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Regulating aggression after social feedback is an important pre-
requisite for developing and maintaining social relations, espe-
cially in the current times with larger emphasis on online social
evaluation. Studies in adults highlighted the role of the dorsolat-
eral prefrontal cortex (DLPFC) in regulating aggression. Little is
known about the development of aggression regulation following
social feedback during childhood, while this is an important period
for both brain maturation and social relations. The current study
used a longitudinal design, with 456 twins undergoing two
functional MRI sessions across the transition from middle (7 to 9 y)
to late (9 to 11 y) childhood. Aggression regulation was studied
using the Social Network Aggression Task. Behavioral aggression after
social evaluation decreased over time, whereas activation in the
insula, dorsomedial PFC and DLPFC increased over time. Brain–behav-
ior analyses showed that increased DLPFC activation after negative
feedback was associated with decreased aggression. Change analyses
further revealed that children with larger increases in DLPFC activity
from middle to late childhood showed stronger decreases in aggres-
sion over time. These findings provide insights into the development
of social evaluation sensitivity and aggression control in childhood.

social evaluation | childhood | brain development | social rejection |
aggression regulation

Regulating emotions during social interactions is one of the
most important requirements for developing social rela-

tionships in childhood. With increasing age, children become
better at regulating their emotions (1), which has been suggested
to be related to the development of cognitive and behavioral
control functions between early childhood and adolescence (2,
3). In particular, receiving social evaluations such as acceptance
and rejection can result in positive and negative self-evaluation
(4). These social experiences can trigger control processes for the
purpose of socially adaptive self-protection, such as controlling
anger toward others (5, 6). Whereas adults have overall de-
veloped mechanisms to control behavioral responses to social
evaluation (7), these mechanisms are still developing during
adolescence (8).
Even though several studies have examined regulation pro-

cesses in the context of social evaluation in adolescence, few
studies have investigated the development of social emotion
regulation during childhood, despite empirical findings showing
that middle-to-late childhood marks the most rapid changes in
cognitive control (9–11). Moreover, although neuroimaging
studies have shed light on the underlying neurobiological
changes that subserve childhood development in cognitive con-
trol, most studies have relied on cross-sectional comparisons,
which hinders the possibility to examine within-person change.
The current study builds upon new insights in the neural pro-
cessing of social emotion regulation by examining change in
neural and behavioral social control in a longitudinal functional

MRI (fMRI) study in middle-to-late childhood. A second ques-
tion concerns whether changes in behavior and neural activation
are driven by genetic and/or environmental influences. This
question was addressed by testing behavioral and neural change
in a twin design including monozygotic (MZ) and dizygotic (DZ)
twins (12).
Neuroimaging research has shown that the significance of

social evaluation is deeply rooted in our brain. Social evaluation,
including social acceptance and rejection, has previously been
studied using ecologically valid social judgment paradigms, in
which participants’ profiles are evaluated by same-aged peers
(13–16). Developmental neuroimaging studies including adoles-
cent participants showed that receiving positive (acceptance)
relative to negative (rejection) social feedback was associated
with increased neural activity in the ventral medial prefrontal
cortex (MPFC), the anterior insula (AI), and the anterior cin-
gulate cortex (ACC) (17, 18). The Social Network Aggression
Task (SNAT) (7) is an extended social evaluation paradigm that
includes also a neutral-feedback condition and that provides
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participants with the opportunity to blast a loud noise toward the
peer that evaluated them (Fig. 1A). Consistent with prior studies
(19), it was found that both adults and children showed stronger
ACC and AI activity in this task after receiving both positive and
negative feedback (relative to neutral feedback), indicating that
these regions signal social-salient cues (7, 20). Despite these
findings for adults and adolescents, we currently have no
knowledge of the neural responses to social evaluation feedback
in childhood and their relation to behavioral aggression, even
though social evaluation is already taking place in children.
Nowadays, this topic is particularly relevant given that children
are continuously connected to—and evaluated by—each other
through multiplayer video gaming and social media (21).
It is well documented that social rejection can lead to ag-

gression and retaliation (6, 22–26). Controlling emotions elicited
by social evaluation feedback relies on cognitive control, that is,
individuals with better cognitive control functions show less ag-
gression following rejection, as signified by shorter noise blasts
(22). Moreover, increased activation in the dorsal ACC and AI
was related to less aggression after social rejection in adults with
high executive functioning, whereas adults with low executive
functioning showed increased aggression with increasing neural
activation (22). Prior studies in adults further showed that the
dorsolateral prefrontal cortex (DLPFC) might serve as a regu-
lating mechanism for aggression after social evaluation, such that
increased DLPFC activity after social rejection was related to
less behavioral aggression (7, 27). Furthermore, stronger func-
tional connectivity between the lateral PFC and limbic regions
was related to less retaliatory aggression (25). Moreover, as the
prefrontal cortex and executive functioning are still developing
throughout childhood, children may be more sensitive to ag-
gressive behavior after social rejection, as they might experience
more difficulty with the regulation of social emotions (2, 28).
Interestingly, prior theoretical perspectives have suggested

that DLPFC maturation is an important underlying mechanism
for developing a variety of control functions in childhood (2, 28).
Prior research revealed associations between DLPFC and be-
havioral aggression in 7- to 8-y-old children (20), although these
were less pronounced than in adults (7). Taken together, studies
in adults showed a link between cognitive control and regulation
of emotions after rejection in the ACC/insula (22) and DLPFC
(7), but no study to date has examined longitudinal developmental
changes in these brain regions in childhood in the context of social
evaluation. Moreover, the extent to which heritability and envi-
ronmental factors contribute to these developmental changes is
currently unknown.

