn , i − µn , j)�

�σ �(��Tn , i + ��Tn , j)
1{µn , j < µn , i}.
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Note that under the Gaussian model with improper priors, one should pull each arm once at
the beginning for the sake of obtaining proper posteriors.

Algorithm � Sampling rule (TTTS/T3C)
�: Input: β
�: for n ← �, �,� do
�: sample θ ∼ Πn
�: I(�) ← argmaxi∈A θ i
�: sample b ∼ Bern(β)
�: if b = � then
�: evaluate arm I(�)
�: else
�: repeat sample θ′ ∼ Πn
��: I(�) ← argmaxi∈A θ′i TTTS
��: until I(�) ≠ I(�)
��: I(�) ← argmini≠I(�) Wn(I(�) , i), cf. (�.�) T3C
��: evaluate arm I(�)
��: end if
��: update mean and variance
��: t = t + �
��: end for

�.�.� Rationale for T3C
In order to explain how T3C can be seen as an approximation of the re-sampling performed by
TTTS, we �rst need to de�ne the optimal action probabilities.

Optimal action probability �e optimal action probability an , i is de�ned as the posterior
probability that arm i is optimal. Formally, letting Θ i be the subset of Θ such that arm i is the
optimal arm,

Θ i � �θ ∈ Θ � θ i >max
j≠i

θ j� ,

then we de�ne
an , i � Πn(Θ i) = �

Θ i
πn(θ)dθ . (�.�)

With this notation, one can show that under TTTS,

Πn �I(�)n = j�I(�)n = i� =
an , j

∑k≠i an ,k
. (�.�)

Furthermore, when i coincides with the empirical best mean (and this will o�en be the case for
I(�)n when n is large due to posterior convergence) one can write

an , j � Πn �θ j ≥ θ i� � exp (−Wn(i , j)) ,

where the last step is justi�ed in Lemma � in the Gaussian case (and Lemma �� in Appendix �.I.�
in the Bernoulli case). Hence, T3C replaces sampling from the distribution (�.�) by an approx-
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imation of its mode which is easy to compute. Note that directly computing the mode would
require to compute an , j , which is much more costly than the computation ofWn(i , j)�.

�.�.� Stopping and recommendation rules
In order to use TTTS or T3C as the sampling rule for �xed-con�dence BAI, we need to addition-
ally de�ne stopping and recommendation rules. While Qin, Klabjan and Russo, ���� suggest to
couple TTEI with the “frequentist” Cherno� stopping rule (Garivier and Kaufmann, ����), we
propose in this section natural Bayesian stopping and recommendation rules.�ey both rely
on the optimal action probabilities de�ned in (�.�).

Bayesian recommendation rule At time step n, a natural candidate for the best arm is the
arm with largest optimal action probability, hence we de�ne

Jn � argmax
i∈A

an , i .

Bayesian stopping rule In view of the recommendation rule, it is natural to stop when
the posterior probability that the recommended action is optimal is large, and exceeds some
threshold cn ,δ which gets close to �. Hence our Bayesian stopping rule is

τδ � inf �n ∈∶ max
i∈A

an , i ≥ cn ,δ� . (�.�)

Links with frequentist counterparts Using the transportation costWn(i , j) de�ned in (�.�),
the Cherno� stopping rule of Garivier and Kaufmann, ���� can actually be rewritten as

τCh.δ � inf �n ∈ N ∶ max
i∈A

min
j∈A�{i}

Wn(i , j) > dn ,δ� . (�.�)

�is stopping rule is coupled with the recommendation rule Jn = argmaxi µn , i .

As explained in that paper,Wn(i , j) can be interpreted as a (log) Generalized Likelihood Ratio
statistic for rejecting the hypothesisH� ∶ (µi < µ j).�rough our Bayesian lens, we rather have
in mind the approximation Πn(θ j > θ i) � exp{−Wn(i , j)}, valid when µn , i > µn , j , which
permits to analyze the two stopping rules using similar tools, as will be seen in the proof of
�eorem �.�.

As shown later in Sec. �.�, τδ and τCh.δ prove to be fairly similar for some corresponding choices
of the thresholds cn ,δ and dn ,δ .�is similarity endorses the use of the Cherno� stopping rule
in practice, which does not require the (heavy) computation of optimal action probabilities.
Still, our sample complexity analysis applies to the two stopping rules, and we believe that
a frequentist sample complexity analysis of a fully Bayesian-�avored BAI strategy is a nice
theoretical contribution.

�TTPS (Russo, ����) also requires the computation of an , i , thus we do not report simulations for it in Sec. �.�.
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Useful notation We follow the notation of Russo (����) and de�ne the following measures
of e�ort allocated to arm i up to time n,

ψn , i � P [In = i�Fn−�] and Ψn , i �
n
�
l=�

ψ l , i .

In particular, for TTTS we have

ψn , i = βan , i + (� − β)an , i�
j≠i

an , j
� − an , j

,

while for T3C

ψn , i = βan , i + (� − β)�
j≠i

an , j
1{Wn( j, i) =mink≠ j Wn( j, k)}

� �argmink≠ j Wn( j, k)�
.

�.� Two Related Optimality Notions
In the �xed-con�dence setting, we aim for building δ-correct strategies, i.e. strategies that
identify the best arm with high con�dence on any problem instance.

De�nition �.�. A strategy (In , Jn , τ) is δ-correct if for all banditmodels µwith a unique optimal
arm, it holds that Pµ [Jτ ≠ I� ∧ τ <∞] ≤ δ.

Among δ-correct strategies, we seek the one with the smallest sample complexity E [τδ]. So far,
TTTS has not been analyzed in terms of sample complexity; Russo (����) focuses on posterior
consistency and optimal convergence rates. Interestingly, both the smallest possible sample
complexity and the fastest rate of posterior convergence can be expressed in terms of the
following quantities.

De�nition �.�. Let ΣK = {ω ∶ ∑K
k=� ωk = �,ωk ≥ �} and de�ne for all i ≠ I�

Ci(ω,ω′) �min
x∈I

ωd(µI� ; x) + ω′d(µi ; x),

where d(µ, µ′) is the KL-divergence de�ned above and I = R in theGaussian case and I = [�, �]
in the Bernoulli case. We de�ne

Γ� � max
ω∈ΣK

min
i≠I� Ci(ωI� ,ω i),

Γ�β � max
ω∈ΣK
ωI�=β

min
i≠I� Ci(ωI� ,ω i). (�.�)

�e quantity Ci(ωI� ,ω i) can be interpreted as a “transportation cost”� from the original bandit
instance µ to an alternative instance in which the mean of arm i is larger than that of I�, when
the proportion of samples allocated to each arm is given by the vector ω ∈ ΣK . As shown
by Russo, ����, the ω that maximizes (�.�) is unique, which allows us to de�ne the β-optimal
allocation ωβ in the following proposition.

�for whichWn(I� , i) is an empirical counterpart
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Proposition �. �ere is a unique solution ωβ to the optimization problem (�.�) satisfying ωβ
I� =

β, and for all i , j ≠ I�, Ci(β,ωβ
i ) = Cj(β,ωβ

j ).

For models with more than two arms, there is no closed form expression for Γ�β or Γ�, even for
Gaussian bandits with variance σ � for which we have

Γ�β = max
ω∶ωI�=β

min
i≠I�

(µI� − µi)�

�σ �(��ω i + ��β)
.

Bayesian β-optimality Russo (����) proves that any sampling rule allocating a fraction β to
the optimal arm (Ψn ,I��n → β) satis�es � − an ,I� ≥ e−n(Γ

�
β +o(�)) (a.s.).We de�ne a Bayesian β-

optimal sampling rule as a sampling rule matching this lower bound, i.e. satisfying Ψn ,I��n → β
and � − an ,I� ≤ e−n(Γ

�
β +o(�)).

Russo (����) proves that TTTS with parameter β is Bayesian β-optimal. However, the result is
valid only under strong regularity assumptions, excluding the two practically important cases of
Gaussian and Bernoulli bandits. In this chapter, we complete the picture by establishing Bayesian
β-optimality for those models in Sec. �.�. For the Gaussian bandit, Bayesian β-optimality was
established for TTEI by Qin, Klabjan and Russo, ���� with Gaussian priors, but this remained
an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allocation of
measurement e�ort to the β-optimal allocation: Ψn , i�n → ωβ

i for all i, which is equivalent to
Tn , i�n → ωβ

i (cf. Lemma �).

β-optimality in the �xed-con�dence setting In the �xed con�dence setting, the perform-
ance of an algorithm is evaluated in terms of sample complexity. A lower bound given byGarivier
andKaufmann, ���� states that any δ-correct strategy satis�esE [τδ] ≥ (Γ�)−� ln (��(�δ)).

Observe that Γ� =maxβ∈[�,�] Γ�β . Using the same lower bound techniques, one can also prove
that under any δ-correct strategy satisfying Tn ,I��n → β,

lim inf
δ→�

E [τδ]
ln(��δ)

≥ �
Γ�β

.

�is motivates the relaxed optimality notion that we introduce in this chapter: A BAI strategy
is called asymptotically β-optimal if it satis�es

Tn ,I�
n
→ β and lim sup

δ→�

E [τδ]
ln(��δ)

≤ �
Γ�β

.

In this chapter, we provide the �rst sample complexity analysis of a BAI algorithm based on
TTTS (with the stopping and recommendation rules described in Sec. �.�), establishing its
asymptotic β-optimality.
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As already observed by Qin, Klabjan and Russo, ����, any sampling rule converging to the
β-optimal allocation (i.e. satisfying Tn , i�n → wβ

i for all i) can be shown to satisfy

lim sup
δ→�

τδ
ln(��δ)

≤ (Γ�β )−�

almost surely, when coupled with the Cherno� stopping rule.�e �xed con�dence optimality
that we de�ne above is stronger as it provides guarantees on E [τδ].

�.� Fixed-Con�dence Analysis
In this section, we consider Gaussian bandits and the Bayesian rules using an improper prior
on the means. We state our main result below, showing that TTTS and T3C are asymptotic-
ally β-optimal in the �xed con�dence setting, when coupled with appropriate stopping and
recommendation rules.

�eorem �.�. With C gG the function de�ned in Corollary �� of Kaufmann and Koolen, ����,
which satis�es C gG (x) � x + ln(x), we introduce the threshold

dn ,δ = � ln(� + ln(n)) + �C gG �
ln((K − �)�δ)

�
� . (�.�)

�e TTTS and T3C sampling rules coupled with either

• the Bayesian stopping rule (�.�) with threshold

cn ,δ = � −
�√
�π

e−�
�

dn ,δ+
�√
�
�
�

and recommendation rule Jt = argmaxi an , i , or
• theCherno� stopping rule (�.�)with threshold dn ,δ and recommendation rule Jt = argmaxi µn , i ,

form a δ-correct BAI strategy. Moreover, if all the arms means are distinct, it satis�es

lim sup
δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

.

We now give the proof of�eorem �.�, which is divided into three parts.�e �rst step of the
analysis is to prove the δ-correctness of the studied BAI strategies.

�eorem �.�. Regardless of the sampling rule, the stopping rule (�.�) with the threshold cn ,δ and
theCherno� stopping rule (�.�)with threshold dn ,δ de�ned in (�.�) satisfyP [τδ <∞∧ Jτδ ≠ I�] ≤
δ.

To prove that TTTS and T3C allow to reach a β-optimal sample complexity, one needs to quantify
how fast the measurement e�ort for each arm is concentrating to its corresponding optimal
weight. For this purpose, we introduce the random variable

T ε
β � inf �N ∈∶ max

i∈A
�Tn , i�n − ωβ

i � ≤ ε,∀n ≥ N� .
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�e second step of our analysis is a su�cient condition for β-optimality, stated in Lemma �.
Its proof is given in Appendix �.F.�e same result was proven for the Cherno� stopping rule
by Qin, Klabjan and Russo, ����.

Lemma �. Let δ, β ∈ (�, �). For any sampling rule which satis�es E �T ε
β� < ∞ for all ε > �, we

have
lim sup

δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

,

if the sampling rule is coupled with stopping rule (�.�),

Finally, it remains to show that TTTS and T3C meet the su�cient condition, and therefore the
last step, which is the core component and the most technical part our analysis, consists of
showing the following.

�eorem �.�. Under TTTS or T3C, E �T ε
β� < +∞.

In the rest of this section, we prove�eorem �.� and sketch the proof of�eorem �.�. But we
�rst highlight some important ingredients for these proofs.

�.�.� Core ingredients
Our analysis hinges on properties of the Gaussian posteriors, in particular on the following tail
bounds, which follow from Lemma � of Qin, Klabjan and Russo, ����.

Lemma �. For any i , j ∈ A, if µn , i ≤ µn , j

Πn �θ i ≥ θ j� ≤
�
�
exp
�������
−
�µn , j − µn , i�

�

�σ �
n , i , j

�������
, (�.�)

Πn �θ i ≥ θ j� ≥
�√
�π

exp
�������
−
�µn , j − µn , i + σn , i , j�

�

�σ �
n , i , j

�������
, (�.�)

where σ �
n , i , j � σ ��Tn , i + σ ��Tn , j .

�is lemma is crucial to control an , i and ψn , i , the optimal action and selection probabilit-
ies.

�.�.� Proof of�eorem �.�
We upper bound the desired probability as follows

P [τδ <∞∧ Jτδ ≠ I
�] ≤ �

i≠I�
P [∃n ∈∶ an , i > cn ,δ]

≤ �
i≠I�

P [∃n ∈∶ Πn(θ i ≥ θ I�) > cn ,δ , µn ,I� ≤ µn , i]

≤ �
i≠I�

P [∃n ∈∶ � − cn ,δ > Πn(θ I�> θ i), µn ,I� ≤ µn , i] .
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�e second step uses the fact that as cn ,δ ≥ ���, a necessary condition for Πn(θ i ≥ θ I�) ≥ cn ,δ
is that µn , i ≥ µn ,I� . Now using the lower bound (�.�), if µn ,I� ≤ µn , i , the inequality � − cn ,δ >
Πn(θ I� > θ i) implies

(µn , i − µn ,I�)�

�σ �
n , i ,I�

≥
�
�

�
���ln

�√
�π(� − cn ,δ)

− �√
�
�
�

�

= dn ,δ ,

where the equality follows from the expression of cn ,δ as function of dn ,δ . Hence to conclude
the proof it remains to check that

P �∃n∈∶µn , i ≥ µn ,I�,
(µn , i−µn ,I�)�

�σ �
n , i ,I�

≥dn ,δ�≤
δ

K−�
. (�.��)

To prove this, we observe that for µn , i ≥ µn ,I� ,

(µn , i − µn ,I�)�

�σ �
n , i ,I�

= inf
θ i<θ I�

Tn , i d(µn , i ; θ i) + Tn ,I�d(µn ,I�; θ I�)

≤ Tn , i d(µn , i ; µi) + Tn ,I�d(µn ,I�; µI�).

Corollary �� of Kaufmann and Koolen, ���� then allows us to upper bound the probabil-
ity

P [∃n ∈∶ Tn , i d(µn , i ; µi) + Tn ,I�d(µn ,I� , µI�) ≥ dn ,δ]

by δ�(K−�) for the choice of threshold given in (�.�), which completes the proof that the stopping
rule (�.�) is δ-correct.�e fact that the Cherno� stopping rule with the above threshold dn ,δ
given above is δ-correct straightforwardly follows from (�.��).

