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GONALITY OF THE MODULAR CURVE X1(N)

MAARTEN DERICKX AND MARK VAN HOEIJ

Abstract. In this paper we compute the gonality over Q of the modular curve
X1(N) for all N 6 40 and give upper bounds for each N 6 250. This allows us to
determine all N for which X1(N) has infinitely points of degree d where d is either
5 or 6. We conjecture that the modular units of Q(X1(N)) are freely generated
by f2, . . . , fbN/2c+1 where fk is obtained from the equation for X1(k).

1. Introduction

Notation 1. If K is a field, and C/K is a curve1, then K(C) is the function field
of C over K. The gonality GonK(C) is min{deg(f) | f ∈ K(C)−K}. In this article
we are interested in the case C = X1(N), and K is either Q or Fp.

It was shown in [Der12] that if C/Q is a curve and p is a prime of good reduction
of then:

GonFp(C) 6 GonQ(C). (1)

A similar statement was given earlier in [Fre94] which attributes it to [Deu42]. We
use (1) only for C = X1(N). The primes of good reduction of X1(N) are the primes
p - N .

The main goal in this paper is to compute GonQ(X1(N)) for N 6 40. The Q-
gonality for N 6 22 was already known [Sut12, p. 2], so the cases 23 6 N 6 40 are
of most interest. For each N , it suffices to:

• Task 1: Compute a basis of div(F1(N)), which denotes the set of divisors of
modular units over Q, see Definition 1 in Section 2 for details.
• Task 2: Use LLL techniques to search div(F1(N)) for the divisor of a non-

constant function gN of lowest degree.
• Task 3: Prove (for some prime p - N) that Fp(X1(N))− Fp has no elements

of degree < deg(gN). Then (1) implies that the Q-gonality is deg(gN).

1In this paper, a curve over a field K is a scheme, projective and smooth of relative dimension
1 over SpecK that is geometrically irreducible.
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Table 1: GonQ(X1(N)) for N 6 40. Upper bounds for N 6 250.

N 1 2 3 4 5 6 7 8 9 10
gon = 1 1 1 1 1 1 1 1 1 1
N 11 12 13 14 15 16 17 18 19 20

gon = 2 1 2 2 2 2 4 2 5 3
N 21 22 23 24 25 26 27 28 29 30

gon = 4 4 7 4 5 6 6 6 11 6
N 31 32 33 34 35 36 37 38 39 40

gon = 12 8 10 10 12 8 18 12 14 12
N 41 42 43 44 45 46 47 48 49 50

gon 6 22 12 24 15 18 19 29 16 21 15
N 51 52 53 54 55 56 57 58 59 60

gon 6 24 21 37 18 30 24 30 31 46 24
N 61 62 63 64 65 66 67 68 69 70

gon 6 49 36 36 32 42 30 58 36 44 36
N 71 72 73 74 75 76 77 78 79 80

gon 6 66 32 70 51 40 45 60 42 82 48
N 81 82 83 84 85 86 87 88 89 90

gon 6 54 58 90 48 72 64 70 60 104 48
N 91 92 93 94 95 96 97 98 99 100

gon 6 84 66 80 83 90 56 123 63 90 60
N 101 102 103 104 105 106 107 108 109 110

gon 6 133 72 139 84 96 105 150 72 156 90
N 111 112 113 114 115 116 117 118 119 120

gon 6 114 96 167 90 132 105 126 120 144 96
N 121 122 123 124 125 126 127 128 129 130

gon 6 132 139 140 120 125 96 211 112 154 126
N 131 132 133 134 135 136 137 138 139 140

gon 6 225 120 180 156 144 144 246 132 253 144
N 141 142 143 144 145 146 147 148 149 150

gon 6 184 189 210 128 210 184 168 171 291 120
N 151 152 153 154 155 156 157 158 159 160

gon 6 299 180 216 180 240 168 323 234 234 184
N 161 162 163 164 165 166 167 168 169 170

gon 6 264 162 348 210 240 240 365 192 260 216
N 171 172 173 174 175 176 177 178 179 180

gon 6 270 231 392 210 240 240 290 274 420 192
N 181 182 183 184 185 186 187 188 189 190

gon 6 429 252 310 264 342 240 360 276 288 270
N 191 192 193 194 195 196 197 198 199 200

gon 6 478 224 488 328 336 252 508 240 519 240
N 201 202 203 204 205 206 207 208 209 210

gon 6 374 382 420 288 420 398 396 336 450 288
N 211 212 213 214 215 216 217 218 219 220

gon 6 583 351 420 396 462 288 480 445 444 360
N 221 222 223 224 225 226 227 228 229 230

gon 6 504 342 651 384 360 444 675 360 687 396
N 231 232 233 234 235 236 237 238 239 240

gon 6 480 420 711 336 552 435 520 432 748 384
N 241 242 243 244 245 246 247 248 249 250

gon 6 761 396 486 465 504 420 630 480 574 375
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Tasks 1–3 are only possible when:

(a) There is a modular unit gN of degree GonQ(X1(N)).
(b) There is a prime p - N for which GonFp(X1(N)) = GonQ(X1(N)).

We have completed Tasks 1–3 for 1 < N 6 40, and hence (a),(b) are true in this
range. We do not know if they hold in general.

We implemented two methods for Task 1. Our webpage [DvH] gives the resulting
basis of div(F1(N)) for N 6 300. For Task 2, for each 4 6 N 6 300 we searched
div(F1(N)) for short2 vectors, and placed the best function we found, call it gN , on
our webpage [DvH]. The degree of any non-constant function is by definition an
upper bound for the gonality. Table 1 gives deg(gN) for N 6 250.

Finding the shortest vector in a Z-module is NP-hard. For large N , this forced
us to resort to a probabilistic search (we randomly scale our vectors, apply an LLL
search, and repeat). So we can not prove that every gN on our webpage is optimal,
even if we assume (a).