The current study makes use of a developmental twin sample of
the Leiden Consortium on Individual Development (L-CID) (29).
This ongoing longitudinal twin study examines the development of
social evaluation and behavioral control in 7- to 13-y-old children.
The current study includes the first two fMRI assessments, sepa-
rated by 2 y. A total of 492 same-sex twins (246 families) underwent
two fMRI sessions across the transition from middle childhood (7
to 9 y) to late childhood (9 to 11 y). Using this unique study design,
we address the following three research questions: 1) How does
aggression regulation following social evaluation change longitu-
dinally in middle to late childhood? 2) To what extent are behav-
ioral changes related to (changes in) neural responses? 3) To what
extent are changes in aggression regulation and associated neural
responses explained by genetic and environmental influences?
Using linear mixed-effects modeling, we first investigated how

behavioral aggression after positive, negative, and neutral social
feedback changed over time. Next, we investigated changes in
brain responses related to positive, negative, and neutral social
feedback longitudinally and examined brain–behavior associations.
Based on previous studies (14, 20, 30), we selected the AI, the
dorsomedial PFC (DMPFC), the ventrolateral PFC (VLPFC), and
DLPFC as regions of interest (ROIs) (Fig. 2 and SI Appendix, Fig.
S2). To examine individual differences in aggression regulation, we
additionally performed exploratory brain–behavior MRI analyses
to test for relations between brain activation and aggression reg-
ulation. These brain–behavior associations were followed by be-
havioral genetic modeling, using specific structural equation
models based on twin similarities that provide estimates for
heritability (31).

Results
Behavioral Aggression following Social Evaluation. To test whether
behavioral aggression decreased with increasing age, we performed
a linear mixed-effect model on noise blast duration after social
feedback across two waves. The linear mixed effect model for noise
blast duration showed the expected main effect of type of social
feedback (SI Appendix, Table S6). Noise blast duration was longer
after negative feedback compared with neutral feedback, and
shortest after positive feedback (all pairwise comparisons, P <
0.001). We also found the expected main effect of wave (SI Ap-
pendix, Table S6), with shorter noise blast durations at wave 2
(W2) compared with wave 1 (W1), indicating a decrease of be-
havioral aggression over time regardless of feedback valence.
Follow-up analyses per condition showed that this decrease over
time was significant for positive [t(2197) = 11.48, P < 0.001],
neutral [t(2197) = 6.62, P < 0.001], and to a lesser extent also for
negative social feedback [t(2197) = 3.56, P < 0.001]. Moreover,

Fig. 1. SNAT. (A) Visualization of one trial with negative social feedback. (B) Mean noise blast duration is influenced by condition (positive, neutral, neg-
ative), wave, and the interaction between condition and wave. Error bars represent SE of mean.
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there was a significant condition × wave interaction effect (SI
Appendix, Table S6). As can be seen in Fig. 1B, noise blast duration
decreased more strongly between W1 and W2 after positive
feedback than after negative feedback (F = 23.75, P < 0.001) and
more after positive feedback than after neutral feedback (F =
16.27, P < 0.001). The same result was observed for neutral
feedback: noise blast duration decreased more strongly between
W1 and W2 after neutral feedback than after negative feedback
(F = 5.00, P = 0.025). That is, over time, children showed a de-
crease in noise blast duration, and this effect was most pronounced
for noise blasts following positive feedback (Fig. 1B).

Confirmatory ROI Analyses. Confirmatory ROI analyses were
performed in two steps: first, we examined neural response

patterns after social feedback across two time points in four ROIs
(Fig. 2 and SI Appendix, Fig. S2) that were selected in a separate
reference group (Methods). Second, we examined relations be-
tween changes in neural activity and noise blast durations.
Neural responses following social evaluation. To test for develop-
mental changes in neural responses to social feedback, we per-
formed linear mixed-effect models on four ROIs (AI, DMPFC,
VLPFC, and DLPFC). We observed significant main effects of
type of social feedback on neural activation in all ROIs (SI
Appendix, Table S7). Patterns of activity differed between the
ROIs. For the AI, DMPFC, and VLPFC, there was significantly
more neural activation after negative and positive feedback rel-
ative to neutral feedback (Fig. 3 A–C), but the differences be-
tween positive and negative social feedback were not significant.
For the DLPFC, in contrast, there was more activation after
positive social feedback compared with both neutral and nega-
tive feedback but no significant difference between neutral and
negative social feedback (Fig. 3D). Next, we addressed whether
these activity patterns changed over time. We observed a sig-
nificant effect of wave in the AI, the DMPFC, and the DLPFC,
with generally stronger neural activation at W2 compared with
W1 (Fig. 3 and SI Appendix, Table S7). There were no significant
condition × wave interaction effects in ROI activation.
Neural responses following social evaluation and behavioral aggression.
To investigate brain–behavior associations in ROI activation, we
added noise blast duration as a factor to the previously tested
models. We found a significant main effect of noise blast dura-
tion in response to social feedback on AI and DLPFC activation
(SI Appendix, Table S8). These findings indicated that increased
AI activation was associated with longer noise blast after social
feedback, regardless of valence (B = 1.11e−4), whereas increased
DLPFC activation was associated with shorter noise blast after
social feedback, regardless of valence (B = −3.57e−5). The
DMPFC and VLPFC did not show significant brain–behavior
associations.