�.�.� Sketch of the proof of�eorem �.�
We present a uni�ed proof sketch of�eorem �.� for TTTS and T3C. While the two analyses
follow the same steps, some of the lemmas given below have di�erent proofs for TTTS and T3C,
which can be found in Appendix �.D and �.E respectively.

We �rst state two important concentration results, that hold under any sampling rule.

Lemma �. [Lemma � of Qin, Klabjan and Russo ����]�ere exists a random variable W�, such
that for all i ∈ A,

∀n ∈, �µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

� + Tn , i
a.s.,

and E �eλW�� <∞ for all λ > �.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.
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Lemma � controls the concentration of the posterior means towards the true means and
Lemma � establishes that Tn , i and Ψn , i are close. Both results rely on uniform deviation in-
equalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that T ε
β is upper bounded

by some random variable N which is a polynomial of the random variables W� and W� in-
troduced in the above lemmas, denoted by Poly(W� ,W�) � O(Wc�

� Wc�
� ), where c� and c� are

two constants (that may depend on the arms’ means and the constant hidden in theO). As all
exponential moments ofW� andW� are �nite, N has a �nite expectation as well, concluding
the proof.

�e �rst step to exhibit such an upper boundN is to establish that every arm is pulled su�ciently
o�en.

Lemma �. Under TTTS or T3C, there exists N� = Poly(W� ,W�) s.t.

∀n ≥ N� ,∀i , Tn , i ≥
� n

K
, a.s..

Due to the randomized nature of TTTS and T3C, the proof of Lemma � is signi�cantly more
involved than for a deterministic rule like TTEI. Intuitively, the posterior of each arm would
be well concentrated once the arm is su�ciently pulled. If the optimal arm is under-sampled,
then it would be chosen as the �rst candidate with large probability. If a sub-optimal arm is
under-sampled, then its posterior distribution would possess a relatively wide tail that overlaps
with or cover the somehow narrow tails of other overly-sampled arms.�e probability of that
sub-optimal arm being chosen as the challenger would be large enough then.

Combining Lemma � with Lemma � straightforwardly leads to the following result.

Lemma ��. Under TTTS or T3C, �x a constant ε > �, there exists N� = Poly(��ε,W� ,W�) s.t.
∀n ≥ N� ,∀i ∈ A, �µn , i − µi � ≤ ε.

We can then deduce a very nice property about the optimal action probability for sub-optimal
arms from the previous two lemmas. Indeed, we can show that

∀i ≠ I� , an , i ≤ exp�−
∆�
min

��σ �

� n
K
�

for n larger than some Poly(W� ,W�), where ∆min is the smallest mean di�erence among all
the arms.

Plugging this in the expression of ψn , i , one can easily quantify how fast ψn ,I� converges to β,
which eventually yields the following result.

Lemma ��. Under TTTS or T3C, �x ε > �, then there exists N� = Poly(��ε,W� ,W�) s.t.∀n ≥ N�,

�Tn ,I�
n
− β� ≤ ε.

�e last, more involved, step is to establish that the fraction of measurement allocation to every
sub-optimal arm i is indeed similarly close to its optimal proportion ωβ

i .
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Figure �.�: Black dots represent means and oranges lines represent medians.

Lemma ��. Under TTTS or T3C, �x a constant ε > �, there exists N� = Poly(��ε,W� ,W�) s.t.
∀n ≥ N�,

∀i ≠ I� , �Tn , i

n
− ωβ

i � ≤ ε.

�e major step in the proof of Lemma �� for each sampling rule, is to establish that if some arm
is over-sampled, then its probability to be selected is exponentially small. Formally, we show
that for n larger than some Poly(��ε,W� ,W�),

Ψn , i

n
≥ ωβ

i + ξ ⇒ ψn , i ≤ exp{− f (n, ξ)} ,

for some function f (n, ξ) to be speci�ed for each sampling rule, satisfying f (n) ≥ Cξ
√
n (a.s.).

�is result leads to the concentration ofΨn , i�n, thus can be easily converted to the concentration
of Tn , i�n by Lemma �.

Finally, Lemma �� and Lemma �� show that T ε
β is upper bounded by N � max(N� ,N�), which

yields
E[T ε

β] ≤max(E [N�] ,E [N�]) <∞.
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Sampling rule Execution time (s)
T3C �.� × ��−�

TTTS �.� × ��−�

TTEI � × ��−�

BC �.� × ��−�

D-Tracking �.� × ��−�

Uniform � × ��−�

UGapE � × ��−�

Table �.�: Average execution time in seconds for di�erent sampling rules.

�.� Optimal Posterior Convergence
Recall that an ,I� denotes the posterior mass assigned to the event that action I� (i.e. the true
optimal arm) is optimal at time n. As the number of observations tends to in�nity, we want
the posterior distribution to converge to the truth. In this section we show equivalently that
the posterior mass on the complementary event, � − an ,I� , the event that arm I� is not optimal,
converges to zero at an exponential rate, and that it does so at optimal rate Γ�β .

Russo (����) proves a similar theorem under three con�ning boundedness assumptions (see
Russo ����, Assumption �) on the parameter space, the prior density and the (�rst derivative
of the) log-normalizer of the exponential family. Hence, the theorems in Russo, ���� do not
apply to the two bandit models most used in practice, which we consider in this chapter: the
Gaussian and Bernoulli model.

In the �rst case, the parameter space is unbounded, in the latter model, the derivative of the
log-normalizer (which is eη�(� + eη)) is unbounded. Here we provide a theorem, proving
that under TTTS, the optimal, exponential posterior convergence rates are obtained for the
Gaussian model with uninformative (improper) Gaussian priors (proof in Appendix �.H), and
the Bernoulli model with Beta(�, �) priors (proof in Appendix �.I).

�eorem �.��. UnderTTTS, forGaussian bandits with improperGaussian priors and for Bernoulli
bandits with uniform priors, it holds almost surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

�.� Numerical Illustrations
�is section is aimed at illustrating our theoretical results and supporting the practical use of
Bayesian sampling rules for �xed-con�dence BAI.

We experiment with � Bayesian sampling rules: T3C, TTTS and TTEI with β = ���, against
the Direct Tracking (D-Tracking) of Garivier and Kaufmann, ���� (which is adaptive to β),
UGapE of Gabillon, Ghavamzadeh and Lazaric, ����, and a uniform baseline. To make fair
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comparisons, we use the stopping rule (�.�) and associated recommendation rule for all of the
sampling rules except for UGapE which has its own stopping rule.

We further include a top-two variant of the Best Challenger (BC) heuristic (see Ménard, ����).
BC selects the empirical best arm În with probability β and the maximizer ofWn(În , j) with
probability �− β, but also performs forced exploration (selecting any arm sampled less than

√
n

times at round n). T3C can thus be viewed as a variant of BC in which no forced exploration is
needed to converge to ωβ , due to the noise added by replacing În with I(�)n .�is randomization
is crucial as BC without forced exploration can fail: we observed that on bandit instances with
two identical sub-optimal arms, BC has some probability to alternate forever between these two
arms and never stop.

We consider two simple instances with arm means given by µ� = [�.� �.� �.� �.�� �.�����],
and µ� = [� �.� �.�� �.�]. We run simulations for both Gaussian (σ = �) and Bernoulli bandits,
with a risk parameter δ = �.��. Fig. �.� reports the empirical distribution of τδ under the
di�erent sampling rules, estimated over ���� independent runs. We also indicate the values
of N� � log(��δ)�Γ� (resp.N��.� � log(��δ)�Γ��.�), the theoretical minimal number of samples
needed for any strategy (resp.any ���-optimal strategy). In Appendix �.C, we further illustrate
how the empirical stopping time of T3C matches the theoretical one.

�ese �gures provide several insights: (�) T3C is competitive with, and sometimes slightly
better than TTTS/TTEI in terms of sample complexity. (�)�e UGapE algorithm has a larger
sample complexity than the uniform sampling rule, which highlights the importance of the
stopping rule in the �xed-con�dence setting. (�)�e fact that D-Tracking performs best is
not surprising, since it converges to ωβ� and achieves minimal sample complexity. However,
in terms of computation time, D-Tracking is much worse than others, as shown in Table �.�,
which reports the average execution time of one step of each sampling rule for µ� in the Gaussian
case. (�) TTTS also su�ers from computational costs, whose origins are explained in Sec. �.�,
unlike T3C or TTEI. Although TTEI is already computationally more attractive than TTTS, its
practical bene�ts are limited to the Gaussian case, since the Expected Improvement (EI) does
not have a closed form beyond this case and its approximation would be costly. In contrast,
T3C can be applied for other distributions.

�.� Conclusion
Wehave advocated the use of Bayesian sampling rules for BAI. In particular, we proved thatTTTS

and a computationally advantageous approach T3C, are both β-optimal in the �xed-con�dence
setting, for Gaussian bandits. We further extended the Bayesian optimality properties (Russo,
����) to more practical choices of models and prior distributions. In order to be optimal, these
sampling rules would need the oracle tuning β� = argmaxβ∈[�,�] Γ

�

β , which is not feasible. In
future work, we will investigate the e�cient online tuning of β to circumvent this issue. We also
wish to obtain explicit �nite-time sample complexity bound for these Bayesian strategies, and
justify the use of these appealing anytime sampling rules in the �xed-budget setting.�e latter
is o�en more plausible in application scenarios such as BAI for automated machine learning (Li
et al., ����; Shang, Kaufmann and Valko, ����).
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�.A Outline
�e appendix of this chapter is organized as follows:

Appendix �.C provides some further numerical illustration for better understanding of T3C.
Appendix �.D provides the complete �xed-con�dence analysis of TTTS (Gaussian case).
Appendix �.E provides the complete �xed-con�dence analysis of T3C (Gaussian case).
Appendix �.F is dedicated to Lemma �.
Appendix �.G is dedicated to crucial technical lemmas.
Appendix �.H is the proof to the posterior convergence�eorem �.�� (Gaussian case).
Appendix �.I is the proof to the posterior convergence�eorem �.�� (Beta-Bernoulli case).

�.B Useful Notation
In this section, we provide a list of useful notation that is applied in appendices (including
reminders of previous notation in the main text and some new ones).

• Recall that d(µ�; µ�) denotes the KL-divergence between two distributions parametrized
by their means µ� and µ�. For Gaussian distributions, we know that

d(µ�; µ�) =
(µ� − µ�)�

�σ � .

When it comes to Bernoulli distributions, we denote this with kl , i.e.

kl(µ�; µ�) = µ� ln�
µ�
µ�
� + (� − µ�) ln�

� − µ�
� − µ�

� .

• Beta(⋅, ⋅) denotes a Beta distribution.
• Bern(⋅) denotes a Bernoulli distribution.
• B(⋅) denotes a Binomial distribution.
• N (⋅, ⋅) denotes a normal distribution.
• Yn , i is the reward of arm i at time n.
• Yn ,In is the observation of the sampling rule at time n.
• Fn � σ(I� ,Y�,I� , I� ,Y�,I� ,�, In ,Yn ,In) is the �ltration generated by the �rst n observa-
tions.

• ψn , i � P [In = i�Fn−�].
• Ψn , i � ∑n

l=� ψ l , i .
• For the sake of simplicity, we further de�ne ψn , i �

Ψn , i
n .

• Tn , i is the number of pulls of arm i before round n.
• Tn denotes the vector of the number of arm selections.
• I�n � argmaxi∈A µn , i denotes the empirical best arm at time n.
• For any a, b > �, de�ne a function Ca ,b s.t. ∀y,

Ca ,b(y) � (a + b − �)kl(
a − �

a + b − �
; y).



�.C. Empirical vs. theoretical sample complexity ���

• We de�ne the minimum and the maximum means gap as

∆min �min
i≠ j
�µi − µ j � ; ∆max �max

i≠ j
�µi − µ j �.

• We introduce two indices

J(�)n � argmax
j

an , j ; J(�)n � argmax
j≠J(�)n

an , j .

Note that J(�)n coincides with the Bayesian recommendation index Jn .
• Two real-valued sequences (an) and (bn) are are said to be logarithmically equivalent if

lim
n→∞

�
n
log� an

bn
� = �,

and we denote this by an � bn .

�.C Empirical vs. theoretical sample complexity
In Fig. �.�, we plot expected stopping time of T3C for δ = �.�� as a function of ��Γ�β on ���
randomly generated problem instances. We see on this plot that the empirical stopping time
has the right linear scaling in ��Γ�β (ignoring a few outliers).

Figure �.�: dots: empirical sample complexity, solid line: theoretical sample complexity.

�.D Fixed-Con�dence Analysis for TTTS
�is section is entirely dedicated to TTTS.

�.D.� Technical novelties and some intuitions
Before we start the analysis, we �rst highlight some technical novelties and intuitions.�e main
novelty in our analysis is the proof of Lemma �, establishing that all arms are su�ciently explored
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by our randomized strategies. Although Qin, Klabjan and Russo, ���� indeed establish a similar
result, our proof is much more intricate due to the randomized nature of the two candidate
arms I(�) and I(�) for TTTS (resp. I(�) for T3C). In the proof of Lemma � (in Appendix �.D.�
and Appendix �.E.� respectively), we need to add a sort of ‘extra layer’ where we �rst study
the behaviour of J(�) and J(�) for TTTS (resp. J(�) and�J(�) for T3C). We show in Lemma ��
(resp. Lemma �� for T3C) that if there exists some under-sampled arm, then either J(�) or
J(�) is also under-sampled. A link between I and J is then established using the expression of
ψn , i , which also allows to upper bound the optimal action probability with a known rate (see
Lemma ��).

�.D.� Su�cient exploration of all arms
proof of Lemma � under TTTS

To prove this lemma, we introduce the two following sets of indices for a given L > �: ∀n ∈ N
we de�ne

UL
n � {i ∶ Tn , i <

√
L},

VL
n � {i ∶ Tn , i < L���}.

It is seemingly non trivial to manipulate directly TTTS’s candidate arms, we thus start by
connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling rule
presented by Russo, ���� for which the two candidate samples are de�ned as in Appendix �.B,
we recall them in the following.

J(�)n � argmax
j

an , j , J
(�)
n � argmax

j≠J(�)n

an , j .

Lemma � is proved via the following sequence of lemmas.

Lemma ��. �ere exists L� = Poly(W�) s.t. if L > L�, for all n, UL
n ≠ � implies J(�)n ∈ VL

n or
J(�)n ∈ VL

n .

Proof. If J(�)n ∈ VL
n , then the proof is �nished. Now we assume that J(�)n ∈ VL

n , and we prove that
J(�)n ∈ VL

n .

Step � According to Lemma �, there exists L� = Poly(W�) s.t. ∀L > L� ,∀i ∈ UL
n ,

�µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

� + Tn , i

≤ σW�

�
��� log(e +

√
L)

� +
√
L

≤ σW�
∆min

�σW�
= ∆min

�
.

�e second inequality holds since x � log(e+x)
�+x is a decreasing function.�e third inequality

holds for a large L > L� with L� = . . ..



�.D. Fixed-Con�dence Analysis for TTTS ���

Step � We now assume that L > L�, and we de�ne

J�n � argmax
j∈UL

n

µn , j = argmax
j∈UL

n

µ j .