For certain N (e.g. N = p2, see Section 4) there are other ways of finding functions
of low degree. Sometimes a good function can be found in a subfield of Q(X1(N))
over Q(X1(1)), see [DvH]. All low degree functions we found with these methods
were also found by our probabilistic LLL search. So the upper bounds in Table 1
are likely sharp when (a) holds (Question 1 in Section 2.2).

At the moment, our only method to prove that an upper bound is sharp is to
complete Task 3, which we have done for N 6 40. The computational cost of Task 3
increases drastically as a function of the gonality. Our range N 6 40 contains
gonalities that are much higher than the previous record, so in order to perform
Task 3 for all N 6 40 it was necessary to introduce several new computational
ideas.

Upper bounds (Tasks 1 and 2) will be discussed in Section 2, and lower bounds
(Task 3) in Section 3. We cover N = 37 separately (Theorem 1), this case is the
most work because it has the highest gonality in our range N 6 40. Sharp lower
bounds for other N 6 40 can be obtained with the same ideas. Our computational
proof (Task 3) for each N 6 40 can be verified by downloading the Magma files
from [DvH].

Remark 1. For each N 6 40, the Q-gonality happened to be the Fp-gonality for the
smallest prime p - N . That was fortunate because the computational complexity of
Task 3 depends on p.

We can not expect the Fp-gonality to equal the Q-gonality for every p. For example,
consider the action of diamond operator <12> on C(X1(29)). The fixed field has
index 2 and genus 8 (type: GammaH(29,[12]).genus() in Sage). By Brill-Noether
theory, this subfield contains a function fBN of degree 6 b(8 + 3)/2c = 5. Viewed as
element of C(X1(29)), its degree is 6 2 · 5 which is less than the Q-gonality3 11. By

2We want vectors with small 1-norm because deg(g) = 1
2 ||div(g)||1.

3We do not know if there are other N 6 40 with C-gonality 6= Q-gonality.
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Chebotarev’s theorem, there must then be a positive density of primes p for which
the Fp-gonality of X1(29) is less than 11.

2. Modular equations and modular units

Definition 1. A non-zero element of Q(X1(N)) is called a modular unit (see
[KL81]) when all its poles and roots are cusps. Let F1(N) ⊂ Q(X1(N))∗/Q∗ be
the group of modular units mod Q∗.

There are bN/2c+ 1 Gal(Q/Q)-orbits of cusps, denoted4 as C0, . . . , CbN/2c. Let

D1(N) := ZC0 ⊕ · · · ⊕ ZCbN/2c

be the set of Q-rational cuspidal divisors. The degree5 of
∑
niCi is

∑
nideg(Ci).

Denote D0
1(N) as the set of cusp-divisors of degree 0, and

C1(N) := D0
1(N)/div(F1(N)),

a finite group called the cuspidal class group.

Let E be an elliptic curve over a field K, and P be a point on E of order exactly
N . If N > 4 and char(K) - N , one can represent the pair (E,P ) in Tate normal
form:

Y 2 + (1− c)XY − bY = X3 − bX2, with the point (0, 0). (2)

This representation is unique and hence b, c are functions on pairs (E,P ). The
function field K(X1(N)) is generated by b, c. Whenever we use the notation b or
c, we implicitly assume N > 4, because the reduction to (2) succeeds if and only if
N > 4. This implies (for N > 4) that poles of b, c must be cusps. The discriminant
of (2) is ∆ := b3 · (16b2 + (1− 20c− 8c2)b+ c(c− 1)3) so E degenerates when ∆ = 0.
So all roots of ∆ (and hence of b) are cusps. Poles of ∆, b are cusps because poles
of b, c are cusps. So ∆, b are modular units, and hence

F2 := b4/∆ =
b

16b2 + (1− 20c− 8c2)b+ c(c− 1)3
and F3 := b

are modular units as well.
For N > 4, the functions b, c on X1(N) satisfy a polynomial equation FN ∈ Z[b, c],

namely (for N = 4, 5, 6, 7, . . .) c, b− c, c2 + c− b, b2 − bc− c3, . . .
If k 6= N , the condition that the order of P is k is incompatible with the condition

that the order is N . This, combined with the observation that all poles of b, c are

4Let d|N , 0 6 i < d, with gcd(i, d) = 1 and let j be such that the point Pd,i,j = (i, ζjN ) has
order N in the Neron d-gon Z/dZ×Gm. Let Cd,i,j be the cusp corresponding to Pd,i,j , then Cd,i,j

and Cd′,i′,j′ are in the same Galois orbit iff d = d′ and i ≡ ±i′ mod d. We denote the Galois orbit
of Cd,i,j as Cn where 0 6 n 6 N/2 and n ≡ ±iN/d mod N . With this numbering, the diamond
operator <i> sends Cn to Cn′ where n′ ≡ ±ni mod N .

5The degree of Ci is as follows. Let d = gcd(i,N). If i ∈ {0, N/2} then deg(Ci) = dφ(d)/2e,
otherwise deg(Ci) = φ(d), where φ is Euler’s function.
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cusps, implies (for N, k > 4) that the modular equation Fk is a modular unit for
X1(N). We define a subgroup of F1(N) generated by modular equations6:

F ′1(N) :=<F2, F3, . . . , FbN/2c+1> ⊆ F1(N).

Conjecture 1. F ′1(N) = F1(N) for N > 3. In other words, F1(N) is freely gener-
ated by modular equations F2, . . . , FbN/2c+1.

We verified this for N 6 100, see also Section 2.1. The conjecture holds for N = 3
because F2 rewritten to j, x0 coordinates generates F1(3). The case N = 2 is a little
different, clearly F2 can not generate F1(2) since it must vanish on X1(2). However,
rewriting F2F4 to j, x0 coordinates produces a generator for F1(2). The conjecture
is only for Q; if X1(N)K has more than bN/2c+1 Galois orbits of cusps, for example
X1(5)K with K = C or K = F11, then the rank of F ′1(N) would be too low.