Exploratory Analyses.Exploratory analyses were also performed in
two steps: first, we conducted a whole-brain regression analysis
including all available MRI data at W2 (n = 360). Next, we used
the significant clusters as ROI to extract parameter estimates

Fig. 2. ROIs in the left hemisphere. The VLPFC and AI ROIs are bilateral; 3D
nifti files of the ROIs are accessible through the OSF (https://osf.io/a4mdw/).

Fig. 3. Neural activation after positive, neutral, and negative social feedback at W1 (solid dark blue lines) and W2 (dotted light blue lines) for the AI (A), the
DMPFC (B), the VLPFC (C), and the left DLPFC (D).

8604 | www.pnas.org/cgi/doi/10.1073/pnas.1915124117 Achterberg et al.
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(PEs) per condition from MRI data at both waves, to explore
brain–behavior associations across time.
Brain–behavior analyses on aggression following negative feedback. We
conducted a whole-brain regression analysis at W2 for receiving
negative feedback (negative vs. neutral), with the difference in
noise blast duration after negative and neutral feedback as a
regressor (Δ Noise NegNeut W2; Methods). Consistent with our
hypothesis, we observed a negative association between behav-
ioral aggression and activation in the bilateral DLPFC (Fig. 4A
and Table 1). Visualization of the effect (Fig. 4B) showed that an
increase in DLPFC activation after negative feedback (relative to
neutral feedback) was associated with less subsequent behavioral
aggression. The unthresholded statistical map of this contrast is
available through the NeuroVault (32) repository under https://
neurovault.org/images/306500.
To test for the specificity of the DLPFC activation, we con-

ducted additional whole-brain regression analyses for the contrasts
positive vs. neutral feedback (noise blast positive–neutral as re-
gressor), positive feedback vs. fixation (noise blast positive as re-
gressor), and neutral feedback vs. fixation (noise blast neutral as
regressor). These analyses did not result in significant whole-brain
activation. Moreover, multiple correlation analyses showed that the
DLPFC activation from the whole-brain regression analyses (Fig.
4A) was significantly associated with the difference in noise blast
duration between negative and positive feedback and after negative
feedback (Table 2). There was no significant association between
DLPFC activation and noise blast duration after positive feedback,
neutral feedback, or the difference between positive and neutral
feedback (all P values, >0.05; Table 2). These follow-up analyses
indicate that the reported DLPFC activation is specific to negative
social feedback and not to social feedback in general.

Brain-Behavior Association Across Time. To test whether children
who showed larger increases in DLPFC activity over time also
showed less behavioral aggression over time, we calculated the
correlation between the residualized change scores for behav-
ioral aggression and the residualized change scores for DLPFC
activity (Methods). Note that for this analysis, we only included
participants who had behavioral and brain data available at two

waves (n = 293). For these participants, we calculated the rela-
tion between the residualized change in DLPFC activation
(DLPFC activation at W2 corrected for DLPFC activation at
W1; Methods) in whole-brain DLPFC ROI (Fig. 4A) and the
residualized change in noise blast duration (noise blast at W2
corrected for noise blast at W1;Methods). We found a significant
negative association (r = −0.22, P < 0.001; heteroscedasticity-
consistent SE [HCSE]-corrected), indicating that children who
showed the largest increase in DLPFC activation across child-
hood also showed the largest decrease in behavioral aggression
in response to negative feedback across childhood (Fig. 4C).
Even though the sample was selected to represent a single age

cohort, it is still possible that small age differences at the first as-
sessment affected the results independent of longitudinal age
changes. To explore the effect of age at W1 on the brain–behavior
association across time, we computed a follow-upmultiple-regression
analysis with the residualized change in behavioral aggression as a
dependent variable and the residualized change in DLPFC activation
and age (atW1) as independent variables. The results confirmed that
the residualized change in DLPFC activation across time was sig-
nificantly associated with the residualized change in aggression across
time (β = −0.22, P < 0.001, HCSE-corrected), whereas starting age
was not significantly associated with the change in aggression across
time (β = −0.06, P = 0.307, HCSE-corrected). This implies that
within the relatively narrow age range of our sample, the association
between changes in DLPFC activity and changes in behavioral ag-
gression across the 2-y period were more strongly influenced by
change over time than by differences in age at the first assessment.

Genetic and Environmental Influences on Brain and Behavior. As a
follow-up to the brain–behavior analyses, we examined genetic and
environmental influences by calculating within-twin correlations
for MZ and DZ twin pairs (Table 3 and SI Appendix, Table S9).
Behavioral genetic analyses revealed that behavioral aggression at
W1 and W2 were influenced by both genetic influences (W1: A =
10% [95% CI = 0 to 40%], W2: A = 22% [95% CI = 11 to 56%]),
shared environmental influences (W1: C = 8% [95% CI = 0 to
32%]; W2: C = 17% [95% CI = 7 to 46%]), and unique envi-
ronmental influences (W1: E = 82% [95% CI = 60 to 98%]; W2:

Fig. 4. Whole brain–behavior analyses with all available MRI data at W2 (n = 360). (A) Significant cluster of activation in bilateral DLPFC for negative >
neutral social feedback with noise blast (Δ negative–neutral) as regressor. (B) Visualization of brain–behavior association at W2: increased DLPFC activity after
negative feedback is related to decreased aggression. (C) Brain–behavior association over time: the residualized change in DLPFC activation is negatively
correlated to the residualized change in aggression, with larger increases in DLPFC activity over time being related to larger decreases in aggression.
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E = 62% [95% CI = 39 to 100%]). Behavioral aggression across
time (residualized change), however, was only influenced by ge-
netic influences (A = 16% [95% CI = 0 to 33%]) and unique
environmental factors (E = 84% [95% CI = 67 to 100%]), with no
influence of shared environmental factors (Table 3).
Due to motion-related exclusions, the sample that was available

for the behavioral genetic modeling of the fMRI data were con-
siderably smaller (n = 48) than for the behavioral data (n = 102).
Therefore, genetic and environmental influences could not be
estimated reliably for DLPFC activation changes (33). For com-
pleteness, we report the estimations in the SI Appendix, Table S9.

Discussion
There is a great need to have a better understanding of the
mechanisms that drive changes in emotion regulation during
social interactions across childhood. This question is more ur-
gent than ever, given that young individuals currently connect
not only through personal interactions but also through online
communication (21) and therefore are continuously exposed to
social evaluations. Negative social evaluations can trigger ag-
gression (22–26), and controlling such retaliatory behaviors is an
important socially adaptive mechanism to develop and maintain
social relations. The current study examined the neural corre-
lates of aggression regulation in childhood in response to social
acceptance and rejection. For this purpose, we made use of
unique data from a large longitudinal fMRI study, which allowed
us to examine the development of aggression regulation follow-
ing social evaluation within individuals across two time points.
Our findings provide interesting insights on how frontal brain
development associates with social emotion regulation over time
in this important developmental phase. Specifically, the current
study revealed three main findings: 1) behavioral aggression after
social evaluation decreased over time, and this decrease was
most pronounced for behavioral responses after positive and
neutral social feedback; 2) confirmatory ROI analyses showed
that increased activity in AI was related to more aggression
following social feedback (regardless of its valence), whereas
increased activity in DLPFC was correlated with less aggression;

and 3) bilateral DLPFC activity was correlated to less subsequent
aggression following negative social feedback. Longitudinal
comparisons confirmed that larger increases in DLPFC activity
across childhood were related to larger decreases in behavioral
aggression, in particular after negative social feedback.
The behavioral results confirmed our initial hypothesis that be-

havioral aggression decreases over time, consistent with prior reports
on age related increases in behavioral control (2, 3). Interestingly,
however, these reductions in aggression were most pronounced
following positive and neutral feedback, suggesting that partici-
pants were more motivated to refrain from aggression toward
liked others. These results might also reflect an age-related increase
in motor control, that is, older children might be better able to
modulate their button presses. Our finding that children refrained
from aggression toward liked others fits well with research showing
that the importance of being liked and accepted by others increases
over the course of childhood and into adolescence (8, 34). Thus,
with increasing age, children become more focused on refraining
punishment toward people with whom they socially connect and
they differentiate more between liked (individuals signaling social
acceptance) and disliked (individuals signaling social rejection)
others (35). Increased behavioral regulation may therefore be
mostly reflected by increased motor and cognitive capacity to re-
frain from punishing peers who previously accepted them.
By using functional neuroimaging, we were able to address the

neural correlates following social evaluation feedback across two
time points. Consistent with prior reports (20), children activate
the same network across two waves, with stronger activity in AI,
DMPFC, and VLPFC after both positive and negative social
feedback (relative to neutral feedback). These findings fit well
with results from the adult literature, showing that neural acti-
vation in DMPFC, AI, and VLPFC is associated with social re-
jection (36, 37) and signaling social-salient events (19). The
DLPFC, in contrast, was more active for positive than negative
feedback, comparable to the behavioral results showing a
stronger reduction over time in aggression following positive
feedback. Interestingly, AI and DLPFC also showed opposite
relations to aggression. Even though both regions increased in
activation over time, stronger AI activity was associated with
more behavioral aggression and stronger DLPFC activity was
associated with less behavioral aggression. The AI results are
comparable to previous findings in adults with low executive
control functions, showing that for individuals with low executive
control, AI activity and aggression were positively correlated (22).
An interesting direction for future research will be to examine
whether this relation is stronger in childhood than adolescence
and adulthood, when executive control functions increase.
The positive relation between DLPFC activity and aggression

regulation was confirmed in the exploratory whole-brain analyses.
Bilateral DLPFC activity was the only neural predictor in a whole-
brain regression analysis for aggression control following negative
relative to neutral feedback. These findings fit well with two de-
cades of research pinpointing the DLPFC as an important region
for cognitive control development (10, 38, 39). The current study
extends this finding to the novel domain of social interactions and
demonstrates that the same “cool” regulatory control functions

Table 1. MNI coordinates for local maxima activated for the
whole brain–behavior contrast (negative feedback > neutral
feedback with noise blast regressor [Δ negative–neutral]) in the
whole sample (n = 360)

Anatomical region Voxels PFWEcc T x y z

Left dorsolateral prefrontal
cortex

293 0.009 4.46 −36 17 55

3.89 −48 26 40
3.54 −48 14 43

Right dorsolateral prefrontal
cortex

472 0.001 4.20 42 32 40

4.02 48 41 31
3.23 24 26 55

Results were FWE cluster-corrected (PFWEcc < 0.05), with a primary voxel-
wise threshold of P < 0.005.