�e last equality holds since ∀ j ∈ UL
n , �µn , i − µi � ≤ ∆min��. We show that there exists L� =

Poly(W�) s.t. ∀L > L�,
J�n = J

(�)
n .

We proceed by contradiction, and suppose that J�n ≠ J
(�)
n , then µn , J(�)n

< µn , J�n , since J
(�)
n ∈ VL

n ⊂
UL

n . However, we have

an , J(�)n
= Πn

�����
θ J(�)n
> max

j≠J(�)n

θ j

�����
≤ Πn �θ J(�)n

> θ J�n �

≤ �
�
exp
�������
−
(µn , J(�)n

− µn , J�n )
�

�σ �(��Tn , J(�)n
+ ��Tn , J�n )

�������
.

�e last inequality uses the Gaussian tail inequality (�.�) of Lemma �. On the other hand,

�µn , J(�)n
− µn , J�n � = �µn , J(�)n

− µJ(�)n
+ µJ(�)n

− µJ�n + µJ�n − µn , J�n �

≥ �µJ(�)n
− µJ�n � − �µn , J(�)n

− µJ(�)n
+ µJ�n − µn , J�n �

≥ ∆min − (
∆min

�
+ ∆min

�
)

= ∆min

�
,

and
�

Tn , J(�)n

+ �
Tn , J�n

≤ �√
L
.

�us, if we take L� s.t.

exp�−
√
L�∆�

min
��σ � � ≤ �

�K
,

then for any L > L�, we have

an , J(�)n
≤ �
�K
< �
K
,

which contradicts the de�nition of J(�)n . We now assume that L > L�, thus J
(�)
n = J�n .

Step � We �nally show that for L large enough, J(�)n ∈ VL
n . First note that ∀ j ∈ VL

n , we have

an , j ≤ Πn �θ j ≥ θ J�n � ≤ exp�−
L���∆�

min
��σ � � . (�.��)
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�is last inequality can be proved using the same argument as Step �. Now we de�ne another
index J�n � argmax j∈UL

n
µn , j and the quantity cn �max(µn , J�n , µn , J�n ). We can lower bound an , J�n

as follows:

an , J�n ≥ Πn �θ J�n ≥ cn��
j≠J�n

Πn �θ j ≤ cn�

= Πn �θ J�n ≥ cn� �
j≠J�n ; j∈UL

n

Πn �θ j ≤ cn� �
j∈UL

n

Πn �θ j ≤ cn�

≥ Πn �θ J�n ≥ cn�
�

�K−�
.

Now there are two cases:

• If µn , J�n > µn , J�n , then we have

Πn �θ J�n ≥ cn� = Πn �θ J�n ≥ µn , J�n � ≥
�
�
.

• If µn , J�n < µn , J�n , then we can apply the Gaussian tail bound (�.�) of Lemma �, and we
obtain

Πn �θ J�n ≥ cn� = Πn �θ J�n ≥ µn , J�n � = Πn �θ J�n ≥ µn , J�n + (µn , J�n − µn , J�n )�

≥ �√
�π

exp
���������
− �
�
�
�
� −
�
Tn , J�n
σ
(µn , J�n − µn , J�n )

�
�

����������

= �√
�π

exp
���������
− �
�
�
�
� +
�
Tn , J�n
σ
(µn , J�n − µn , J�n )

�
�

����������
.

On the other hand, by Lemma �, we know that

�µn , J�n − µn , J�n � = �µn , J�n − µJ�n + µJ�n − µJ�n + µJ�n − µn , J�n �

≤ �µJ�n − µJ�n � + σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n
+ σW�

�
����

log(e + Tn , J�n )
� + Tn , J�n

≤ �µJ�n − µJ�n � + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

≤ ∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n
.
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�erefore,

Πn �θ J�n ≥ cn� ≥
�√
�π

exp

�����������

− �
�

�
�
�
� +
�
Tn , J�n
σ

�
�
�
∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

�
�
�

�
�
�

������������

≥ �√
�π

exp

�����������

− �
�

�
�
�
� +
�√

L
σ

�
�
�
∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

�
�
�

�
�
�

������������

≥ �√
�π

exp
�������
− �
�
�� + L���∆max

σ
+ �W�

�
log(e +

√
L)�

��������
.

Now we have

an , J�n ≥max
�
�
� �
�
�
K
, � �

�
�
K−� �√

�π
exp
�������
− �
�
�� + L���∆max

σ
+ �W�

�
log(e +

√
L)�

��������

�
�
,

and we have ∀ j ∈ VL
n , an , j ≤ exp�−L���∆�

min�(��σ �)�, thus there exists L� = Poly(W�) s.t.
∀L > L�, ∀ j ∈ VL

n ,

an , j ≤
an , J�n
�

,

and by consequence, J(�)n ∈ VL
n .

Finally, taking L� =max(L� , L� , L�), we have ∀L > L�, either J
(�)
n ∈ VL

n or J(�)n ∈ VL
n .

Next we show that there exists at least one arm in VL
n for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma ��. �ere exists L� = Poly(W�) s.t. for L > L� and for all n s.t. UL
n ≠ �, then there exists

Jn ∈ VL
n s.t.

ψn , Jn ≥
min(β, � − β)

K� � ψmin.

Proof. Using Lemma ��, we know that J(�)n or J(�)n ∈ VL
n . On the other hand, we know that

∀i ∈ A,ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
.

�erefore we have

ψn , J(�)n
≥ βan , J(�)n

≥ β
K
,
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since∑i∈A an , i = �, and

ψn , J(�)n
≥ (� − β)an , J(�)n

an , J(�)n

� − an , J(�)n

= (� − β)an , J(�)n

an , J(�)n

� − an , J(�)n

≥ � − β
K� ,

since an , J(�)n
≥ ��K and∑i≠J(�)n

an , i�(� − an , J(�)n
) = �, thus an , J(�)n

�(� − an , J(�)n
) ≥ ��K.

�e rest of this subsection is quite similar to that of Qin, Klabjan and Russo, ����. Indeed, with
the above lemma, we can show that the set of poorly explored armsUL

n is empty when n is large
enough.

Lemma ��. Under TTTS, there exists L� = Poly(W� ,W�) s.t. ∀L > L�, UL
�KL� = �.

Proof. We proceed by contradiction, and we assume that UL
�KL� is not empty. �en for any

� ≤ ` ≤ �KL�, UL
` and VL

` are non empty as well.

�ere exists a deterministic L� s.t. ∀L > L�,

�L� ≥ KL��� .

Using the pigeonhole principle, there exists some i ∈ A s.t. T�L�, i ≥ L���. �us, we have
�VL
�L�� ≤ K − �.

Next, we prove �VL
��L�� ≤ K − �. Otherwise, since UL

` is non-empty for any �L� + � ≤ ` ≤ ��L�,
thus by Lemma ��, there exists J` ∈ VL

` s.t. ψ`, J` ≥ ψmin.�erefore,

�
i∈VL

`

ψ`, i ≥ ψmin,

and

�
i∈VL�L�

ψ`, i ≥ ψmin

since VL
` ⊂ VL

�L�. Hence, we have

�
i∈VL�L�
(Ψ��L�, i −Ψ�L�, i) =

��L�

�
`=�L�+�

�
i∈VL�L�

ψ`, i ≥ ψmin �L� .



�.D. Fixed-Con�dence Analysis for TTTS ���

�en, using Lemma �, there exists L� = Poly(W�) s.t. ∀L > L�, we have

�
i∈VL�L�
(T��L�, i − T�L�, i) ≥ �

i∈VL�L�
(Ψ��L�, i −Ψ�L�, i − �W�

�
��L� log(e� + ��L�))

≥ �
i∈VL�L�
(Ψ��L�, i −Ψ�L�, i) − �KW�

�
��L� log(e� + ��L�)

≥ ψmin �L� − �KW�C� �L����

≥ KL��� ,

where C� is some absolute constant.�us, we have one arm in VL
�L� that is pulled at least L���

times between �L� + � and ��L�, thus �VL
��L�� ≤ K − �.

By induction, for any � ≤ k ≤ K, we have �VL
�kL�� ≤ K − k, and �nally if we take L� =

max(L� , L� , L�), then ∀L > L�, UL
�KL� = �.

We can �nally conclude the proof of Lemma � for TTTS.

Proof of Lemma � Let N� = KL� where L� = Poly(W� ,W�) is chosen according to Lemma ��.
For all n > N�, we let L = n�K, then by Lemma ��, we have UL

�KL� = Un�K
n is empty, which

concludes the proof.

�.D.� Concentration of the empirical means,
proof of Lemma �� under TTTS

As a corollary of the previous section,we can show the concentration of µn , i to µi forTTTS
�.

By Lemma �, we know that ∀i ∈ A and n ∈ N,

�µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

Tn , i + �
.

According to the previous section, there exists N� = Poly(W� ,W�) s.t. ∀n ≥ N� and ∀i ∈ A,
Tn , i ≥

�
n�K.�erefore,

�µn , i − µi � ≤

�
���� log(e +

�
n�K)

�
n�K + �

,

�this proof is the same as Proposition � of Qin, Klabjan and Russo, ����
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since x � log(e + x)�(x + �) is a decreasing function. �ere exists N ′� = Poly(ε,W�) s.t.
∀n ≥ N ′�, �

���� log(e +
�
n�K)

�
n�K + �

≤
�
����(n�K)����

n�K + �
≤ ε
σW�

.

�erefore, ∀n ≥ N� �max{N� ,N ′�}, we have

�µn , i − µi � ≤ σW�
ε

σW�
.

�.D.� Measurement e�ort concentration of the optimal arm,
proof of Lemma �� under TTTS

In this section we show that the empirical arm draws proportion of the true best arm for TTTS

concentrates to β when the total number of arm draws is su�ciently large.

�e proof is established upon the following lemmas. First, we prove that the empirical best
arm coincides with the true best arm when the total number of arm draws goes su�ciently
large.

Lemma ��. Under TTTS, there exists M� = Poly(W� ,W�) s.t. ∀n > M�, we have I�n = I� = J
(�)
n

and ∀i ≠ I�,

an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

Proof. Using Lemma �� with ε = ∆min��, there exists N ′� = Poly(��∆min,W� ,W�) s.t. ∀n > N ′� ,

∀i ∈ A, �µn , i − µi � ≤
∆min

�
,

which implies that starting from a known moment, µn ,I� > µn , i for all i ≠ I�, hence I�n = I�.
�us, ∀i ≠ I�,

an , i = Πn �θ i >max
j≠i

θ j�

≤ Πn [θ i > θ I�]

≤ �
�
exp�− (µn , i − µn ,I�)�

�σ �(��Tn , i + ��Tn ,I�)
� .

�e last inequality uses the Gaussian tail inequality of (�.�) Lemma �. Furthermore,

(µn , i − µn ,I�)� = (�µn , i − µn ,I� �)�

= (�µn , i − µi + µi − µI� + µI� − µn ,I� �)�

≥ (�µi − µI� � − �µn , i − µi + µI� − µn ,I� �)�

≥ �∆min − �
∆min

�
+ ∆min

�
��

�
= ∆�

min
�

,
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and according to Lemma �, we know that there exists M� = Poly(W� ,W�) s.t. ∀n > M�,

�
Tn , i
+ �
Tn ,I�

≤ ��
n�K

.

�us, ∀n >max{N ′� ,M�}, we have

∀i ≠ I� , an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

�en, we have

an ,I� = � − �
i≠I�

an , i ≥ � − (K − �) exp�−
∆�
min

��σ �

� n
K
� .

�ere exists M′� s.t. ∀n > M′�, an ,I� > ���, and by consequence I� = J(�)n . Finally taking
M� �max{N ′� ,M� ,M′�} concludes the proof.

Before we prove Lemma ��, we �rst show that Ψn ,I��n concentrates to β.

Lemma ��. Under TTTS, �x a constant ε > �, there exists M� = Poly(ε,W� ,W�) s.t. ∀n > M�,
we have

�Ψn ,I�
n
− β� ≤ ε.

Proof. By Lemma ��, we know that there exists M′� = Poly(W� ,W�) s.t. ∀n > M′� , we have
I�n = I� = J

(�)
n and ∀i ≠ I�,

an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

Note also that ∀n ∈ N, we have

ψn ,I� = an ,I�
�
�
β + (� − β) �

j≠I�
an , j

� − an , j
�
�
.

We proceed the proof with the following two steps.
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Step � We �rst lower bound Ψn ,I� for a given ε. Take M� > M′� that we decide later, we have
∀n > M�,

Ψn ,I�
n
= �
n

n
�
l=�

ψ l ,I� =
�
n

M�

�
l=I�

ψ l ,I� +
�
n

n
�

l=M�+�
ψ l ,I�

≥ �
n

n
�

l=M�+�
ψ l ,I� ≥

�
n

n
�

l=M�+�
al ,I�β

= β
n

n
�

l=M�+�

�
�
� − �

j≠I�
al , j
�
�

≥ β
n

n
�

l=M�+�

�
�
� − (K − �) exp

�������
−∆

�
min

��σ �

�
l
K

�������

�
�

= β − M�

n
β − β

n

n
�

l=M�+�
(K − �) exp

�������
−∆

�
min

��σ �

�
l
K

�������

≥ β − M�

n
β − (n −M�)

n
β(K − �) exp

�������
−∆

�
min

��σ �

�
M�

K

�������

≥ β − M�

n
β − β(K − �) exp

�������
−∆

�
min

��σ �

�
M�

K

�������
.

For a given constant ε > �, there exists M� s.t. ∀n > M�,

β(K − �) exp�−∆
�
min

��σ �

� n
K
� < ε

�
.

Furthermore, there exists M� = Poly(ε��,M�) s.t. ∀n > M�,

M�

n
β < ε

�
.

�erefore, if we take M� �max{M′� ,M� ,M�}, we have ∀n > M�,

Ψn ,I�
n
≥ β − ε.
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Step � On the other hand, we can also upper bound Ψn ,I� . We have ∀n > M�,

Ψn ,I�
n
= �
n

n
�
l=�

ψ l ,I�

= �
n

n
�
l=�

al ,I�
�
�
β + (� − β) �

j≠I�
al , j

� − al , j
�
�

≤ �
n

n
�
l=�

al ,I�β +
�
n

n
�
l=�

al ,I�(� − β) �
j≠I�

al , j
� − al , j

≤ β + �
n

n
�
l=�
(� − β) �

j≠I�
al , j

� − al , j

≤ β + �
n

n
�
l=�
(� − β) �

j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�

.

Since, for a given ε > �, there exists M� s.t. ∀n > M�,

exp�−∆
�
min

��σ �

� n
K
� < �

�
,

and there exists M� s.t. ∀n > M�,

(� − β)(K − �) exp�−∆
�
min

��σ �

� n
K
� < ε

�
.

�us, ∀n > M�� �max{M� ,M�},

Ψn ,I�
n
≤ β + � − β

n

�
���
�

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+

n
�

l=M��+�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�

�
���
�

≤ β + � − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+ �(� − β)(K − �) exp

�������
−∆

�
min

��σ �

�
M��

K

�������

≤ β + � − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+ ε
�
.

�ere exists M�� = Poly(ε��,M��) s.t. ∀n > M��,

� − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
< ε
�
.
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�erefore, ∀n > M� �max{M� ,M��}, we have

Ψn ,I�
n
≤ β + ε.

Conclusion Finally, combining the two steps and de�ne M� � max{M� ,M�}, we have
∀n > M�,

�Ψn ,I�
n
− β� ≤ ε.