2.1. Computations. As N grows, the size of FN grows quickly. Sutherland [Sut12]
obtained smaller equations by replacing b, c with other generators of the function
field. For 6 6 N 6 9, use r, s defined by

r =
b

c
, s =

c2

b− c, b = rs(r − 1), c = s(r − 1)

and for N > 10, use x, y defined by

x =
s− r

rs− 2r + 1
, y =

rs− 2r + 1

s2 − s− r + 1
, r =

x2y − xy + y − 1

x(xy − 1)
, s =

xy − y + 1

xy
.

The polynomial defining X1(N) is then written as f4 := c, f5 := b− c, f6 := s− 1,
f7 := s − r, f8 := rs − 2r + 1, f9 := s2 − s − r + 1, f10 := x − y + 1, f11 :=
x2y − xy2 + y − 1, f12 := x− y, f13 := x3y − x2y2 − x2y + xy2 − y + 1, etc. Explicit
expressions for f10, . . . , f189 ∈ Z[x, y] can be downloaded from Sutherland’s website
http://math.mit.edu/~drew/X1_altcurves.html.

The same website also lists upper bounds for the gonality for N 6 189, that are
often sharp when N is prime. Table 1 improves this bound for every composite
N > 26, a few composite N < 26, but only three primes: 31, 67, and 101. When N
is prime, we note that Sutherland’s [Sut12] bound, deg(x), equals [11N2/840] where

6An equation is called a modular equation for X1(k) if it corresponds to P having order k. A
computation is needed to show that F2, F3 are modular equations in this sense. The fact that
F2 and F3 correspond to order 2 and 3 is obscured by the b, c coordinates, so we introduce j, x0
coordinates for X1(N) that apply to any N > 1 provided that j 6∈ {0, 1728}. Here x0 is the
x-coordinate of a point P on y2 = 4x3 − 3j(j − 1728)x − j(j − 1728)2. The condition that P

has order 2 or 3 can be expressed with equations F̃2, F̃3 ∈ Q[j, x0]. These F̃2, F̃3 are functions on
X1(N) for any N > 1. Hence they can (for N > 3) be rewritten to b, c coordinates. To obtain
modular units, we have to ensure that all poles and roots are cusps, which requires an adjustment:
F2 := F̃ 2

2 /(j
2(j − 1728)3) and F3 := F̃ 3

3 /F̃
4
2 .
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the brackets denote rounding to the nearest integer ([11N2/840] is a valid upper
bound for any N > 6, but it is not very sharp for composite N ’s).

Let f2 := F2 and f3 := F3. Then Fk/fk ∈< f2, . . . , fk−1 > for each k > 2. In
particular

F ′1(N) =<f2, f3, . . . fbN/2c+1> .

For each 3 6 N 6 300 and 2 6 k 6 bN/2c + 1 we calculated div(fk) ∈ D1(N).
This data can be downloaded (in row-vector notation) from our webpage [DvH].
This data allows one to determine D0

1(N)/div(F ′1(N)) for N 6 300. If that is
∼= C1(N), then the conjecture holds for N . We tested this by computing C1(N) with
Sage7 for N 6 100. The div(fk)-data has other applications as well:

Example 1. Let N = 29. Suppose one wants to compute explicit generators for the
subfield of index 2 and genus 8 mentioned in Remark 1. Let x̃, ỹ denote the images
of x, y under the diamond operator <12>. Clearly x̃x, ỹy are in our subfield, which
raises the question: How to compute x̃, ỹ?

Observe that x = f7/f8 and y = f8/f9 (The relations 1−x = f5f6/(f4f8), 1−y =
f6f7/f9, 1− xy = f 2

6 /f9 may be helpful for other examples.) So we can find div(x)
by subtracting the (7-1)’th and (8-1)’th row-vector listed at [DvH] for N = 29. We
find (0,−1,−2,−3,−1, 0, 0, 0, 3, 2,−1,−3, 2, 3, 1) which encodes div(x) =

−C1 − 2C2 − 3C3 − C4 + 3C8 + 2C9 − C10 − 3C11 + 2C12 + 3C13 + C14.

The diamond operator <12> sends Ci to C±12i modN and hence div(x̃) =

2C1 − C4 − 2C5 + C6 − 3C7 + 2C8 + 3C9 − C10 + 3C11 − C12 − 3C13.

Since div(f2), . . . , div(f15) are listed explicitly at [DvH], solving linear equations pro-
vides n2, . . . , n15 for which div(x̃) =

∑
nidiv(fi). Setting g :=

∏
fni
i =

(x2y − xy + y − 1)(x− 1)2(x− y + 1)(x2y − xy2 − x2 + xy − x+ y − 1)4y3

(y − 1)2(xy − 1)(x− y)(x2y − xy2 − xy + y2 − 1)4x4
,

it follows that x̃ = cg for some constant c (c is not needed here, but it can be
determined easily by evaluating x̃ and g at a point.) Repeating this computation for
y, we find explicit expressions for x̃x, ỹy. An algebraic relation can then be computed
with resultants; it turns out that x̃x, ỹy generate the subfield.

2.2. Explicit upper bound for the gonality for N 6 40. The following table
lists for each 10 < N 6 40 a function of minimal degree. We improve the upper
bound from Sutherland’s website (mentioned in the previous section) in 16 out of
these 30 cases.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
x x x x x y x h1 x x h1 x x h1 h2
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
y h3 h3 x h5 h1 h4 h6 h1 h7 h8 x h2 h9 h5

7The Z-module of modular units is computed with modular symbols by determining the
∑
nici ∈

Zcusps of degree 0 with
∑
ni{ci,∞} ∈ H1(X1(N)(C),Z) ⊂ H1(X1(N)(C),Q).
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Here

h1 =
x2y − xy2 + y − 1

(x− y)x2y
, h2 =

x(1− y)(x2y − xy2 − xy + y2 − 1)

(x− y + 1)(x2y − xy2 + y − 1)
,

h3 =
(1− x)(x2y − xy2 − xy + y2 − 1)

(x− y)(x2y − xy2 + y − 1)
, h4 =

(1− x)(x2y − xy2 + y − 1)

x(1− y)
,

h5 =
(1− y)(x2y − xy2 − xy + y2 − 1)

(x− y)y(x− y + 1)

h6 =
f10f11f12
f17

, h7 =
f17
f18

, h8 =
f14f

2
17

f 2
19

, h9 =
f12f13f14
f19

.