Table 2. Correlation analyses between DLPFC activity and noise blast duration to test for the specificity of
DLPFC activation after negative social feedback

Negative–positive
noise blast

Negative
noise blast

Positive–neutral
noise blast

Positive
noise blast

Neutral
noise blast

DLPFC* r −0.18 −0.19 0.09 0.04 −0.04
P <0.001 <0.001 0.060 0.528 0.530

The correlations were controlled for the nestedness of the data by using HCSE estimators.
*Significant cluster from the whole-brain regression analyses with the difference in noise blast negative–neutral as regressor.
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are also important for regulation “hot” emotions in negative social
evaluation contexts (11, 40). Moreover, DLPFC activity also ex-
plains individual differences in emotion regulation following re-
jection. A change–change analysis confirmed that those children
who showed the largest increase in DLPFC activity after negative
social feedback also had the largest reductions in behavioral ag-
gression following negative feedback. Interestingly, even though
cross-sectional analyses demonstrate both genetic and environ-
mental influences on aggression regulation (20), change scores
were only related to genetic influences, and although the herita-
bility effects were modest in size, this is consistent with prior
studies showing genetic effects on aggression (34, 35).
In addition to providing insights in the development of social

emotion regulation during childhood, the current study also
provides meaningful methodological considerations for future
research. First, in the current study, aggression was operation-
alized in terms of noise blast duration in response to negative,
neutral, and positive social feedback. Our ROI findings showed
associations between the DLPFC and noise blast duration irre-
spective of its valence, which may question the role of DLPFC in
aggression regulation specifically, as oppose to behavioral con-
trol in general. However, our exploratory analyses also revealed
that the DLPFC was associated with negative feedback, a social
context in which aggression is typically observed. Moreover,
specificity analyses showed that the neural activation in this
DLPFC region was specific to negative social feedback. Future
studies should build upon these findings by investigating com-
monalities and differences in neural and behavioral correlates of
reactions to social feedback with diverging valences.
Secondly, the current study covered a relatively narrow age

range (7 to 9 y and 9 to 11 y), which provides a detailed analysis of
middle childhood-related changes. Analyses including age showed
that—within the relatively narrow age-range of our sample—the
association between behavioral aggression and cortical indices of
cognitive control is subject to age-related change but not to age
differences at the first assessment. It should be noted that our
exploratory longitudinal brain–behavior analyses were based on
residualized change scores. Although these change scores reflect
within-individual differences across time, they may also eliminate
valuable information about individual variability over time (41).
Individual variability in aggressive behavior is better captured us-
ing mixed multilevel models (42, 43), as we did in our confirmatory
analyses. Future research should aim to replicate our exploratory
longitudinal brain–behavior associations using more accurate and
advanced mixed linear models (preferably using at least three time
points) (44) to allow for disentangling general developmental
patterns from individual differences in growth trajectories (45).
Lastly, the reliability of fMRI, specifically task-based fMRI has

been heavily debated in recent years (46, 47). The variability ob-
served in fMRI signals and the poor test–retest reliability in de-
veloping populations is a big concern for the field of developmental
neuroscience (48). In our study, we also found rather low test–retest
reliability across waves, with several contrasts even showing intraclass

coefficients (ICCs) lower than 0.10, which has been suggested as a
minimum level for multilevel analyses (49). It should be noted that
2 y between the two assessment waves is fairly long, with myriad
potential influences to stimulate developmental change. Low ICCs
across this time could either reflect noise in the fMRI measure-
ment but might also reflect individual variability over time (50).
Our results suggest that the latter is at least partly true, as we found
predictable associations between behavioral and neural reactions
to our feedback paradigm as well as specific developmental pat-
terns of these responses pointing at growing maturation of in-
hibitory control over aggression after negative feedback.
Taken together, this study set out to test longitudinal changes in

neural systems underlying social evaluation and aggression regu-
lation and their relation to behavioral outcomes. We found an
increase in behavioral control across childhood, as behavioral
aggression decreased over time. Moreover, DLPFC activation was
related to a decrease in behavioral aggression. Notably, children
with larger increases in DLPFC activity across 2 y displayed the
largest decrease in behavioral aggression over time. These results
contribute to our understanding of how the developing brain
processes social feedback and suggest that the DLPFC might serve
as emotion regulation mechanisms in the context of negative
social feedback.

Methods
Participants and Procedure. Participants in this study took part in the longi-
tudinal twin study of the L-CID (29). The procedures were approved by the
Dutch Central Committee for Human Research, and written informed con-
sent was obtained from both parents; 512 children (256 families) between
the ages 7 and 9 y were included at the first wave (previously described in
refs. 20 and 51), with a mean age of 7.94 ± 0.67 y (49% boys, 55% MZ). The
majority of the sample was of caucasian etnicity (91%) and right-handed
(87%). Ten participants (2%) were diagnosed with an Axis I disorder: eight
with attention-deficit hyperactivity disorder; one with generalized anxiety
disorder, and one with pervasive developmental disorder- not otherwise
specific (PDD-NOS). Intelligence quotient (IQ) was estimated at W1 with the
subtests “similarities” and “block design” of the Wechsler Intelligence Scale

Table 4. Demographic characteristics of complete sample at W1
and W2

W1 W2

N 512 456
Boys 49% 48%
Left-handed 13% 12%
AXIS I disorder* 2.1% 1.8%
SES*,† low–middle–high 9%–46%–45% 7%–46%–47%
Age (SD) 7.94 (0.67) 9.98 (0.69)
Age range 7.02 to 9.68 8.97 to 11.68
Mean IQ* (SD) 103.58 (11.76) 103.81 (11.63)
IQ range 72.50 to 137.50 72.50 to 137.50

*At W1.
†Social economic status (SES), based on parental education.