With the help of the previous lemma and Lemma �, we can �nally prove Lemma ��.

Proof of Lemma �� Fix an ε > �. Using Lemma �, we have ∀n ∈ N,

�Tn ,I�
n
− Ψn ,I�

n
� ≤

W�
�
(n + �) log(e� + n)

n
.

�us there exists M�� s.t. ∀n > M��,

�Tn ,I�
n
− Ψn ,I�

n
� ≤ ε

�
.

And using Lemma ��, there exists M′� = Poly(ε��,W� ,W�) s.t. ∀n > M′�,

�Ψn ,I�
n
− β� ≤ ε

�
.

Again, according to Lemma ��, there exists M′� s.t. ∀n > M′�,

Ψn ,I�
n
≤ β + ε

�
.

�us, if we take N� �max{M′� ,M��}, then ∀n > N�, we have

�Tn ,I�
n
− β� ≤ ε.

�.D.� Measurement e�ort concentration of other arms,
proof of Lemma �� under TTTS

In this section, we show that, for TTTS, the empirical measurement e�ort concentration also
holds for other arms than the true best arm. We �rst show that if some arm is overly sampled at
time n, then its probability of being picked is reduced exponentially.
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Lemma ��. Under TTTS, for every ξ ∈ (�, �), there exists S� = Poly(��ξ,W� ,W�) such that for
all n > S�, for all i ≠ I�,

Ψn , i

n
≥ ωβ

i + ξ ⇒ ψn , i ≤ exp{−ε�(ξ)n} ,

where ε� is de�ned in (�.��) below.

Proof. First, by Lemma ��, there exists M′′� = Poly(W� ,W�) s.t. ∀n > M′′� ,

I� = I�n = J
(�)
n .

�en, following the similar argument as in Lemma ��, one can show that for all i ≠ I� and for
all n > M′′� ,

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
� − an , J(�)n

= an , iβ + an , i(� − β)
∑ j≠i an , j
� − an ,I�

≤ an , iβ + an , i(� − β)
�

� − an ,I�

≤ an , i
� − an ,I�

≤ Πn [θ i ≥ θ I�]
Πn �∪ j≠I�θ j ≥ θ I��

≤ Πn [θ i ≥ θ I�]
max j≠I� Πn �θ j ≥ θ I��

.

Using the upper and lower Gaussian tail bounds from Lemma �, we have

ψn , i ≤
exp�− (µn ,I� − µn , i)�

�σ � (��Tn ,I� + ��Tn , i)
�

exp

�����������

−min
j≠I�

�
�

�
�
�

(µn ,I� − µn , j)

σ
�
���Tn ,I� + ��Tn , j�

− �
�
�
�

������������

=
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp

�����������

−n
�
�
�
min
j≠I�

(µn ,I� − µn , j)�
�σ � �n�Tn ,I� + n�Tn , j�

− �√
�n

�
�
�

������������

,
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where we assume that n > S� = Poly(W� ,W�) for which

(µn ,I� − µn , i)�

σ � (��Tn ,I� + ��Tn , i)
≥ �

according to Lemma �. From there we take a supremum over the possible allocations to lower
bound the denominator and write

ψn , i ≤
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp

�����������

−n
�
�
�

sup
ω∶ωI�=Tn ,I� �n

min
j≠I�

(µn ,I� − µn , i)�
�σ � ���ωI� + ��ω j�

− �√
�n

�
�
�

������������

=
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp
�������
−n �
�

Γ�Tn ,I� �n (µn) −
�√
�n
�
��������

,

where µn � (µn ,� ,�, µn ,K), and (β, µ) � Γ�β (µ) represents a function that maps β and µ to
the parameterized optimal error decay that any allocation rule can reach given parameter β
and a set of arms with means µ. Note that this function is continuous with respect to β and µ
respectively.

Now, assuming Ψn , i�n ≥ ωβ
i + ξ yields that there exists S′� � Poly(��ξ,W�) s.t. for all n > S′�,

Tn , i�n ≥ ωβ
i + ξ��, and by consequence,

ψn , i ≤ exp

���������������������������

−n
�
��
�

(µn ,I� − µn , i)�

�σ � �n�Tn ,I� + ��(ωβ
i + ξ��)�

− Γ�Tn ,I� �n (µn) −
�
�n
+

�
����Γ�Tn ,I� �n (µn)

n

�
��
�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
εn(ξ)

���������������������������

.

Using Lemma ��, we know that for any ε, there exists S� = Poly(��ε,W� ,W�) s.t. ∀n > S�,
�Tn ,I��n − β� ≤ ε, and ∀ j ∈ A, �µn , j − µ j � ≤ ε. Furthermore, (β, µ)� Γ�β (µ) is continuous with
respect to β and µ, thus for a given ε�, there exists S′� = Poly(��ε� ,W� ,W�) s.t. ∀n > S′�, we
have ��������������

εn(ξ) −
�
�
�

(µI� − µi)�

�σ � ���β + ��(ωβ
i + ξ��)�

− Γ�β
�
�
�

��������������
≤ ε� .

Finally, de�ne S� �max{S� , S′� , S′�}, we have ∀n > S�,

ψn , i ≤ exp{−ε�(ξ)n} ,
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where

ε�(ξ) =
(µI� − µi)�

�σ � ���β + ��(ωβ
i + ξ��)�

− Γ�β + ε� . (�.��)

Next, starting from some known moment, no arm is overly allocated. More precisely, we show
the following lemma.

Lemma ��. Under TTTS, for every ξ, there exists S� = Poly(��ξ,W� ,W�) s.t. ∀n > S�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i + ξ.

Proof. From Lemma ��, there exists S′� = Poly(��ξ,W� ,W�) such that for all n > S′� and for all
i ≠ I�,

Ψn , i

n
≥ ωβ

i +
ξ
�
⇒ ψn , i ≤ exp{−ε�(ξ��)n} .

�us, for all i ≠ I�,

Ψn , i

n
≤ S′�

n
+

n
�

`=S′�+�
ψ`, i1�

Ψ`, i

n
≥ ωβ

i +
ξ
�
�

n
+

n
�

`=S′�+�
ψ`, i1�

Ψ`, i

n
≤ ωβ

i +
ξ
�
�

n

≤ S′�
n
+

n
�
`=�

exp{−ε�(ξ��)n}

n
+

`n(ξ)

�
`=S′�+�

ψ`, i1�
Ψ`, i

n
≤ ωβ

i +
ξ
�
�

n
,

where we let `n(ξ) =max�` ≤ n ∶ Ψ`, i�n ≤ ωβ
i + ξ���.�en

Ψn , i

n
≤ S′�

n
+

n
�
`=�

exp{−ε�(ξ��)n}

n
+Ψ`n(ξ), i

≤ S′� + (� − exp(−ε�(ξ��))−�

n
+ ωβ

i +
ξ
�

�en, there exists S� such that for all n ≥ S�,

S′� + (� − exp(−ε�(ξ��))−�

n
≤ ξ
�
.

�erefore, for any n > S� � max{S′� , S�}, Ψn , i ≤ ωβ
i + ξ holds for all i ≠ I�. For i = I�, it is

already proved for the optimal arm.

We now prove Lemma �� under TTTS.
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Proof of Lemma �� From Lemma ��, there exists S′� = Poly((K − �)�ξ,W� ,W�) such that
for all n > S′�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i +
ξ

K − �
.

Using the fact that Ψn , i�n and ωβ
i all sum to �, we have ∀i ∈ A,

Ψn , i

n
= � −�

j≠i

Ψn , j

n

≥ � −�
j≠i
�ωβ

j +
ξ

K − �
�

= ωβ
i − ξ.

�us, for all n > S′�, we have
∀i ∈ A, �Ψn , i

n
− ωβ

i � ≤ ξ.

And �nally we use the same reasoning as the proof of Lemma �� to link Tn , i and Ψn , i . Fix an
ε > �. Using Lemma �, we have ∀n ∈ N,

∀i ∈ A, �Tn , i

n
− Ψn , i

n
� ≤

W�
�
(n + �) log(e� + n)

n
.

�us there exists S� s.t. ∀n > S�,

�Tn ,I�
n
− Ψn ,I�

n
� ≤ ε

�
.

And using the above result, there exists S′′� = Poly(��ε,W� ,W�) s.t. ∀n > S′′� ,

�Ψn , i

n
− ωβ

i � ≤
ε
�
.

�us, if we take N� �max{S′′� , S�}, then ∀n > N�, we have

∀i ∈ A, �Tn , i

n
− ωβ

i � ≤ ε.

�.E Fixed-Con�dence Analysis for T3C
�is section is entirely dedicated to T3C. Note that the analysis to follow share the same proof
line with that of TTTS, and some parts even completely coincide with those of TTTS. For
the sake of clarity and simplicity, we shall only focus on the parts that di�er and skip some
redundant proofs.
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�.E.� Su�cient exploration of all arms, proof of Lemma�underT3C
To prove this lemma, we still need the two sets of indices for under-sampled arms like in
Appendix �.D.�. We recall that for a given L > �: ∀n ∈ N we de�ne

UL
n � {i ∶ Tn , i <

√
L},

VL
n � {i ∶ Tn , i < L���}.

For T3C however, we investigate the following two indices,

J(�)n � argmax
j

an , j ;
�J(�)n � argmin

j≠J(�)n

Wn(J(�)n , j).

Lemma � is proved via the following sequence of lemmas.

Lemma ��. �ere exists L� = Poly(W�) s.t. if L > L�, for all n, UL
n ≠ � implies J(�)n ∈ VL

n or
�J(�)n ∈ VL

n .

Proof. If J(�)n ∈ VL
n , then the proof is �nished. Now we assume that J(�)n ∈ VL

n ⊂ UL
n , and we

prove that J(�)n ∈ VL
n .

Step � Following the same reasoning as Step � and Step � of the proof of Lemma ��, we know
that there exists L� = Poly(W�) s.t. if L > L�, then

J�n � argmax
j∈UL

n

µn , j = argmax
j∈UL

n

µ j = J(�)n .

Step � Now assuming that L > L�, and we show that for L large enough,�J(�)n ∈ VL
n . In the

same way that we proved (�.��) one can show that for all ∀ j ∈ VL
n ,

Wn(J(�)n , j) =
(µn ,I� − µn , j)�

�σ � � �
Tn ,I�

+ �
Tn , j
�
≥ L���∆�

min
��σ � .

Again, denote J�n � argmax j∈UL
n
µn , j , we obtain

Wn(J(�)n , J�n) =

�������������������

� if µn , J�n ≥ µn , J(�)n
,

(µn , J(�)n
− µn , J�n )

�

�σ � �
�

�
Tn , J(�)n

+ �
Tn , J�n

�
�

else.
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In the second case, as already shown in Step � of Lemma �� we have that

�µn , J�n − µn , J�n � ≤ ∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

≤ ∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

,

since J�n ∈ UL
n . We also know that

�σ � �
�

�
Tn , J(�)n

+ �
Tn , J�n

�
�
≥ �σ �

Tn , J�n
≥ �σ �
√
L
.

�erefore, we get

Wn(J(�)n , J�n) ≤
√
L

�σ �

�
�
�
∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

�
�
�

�

.

On the other hand, we know that for all j ∈ VL
n ,

Wn(J(�)n , j) ≥ L���∆�
min

��σ � .

�us, there exists L� s.t. if L > L�, then

∀ j ∈ VL
n , Wn(J(�)n , j) ≥ �Wn(J(�)n , J�n).

�at means�J(�)n ∉ VL
n and by consequence,�J(�)n ∈ VL

n .

Finally, taking L� =max(L� , L�), we have ∀L > L�, either J
(�)
n ∈ VL

n or�J(�)n ∈ VL
n .

Next we show that there exists at least one arm in VL
n for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma ��. �ere exists L� = Poly(W�) s.t. for L > L� and for all n s.t. UL
n ≠ �, then there exists

Jn ∈ VL
n s.t.

ψn , Jn ≥
min(β, � − β)

K� � ψmin.

Proof. Using Lemma ��, we know that J(�)n or�J(�)n ∈ VL
n . We also know that under T3C, for any

arm i, ψn , i can be written as

ψn , i = βan , i + (� − β)�
j≠i

an , j
1{Wn( j, i) =mink≠ j Wn( j, k)}

� argmink≠ j Wn( j, k)�
.
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Note that (ψn , i)i sums to �,

�
i
ψn , i = β + (� − β)�

j
an , j�

i≠ j

1{Wn( j, i) =mink≠ j Wn( j, k)}
� argmink≠ j Wn( j, k)�

= β + (� − β)�
j
an , j = � .

�erefore, we have

ψn , J(�)n
≥ βan , J(�)n

≥ β
K

on one hand, since∑i∈A an , i = �. On the other hand, we have

ψ
n ,�J(�)n

≥ (� − β)
an , J(�)n

K

≥ � − β
K� ,

which concludes the proof.

�e rest of this subsection is exactly the same to that of TTTS. Indeed, with the above lemma,
we can show that the set of poorly explored arms UL

n is empty when n is large enough.

Lemma ��. Under T3C, there exists L� = Poly(W� ,W�) s.t. ∀L > L�, UL
�KL� = �.

Proof. See proof of Lemma �� in Appendix �.D.�.

We can �nally conclude the proof of Lemma � for T3C in the same way as for TTTS in Ap-
pendix �.D.�.

�.E.� Concentration of the empirical means,
proof of Lemma �� under T3C

As a corollary of the previous section, we can show the concentration of µn , i to µi , and the
proof remains the same as that of TTTS in Appendix �.D.�.

�.E.� Measurement e�ort concentration of the optimal arm,
proof of Lemma �� under T3C

Next, we show that the empirical armdraws proportion of the true best arm for T3C concentrates
to β when the total number of arm draws is su�ciently large.�is proof also remains the same
as that of TTTS in Appendix �.D.�.
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�.E.� Measurement e�ort concentration of other arms,
proof of Lemma �� under T3C

In this section, we show that, for T3C, the empirical measurement e�ort concentration also
holds for other arms than the true best arm. Note that this part di�ers from that of TTTS.

We again establish �rst an over-allocation implies negligible probability result as follow.

Lemma ��. UnderT3C, for every ξ ≤ ε� with ε� problemdependent, there exists S� = Poly(��ξ,W� ,W�)
such that for all n > S�, for all i ≠ I�,

Ψn , i

n
≥ ωβ

i + �ξ ⇒ ψn , i ≤ (K − �) exp�−
∆�
min

��σ �

� n
K
� .

Proof. Fix i ≠ I� s.t. Ψn , i�n ≥ ωβ
i + �ξ, then using Lemma �, there exists S� = Poly(��ξ,W�)

such that for any n > S�, we have
Tn , i

n
≥ ωβ

i + ξ.

�en,

ψn , i ≤ βan , i + (� − β)�
j≠i

an , j1{Wn( j, i) =min
k≠ j

Wn( j, k)}

≤ βan , i + (� − β)
�
� �j≠i ,I�

an , j + an ,I�1{Wn(I� , i) =min
k≠I� Wn(I� , k)}

�
�

≤ �
j≠I�

an , j + 1{Wn(I� , i) =min
k≠I� Wn(I� , k)}.

Next we show that the indicator function term in the previous inequality equals �.