Each h1, . . . , h9 is in the multiplicative group <f2, f3, . . .>. To save space, we only
spelled out h1, . . . , h5 in x, y-notation (the f19 that appears in h9 is substantially
larger than the f11 that appears in h1). Similar expressions for N 6 300 are given
on our website [DvH].

Question 1. Does Q(X1(N)) always contain a modular unit of degree equal to the
Q-gonality?

It does not suffice to restrict to rational cusps (Ci’s of degree 1) because then
N = 36 would be the first counter example. Question 1 may seem likely at first
sight, after all, it is true for N 6 40. However, we do not conjecture it because the
function fBN ∈ C(X1(29)) from Remark 1 is not a modular unit over C, but unlike
Conjecture 1, there is no compelling reason to restrict Question 1 to Q.

3. Lower bound for the gonality

Task 3 is equivalent to showing that the Riemann-Roch space H0(X1(N), D) is
Fp for every divisor D > 0 of degree < deg(gN). This is a finite task, because over
Fp, the number of such D’s is finite. For N = 37, the Q-gonality is 18, and the
number of D’s over F2 with D > 0 and deg(D) < 18 is far too large to be checked
one by one on a computer. So we will need other methods to prove:

Theorem 1. Let f ∈ F2(X1(37))− F2. Then deg(f) > 18.

Definition 2. Let f ∈ K(X1(N)). The support Supp(Div(f)) is {P ∈ X1(N)K |
vP (f) 6= 0}, i.e., the set of places where f has a non-zero valuation (a root or a pole).
Let mdegK(f) denote max{degK(P ) |P ∈ Supp(Div(f))}. Likewise, if D =

∑
niPi

is a divisor, then mdegK(D) := max{degK(Pi) |ni 6= 0}.
Overview of the proof of Theorem 1:

We split the proof in two cases: Section 3.2 will prove Theorem 1 for the case
mdeg(f) = 1. Section 3.3 will introduce notation, and prove Theorem 1 for the case
mdeg(f) > 1. (Task 3 for the remaining N 6 40 is similar to Section 3.3 but easier,
and will be discussed in Section 3.4.)
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3.1. The F2 gonality of X1(37). In [Der12] there are already tricks for computing
the Fp gonality of a curve in a computationally more efficient way than the brute
force method from earlier papers. These tricks were not efficient enough to compute
the F2 gonality of X1(37). However, by subdividing the problem, treating one part
with lattice reduction techniques, and the other part with tricks from [Der12], the
case N = 37 becomes manageable on a computer. We divide the problem as follows:

Proposition 1. If there is a g ∈ F2(X1(37)) − F2 with deg(g) 6 17 then there is
an f ∈ F2(X1(37))− F2 with deg(f) 6 17 that satisfies at least one of the following
conditions:

(1) mdeg(f) = 1
(2) all poles of f are rational cusps, and f has > 10 distinct poles.
(3) f has a pole at > 5 rational cusps and at least one non-rational pole.

Proof. X1(37) has 18 F2-rational places, all of which are cusps. View g as a mor-
phism X1(37)F2 → P1

F2
. For all h ∈ Aut(P1

F2
) we have deg(g) = deg(h ◦ g). If

there is h ∈ Aut(P1
F2

) such that mdeg(h ◦ g) = 1 then take f = h ◦ g and we are
done. Now assume that such h does not exist. Then at least two of the three sets
g−1({0}), g−1({1}), g−1({∞}) contain a non-rational place. If all three do, then the
one with the most rational cusps has at least 18/#P1(F2) = 6 > 5 rational cusps
and we can take f = h ◦ g for some h ∈ Aut(P1

F2
). Otherwise we can assume

without loss of generality that g−1({∞}) only contains rational cusps. If g−1({∞})
contains at least 10 elements then we can take f = g. If g−1({∞}) contains at most
9 elements then g−1({0}) ∪ g−1({1}) contains at least 18 − 9 = 9 rational cusps,
so either g−1({0}) or g−1({1}) contains at least 5, and we can take f = 1/g or
f = 1/(1− g). �
3.2. The case N = 37 and mdeg = 1.

Proposition 2. Every f ∈ F2(X1(37))− F2 with mdeg(f) = 1 has deg(f) > 18.

Proof. Let M = ZX1(37)(F2) ⊂ Div(X1(37)F2) be the set of all divisors D with
mdeg(D) = 1. Let N = ker(M → PicX1(37)F2), i.e. principal divisors in M .
Magma can compute N directly from its definition, an impressive feat considering
the size of the equation! First download the file X1_37_AFF.m from our web-page
[DvH]. It contains the explicit equation for X1(37) over F2, and assigns it to AFF

with the Magma command AlgorithmicFunctionField.

> load "X1_37_AFF.m";

> plc1 := Places(AFF, 1); //18 places of degree 1, all cusps.

> M := FreeAbelianGroup(18); gen := [M.i : i in [1..18]];

> ClGrp, m1, m2 := ClassGroup(AFF); //takes about 3 hours.

> N := Kernel(Homomorphism(M, ClGrp, gen, [m2(i) : i in plc1]));

Let ‖ ‖1 and ‖ ‖2 be the standard 1 and 2 norm on M with respect to the basis
X1(37)(F2) (i.e. plc1). For a divisor D ∈ N with D = Div(g) we have deg(g) =
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1
2
‖D‖1. So we need to show that N contains no non-zero D with ‖D‖16 2 · 17.