Table 3. Behavioral genetic modeling of behavioral aggression (noise blast negative–neutral) at W1,
W2, and change across time (residualized change scores)

MZ DZ A C E

Noise blast W1† r 0.19* 0.25* 0.10 0.08 0.82
n 138 115 [0.00 to 0.40] [0.00 to 0.32] [0.60 to 0.98]

Noise blast W2 r 0.22* −0.04 0.22 0.17 0.62
n 123 104 [0.11 to 0.56] [0.07 to 0.46] [0.39 to 1.00]

Noise blast change R 0.22* −0.06 0.16 0.00 0.84
N 121 102 [0.00 to 0.33] [ 0.00 to 0.19] [0.67 to 1.00]

Numbers in brackets are 95% CIs. *P < 0.05.
†See also Achterberg et al. (ref. 20).
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for Children, third edition. Estimated IQs were in the normal range (72.50 to
137.50); 456 children participated in a second laboratory visit 2 y later (for
details regarding participant dropout, see SI Appendix, Fig. S1). Table 4 pro-
vides an overview of demographic characteristics of the sample at W1 andW2.

Participants underwent an MRI scan as part of the laboratory visits. At W1,
385 participants were included in the MRI analyses (mean age, 7.99 ± 0.68 y;
47% boys; see also ref. 20). At W2, 360 participants were included in the MRI
analyses (mean age, 10.01 ± 0.67 y; 48% boys). A total of 293 participants
were included in the MRI analyses at both waves (mean age W1: 7.99 ± 0.66
y; 47% boys). In between the two sessions, 91 (37%) randomly selected
families received a short-term intervention aimed at promoting parental
sensitivity and positive limit-setting (for details, see ref. 29). Given that this
was not the focus of the current study, we controlled for group status
(intervention group or control group) in our analyses. Twenty-seven
families did not comply with random assignment to the parental in-
tervention. The MRI data of these participants were used to create task-
relevant independent ROIs.

SNAT. The SNAT, as described by Achterberg and coworkers (7, 20), was used
to measure aggression after social feedback regardless of its valence. Par-
ticipants viewed pictures of peers that gave positive, neutral, or negative
feedback to the participant’s profile. Following each peer feedback, the
children were instructed to imagine that they could send a loud noise blast
to this peer, the duration of which was used as an index of aggression. To
keep task demands as similar as possible between the conditions, participants
were instructed to always press the button. The longer they pressed the
button, the more intense the noise would be, which was visually represented
by an intensity bar (Fig. 1A). Each trial started with a fixation screen (500 ms),
followed by the social feedback (2,500 ms). After another jittered fixation
screen (3,000 to 5,000 ms), the noise screen with the intensity bar appeared,
which was presented for a total of 5,000 ms. Children were instructed to de-
liver the noise blast by pressing one of the buttons on the button box attached
to their legs, with their right index finger. As soon as the participant started
the button press, the intensity bar started to fill up with a newly colored block
appearing every 350 ms. After releasing the button, or at maximum intensity
(after 3,500 ms), the intensity bar stopped increasing and stayed on the screen
for the remainder of the 5,000 ms. Participants received instructions on how to
perform the SNAT, and the children were exposed to the noise blast during a
practice session. Participants did not hear the noise during the fMRI session, to
prevent that pressing the button would punish the participants themselves.
The SNAT consisted of 60 trials, 3 runs of 20 trials for each feedback condition
(positive, neutral, negative). The optimal jitter timing and order of events
were calculated with Optseq 2 (52). ICC analyses (modeled with a two-way
mixed model using the consistency definition) showed low (ICC < 0.40) (53)
consistency in noise blast duration after positive (ICC = 0.32 [95% CI = 0.24 to
0.41]), neutral (ICC = 0.26 [95% CI = 0.17 to 0.35]), and negative feedback
(ICC = 0.17 [95% CI = 0.08 to 0.26]) between W1 and W2.