Using Lemma � and Lemma �� for T3C, there exists S� = Poly(��ξ,W� ,W�) such that for any
n > S�,

�Tn ,I�
n
− β� ≤ ξ� and ∀ j ∈ A, �µn , j − µ j � ≤ ξ� .

Now if ∀ j ≠ I� , i, we have Tn , j�n > ωβ
j , then

n − �
n
= �

j∈A

Tn , j

n

= Tn ,I�
n
+ Tn , i

n
+ �

j≠I� , i
Tn , j

n

> β − ε� + ωβ
i + ε + �

j≠I� , i
ωβ

j ≥ �,

which is a contradiction.
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�us there exists at least one j� ≠ I� , i, such that Tn , j��n ≤ ω
β
j . Assuming n >max(S� , S�), we

have

Wn(I� , i) −Wn(I� , j�) =
(µn ,I� − µn , i)�

�σ � � �
Tn ,I�

+ �
Tn , i
�
−
(µn ,I� − µn , j�)�

�σ � � �
Tn ,I�

+ �
Tn , j�
�

≥ (µI� − µi − �ξ�)�

�σ � �
�

�
β − ξ�

+ �
ωβ
i + ξ

�
�

−
(µI� − µ j� + �ξ�)�

�σ �
�
�
�

�
β + ξ�

+ �
ωβ

j�

�
�
�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
W ξ

i , j�

.

According to Proposition �,W ξ
i , j� converges to � when ξ goes to �, more precisely we have

W ξ
i , j� =

(µI� − µi)�

�σ �

�
�

β
β + ωβ

i

�
�

�

ξ + O(ξ�) ,

thus there exists a ε� such that for all ξ < ε� it holds for all i , j� ≠ I�,W ξ
i , j� > �. It follows then

Wn(I� , i) −min
k≠I� Wn(I� , k) ≥Wn(I� , i) −Wn(I� , j�) > �,

and 1{Wn(I� , i) =mink≠I� Wn(I� , k)} = �.

Knowing that Lemma �� is also valid for T3C, thus there exists M� = Poly(��∆min,W� ,W�)
such that for all n > M�,

∀ j ≠ I� , an , j ≤ exp�−
∆�
min

��σ �

� n
K
� ,

which then concludes the proof by taking S� �max(M� , S� , S�).

�e rest of this subsection almost coincides with that of TTTS. We �rst show that, starting
from some known moment, no arm is overly allocated. More precisely, we show the following
lemma.

Lemma ��. Under T3C, for every ξ, there exists S� = Poly(��ξ,W� ,W�) s.t. ∀n > S�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i + �ξ.

Proof. See proof of Lemma �� in Appendix �.D.�. Note that the previous step does not match
exactly that of TTTS, so the proof would be slightly di�erent. However, the di�erence is only a
matter of constant, we thus still choose to skip this proof.

It remains to prove Lemma �� for T3C, which stays the same as that of TTTS.
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Proof of Lemma �� for T3C See proof of Lemma �� for TTTS in Appendix �.D.�.

�.F Proof of Lemma �
Finally, it remains to prove Lemma � under the Gaussian case before we can conclude for
�eorem �.� for TTTS or T3C.

Lemma �. Let δ, β ∈ (�, �). For any sampling rule which satis�es E �T ε
β� < ∞ for all ε > �, we

have
lim sup

δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

,

if the sampling rule is coupled with stopping rule (�.�),

For the clarity, we recall the de�nition of generalized likelihood ratio. For any pair of arms i , j,
We �rst de�ne a weighted average of their empirical means,

µ̂n , i , j �
Tn , i

Tn , i + Tn , j
µ̂n , i +

Tn , j

Tn , i + Tn , j
µ̂n , j .

And if µ̂n , i ≥ µ̂n , j , then the generalized likelihood ratio Zn , i , j for Gaussian noise distributions
has the following analytic expression,

Zn , i , j � Tn , i d(µ̂n , i ; µ̂n , i , j) + Tn , jd(µ̂n , j ; µ̂n , i , j).

We further de�ne a statistic Zn as

Zn �max
i∈A

min
j∈A�{i}

Zn , i , j .

�e following lemma stated by Qin, Klabjan and Russo (����) is needed in our proof.

Lemma ��. For any ζ > �, there exists ε s.t. ∀n ≥ T ε
β , Zn ≥ (Γ�β − ζ)n.

To prove Lemma �, we need the Gaussian tail inequality (�.�) of Lemma �.

Proof. We know that

� − an ,I� = �
i≠I�

an , i

≤ �
i≠I�

Πn [θ i > θ I�]

= �
i≠I�

Πn [θ i − θ I� > �]

≤ (K − �)max
i≠I� Πn [θ i − θ I� > �] .
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We can further rewrite Πn [θ i − θ I� > �] as

Πn [θ i − θ I� > µn , i − µn ,I� + µn ,I� − µn , i] .

We choose ε su�ciently small such that the empirical best arm I�n = I�.�en, for all n ≥ Tn
β and

for any i ≠ I�, µn ,I� ≥ µn , i .�us, �x any ζ ∈ (�, Γ�β ��) and apply inequality (�.�) of Lemma �
with µn ,I� and µn , i , we have for any n ≥ T ε

β ,

� − an ,I� ≤ (K − �)max
i≠I�

�
�
exp�−(µn ,I

� − µn , i)�

�σ �
n , i ,I�

�

= (K − �) exp{−Zn}
�

≤
(K − �) exp�−(Γ�β − ζ)n�

�
.

�e last inequality is deduced from Lemma ��. By consequence,

∀n ≥ T ε
β , ln (� − an ,I�) ≤ ln

K − �
�
− (Γ�β − ζ)n.

On the other hand, we have for any n,

� − cn ,δ =
δ

�n(K − �)
√
�πe exp

�������

�
� ln

�n(K − �)
δ

�������

.

�us, there exists a deterministic time N s.t. ∀n ≥ N ,

ln (� − cn ,δ) = ln
δ

(K − �)
√
�πe
− ln n −

�
� ln

�n(K − �)
δ

≥ ln δ
�(K − �)

√
�πe
− ζn.

Let C� � (K − �)�
√
�πe, we have for any n ≥ N� � T ε

β + N ,

ln (� − an ,I�) − ln (� − cn ,δ) ≤ ln
C�

δ
− (Γ�β − �ζ)n, (�.��)

and it is clear that E [N�] <∞.

Let us consider the following two cases:

Case � �ere exists n ∈ [�,N�] s.t. an ,I� ≥ cn ,δ , then by de�nition,

τδ ≤ n ≤ N� .
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Case � For any n ∈ [�,N�], we have an ,I� < cn ,δ , then τδ ≥ N� + �, thus by Equation �.��,

� ≤ ln (� − aτδ−�,I�) − ln (� − cτδ−�,δ)

≤ ln C�

δ
− (Γ�β − �ζ)(τδ − �),

and we obtain

τδ ≤
ln(C��δ)
Γ�β − �ζ

+ �.

Combining the two cases, and we have for any ζ ∈ (�, Γ�β ��),

τδ ≤max
�������
N� ,

ln(C��δ)
Γ�β − �ζ

+ �
�������

≤ N� + � +
ln(C�)
Γ�β − �ζ

+ ln(��δ)
Γ�β − �ζ

.

Since E [N�] <∞, therefore

lim sup
δ

E [τδ]
log(��δ)

≤ �
Γ�β − �ζ

,∀ζ ∈ (�, Γ�β ��),

which concludes the proof.

�.G Technical Lemmas
�e whole �xed-con�dence analysis for the two sampling rules are both substantially based on
two lemmas: Lemma � of Qin, Klabjan and Russo, ���� and Lemma �. We prove Lemma � in
this section.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.

Proof. �e proof shares some similarities with that of Lemma � of Qin, Klabjan and Russo,
����. For any arm i ∈ A, de�ne ∀n ∈ N,

Dn � Tn , i −Ψn , i ,

dn � 1{In = i} − ψn , i .
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It is clear that Dn = ∑n−�
l=� dl and E [dn �Fn−�] = �. Indeed,

E [dn �Fn−�] = E [1{In = i} − ψn , i �Fn−�]
= P [In = i�Fn−�] − E [P [In = i�Fn−�] �Fn−�]
= P [In = i�Fn−�] − P [In = i�Fn−�] = �.

�e second last equality holds sinceP [In = i�Fn−�] isFn−�-measurable.�usDn is amartingale,
whose increment are � sub-Gaussian as dn ∈ [−�, �] for all n.

Applying Corollary � of Abbasi-Yadkori, Pál and Szepesvári, �����, it holds that, with probability
larger than � − δ, for all n,

�Dn � ≤

�
���� (� + n) ln�

√
� + n
δ
�

which yields the �rst statement of Lemma �.

We now introduce the random variable

W� �max
n∈N

max
i∈A

�Tn , i −Ψn , i ��
(n + �) ln(e� + n)

.

Applying the previous inequality with δ = e−x
�
�� yields

P �∃n ∈ N� ∶ �Dn � >
�
(� + n) (ln (� + n) + x�)� ≤ e−x

�
�� ,

P �∃n ∈ N� ∶ �Dn � >
�
(� + n) ln (e� + n) x�� ≤ e−x

�
�� ,

where the last inequality uses that for all a, b ≥ �, we have ab ≥ a + b.

Consequently ∀x ≥ �, for all i ∈ A

P
�����
max
n∈N

�Tn , i −Ψn , i ��
(n + �) log (e� + n)

≥ x
�����
≤ e−x

�
�� .

Now taking a union bound over i ∈ A, we have ∀x ≥ �,

P [W� ≥ x] ≤ P
������
max
i∈A

max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ P
������
�
i∈A

max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ �
i∈A

P
������
max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ Ke−x
�
�� .

�but we could actually use several deviation inequalities that hold uniformly over time for martingales with
sub-Gaussian increments
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�e previous inequalities imply that ∀i ∈ A and ∀n ∈ N, we have

�Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n)

almost surely. Now it remains to show that ∀λ > �,E �eλW�� <∞. Fix some λ > �.

E �eλW�� = �
∞

x=�
P �eλW� ≥ x�dx = �

∞

y=�
P �eλW� ≥ e�λy� �λe�λy dy

= �λ�
�

y=�
P [W� ≥ �y] e�λy dy + �λ�

∞

y=�
P [W� ≥ �y] e�λy dy

≤ �λ�
�

y=�
P [W� ≥ �y] e�λy dy

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������
=e�λ−�

+ �λC� �
∞

y=�
e−y

�
��e�λy dy

������������������������������������������������������������������������������������������������������������������������������������������
<∞

<∞,

where C� is some constant.

�.H Proof ofPosteriorConvergence for theGaussianBandit

�.H.� Proof of�eorem �.��, Gaussian case
�eorem �.��. Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost
surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

From�eorem � in Qin, Klabjan and Russo, ����, any allocation rule satisfying Tn , i�n → ωβ
i

for each i ∈ A, satis�es

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

�erefore, to prove�eorem �.��, it is su�cient to prove that under TTTS,

∀i ∈ {�, . . . ,K}, lim
n→∞

Tn , i

n
a .s= ωβ

i . (�.��)

Due to the concentration result in Lemma � that we restate below (and proved in Appendix �.D),
which will be useful at several places in the proof, observe that

lim
n→∞

Tn , i

n
a .s= ωβ

i ⇔ lim
n→∞

Ψn , i

n
a .s= ωβ

i ,

therefore it su�ces to establish the convergence of ψn , i = Ψn , i�n to ωβ
i , which we do next. For

that purpose, we need again the following maximality inequality lemma.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.
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Step �: TTTS draws all arms in�nitely o�en and satis�es Tn ,I��n → β. More precisely, we
prove the following lemma.

Lemma ��. Under TTTS, it holds almost surely that

�. for all i ∈ A, limn→∞ Tn , i =∞.

�. an ,I� → �.

�. Tn ,I��n → β.

Proof. Our �rst ingredient is a lemma showing the implications of �nite measurement, and
consistency when all arms are sampled in�nitely o�en. Its proof follows standard posterior
concentration arguments and is given in Appendix �.H.�.

Lemma �� (Consistency and implications of �nite measurement).
Denote with I the arms that are sampled only a �nite amount of times:

I = {i ∈ {�, . . . , k} ∶ ∀n, Tn , i <∞}.

If I is empty, an , i converges almost surely to �when i = I� and to �when i ≠ I�. If I is non-empty,
then for every i ∈ I , we have lim inf n→∞ an , i > � a.s.

First we show that∑n∈N Tn , j =∞ for each arm j. Suppose otherwise. Let I again be the set of
arms to which only �nite measurement e�ort is allocated. Under TTTS, we have

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
,

so ψn , i ≥ βan , i .�erefore, by Lemma ��, if i ∈ I , then lim inf an , i > � implies that∑n ψn , i =
∞. By Lemma �, we then must have that limn→∞ Tn , i = ∞ as well: contradiction. �us,
limn→∞ Tn , i =∞ for all i, and we conclude that an ,I� → �, by Lemma ��.

For TTTS with parameter β this implies that ψn ,I� → β, and since we have a bound on �Tn , i�n−
ψn , i � in Lemma �, we have Tn ,I��n → β as well.

Step �: Controlling the over-allocation of sub-optimal arms. �e convergence of Tn ,I��n
to β leads to following interesting consequence, expressed in Lemma ��: if an arm is sampled
more o�en than its optimal proportion, the posterior probability of this arm to be optimal is
reduced compared to that of other sub-optimal arms.

Lemma �� (Over-allocation implies negligible probability). � Fix any ξ > � and j ≠ I�. With
probability �, under any allocation rule, if Tn ,I��n → β, there exist ξ′ > � and a sequence εn with
εn → � such that for any n ∈ N,

Tn , j

n
≥ ωβ

j + ξ⇒
an , j

maxi≠I� an , i
≤ e−n(ξ

′
+εn) .

�analogue of Lemma �� of Russo, ����
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Proof. We have Πn(Θ∪i≠I�) = ∑i≠I� an , i = � − an ,I� , therefore maxi≠I� an , i ≤ � − an ,I� . By
�eorem � of Qin, Klabjan and Russo, ���� we have, as Tn ,I��n → β,

lim sup
n→∞

− �
n
log�max

i≠I� an , i� ≤ Γ
�

β .

We also have the following from the standard Gaussian tail inequality, for n ≥ τ a�er which
µn ,I� ≥ µn , i , using that θ i − θ I� ∼ N (µn , i − µn ,I� , σ �

n , i + σ �
n ,I�) and σ �

n , i + σ �
n ,I� = σ �(��Tn , i +

��Tn ,I�),

an , i ≤ Πn(θ i ≥ θ I�) ≤ exp�
−(µn , i − µn ,I�)�

�σ �(��Tn ,I� + ��Tn , i)
� = exp�−n (µn , i − µn ,�)�

�σ �(n�Tn ,I� + n�Tn , i)
� .

�us, there exists a sequence εn → �, for which

an , j
maxi≠I� an , i

≤
exp�−n �

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− εn����

exp�−n �Γ�β + εn����)

= exp�−n �
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β − εn�� .

Now we take a look at the two terms in the middle:
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β .

Note that the �rst term is increasing in Tn , j�n. We have the de�nition from Qin, Klabjan and
Russo, ����, for any j ≠ I�,

Γ�β =
(µ j − µI�)�

�σ � ���ωβ
I� + ��ω

β
j �

,

and we have the premise

Tn , j

n
≥ ωβ

j + ξ.