The following calculation shows that N contains no divisors D 6= 0 with ‖D‖226
2(142 + 32) = 410 and 1

2
‖D‖16 17.

> //Convert N to a more convenient data-structure.

> N := Lattice(Matrix( [Eltseq(M ! i) : i in Generators(N)] ));

> SV := ShortVectors(N,410);

> Min([&+[Abs(i) : i in Eltseq(j[1])]/2 : j in SV]);

18 1

From this we can conclude two things. First, there is a function f of degree 18 with
mdeg(f) = 1. We already knew that from our LLL search of div(F1(37)), but this is
nevertheless useful for checking purposes (see Remark 2 below). Second, if there is a
non-constant function f of degree 6 17 and mdeg(f) = 1 then ‖Div f‖22> 2(142+32)
so either f or 1/f must have a pole of order> 15 at a rational point. Then either f or
1/f is in a Riemann-Roch space H0(X1(N)F2 , 15p+q+r) with p, q, r in X1(37)(F2).
Since the diamond operators act transitively on X1(37)(F2) we can assume without
loss of generality that p is the first element of X1(37)(F2) returned by Magma. The
proof of the proposition is then completed with the following computation:

> p := plc1[1];

> Max([Dimension(RiemannRochSpace(15*p+q+r)) : q,r in plc1]);

1 1
�

Remark 2. Computer programs could have bugs, so it is reasonable to ask if Magma
really did compute a proof of Proposition 2. The best way to check this is with
independent verification, using other computer algebra systems.

We computed div(fk), for k = 2, . . . , b37/2c + 1, in Maple with two separate
methods. One is based on determining root/pole orders by high-precision floating
point evaluation at points close to the cusps. The second method is based on Puiseux
expansions. The resulting divisors are the same. Next, we searched the Z-module
spanned by these divisors for vectors with a low 1-norm. Maple and Magma returned
the same results, but what is important to note is that this search (in characteristic
0) produced the same vectors as the divisors of degree-18 functions (in characteristic
2) that Magma found in the computation for Proposition 2.

We made similar checks throughout our work. Magma’s RiemannRochSpace com-
mand never failed to find a function whose existence was known from a computation
with another computer algebra system. The structure of Magma’s ClassGroup also
matched results from computations in Sage and Maple.

The key programs that the proofs of our lower bounds depend on are Magma’s Rie-
mannRochSpace program (needed for all non-trivial N ’s), and ClassGroup program
(needed for N = 37). We have thoroughly tested these programs, and are confident
that they compute correct proofs.
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3.3. The case N = 37 and mdeg > 1. It remains to treat cases 2 and 3 of
Proposition 1. Let S2 ⊆ F2(X1(37))−F2 be the set of all functions f with deg(f) 6
17 such that all poles of f are rational and f has at least 10 distinct poles. Similarly
let S3 ⊆ F2(X1(37))− F2 be the set of all functions f with deg(f) 6 17 such that f
has a pole at at least 5 distinct rational points and a pole at at least 1 non-rational
point. To complete the proof of Theorem 1 we need to show:

Proposition 3. The sets S2 and S3 are empty.

We will prove this with Magma computations, using ideas similar to those in
[Der12]. The main new idea is in the following definition:

Definition 3. Let C be a curve over a field F and S ⊆ F(C)−F a set of non-constant
functions. We say that a set of divisors A ⊂ DivC dominates S if for every f ∈ S
there is a D ∈ A such that f ∈ Aut(P1

F)H0(C,D) Aut(C) (i.e. f = g ◦ f ′ ◦ h for
some g ∈ Aut(P1

F), f ′ ∈ H0(C,D), and h ∈ Aut(C)).

It follows directly from this definition that

S ⊆
⋃

D∈A
Aut(P1

F)H0(C,D) Aut(C)

and hence:

Proposition 4. Let C be a curve over a field F, S ⊆ F(C) − F and A ⊂ DivC.
Suppose that A dominates S, and that:

∀D∈A S ∩ Aut(P1
F)H0(C,D) Aut(C) = ∅. (3)

Then S = ∅.
Proof of Proposition 3. Appendix A.1 gives two sets A2 and A3 that dominate S2

and S3 respectively. The Magma computations given there show that

∀D∈A2∪A3 min{deg(f) | f ∈ H0(C,D)− F2} > 18

where C = X1(37)F2 . Since deg(f) is invariant under the actions of Aut(P1
F) and

Aut(C) it follows (for i = 2, 3 and D ∈ Ai) that Si ∩ Aut(P1
F)H0(C,D) Aut(C) = ∅

so we can apply Proposition 4. �
3.4. The cases N 6 40 and N 6= 37. Subdividing the problem into three smaller
cases as in Proposition 1 was not necessary for the other N 6 40. Instead we used
an easier approach which is similar to the case N = 37 and mdeg > 1.

For an integer N let pN denote the smallest prime p such that p - N . Let
dN = deg(gN) denote the degree of the lowest degree function we found for N
(Section 2.2 or online [DvH]). Now in order to prove GonQ(X1(N)) > dN we will
prove GonFpN

(X1(N)) > dN . We have done this by applying Proposition 4 directly
with S the set of all functions of degree < dN . To verify hypothesis (3) from Propo-
sition 4 with a computer for A = Div+

dN−1(X1(N)FpN
) (i.e. all effective divisors

of degree dN − 1) was unfeasible in a lot of cases. Instead we used the following
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proposition to obtain a smaller set A of divisors that still dominates all functions of
degree < dN .

Proposition 5. Let C be a curve over a finite field Fq and d an integer. Let
n := d#C(Fq)/(q + 1)e and

D =
∑

p∈C(Fq)

p

then
A := Div+

d−n(C) +D =
{
s′ +D | s′ ∈ Div+

d−n(C)
}

dominates all functions of degree 6 d.