MRI Data.
Acquisition. MRI scans were acquired with a standard whole-head coil on a
Philips Ingenia 3.0 Tesla MR system. To prevent head motion, foam inserts
surrounded the children‘s’ heads (54). The SNAT was projected on a screen
that was viewed through a mirror on the head coil. Functional scans were
collected during three runs T2*-weighted echo planar images (EPIs). The
first two volumes were discarded to allow for equilibration of T1 satura-
tion effect. Volumes covered the whole brain with a field of view (FOV) = 220
(anterior–posterior [ap]) × 220 (right–left [rl]) × 111.65 (foot–head [fh]) mm;
repetition time (TR) of 2.2 s; echo time (TE) = 30 ms; flip angle (FA) = 80°;
sequential acquisition, 37 slices; and voxel size = 2.75 × 2.75 × 2.75 mm.
Subsequently, a high-resolution three-dimensional (3D) T1 scan was obtained
as anatomical reference (FOV= 224 [ap] × 177 [rl] × 168 [fh]; TR = 9.72 ms;
TE = 4.95 ms; FA = 8°; 140 slices; voxel size = 0.875 × 0.875 × 0.875 mm]).
Preprocessing.MRI data were analyzed with SPM8 (Wellcome Trust Centre for
Neuroimaging). The exact same preprocessing steps were used in pre-
processing MRI data fromW1 andW2. Images were corrected for slice-timing
acquisition and rigid-body motion. Functional volumes were normalized to
subject-specific anatomical images (3D T1) using affine transform mapping.
Next, the subject-specific anatomical image is normalized to a T1 Montreal
Neurological Institute (MNI) template using a nonlinear warp. These warp
parameters are then applied to the EPI, resulting in MNI-normalized EPI data
(55). By including the subject’s T1 scan, we can base the nonlinear warp to
MNI space on a higher spatial resolution image. However, for some indi-
viduals, we did not have a sufficient T1 scan (n = 5 at W1; n = 10 at W2).
For these participants, we used normalization using an EPI MNI template,
which allows spatial normalization without the requirement of a T1 scan (56).

Volumes of all participants were resampled to 3 × 3 × 3 mm voxels. Data were
spatially smoothedwith a 6-mm full-width-at-half-maximum isotropic Gaussian
kernel. Translational movement parameters were calculated for all partici-
pants. Participants with at least two out of three runs of fMRI data with <3 mm
(one voxel) motion in all directions were included in subject-specific analyses
(W1: n = 385; W2: n = 360).
Subject-specific analyses. Statistical analyses were performed on individual
subjects’ data using a general linear model, previously described in ref. 20.
The fMRI time series were modeled as a series of two events convolved with
the hemodynamic response function (HRF). The onset of social feedback was
modeled as the first event, with a zero duration and with separate regressors
for the positive, negative, and neutral peer feedback. The start of the noise
blast was modeled as the second event, with the HRF modeled for the length
of the noise blast and with separate regressors for noise blast after positive,
negative, and neutral judgments. Trials on which the participants failed to
respond in time were modeled separately as covariate of no interest and were
excluded from further analyses. Additionally, six motion regressors (corre-
sponding to the three translational and rotational directions) were included
as covariates of no interest. The least-squares PEs of height of the best-fitting
canonical HRF for each condition were used in pairwise contrasts. The pair-
wise comparisons resulted in subject-specific contrast images.

Confirmatory ROI Analyses.
ROI selection. ROIs were based on higher-level group analyses of W2 in a
separate reference group (the nonrandomized control group, n = 41; SI
Appendix, Table S1). The advantage of this approach is that the participants
were in exactly the same study protocol but were not included in the sub-
sequent analyses, leading to an independent selection of ROIs (57). Using
comparable sample sizes, we previously reported replicable results of main
effects of the SNAT (58). SPM8’s MarsBaR toolbox (59) was used to construct
ROIs based on the whole brain contrast by masking significant activation
with regions from the Automated Anatomical Labeling atlas (60). We first
investigated social feedback (positive, neutral, negative) versus fixation (SI
Appendix, Fig. S3A and Table S1). Based on a priori hypotheses, we selected
the bilateral AI, VLPFC, and DMPFC. In addition to the all feedback vs. fix-
ation contrast, we also investigated the specific conditions. From the con-
trast positive vs. negative social feedback (SI Appendix, Fig. S3B and Table
S1), we selected the left DLPFC as an additional ROI (Fig. 2). The contrasts
negative vs. positive social feedback did not result in clusters of significant
activation. The contrasts positive vs. neutral social feedback and negative vs.
neutral social feedback resulted in increased activation in occipital (visual)
cortex (SI Appendix, Table S1), but given that this was not an a priori hy-
pothesized area, this region was not included in ROI selection.

Thus, in total, four ROIs were used in further analyses: the bilateral AI,
bilateral VLPFC, the DMPFC, and the left DLPFC (Fig. 2). Sagittal and axial
visualization of the ROIs are provided in SI Appendix, Fig. S2; 3D nifti files of
the ROIs are accessible through the Open Science Framework (OSF) (https://
osf.io/a4mdw/). PEs (averaged beta values) were extracted from the subject-
specific contrasts (positive vs. fixation, neutral vs. fixation, and negative vs.
fixation) for the entire sample minus the reference group with available MRI
data on W1 (n = 343) and W2 (n = 317). ICC analyses (two-way mixed model
using consistency) showed low consistency (ICCs < 0.40) (53) in brain acti-
vation for the contrasts negative > neutral, negative > positive, and posi-
tive > neutral feedback between W1 and W2 (SI Appendix, Table S5).
Linear mixed-effects models. To test time-related changes in participant’s be-
havior and ROI brain activation, we used linear mixed-effects models using
the lme4 package (61) in R (62). For these analyses, we included the whole
sample minus the reference group (n = 458). Data were fitted on the av-
erage noise blast duration (for behavior) and average PEs (for ROIs) after
positive, neutral, and negative social feedback. Two random effects were
included to account for the nesting of condition and waves within the
participant (ChildID) and the nesting of twin pairs within families (FamilyID).
Fixed effects included feedback condition (three levels: positive, neutral, and
negative) and wave (two levels: W1 and W2), while controlling for in-
tervention group (two levels: intervention and control). Sex and estimated
IQ (grand mean-centered) were included as additional covariates and all
main effects and two-way interactions between covariates and feedback
condition were included (sex × condition and condition × IQ). The fitted
mixed-effect model was specified in R as:

Noise=ROI   ∼   condition  ×  wave  ×   intervention  +   condition  ×   sex

+   condition  ×   IQ  +   ð1jchildIDÞ  +   ð1jfamilyIDÞ.