Combining these with the convergence of the empirical means to the true means (consistency,
see Lemma ��), we can conclude that for all ε > �, there exists a time n� such that for all later
times n ≥ n�, we have

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
≥

(µ j − µI�)�

�σ � ���β + n�Tn , j�
− ε ≥

(µ j − µI�)�

�σ � ���β + ��(ωβ
j + ξ)�

− ε > Γ�β ,

where the �rst inequality follows from consistency, the second from monotonicity in Tn , j�n.
�at means that there exist a ξ′ > � such that

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β > ξ′ ,
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and thus the claim follows that when Tn , j
n ≥ ω

β
j + ξ, we have

an , j
maxi≠I� an , i

≤ exp�−n �
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β − εn�� ≤ e−n(ξ

′
+εn) .

Step �:ψn , i converges to ω
β
i for all arms. To establish the convergence of the allocation e�ort

of all arms, we rely on the same su�cient condition used in the analysis of Russo, ����, that we
recall below.

Lemma �� (Su�cient condition for optimality). � Consider any adaptive allocation rule. If we
have

ψn ,I� → β, and �
n∈N

ψn , j��ψn , j ≥ ω
β
j + ξ� <∞, ∀ j ≠ I� , ξ > �, (�.��)

then ψn → ψβ .

First, note that fromLemma ��weknow thatTn ,I��n → β, an by Lemma � this impliesψn ,I� → β,
hence we can use Lemma �� to prove convergence to the optimal proportions.�us, we now
show that (�.��) holds under TTTS. Recall that J(�)n = argmax j an , j and J(�)n = argmax j≠J(�)n

an , j .

Since an ,I� → � by Lemma ��, there is some �nite time τ a�er which for all n > τ, J(�)n = I�.
Under TTTS,

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
� − an , J(�)n

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
an , J(�)n

≤ an , iβ + an , i(� − β)
�

an , J(�)n

≤ an , i
an , J(�)n

,

where we use the fact that for j ≠ J(�)n , we have an , J(�)n
≥ an , j and an , J(�)n

≤ � − an , J(�)n
. For n ≥ τ

this means that ψn , i ≤ an , i�max j≠I� an , i for any i ≠ I�.

By Lemma ��, there is a constant ξ′ > � such and a sequence εn → � such that

Tn , i�n ≥ wβ
i + ξ⇒

an , i
max j≠I� an , j

≤ e−n(ξ
′
−εn) .

�Lemma �� of Russo, ����
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Now take a time τ large enough, such that for n ≥ τ we have �Tn , j�n − ψn , j � ≤ ξ (which can be
found by Lemma �).�en we have

1�ψn , j ≥ ψ
β
j + ξ� ≤ 1�

Tn , j

n
≥ ωβ

j + �ξ�

�erefore, for all i ≠ I�, we have

�
n≥τ

ψn , i1�ψn , j ≥ ψ
β
j + ξ� ≤ �

n≥τ
ψn , i1�

Tn , j

n
≥ ωβ

j + �ξ� ≤ �
n≥τ

e−n(ξ
′
−εn) <∞.

�us (�.��) holds and the convergence to the optimal proportions follows by Lemma ��.

�.H.� Proof of auxiliary lemmas

Proof of Lemma �� Let I be nonempty. De�ne

µ∞,n � lim
n→∞

µn , i , and σ �
∞, i � lim

n→∞
σ �
n , i ,

and recall that for i ∈ A for which Tn , i = �, we have µni = µ�, i = � and σ �
n , i = σ �

�, i =∞, and if
Tn , i > �, we have

µn , i =
�

Tn , i

n−�
�
`=�

1{I` = i}Y`,I` , and σ �
n , i =

σ �

Tn , i
.

For all arms that are sampled in�nitely o�en, we therefore have µ∞, i = µi and σ �
∞, i = �. For

all arms that are sampled only a �nite number of times, i.e. i ∈ I , we have σ �
∞, i > �, and there

exists a time n� a�er which for all n ≥ n� and i ∈ I , we have Tn , i = Tn� , i . De�ne

Π∞ �N (µ∞,� , σ �
∞,�)⊗N (µ∞,� , σ �

∞,�)⊗ . . . ⊗N (µ∞,k , σ �
∞,k) =�

i�∈I
δµi ⊗�

i∈I
Πn� .

�en for each i ∈ A we de�ne

a∞, i � Π∞ �θ i >max
j≠i

θ j� .

�en we have for all i ∈ I , a∞, i ∈ (�, �), since σ �
∞, i > �, and thus a∞,I� < �.

When I is empty, we have an ,I� = Πn(θ I� > maxi≠I� θ i), but since Π∞ = �i∈A δµi , we have
a∞,I� = � and a∞, i = � for all i ≠ I�.
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�.I Proof ofPosteriorConvergence for theBernoulli Bandit

�.I.� Preliminaries
We �rst introduce a crucial Beta tail bound inequality. Let FBeta

a ,b denote the cdf of a Beta
distributionwith parameters a and b, and FB

c ,d the cdf of a Binomial distributionwith parameters
c and d, then we have the following relationship, o�en called the ‘Beta-Binomial trick’,

FBeta
a ,b (y) = � − FB

a+b−�,y(a − �),

so that we have

P [X ≥ x] = P [Ba+b−�,x ≤ a − �] = P [Ba+b−�,�−x ≥ b] .

We can bound Binomial tails with Sanov’s inequality:

e−nd(k�n ,x)

n + �
≤ P [Bn ,x ≥ k] ≤ e−nd(k�n ,x) ,

where the last inequalities hold when k ≥ nx.

Lemma ��. Let X ∼ Beta(a, b) and Y ∼ Beta(c, d) with � < a−�
a+b−� <

c−�
c+d−� . �en we have

P [X > Y] ≤ De−C where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

and
D = � +min�Ca ,b �

c − �
c + d − �

� ,Cc ,d �
a − �

a + b − �
�� .

Note that this lemma is the Bernoulli version of Lemma �.

�eorem �.��. Consider the Beta-Bernoulli setting. For β ∈ (�, �), under any allocation rule
satisfying Tn ,I��n → ωβ

I� ,

lim
n→∞
− �
n
log(� − an ,I�) ≤ Γ�β ,

and under any allocation rule satisfying Tn , i�n → ωβ
i for each i ∈ A,

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

Proof. Denote again with I again the set of arms sampled only �nitely many times. For I empty,
we thus have µ∞, i � limn→∞ µn , i = µi .�e posterior variance is

σ �
n , i =

αn , iβn , i
(αn , i + βn , i)�(αn , i + βn , i + �)

= (� +∑
n−�
`=� 1{I` = i}Y`,I`)(� + Tn , i −∑n−�

`=� 1{I` = i}Y`,I`)
(� + Tn , i)�(� + Tn , i + �)

.

We see that when I is empty, we have σ �
∞, i � limn→∞ σ �

n , i = �, i.e., the posterior is concentrated.
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Step �: A lower bound when some arms are sampled only �nitely o�en. First, note that
when Tn , i = � for some i ∈ A, the empirical mean for that arm equals the prior mean

µn , i = α�, i�(α�, i + β�, i),

and the variance is strictly positive:

σ �
n , i = (α�, iβ�, i)� �(α�, i + β�, i)�(α�, i + β�, i + �)� > �.

When I is not empty, then for every i ∈ I we have σ �
∞, i > �, and a∞, i ∈ (�, �), implying

a∞,I� < �, and thus

lim
n→∞
− �
n
log (� − an ,I�) = −

�
n
log (� − a∞,I�) = �.

Step �: A lower bound when every arm is sampled in�nitely o�en. Suppose now that I is
empty, then we have

max
i≠I� Πn(θ i ≥ θ I�) ≤ � − an ,I� ≤ �

i≠I�
Πn(θ i ≥ θ I�) ≤ (k − �)max

i≠I� Πn(θ i ≥ θ I�).

�us, we have �−an ,I� ≤ (k−�)maxi≠I� Πn(θ i ≥ θ I�) and also �−an ,I� �maxi≠I� Πn(θ i ≥ θ I�).
We have

Γ� =max
w∈W

min
i≠I� Ci(ωI� ,ω i),

Γ�β = max
w∈W ;ωI�=β

min
i≠I� Ci(β,ω i), with

Ci(ωI� ,ω i) =min
x∈R

ωI�d(θ I� ; x) + ω i d(θ i ; x) = ωI�d(θ I� ; θ) + ω i d(θ i ; θ),

where θ ∈ [θ i , θ I�] is the solution to

A′(θ) = ωI�A′(θ I�) + ω iA′(θ i)
ωI� + ω i

.

Since every arm is sampled in�nitely o�en, when n is large, we have µn ,I� > µn , i . De�ne
Sn , i � ∑n−�

`=� 1{I` = i}Y`,I` . Recall that the posterior is a Beta distribution with parameters
an , i = Sn , i + � and βn , i = Tn , i − Sn , i + �. Let τ ∈ N be such that for every n ≥ τ, we have
Sn , i�(Tn , i + �) < Sn ,I��(Tn ,I� + �). For the sake of simplicity, we de�ne for any i ∈ A the interval

Ii ,I� � �
Sn , i

Tn , i + �
,

Sn ,I�
Tn ,I� + �

� .

�en using Lemma �� with a = Sn , i + �, b = Tn , i − Sn , i + �, c = Sn ,I� + �, d = Tn ,I� − Sn ,I� + �, we
have

Πn(θ i − θ I� ≥ �) ≤ D exp�− inf
y∈I i ,I�

CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)� .
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�is implies

�
n
log
�
�

Πn(θ i ≥ θ I�)
exp�− inf y∈I i ,I� CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)�

�
�
≤ �
n
log(D),

which goes to zero as n goes to in�nity. Indeed replacing a, b, c, d by their values in the de�nition
of D we get

D ≤ � + (Tn , i − �)kl �
Sn , i

Tn , i + �
;

Sn ,I�
Tn ,I� + �

�

≤ � + (n + �)kl ��; n
n + �

�

= (n + �) log(n + �) .

Hence,

Πn(θ i ≥ θ I�) � exp�− inf
y∈I i ,I�

CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)� .

We thus have for any i,

� − an , i �max
j≠I� Πn �θ j ≥ θ I��

�max
j≠I� exp�− inf

y∈I j ,I�
CSn , j+�,Tn , j−Sn , j+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)�

� exp�−nmin
j≠I� inf

y∈I j ,I�
Tn , j + �

n
kl �

Sn , j
Tn , j + �

; y� + Tn ,I� + �
n

kl � Sn ,I�
Tn ,I� + �

; y��

≥ exp�−nmax
ω

min
j≠I� inf

y∈I j ,I�
ω i kl �

Sn , j
Tn , j + �

; y� + ωI�kl �
Sn ,I�

Tn , j + �
; y�� .

Fix some ε > �, then there exists some n�(ε) such that for all n ≥ n�(ε), we have for any j,

I j ,I� = �
Sn , j

Tn , j + �
,

Sn ,I�
Tn ,I� + �

, � ⊂ �µ j + ε, µI� − ε� � I�j ,ε ,

and because KL-divergence is uniformly continuous on the compact interval I�j ,ε , there exists
an n� such that for every n ≥ n� we have

kl �
Sn , j

Tn , j + �
; y� ≥ (� − ε)kl �µ j ; y� ,

for any y and for all j ∈ A.�erefore, we have

� − an , i � exp�−nmax
ω

min
j≠I� inf

y∈I j ,I�
ω j kl �

Sn , j
Tn , j + �

; y� + ωI�kl �
Sn ,I�

Tn ,I� + �
; y��

≥ exp
�������
−nmax

ω
min
i≠I� inf

y∈I�j ,ε
ω i kl(µ j ; y) + ωI�kl(µI� ; y)

�������
.
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�erefore, we have

lim sup
n→∞

− �
n
log(� − an , i) ≤ Γ� .

If Tn , i�n → ω�i for each i ∈ A, we have

lim
n→∞

inf
y∈I i ,I�

Tn , i + �
n

kl � Sn , i
Tn , i + �

; y� + Tn ,I� + �
n

kl � Sn ,I�
Tn , i + �

; y�

= inf
y∈[µi , µI� ]

ω�i kl(µi ; y) + ω�I�kl(µI� ; y)

= Γ� ,

and thus

� − an , i � exp�−nmax
ω

min
j≠I� inf

y∈I�ε
ω i kl(µ j ; y) + ωI�kl(µI� ; y)�

� exp{−nΓ�} ,

implying

lim
n→∞
− �
n
log (� − an , i) = Γ� .

Everything goes similarly when ωI� = β ∈ (�, �), so under any sampling rule satisfying
Tn ,I��n → β we have

lim sup
n→∞

− �
n
log(� − an , i) ≤ Γ�β

and under any sampling rule satisfying Tn , i�n → ωβ
i for each i ∈ A, we have

lim
n→∞
− �
n
log(� − an , i) = Γ�β .

�.I.� Proof of�eorem �.��, Bernoulli case
�eorem �.��. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

From�eorem �.�� we know that under any allocation rule satisfying Tn , i�n → ωβ
i for every

i ∈ A, we have

lim
n→∞
− �
n
log (� − an ,I�) = Γ�β .
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�us, we only need to prove that under TTTS, for all i ∈ A, we have

lim
n→∞

Tn , i

n
a .s= ωβ

i .

Just as for the proof of the Gaussian case, we can use Lemma � (proof in Appendix �.H.�), which
implies

lim
n→∞

Tn , i

n
a .s= ωβ

i ⇔ lim
n→∞

Ψn , i

n
a .s= ωβ

i .

�erefore, it su�ces to show convergence for ψn , i = Ψn , i�n to ωβ
i , which we will do next,

following the same steps as in the proof for the Gaussian case.

Step �: TTTS draws all arms in�nitely o�en and satis�es Tn ,I��n → β. We prove the follow-
ing lemma.

Lemma ��. Under TTTS, it holds almost surely that

�. for all i ∈ A, limn→∞ Tn , i =∞.

�. an ,I� → �.

�. Tn ,I�
n → β.

Proof. First, we give a lemma showing the implications of �nite measurement, and consistency
when all arms are sampled in�nitely o�en, which provides a proof for �. �e proof of this
lemma follows from the proof of�eorem �.��, and is given in Appendix �.I.�.

Lemma �� (Consistency and implications of �nite measurement).
Denote with I the arms that are sampled only a �nite amount of times:

I = {i ∈ {�, . . . , k} ∶ ∀n, Tn , i <∞}.

If I is empty, an , i converges almost surely to �when i = I� and to �when i ≠ I�. If I is non-empty,
then for every i ∈ I , we have lim inf n→∞ an , i > � a.s.

Nowwe can show �. of Lemma ��: we show that under TTTS, for each j ∈ A, we have∑n∈N Tn , j =
∞.�e proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
,

so ψn , i ≥ βan , i , therefore, by Lemma ��, if i ∈ I , then lim inf an , i > � implies that∑n ψn , i =
∞. By Lemma �, we then must have that limn→∞ Tn , i = ∞ as well: contradiction. �us,
limn→∞ Tn , i =∞ for all i, and we conclude that an ,I� → �, by Lemma ��.
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Lastly we prove point �. of Lemma ��. For TTTS with parameter β, the above implies that
ψn ,I� → β, and since we have a bound on �Tn , i�n − ψn , i � in Lemma �, we have Tn ,I��n → β as
well.