Proof. For all f : C → P1
Fq

we have f(C(Fq)) ⊆ P1(Fq). By the pigeon hole principle,

there is a point p in P1(Fq) whose pre-image under f has at least n points in C(Fq).
Moving p to ∞ with a suitable g ∈ Aut(P1

Fq
), the function g ◦ f has at least n

distinct poles in C(Fq). So if deg(f) 6 d then Div(g ◦ f) > −s − D for some
s ∈ Div+

d−n(C). �
Proposition 5 reduces the number of divisors to check, but increases their degrees.

However, for our case C = X1(N) the gonality is generally much lower then the
genus, so the Riemann-Roch spaces from equation (3) are still so small that it is
no problem to enumerate all their elements, and compute their degrees to show
S ∩ Aut(P1

F)H0(C,D) Aut(C) = ∅.
As a further optimization we can make A even smaller by using the orbits under

diamond operators. The Magma computations [DvH] show that hypothesis (3) in
Proposition 4 is satisfied for S, the set of functions of degree < dN in FpN (X1(N))−
FpN , and A, an explicit set of divisors dominating S.

Despite all our tricks to reduce the number of divisors, the number of divisors for
N = 37 (due to its high gonality) remained far too high for our computers, specifi-
cally, divisors consisting of rational places. We handled those by using the relations
between rational places in the Jacobian. That idea (worked out in Section 3.2)
allowed us to complete N = 37 and thus all N 6 40.

4. Patterns in the gonality data

Definition 4. Let Γ ⊆ PSL2(Z) be a congruence subgroup and X(Γ) := H∗/Γ be
the corresponding modular curve over C. The improvement factor of a function
f ∈ C(X(Γ))− C is the ratio

[PSL2(Z) : Γ]/ deg(f) = deg(j)/ deg(f).

The definition is motivated by a well known bound from Abramovich:

Theorem 2 ([Abr96]).

GonC(X(Γ)) > 7

800
[PSL2(Z) : Γ].

If Selbergs eigenvalue conjecture is true then 7/800 can be replaced by 1/96.
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The theorem says that an improvement factor can not exceed 800/7, for any Γ,
even over C. To compare this with X1(N) (over Q), we plotted the improvement
factors of our gN ’s from [DvH]. This revealed a remarkable structure:
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What immediately pops out is that our best improvement factor is often 48 (in
151 out of 300 levels N). Levels N > 9 with an improvement factor < 48 are either
of the form N = p or N = 2p for a prime p. For prime levels, our improvement
factor converges to 420/11.

Levels of the form N = kp2 with p > 3 prime stand out in the graph, with
improvement factors significantly higher than 48. To explain this, first observe that
improvement factors for kp2 are > those of p2 because:

Remark 3. If Γ ⊆ Γ′ are two congruence subgroups, π : X(Γ) → X(Γ′) denotes
the quotient map and f ∈ C(X(Γ′)) then f and f ◦ π have the same improvement
factor. So improvement factors for X(Γ′) can not exceed those for X(Γ).

It remains to explain the high observed improvement factors at levels N = p2:

level 52 72 112 132 172

improvement 60 56 55 54 3
5

542
5

The best (lowest degree, highest improvement factor) modular units gN we found
for these five cases turned out to be invariant under a larger congruence subgroup
Γ0(p

2) ∩ Γ1(p) ⊇ Γ1(p
2). Now

Γ0(p
2) ∩ Γ1(p) =

[
1 0
0 p

]
Γ(p)

[
1 0
0 p

]−1
.

This suggests to look at X(p) to find high improvement factors for X1(p
2).
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5. Points of degree 5 and 6 on X1(N)

The values of N for which the curve X1(N) has infinitely many places of degree
d over Q are known for d = 1 (Mazur), d = 2 [K86], d = 3 [JKL11a] and d = 4
[JKL11b]. In this section, we extend this to d = 5 and d = 6.

Theorem 3. X1(N) has infinitely many places of degree d = 5 resp. d = 6 over Q
if and only if

• for d = 5: N 6 25 and N 6= 23.
• for d = 6: N 6 30 and N 6= 23, 25, 29.

The case X1(25) is by far the most interesting (and the most work) because its
set of non-cuspidal places of degree d = 6 is finite8 even though 6 is larger than the
Q-gonality of X1(25)! The remainder of this section contains the proof of Theorem 3
and a remark on larger d’s.

Lemma 1.

(1) Let C/Q be a curve. If C has a function f over Q of degree d then C has
infinitely many places of degree d over Q.

(2) If the Jacobian J(C)(Q) is finite, then the converse holds as well. To be
precise, if C has more than #J(C)(Q) places of degree d, then Q(C) contains
a function of degree d.

(3) If N 6 60 and N 6= 37, 43, 53, 57, 58 then J1(N)(Q) is finite.
(4) If N > 60 or N = 37, 43, 53, 57, 58 then X1(N) has finitely many places of

degree 6 6.

Proof. (1) Hilbert’s irreducibility theorem shows that there are infinitely many
places of degree d among the roots of f − q = 0, q ∈ Q.

(2) If n = #J(C)(Q) <∞ and P1, . . . , Pn+1 are distinct places of degree d, then
by the pigeon hole principle, there exist i 6= j with Pi − P1 ∼ Pj − P1. The
function giving this linear equivalence has degree d.

(3) Magma has a provably correct algorithm to determine if L(J1(N), 1) is 0 or
not. It shows L(J1(N), 1) 6= 0 for each N in item 3. By a result of Kato this
implies that J1(N)(Q) has rank zero and hence is finite.