In addition, we examined associations between brain and behavioral re-
sponses, in which we were specifically interested in the extent to which
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behavior was associated with neural activation. To this end, we added noise
blast duration to the model including all two- and three-way interactions
with condition and wave. Results were inspected with type III ANOVA’s using
Satterthwaite’s method. Significant main effects of condition were further
inspected using least-square means, with Kenward–Roger corrected degrees
of freedom and Bonferroni-adjusted P values.

Exploratory Analyses.
Brain–behavior analyses. In addition to neural responses to social feedback, we
also examined whole brain–behavior relations in late childhood (W2). Results
were family-wise error (FWE) cluster-corrected (PFWEcc < 0.05), with a primary
voxel-wise threshold of P < 0.005 (uncorrected) (63). Similarly to previous
brain–behavior analyses in adults (7) and middle childhood (20), we con-
ducted a whole brain regression analysis at the moment of receiving neg-
ative social feedback (negative vs. neutral), with the difference in noise blast
duration after negative and neutral feedback as a regressor. In this way, we
tested how initial neural responses to feedback were related to subsequent
aggression. The difference in noise blast was computed by:

ΔNoise  NegNeut  W2=Negative  noise  blast  W2−  Neutral   noise  blast  W2.

Brain–behavior associations across time. To investigate brain–behavior associ-
ations across time, we computed the development over time in noise blast
duration for the contrast negative–neutral and for brain activation in this
contrast by calculating residual scores. In doing so, we could investigate the
association between brain and behavior at W2, while correcting for the level
of brain activation and aggressive behavior at W1. First, we conducted
multiple regression analyses where behavioral aggression at W2 (Δ Noise
NegNeut W2) was predicted by behavioral aggression at W1 (Δ Noise Neg-
Neut W1). We then used the unstandardized residuals of this prediction as
indicators of the development of behavioral aggression across time. The
same was done for brain activation: brain activation at W1 (Δ Brain NegNeut
W1) was regressed on brain activation at W2 (Δ Brain NegNeut W2), and we
used the unstandardized residuals as indicators of the development of brain
activation across time. Next, we calculated the correlation between the
residualized change in behavior and the residualized change in brain
activation.

Due to the nested nature of twin data, the data violate the assumption of
homoscedasticity. Although the estimator of the regression parameters is not
influenced when this assumption is violated, the estimator of the covariance
matrix can be biased, resulting in too liberal or too conservative significance
tests. Therefore, we used HCSE estimators, by using the HCSE macro of Hayes
and Cai (64), with the HC3 method (65). A total of 293 participants had
behavioral and brain data available at two waves and were included in the
analyses regarding brain–behavior associations over time.
Behavioral genetic analyses. The sample consisted of an approximately equal
number ofMZ andDZ same-sex twins, which provides the unique opportunity

to test whether change is associated with genetic or environmental influ-
ences. As a follow-up to the exploratory brain–behavior analyses, we
therefore examined genetic and environmental influences on brain and
behavior by calculating Pearson within-twin correlations for MZ and DZ twin
pairs. Similarities among twin pairs can be due to additive genetic variance
(A) and common (shared) environmental factors (C), while dissimilarities can
be ascribed to unique environmental influences and measurement error (E).
We used behavioral genetic modeling with the OpenMX package (31) in R
(62) to calculate these A, C, and E estimates. Per convention, the correlation
of the shared environment (factor C) was set to 1 for both MZ and DZ twins,
while the correlation of the genetic factor (A) was set to 1 for MZ twins and
to 0.5 for DZ twins. The last factor, unique environmental influences and
measurement error, was freely estimated. High estimates of A indicate that
genetic factors play an important role, while estimates for C indicate influ-
ences of the shared environment, making twins in the same family more
similar. In case the E estimate is highest, variance is mostly accounted for by
unique environmental factors (making twins in the same family more
different) and measurement.
Sensitivity analyses on a genetically independent sample. As both the ROI selec-
tion (n = 41) as well as the analysis including all available MRI data at W2
(n = 360) are based in twin samples, our results might be influenced by the
nestedness of our data. We therefore conducted additional sensitivity
analyses on a genetically independent sample. Of the 360 participants with
available MRI data at W2, there were 42 “single” twins (i.e., their twin
brother/sister was excluded due to motion) and 159 complete twin pairs. Of
these complete pairs, we randomly selected either the oldest or youngest
twin, resulting in a genetically independent sample of n = 201. Sensitivity
analyses are described in detail in SI Appendix. The use of this genetically
independent sample did not meaningfully change our findings.

Data Availability. The group-level MRI data are available in NeuroVault at https://
neurovault.org/collections/6070. Anonymized single-subject behavioral and ROI
data that support the findings of this study are available in DataverseNL at https://
hdl.handle.net/10411/BE2X5L. The European General Data Protection Regulation
(GDPR) prevents us from uploading raw MRI data as this could compromise the
privacy of research participants. However, the raw MRI data that support the
findings of this study are available on request from the corresponding author.
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