Step �: Controlling the over-allocation of sub-optimal arms. Following the proof for the
Gaussian case again, we can establish a consequence of the convergence of Tn ,I��n to β : if an
arm is sampled more o�en than its optimal proportion, the posterior probability of this arm to
be optimal is reduced compared to that of other sub-optimal arms. We can prove this by using
ingredients from the proof of the lower bound in�eorem �.��.

Lemma �� (Over-allocation implies negligible probability). �

Fix any ξ > � and j ≠ I�. With probability �, under any allocation rule, if Tn ,I��n → β, there
exist ξ′ > � and a sequence εn with εn → � such that for any n ∈ N,

Tn , j

n
≥ ωβ

j + ξ �⇒
an , j

maxi≠I� an , i
≤ e−n(ξ

′
+εn) .

Proof. By�eorem �.��, we have, as Tn ,I��n → β,

lim sup
n→∞

− �
n
log�max

i≠I� an , i� ≤ Γ
�

β ,

since maxi≠I� an , i ≤ � − an ,I� . We also have from Lemma �� a deviation inequality, so that we
can establish the following logarithmic equivalence:

an , j ≤ Πn(θ j ≥ θ I�) � exp�−nCj �wn ,I� ,ωn , j�� � exp�−nCj �β,ωn , j�� ,

where we denote ωn , j �
Tn , j
n . We can combine these results, which implies that there exists a

non-negative sequence εn → � such that

an , j
maxi≠I� an , i

≤
exp�−nCj �β,ωn , j� − εn���

exp�−n(Γ�β + ε��)�
= exp�−n �Cj �β,ωn , j� − Γ�β � − εn� .

We know that Cj �β,ωβ
j � is strictly increasing in ωβ

j , and Cj �β,ωβ
j � = Γ

�

β , thus, there exists
some ξ′ > � such that

ωn , j ≥ ωβ
j + ξ �⇒ Cj �β,ωn , j� − Γ�β > ξ′ .

�analogue of Lemma �� of Russo, ����
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Step �:ψn , i converges to ω
β
i for all arms. To establish the convergence of the allocation e�ort

of all arms, we rely on the same su�cient condition used in the analysis of Russo, ����, restated
above in Lemma ��, and we will restate it here again for convenience.

Lemma �� (Su�cient condition for optimality).
Consider any adaptive allocation rule. If

ψn ,I� → β, and �
n∈N

ψn , j��ψn , j ≥ ω
β
j + ξ� <∞, ∀ j ≠ I� , ξ > �, (�.��)

then ψn → ψβ .

First, note that from Lemma ��we know that Tn ,I�
n → β, and by Lemma � this implies ψn ,I� → β,

hence we can use the lemma above to prove convergence to the optimal proportions. �is
proof is already given in Step � of the proof for the Gaussian case, and since it does not depend
on the speci�cs of the Gaussian case, except for invoking Lemma �� (consistency), which
for the Bernoulli case we replace by Lemma ��, it gives a proof for the Bernoulli case as well.
We conclude that (�.��) holds, and the convergence to the optimal proportions follows by
Lemma ��.

�.I.� Proof of auxiliary lemmas

Lemma ��. Let X ∼ Beta(a, b) and Y ∼ Beta(c, d) with � < a−�
a+b−� <

c−�
c+d−� . �en we have

P [X > Y] ≤ De−C where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

and

D = � +min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

�� .

Proof

P [X > Y] = E [P [X > Y �Y]] ≤ E �1{Y < a − �
a + b − �

} + 1{Y ≥ a − �
a + b − �

}P [X > Y �Y]�

≤ exp�−(c + d − �)kl � c − �
c + d − �

;
a − �

a + b − �
��

+ E �exp�−(a + b − �)kl � a − �
a + b − �

;Y��1{Y ≥ a − �
a + b − �

}�
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A

,
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Using the Beta-Binomial trick in the second inequality. Furthermore, we have

A ≤ E �1{ a − �
a + b − �

≤ Y ≤ c − �
c + d − �

}� exp�−(a + b − �)kl � a − �
a + b − �

;Y��
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

B

+ exp�−(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
��

Denote with f the density of Y , then

B = �
c−�

c+d−�
a−�

a+b−�
exp�−(a + b − �)kl � a − �

a + b − �
; y�� f (y)dy.

Via integration by parts we obtain

B = �exp�−(a + b − �)kl � a − �
a + b − �

; y��P [Y ≤ y]�
c−�

c+d−�
a−�

a+b−�

+�
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y� exp{−Ca ,b(y)}P(Y ≤ y)dy

≤ �
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y� exp{−(Ca ,b(y) + Cc ,d(y))}dy

+ exp�−(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
�� ,

where the �rst inequality uses the Binomial trick again. Let

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�
(a + b − �)kl � a − �

a + b − �
; y� + (c + d − �)kl � c − �

c + d − �
; y�

= inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

then note that in particular we have

C ≤min�(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
� , (c + d − �)kl � c − �

c + d − �
;

a − �
a + b − �

��

=min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

�� .

�en

B ≤ e−C �
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y�dy + e−C

= �(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
� + �� e−C .
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�us we have

P [X > Y] ≤ �� + (a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
�� e−C .

By symmetry, we have

P [X > Y] ≤ �� +min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

��� e−C ,

where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�
(a + b − �)kl � a − �

a + b − �
; y� + (c + d − �)kl � c − �

c + d − �
; y� .

Proof of Lemma �� Let I be empty, then we have µ∞, i � limn→∞ µn , i = µi .�e posterior
variance is

σ �
n , i =

αn , iβn , i
(αn , i + βn , i)�(αn , i + βn , i + �)

= (� +∑
n−�
`=� 1{I` = i}Y`,I`)(� + Tn , i −∑n−�

`=� 1{I` = i}Y`,I`)
(� + Tn , i)�(� + Tn , i + �)

,

We see that when I is empty, we have σ �
∞, i � limn→∞ σ �

n , i = �, i.e., the posterior is concentrated.

When Tn , i = � for some i ∈ A, the empirical mean for that arm equals the prior mean

µn , i = α�, i�(α�, i + β�, i),

and the variance is strictly positive:

σ �
n , i = (αn , iβn , i)� �(α�, i + β�, i)�(α�, i + β�, i + �)� > �.

When I is not empty, then for every i ∈ I we have σ �
∞, i > �, and α∞, i ∈ (�, �), implying

α∞,I� < �, hence the posterior is not concentrated.
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Chapter �

Discussion and future work

In this chapter I concisely review the previous six chapters of this dissertation, and explore
some open challenges and possible directions for future work.

�.� Forward-looking Bayesians
In Chapter � we studied the failure of weak truth-merger of Wenmackers and Romeijn’s open-
minded Bayesians, and we proposed two versions of forward-looking open-minded Bayesians
that do weakly merge with the truth when the truth is added at some point in time. In Chapter �
we only focus on how to incorporate new hypotheses. A direction for future research, possibly
for me and my co-author on this chapter, is to formalise when new hypotheses should be
considered, and to investigate how this interacts with the guarantee of truth-merger.

Chapter � inspired the following idea for a future project for myself in the area of continuous-
armed best-arm identi�cation inmachine learning.�is protocol can be viewed as similar to the
protocol of the forward-looking Bayesians, if we let arms correspond to hypotheses, however, it
is still unclear what the relation is between truth-merger and identi�cation.�e algorithms
proposed in papers on best-arm identi�cation in continuous-armed bandits (Bubeck, Munos
and Stoltz, ����; Carpentier and Valko, ����; Aziz et al., ����) employ two phases: First, a
�nite subset of arms from a continuous reservoir is selected, and subsequently a �nite-armed
bandit algorithm is run on this subset to identify the best arm. An interesting idea would be
to propose an algorithm that decides during the learning process to add (or remove) arms
from the �nite set under consideration, which might lead to simple regret bounds scaling
better in the con�dence parameter δ in the �xed-con�dence setting. Another future course
would be to propose a Bayesian algorithm for best-arm identi�cation in continuous-armed
bandits, which can also be seen as an extension of the algorithms discussed in Chapter �, see
also the upcoming Section �.�.�is is both conceptually interesting because of the link with
the forward-looking Bayesians and Bayesian con�rmation theory, and also interesting because
the Bayesian sampling rules of Chapter � do not depend on a con�dence parameter or time

���
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horizon.�e combination of these two challenges is to propose a Bayesian algorithm for best-
arm identi�cation in continuous-armed bandits that adds or removes arms in course of the
learning process.�is algorithm could also provide some insights for the problem of when to
add new hypotheses in the framework of the forward-looking Bayesians.

�.� Hypothesis testing
Chapters � and � deal with the question whether Bayes factor hypothesis testing is robust
under optional stopping.�e bottom line of these chapters is that the answer to this question
depends on one’s perspective on Bayesianism (see also Section �.�) and which de�nition of
optional stopping one employs — we give three distinct mathematical de�nitions in Chapter �.
It is remarkable how resolutely some authors advocate the use of their favourite method for
hypothesis testing, and how �rm their reproach sometimes is to other authors who nuance or
criticise claims about these methods, see for example (Benjamin et al., ����) and (McShane
et al., ����); and even before being published, Chapter � provoked several responses (Rouder,
����; Wagenmakers, Gronau and Vandekerckhove, ����; Rouder and Haaf, n.d.) . In light of
this �erce defence of some speci�c methods for hypothesis testing, an interesting project would
be to investigate the role of hypothesis testing in the behavioural sciences. In a paper related to
this subject, Gigerenzer and Marewski (����) argue that “determining signi�cance has become
a surrogate for good research”.�e current discussion on optional stopping with Bayes factors
that is the subject of Chapter � seems to be an example of that shi� in focus from the actual goals
of science to the surrogate of “mindless mechanical statistics”. Goals of science include gaining
knowledge about the world around us, and hypothesis testing is one of the means scientists
have at their disposal to achieve that. How clear this distinction between goals and means is in
current research in the behavioural sciences, and what the role of hypothesis testing in scienti�c
research should be, are subjects to be addressed, possibly by philosophers of science.

In Chapter � we proposed a new theory for hypothesis testing based on �-values. From a
practical perspective, it is now important to develop so�ware for calculating �-values for
common hypothesis tests, so that practitioners can start working with �-value based hypothesis
tests. From a theoretical perspective, there are some open questions arising in particular from
the combination of Chapter � and �.�e former chapter provides results showing that using
the right Haar prior in general group invariant cases leads to �-values, however, in Chapter � is
only shown that these are GROW �-values for the particular (important) case of the t-test. An
objective for future work is thus to extend this to a general group-invariant setting. Further goals
for future work on Safe Testing include the construction of con�dence intervals by inverting
a safe test. When this safe test constitutes a test martingale, these con�dence intervals are
always valid con�dence intervals in the sense of Howard et al.’s ����b framework of uniform,
nonparametric, non-asymptotic con�dence sequences (Darling and Robbins, ����; Lai, ����).
�e intuitions behind the construction of safe tests can lead to other constructions of con�dence
intervals. Further future objectives are to investigate the connections of safe testing to Shafer
and Vovk’s ���� game-theoretic probability framework, and to the framework of always-valid
�-values (Robbins, ����; Robbins and Siegmund, ����; Robbins and Siegmund, ����; Johari,
Pekelis and Walsh, ����).�e group of prof. Grünwald at CWI is working on these practical
and theoretical challenges.
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�.� Safe-Bayesian generalised linear regression
Chapter � provides theoretical evidence that η-generalised Bayes can outperform standard
Bayes for generalised linear models, and provides empirical evidence for Bayesian lasso and
logistic regression. We also provided MCMC samplers for the generalised Bayesian lasso and
logistic regression.�e Gibbs sampler for the latter is based on a Pólya-Gamma latent variable
scheme, in which the Pólya-Gamma random variable is approximated by a truncated sum
of weighted Gamma random variables. Our current implementation is slow and unable to
deal with high-dimensional data, presumably because of the approximation via the truncated
sum.�ere exist another implementation of Bayesian logistic regression, in the programming
language STAN (Carpenter et al., ����), using No-U-Turn-Sampling (Ho�man and Gelman,
����), which is an extension of Hamiltonian Monte Carlo (HMC) (Duane et al., ����). An
interesting direction for future work, possibly for amaster’s or PhD student, would be to develop
HMC algorithms for η-generalised Bayesian methods. �is could also lead to a better and
possibly faster implementation of η-generalised Bayesian logistic regression.

An issue with generalised Bayesian methods is the dependency on the learning rate parameter
η. Grünwald’s ���� Safe-Bayesian algorithm provably �nds the appropriate η for bounded
excess loss functions and likelihood ratio’s, and experiments of Grünwald and Van Ommen
(����) and Chapter � indicate that SafeBayes performs excellently in the unbounded case as
well, but theoretical guarantees still need to be established. Furthermore, a drawback of the
Safe-Bayesian algorithm is that it is computationally very slow. Another future objective is to
propose a faster algorithm for learning η, possibly based on cross-validation, naturally together
with theoretical guarantees, e.g. that the data distribution satis�es the central condition at the
learning rate η output by the algorithm.

Objectives for future work thus are:

• providing a better MCMC sampler for η-generalised logistic regression, possibly via
Hamiltonian Monte Carlo,

• providing MCMC samplers for other η-generalised GLMs,
• providing guarantees on the Safe-Bayesian algorithm for the unbounded case,
• proposing a faster algorithm than SafeBayes for learning the appropriate learning rate η,
together with

• providing theoretical guarantees for this algorithm.

�.� Pure exploration
In Chapter � we studied two Bayesian sampling rules, TTTS and T3C, for best-arm identi-
�cation (BAI) in the �xed con�dence setting. We introduced the notion of asymptotic β-
optimality and proved that TTTS and T3C are asymptotically β-optimal.�is optimality notion
has two drawbacks. First, in order to be optimal, we would need the unknown true optimal
β� = argmaxβ∈[�,�] Γ

�

β . Secondly, the guarantees are asymptotic, whereas �nite-time sample
complexity bounds would be more practicable.

Evident objectives for my future work are:
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• �xed-con�dence guarantees with online tuning of β for TTTS and T3C,
• �nite-time sample complexity bounds,
• an extension to continuous-armed bandit models (see Section �.� above), and
• �xed-budget guarantees.

Furthermore, Chapter �provides a piece of the puzzle of the following twobigger pictures.

Any-time sampling rules BAI has been studied in di�erent frameworks: the �xed-budget
setting, the �xed-con�dence setting, which has been studied in Chapter �, and the any-time
BAI setting, introduced by Jun and Nowak, ����. In the any-time setting, the sampling rule
does not depend on the risk parameter or the budget.�e �rst sampling rule for BAI that does
not depend on the risk parameter is the tracking rule proposed by Garivier and Kaufmann
(����). �e sampling rules studied in Chapter �, TTTS and T3C, are also examples of any-
time sampling rules.�is sparks the question: does there exist a sampling rule that is, albeit
with modi�cations depending on the setting and objective, optimal in all settings?�ompson
sampling (TS) could be a possible candidate for this: vanilla TS for regretminimization, TTTS for
�xed-con�dence best-arm identi�cation, and (see below), Murphy sampling for the minimum
of means problem.

Pure-exploration objectives Pure exploration problems can have other objectives than �nd-
ing the best arm. Naturally, di�erent objectives require di�erent sampling rules. However, an
interesting avenue for future work is to investigate how the lower bounds and sampling rules
for the di�erent objectives and frameworks relate. Here are two pure-exploration problems
with objectives di�erent from BAI.