(4) The case N = 58 follows from the map X1(58) → X1(29) and the fact that
X1(29) has only finitely many points of degree 6 6 (by items 3, 2 and Ta-
ble 1). GonQ(X1(37)) = 18, and a similar computation shows GonQ(X1(43)) >
13 (this bound is not sharp, but the computational effort increases if we try
to prove a better bound). For N = 53, 57 or > 60, we find 7

800
[PSL2(Z) :

Γ1(N)] > 12, and Abramovich’s bound (Section 4) implies GonQ(X1(N)) >
13. Now item 4 follows from the main theorem of [Fre94] which states that a
curve C/Q with C(Q) 6= ∅ has finitely many places of degree < GonQ(C)/2.

�
8and not empty, we found an explicit example [DvH]
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Items 4, 3, 2, and 1 of Lemma 1 reduce Theorem 3 step by step to:

Proposition 6. X1(N) has a function over Q of degree d = 5 resp. d = 6 if and
only if:

• for d = 5: N 6 25 and N 6= 23.
• for d = 6: N 6 30 and N 6= 23, 25, 29.

Proof. For each N, d listed here, our divisor data [DvH] makes it easy to find an
explicit function in F1(N) (Section 2) of degree d. So it suffices to show that there
are no such functions in the other cases.

• N > 40 and N 6= 42: In these cases 7
800

[PSL2(Z) : Γ1(N)] > 6, so it follows
from Abramovich’s bound (Section 4).
• N 6 40 or N = 42 and (N, d) 6= (25, 6): For N 6 40 see Table 1. A similar

computation (Proposition 5 with q = 5, d = 6) shows GonQ(X1(42)) > 6.
• (N, d) = (25, 6): We prove this by verifying conditions 1–5 of Proposition 7

below with C = X1(25), d = 6 and p = 2.
1. The rank of J1(25)(Q) is 0 and #J1(25)(F3) = 2503105 is odd. So

#J1(25)(Q) is finite and odd and hence J1(25)(Q) ↪→ J1(F2).
2,3 We verified this using a Magma computation (files at [DvH]).
4. Since 6−GonF2 X1(25) = 1 we only need to show surjectivity ofW 1

5 (Q)→
W 1

5 (F2). A Magma computation shows #W 1
5 (F2) = 1, and W 1

5 (Q) 6= ∅
by Table 1.

5. This is true because X1(25)(F2) consists exactly of the 10 cusps that
come from the rational cusps in X1(25)(Q).

�

For N 6 40, applying a ShortVectors-search to our divisor data [DvH] shows
that Q(X1(N)) has a function of degree d > GonQ(X1(N)) if (N, d) 6∈ S = {(25, 6),
(25, 7), (32, 9), (33, 11), (35, 13), (39, 15), (40, 13)}. The search also showed that
there are no modular units with (N, d) ∈ S. Ruling out degree-d functions other
than modular units is more work:

Proposition 7. Let C/Q with C(Q) 6= ∅ be a smooth projective curve with good
reduction at a prime p. Let W r

d (K) denote the closed subscheme of PicdC(K) corre-
sponding to the line bundles L of degree d whose global sections form a K-vectorspace
of dimension > r + 1. Suppose that:

(1) J(C)(Q)→ J(C)(Fp) is injective.
(2) Fp(C) contains no functions of degree d.
(3) W 2

d (Fp) = ∅.
(4) W 1

d−i(Q)→ W 1
d−i(Fp) is surjective for all 1 6 i 6 d−GonFp(C).

(5) C(i)(Q)→ C(i)(Fp) is surjective for all 1 6 i 6 d−GonFp(C).

Then Q(C) contains no functions of degree d.
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Proof. Item 1 and C(Q) 6= ∅ imply that Pick C(Q) to Pick C(Fp) is injective for all
k. To show that Q(C) has no function of degree d it suffices to show for all L in
W 1

d (Q) that every 2-dimensional subspace V ⊂ L(C) has a base point.
Let L ∈ W 1

d (Q). Item 3 implies dimFp LFp(CFp) = 2 and so dimQ L(C) = 2. Let
DFp be the divisor of basepoints of LFp and let i be its degree. Item 2 implies i > 1
and because LFp(−DFp) ∈ W 1

d−i(Fp) we have i 6 d−GonFp(C). By item 5 there is a

D ∈ C(i)(Q) that reduces to DFp . By the injectivity of Picd−iC(Q)→ Picd−iC(Fp),
we know that L(−D) is the unique point lying above LFp(−DFp). Then item 4 gives
the following inequalities

2 6 dimQ L(−D)(C) 6 dimQ L(C) = 2.

In particular, the unique 2-dimensional V ⊂ L(C) has the points in D as base
points. �
Remark 4. To extend Theorem 3 to d = 7, 8, we can use the same mathematical
arguments; the main difficulty is computational. Our Magma files for Proposition 7
cover (N, d) = (25, 6) and (25, 7). Our divisor data [DvH] makes it easy9 to find
functions of degree 7 on X1(N) for N = 1 . . . 24, 26, 27, 28, 30 and functions of degree
8 for N = 1 . . . 28, 30, 32, 36. To prove that these are the only values for which
X1(N) has infinitely many points of degree 7 resp. 8, we need to compute higher
lower-bounds for the gonality, specifically10 for N = 42, 43, 53 (for d = 7) and
N = 42, 43, 44, 46, 48, 53, 57 (for d = 8). For d = 7, the lower-bound needed for
Frey’s theorem is 15, which is 3 less than the bound we managed to compute in
Theorem 1. So the number of Riemann Roch spaces needed for d = 7 is manageable,
however, each Riemann Roch computation for N = 53 will likely be slow (we did not
attempt this). For d = 8, the number of Riemann Roch computations will be much
higher.

New mathematical problems arise for d = 9. X1(37) has a Jacobian with positive
rank, and the Q-gonality is 18 so we can not use Frey’s theorem to rule out infinitely
many places of degree 9. J1(37) has only one simple abelian sub-variety of positive
rank, namely an elliptic curve E isogenous to X+

0 (37). So the question whether
X1(37) has infinitely many places of degree 9 is equivalent to the question whether
W 0

9 (X1(37)) contains a translate of E. Higher values of d lead to additional math-
ematical problems, for instance, when X1(N) has infinitely many places of degree d
but no function of degree d.

Appendix A. Magma Calculations

We use one custom function. It takes as input a divisor and gives as output the
degrees of all non-constant functions in the associated Riemann-Roch space.

9This part takes little CPU time and can easily be done for much larger (N, d)’s.
10All but finitely many values of N are handled by an improvement to Abramovich’s bound

(Remark 4.5 in [BGGP05]) and N = 58 is again handled by its map to X1(29).
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function FunctionDegrees(divisor)

constantField := ConstantField(FunctionField(divisor));

space,map := RiemannRochSpace(divisor);

return [Degree(map(i)) : i in space | map(i) notin constantField];

end function;

We divide the computation according to type:

Definition 5. Write D as
k∑

i=1

nipi

with pi distinct places and ni ∈ Z − {0} such that (deg(p1), n1) > (deg(p2), n2) >
· · · > (deg(pk), nk) where > is the lexicographic ordering on tuples. Then type(D)
is defined to be the ordered sequence of tuples

((deg(p1), n1), (deg(p2), n2), . . . , (deg(pk), nk)).

If deg(pi) = 1 for all i then (n1, . . . , nk) is a shorter notation for type(D).

For example if D = P1 + 3P2 where P1 is a place of degree 5 and P2 a place of
degree 1 then

type(D) = ((5, 1), (1, 3)).

The type of a divisor is stable under the action of Aut(C).

A.1. The case N = 37 and mdeg > 1.

A.1.1. Dominating the set S2. Let

cuspsum :=
∑

p∈X1(37)(F2)

p

(short for rational-cusp-sum) be the sum of all F2 rational places. Then the set

A′2 := {cuspsum +D | D = p1 + · · ·+ p7 with p1, . . . , p7 ∈ X1(37)(F2)}
dominates S2. However, A′2 contains many divisors. Using divisors of higher degree,
of the form k ·cuspsum+ · · · for k = 1, 2, 3 depending on type(D), we can dominate
S2 with much fewer divisors. To prove:

min{deg(f) | f ∈ H0(X1(37)F2 , cuspsum +D)− F2} > 18 (4)

for all cuspsum + D in A′2 we divide the computation: The table below list for
each type(D) (a partition of 7) from which Magma calculation we can conclude
inequality (4) for that type.

type(D) calculation
(7), (6, 1) and (5, 2) 1
(5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1) and (3, 3, 1) 2
(3, 2, 2) 3
(3, 2, 1, 1) and (3, 1, 1, 1, 1) 2
(2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) 4



34 MAARTEN DERICKX AND MARK VAN HOEIJ

As in Section 3.2, start the computation by loading the file X1_37_AFF.m. Next,
load the program FunctionDegrees and then run the following:

> //calculation 1

> p := plc1[1];

> [Dimension(cuspsum + 6*p + 2*P) : P in plc1];

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

> //calculation 2

> Min(&cat[FunctionDegrees(2*cuspsum + 4*p + 2*P) : P in plc1]);

18 105

> //calculation 3

> s := Subsets(SequenceToSet(plc1[2..18]),2);

> &cat[FunctionDegrees(cuspsum + 3*p + 2*(&+PQ)) : PQ in s];

[]

> //calculation 4

> Min(FunctionDegrees(3*cuspsum - 4*p);

18 48

The set A2 in the proof of Proposition 3 is the set of divisors occurring in the four
calculations above. Calculation 4 used that if f ∈ F2(X1(37)) has deg(f) 6 17 then
at least one of f, f + 1 has an F2-rational root since #X1(37)(F2) = 18.

A.1.2. Dominating the set S3. The set

A′3 := {cuspsum +D | D > 0, deg(D) = 12 with > 1 nonrational place}
dominates all functions in S3. This time we break up the computation into the
following types where we use the following shorthand notation

a(c, d) := (c, d), . . . , (c, d)︸ ︷︷ ︸
a

type(D) covered by calculation #c c
((12,1)) and ((11, 1),(1,1)) 1
((10,1),(1,2)) and ((10,1),(1,1),(1,1)) 2
((9,1)(1,3)) 3
((9,1),(1,2),(1,1)) and ((9,1),(1,1),(1,1),(1,1)) 4
((7,1),(1,5)), ((7,1),(1,4),(1,1)) and ((7,1),(1,3),(1,2)) 5
((7,1),(1,3),(1,1),(1,1)) and ((7,1),(1,2),(1,2),(1,1)) 6
((7,1),(1,2),3(1,1)) and ((7,1),5(1,1)) 7
((6,2)) and ((6,1),(6,1)) 8
((6,1),(1,6)), ((6,1),(1,5),(1,1)), ((6,1),(1,4),(1,2)), ((6,1),(1,3),(1,3)) 9
((6,1),(1,4),2(1,1)), ((6,1),(1,3),(1,2),(1,1)), ((6,1),3(1,2)) 10
((6,1),2(1,2),2(1,1)),((6,1),(1,3),3(1,1)),((6,1),(1,2),4(1,1)),((6,1),6(1,1)) 11

X1(37)F2 has no places of degrees 2–5 and 8. So any non-rational place contributes
at least 6 to deg(D), a fortunate fact that reduces the number of divisors to a
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manageable level. The Magma commands to cover these 11 cases are similar to
those in Section A.1.1 and can be copied from [DvH].

Theorem 4. The values in Table 1 are upper bounds for the gonality of X1(N) over
Q. For N 6 40 they are exact values.

Proof. The functions listed at [DvH] are explicit proofs for the upper bounds in
Table 1. Section 3, Appendix A, and the accompanying Magma files on [DvH] prove
that the bounds are sharp for N 6 40. �
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