Kaufmann, Koolen and Garivier (����) study a problem related to BAI:�ey consider the task
of adaptively learning how the minimum mean of a �nite set of arms compares to a given
threshold.�ey provide a lower bound on the sample complexity in the �xed-con�dence setting,
and propose an algorithm inspired by TTTS, calledMurphy Sampling. Murphy Sampling is, just
as TTTS and T3C, an any-time sampling rule. An open problem is to �nd a �xed-budget lower
bound and algorithm for this problem.

Antos, Grover and Szepesvári (����) and Carpentier et al. (����) study the problem of estimating
the means of a �nite number of arms in the �xed-budget setting uniformly well.�e objective
is to minimise the worst expected squared error loss of the arms, and the performance of
the algorithm is measured by comparing its loss to that of the optimal allocation algorithm,
that is, regret.�is notion of regret is however not cumulative, and this problem is therefore
more related to the pure-exploration setting than to the standard MAB framework.�is is also
re�ected in the property that good strategies for this problem should play all arms linearly in
the number of draws, whereas in the standard stochastic bandit setting suboptimal arms should
be played logarithmically in the number of draws.�e problem can be extended to learning the
transition probabilities of Markov Chains (Talebi and Maillard, ����). An open problem is to
�nd problem-dependent lower bounds for this problem. Furthermore, the algorithms proposed
in both papers depend on the budget and/or the con�dence level. An interesting avenue for
future work is to �nd a problem-dependent lower bound and to propose an any-time, possibly
�ompson Sampling related sampling rule.



References

Y. Abbasi-Yadkori, D. Pál and C. Szepesvári (����). “Online-to-con�dence-set conversions and applic-
ation to sparse stochastic bandits”. In: Proceedings of the ��th International Conference on Arti�cial
Intelligence and Statistics (AIStats) (p. ���).

V. Amrhein, S. Greenland and B. McShane (����). Scientists rise up against statistical signi�cance (pp. ���,
���, ���).

S. Andersson (����). “Distributions of Maximal Invariants Using Quotient Measures”. In:�e Annals of
Statistics ��.�, pp. ���–��� (pp. ��, ���, ���).

A. Antos, V. Grover and C. Szepesvári (����). “Active learning in heteroscedastic noise”. In:�eoretical
Computer Science ���.��-��, pp. ����–���� (p. ���).

J.B. Asendorpf et al. (����). “Reducing bias due to systematic attrition in longitudinal studies:�e bene�ts
of multiple imputation”. In: International Journal of Behavioral Development ��.�, pp. ���–��� (p. �).

J-Y. Audibert and S. Bubeck (����). “Best arm identi�cation in multi-armed bandits”. In: Proceedings of
the ��rd Conference on Learning�eory (CoLT) (pp. ��, ���).

P. Auer, N. Cesa-Bianchi and P. Fischer (����). “Finite-time analysis of the multi-armed bandit problem”.
In:Machine Learning Journal ��.�-�, pp. ���–��� (p. ���).

M. Aziz et al. (����). “Pure exploration in in�nitely-armed bandit models with �xed-con�dence”. In:
Proceedings of the ��th International Conference on Algorithmic Learning�eory (ALT). arXiv: ����.
����� (p. ���).

A. Balsubramani and A. Ramdas (����). “Sequential nonparametric testing with the law of the iterated
logarithm”. In: Proceedings of the�irty-Second Conference on Uncertainty in Arti�cial Intelligence,
pp. ��–�� (pp. ���, ���).

G.A. Barnard (����). “Review of Sequential Analysis by Abraham Wald”. In: Journal of the American
Statistical Association ��.��� (pp. ��, ���).

G.A. Barnard (����). “Statistical inference”. In: Journal of the Royal Statistical Society. Series B (Methodolo-
gical) ��.�, pp. ���–��� (p. ��).

G.A. Barnard and D.R. Cox, eds. (����).�e Foundations of Statistical Inference: A Discussion. Methuen’s
Monographs on Applied Probability and Statistics. London: Methuen (p. ��).

O.E. Barndor�-Nielsen (����). Information and Exponential Families in Statistical�eory. Chichester, UK:
Wiley (pp. ���, ���, ���).

A. Barron, J. Rissanen and B. Yu (����). “�e Minimum Description Length principle in coding and mod-
eling”. In: IEEE Transactions on Information�eory ��.�. Special Commemorative Issue: Information
�eory: ����-����, pp. ����–���� (pp. ��, ���, ���).

A.R. Barron and T.M. Cover (����). “Minimum complexity density estimation”. In: Information�eory,
IEEE Transactions on ��.�, pp. ����–���� (p. ���).

P.L. Bartlett, O. Bousquet and S. Mendelson (����). “Local Rademacher complexities”. In:�e Annals of
Statistics ��.�, pp. ����–���� (pp. ���, ���, ���).

���

https://arxiv.org/abs/1803.04665
https://arxiv.org/abs/1803.04665


��� References

M.J. Bayarri et al. (����). “Criteria for Bayesian model choice with application to variable selection”. In:
�e Annals of statistics ��.�, pp. ����–���� (pp. ��, ���, ���, ���).

M.J. Bayarri et al. (����). “Rejection odds and rejection ratios: A proposal for statistical practice in testing
hypotheses”. In: Journal of Mathematical Psychology ��, pp. ��–��� (pp. ��, ��, ���).

G. Belot (����). “Bayesian Orgulity”. In: Philosophy of Science ��.�, pp. ���–��� (p. ��).
D.J. Benjamin et al. (����). “Rede�ne statistical signi�cance”. In: Nature Human Behaviour �.�, p. � (pp. ��,

���, ���, ���).
J.O. Berger (����). Statistical Decision�eory and Bayesian Analysis. revised and expanded �nd. Springer

Series in Statistics. New York: Springer-Verlag (pp. ��, ��, ���).
J.O. Berger (����). “Could Fisher, Je�reys and Neyman Have Agreed on Testing?” In: Statistical Science

��.�, pp. �–�� (pp. ���, ���, ���).
J.O. Berger (����). “�e case for objective Bayesian analysis”. In: Bayesian Analysis �.�, pp. ���–��� (pp. �,

��, ��).
J.O. Berger, J.M. Bernardo, D. Sun et al. (����). “Overall objective priors”. In: Bayesian Analysis ��.�,

pp. ���–��� (p. ���).
J.O. Berger, L.D. Brown and R.L. Wolpert (����). “A Uni�ed Conditional Frequentist and Bayesian Test for

Fixed and Sequential Simple Hypothesis Testing”. In: Annals of Statistics ��.�, pp. ����–���� (pp. ���,
���).

J.O. Berger, L.R. Pericchi and J.A. Varshavsky (����). “Bayes factors andmarginal distributions in invariant
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Samenvatting

Dit proefschri� gaat over het leren van data op een Bayesiaanse wijze. Statistiek en machine
learning gaan over de vraag hoe mensen en computers kunnen leren van data. Bayesiaanse
methodes worden in deze vakgebieden veel gebruikt, echter, ze hebben bepaalde beperkingen
en interpretatieproblemen die niet altijd worden onderkend. In twee hoofdstukken van dit
proefschri� onderzoekenwe een dergelijke beperking en omzeilenwe deze door een verruiming
van het standaardkader van de Bayesiaanse methode. In twee andere hoofdstukken nemen we
door hoe verschillende �loso�sche interpretaties van het Bayesianisme wiskundige de�nities
en stellingen beïnvloeden, en hoe dat zijn uitwerking hee� op de praktische toepassing van
Bayesiaanse methodes. In de overige twee hoofdstukken passen we zelf Bayesiaanse methodes
toe op een pragmatische wijze: enkel als werktuig voor een interessant statistisch probleem, een
probleem dat ook op een niet-Bayesiaanse manier had kunnen worden aangepakt.

Leren Als een onderzoeker iets wil leren over een onbekend proces, vindt er een interactie
plaats tussen haar en de data die door het proces zijn voortgebracht. De taak van de onderzoeker
is inductie: een manier van redeneren waarbij er op grond van waarnemingen tot een algemene
regel — een generalisatie — wordt gekomen. De onderzoeker begint met enkele veronder-
stellingen over het onbekende proces, omdat zonder deze voorkennis de datapunten op iedere
mogelijke manier zouden kunnen samenhangen en het onmogelijk is tot een generalisatie te
komen. Daarnaast bestaat er een verzameling van hypotheses die de onderzoeker kan opstellen
of onderzoeken: algemene beschrijvingen van het onbekende proces. In de context van dit
proefschri�, statistiek en machine learning, beschouwen we hypotheses die kunnen worden
uitgedrukt als een waarschijnlijkheidsverdeling over een uitkomstenruimte, en deze noemen we
statistische hypotheses. Een verzameling statistische hypotheses vormt een (statistisch)model.
Een model is een wiskundige weergave van de voorkennis.

Bayesianisme Naast een model en de data hebben we een laatste ingrediënt nodig voor
inductie: een methode. Het hoofdthema van dit proefschri� is de Bayesiaanse methode. In
essentie is dit een methode die niet alleen waarschijnlijkheidsverdelingen over de data hanteert,
maar ook over de statistische hypotheses. De onderzoeker begint met het speci�ceren van een
prior, een waarschijnlijkheidsverdeling die haar onzekerheid over de statistische hypotheses
uitdrukt, voordat ze hee� kennis genomen van de data. Na waarneming van de data, wordt
met de stelling van Bayes een posterior berekend: een conditionele waarschijnlijkheidsverdeling
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over de statistische hypotheses gegeven de data.

Bayesianisme is een term die verwijst naar een verzameling aan deze methode verwante ideeën
in verschillende takken van de wetenschap. Echter, het Bayesianisme bestaat niet: er zijn ver-
schillende stromingen, die er bijvoorbeeld verschillende theoriën op na houden over hoe de
priors tot stand komen. Twee noemenswaardige, invloedrijke stromingen zijn het subjectivisme
en het objectivisme. In de tweede hel� van dit proefschri� staat een derde stroming centraal:
het pragmatisme: onderzoekers die de Bayesiaanse methode niet uit �loso�sche overtuigingen
bezigen, maar enkel vanwege haar nuttige eigenschappen of andere praktische beweegredenen.
Discussies over de grondslagen van het Bayesianisme worden vaak in de �loso�e gevoerd; welke
stroming men aanhangt hee� nochtans consequenties voor de (statistische) praktijk: welke
priors men kiest, welke wiskundige de�nities men formuleert en welke stellingen men poneert,
hangt hier vanaf.

Misspeci�catie van het model Zoals hierboven beschreven, begint de onderzoeker met het
speci�ceren van een model en het toekennen van priorwaarschijnlijkheden aan zijn elementen.
Als het ware datagenererende proces onderdeel is van het model, en niet uitgesloten wordt
door de prior, is consistentie gegarandeerd: naar mate we meer en meer data verkrijgen, valt
de onderzoekers posterior meer en meer samen met de ware verdeling. Niettemin kan het
voorkomen dat het model gemisspeci�ceerd is: het ware datagenererende proces is geen onder-
deel van het model (of hee� prior nul toegekend gekregen). Dit kan op verschillende manieren
problematisch zijn en in dit proefschri� wordt de Bayesiaanse methode op twee verschillende
manieren uitgebreid om twee van deze problemen te boven te komen.

Ten eerste kan het gebeuren dat de onderzoeker tijdens het leerproces een nieuwe hypothese
bedenkt en deze wil toevoegen aan het model. In het standaardkader van de Bayesiaanse meth-
ode is dit in principe niet mogelijk: de onderzoeker moet de reeds verkregen data weggooien en
opnieuw beginnen met het toekennen van priorwaarschijnlijkheden aan de elementen van het
nieuwe, grotere model. In hoofdstuk � bestuderen we een ruimdenkende Bayesiaanse logica, die
het dynamisch bijvoegen van nieuwe hypotheses tijdens het leerproces mogelijk maakt.

Ten tweede kan het gebeuren dat we willen dat de Bayesiaanse posterior samenvalt met het beste
element in het model, in plaats van met de ware verdeling die buiten het model ligt. In hoofd-
stuk � laten we zien hoe dit kan mislukken met de Bayesiaanse standaardmethode. Vervolgens
verrichten we een aanpassing aan de stelling van Bayes: de aannemelijkheidsverdeling wordt
tot een macht verheven, en we noemen dit de gegeneraliseerde Bayesiaanse methode. Indien
deze macht gevoeglijk wordt gekozen, lost dit het probleem op, en valt de gegeneraliseerde
Bayesiaanse posterior na vergaring van data samenmet het beste element in het model, ondanks
de modelmisspeci�catie.

Optioneel stoppenmet de Bayes-factor-hypothesetoets De Bayes factor is een Bayesiaanse
methodiek voor hypothesetoetsen. In hoofdstuk � en � bestuderen we optioneel stoppen. In-
formeel betekent dit ‘tijdens het leerproces naar de tussenresultaten kijken om te beslissen of
er meer datapunten vergaard moeten worden’. Verschillende auteurs beweren dat Bayesiaanse
methodes bestand zijn tegen optioneel stoppen, maar het blijkt onduidelijk te zijn wat dat precies
betekent. In hoofdstuk � geven we drie verschillende wiskundige de�nities van deze uitspraak.
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In hoofdstuk � en � zetten we uiteen hoe het aanhangen van een van de stromingen van het
Bayesianisme invloed hee� op welke beweringen men kan doen in de praktijk. In hoofdstuk �
laten wij bijvoorbeeld zien dat sommige beweringen over optioneel stoppen met Bayes factors
alleen betekenis hebben als ze vanuit een puur subjectieve invalshoek worden gedaan, desalni-
ettemin worden deze beweringen vaak gedaan als zouden ze ook gelden voor een pragmatisch
Bayesiaanse benadering.

Een nieuwe theorie voor hypothesetoetsen In hoofdstuk � presenteren we een nieuwe the-
orie voor hypothesetoetsen. Deze theorie draait om het concept genaamd ‘�-variabele’ of
‘�-waarde’, een stochast die de mate van bewijs tegen de nulhypothese aanduidt en die in de
toekomst hopelijk de �-waarde zal vervangen in de toegepaste statistiek. Tevens introduceren
we een optimaliteitscriterium voor de constructie van �-variabelen, genaamd GROW, wat
een acroniem is voor het Engelse Growth-Optimal in Worst Case. Het blijkt dat de GROW
�-variabele een Bayesiaanse interpretatie kent, zij het met een geheel ander soort priors dan
priors die in de huidige Bayesiaanse praktijk worden gebruikt.

Identi�catie van de beste waarschijnlijkheidsverdeling In hoofdstuk � bestuderen we een
Bayesiaanse manier om uit een verzameling waarschijnlijkheidsverdelingen degene met de
hoogste verwachtingswaarde te onderscheiden. We kunnen aan de verschillende verdelingen,
die ook wel armen worden genoemd, een prior toekennen die de waarschijnlijkheid uitdrukt
dat deze verdeling de hoogste verwachtingswaarde hee�. Vervolgens stellen we een regel op
om op ieder tijdstip een arm te kiezen waarvan we een observatie willen ontvangen. Nadien
berekenenwe de posteriorwaarschijnlijkheid dat deze armde hoogste verwachtingswaarde hee�.
In hoofdstuk � bewijzen we asymptotische frequentistische garanties voor deze Bayesiaanse
strategie.
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