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Abstract9

In this work, a problem of selecting a subset of molecules, which are poten-

tial lead candidates for drug discovery, is considered. Such molecule subset

selection problem is formulated as a portfolio optimization, well known and

studied in financial management. The financial return, more precisely the

return rate, is interpreted as return rate from a potential lead and calculated

as a product of gain and probability of success (probability that a selected

molecule becomes a lead), which is related to performance of the molecule,

in particular, its (bio-)activity. The risk is associated with not finding active

molecules and is related to the level of diversity of the molecules selected in

portfolio. It is due to potential of some molecules to contribute to the diver-

sity of the set of molecules selected in portfolio and hence decreasing risk of

portfolio as a whole. Even though such molecules considered in isolation look

inefficient, they are located in sparsely sampled regions of chemical space and

are different from more promising molecules. One way of computing diversity
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of a set is associated with a covariance matrix, and here it is represented by

the Solow-Polasky measure. Several formulations of molecule portfolio opti-

mization are considered taking into account the limited budget provided for

buying molecules and the fixed size of the portfolio. The proposed approach

is tested in experimental settings for three molecules datasets using exact

and/or evolutionary approaches. The results obtained for these datasets

look promising and encouraging for application of the proposed portfolio-

based approach for molecule subset selection in real settings.

Keywords: Portfolio Approach, Multicriteria optimization, Decision10

Support, Drug Discovery11

1. Introduction12

When searching for the most promising drug like molecules for a drug13

discovery project, usually, de novo drug discovery uses in vitro experiments14

(colloquially called “test-tube experiments”). For this, circa 100 promising15

molecules are selected from a database and typically only circa 1 percent of16

the molecules are tested successfully in vitro, that is they become so called17

lead molecules [4]. High-throughput screening (HTS) allows for testing a18

large number of molecules by robotized machines using advanced laboratory19

equipment. However, testing in vitro is an expensive process and cannot al-20

ways be applied to all possible projects, even though in industry millions of21

molecules can be screened if the target is interesting enough. To reduce costs,22

HTS can be complemented by preliminary in silico (performed via computer23
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simulation) virtual screening (VS). VS approaches [27] are used to pre-select24

molecules from virtual libraries or large databases of commercially available25

molecules (e.g. ZINC [13]) based on their chemical properties. Selection is26

typically done based on the assessment of the success probability of candidate27

molecules using either a compound-based method or a target-based method28

or a combination of both. Typically, no explicit economical information is29

taken into account and simple methods like clustering are applied. The suc-30

cess probability is not given directly, but in the form of a score corresponding31

to (bio-)activity that is proportional to it.32

A typical scenario in a pharmaceutical research laboratory is that a33

chemist selects a subset from a large vendor database of molecules (e.g.34

ZINC) and orders these. Each molecule has a price, and the budget of the35

chemist is limited, but it has to be allocated for buying molecules. That36

is, money not spent cannot be used for another purpose (and, thus, will be37

lost). Note that here we do not look into experimental planning and drug38

production, see e.g. [1], which is a separate subject of research.39

Classical approaches for selecting promising molecules are based on pre-40

dicted activity score. However, selecting molecules based on their perfor-41

mance (success probabilities / activity scores) only is not enough and even42

risky. It is due to a high probability of selecting well-performing, but similar43

molecules, which all might be unsuccessful for the same reason.44

An alternative approach is to take into account diversity of selected sub-45

sets of molecules. However, selection purely based on diversity will neglect46
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the information about activity given to the chemists by VS models. More-47

over, price might also play a role in the choice as it influences the number48

of molecules that can be bought given a limited budget. Hence, existing,49

just clustering- or just scoring-based selection models are not sufficient for50

handling these problems.51

In this work, we consider the first stage of drug discovery of identifying52

lead candidates with an approach which takes into account performance of53

molecules according to their predicted (bio-) activity and diversity of selected54

molecules simultaneously. Similar approach was taken in [17], where activity55

score and diversity were maximized at the same time. Here, the molecule56

subset selection problem is considered and modeled by analogy with a well-57

known financial portfolio selection problem, see e.g. [5]. A similar binary58

problem of finding an optimal combination of items subject to constraints59

is known in operations research as the knapsack problem, see e.g. [16]. Ac-60

cording to the portfolio optimization approach when selecting a subset of61

molecules to be tested in vitro, in addition to choosing molecules with high-62

est performance values (and maximizing the average quality of the selected63

subset of molecules), the molecules with the most dissimilar structures should64

be considered. The former aspect contributes to maximizing the quality of65

the selected subset of molecules and the latter one corresponds to maximizing66

the diversity of such a subset.67

The financial portfolio return, more precisely the return rate, is inter-68

preted as the return rate from a potential lead and calculated as a prod-69
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uct of the gain and the probability of success (probability that a selected70

molecule becomes a drug in the end), which is related to the performance71

of the molecule, in particular, its (bio-)activity. The risk is associated with72

not finding active molecules when choosing a portfolio and is related to the73

level of diversity of the molecules in the portfolio. The diversity can be ex-74

pressed as a covariance matrix used by Solow and Polasky [23] for measuring75

diversity of a biological population. Interestingly, as an example of a utili-76

tarian approach to the biological diversity preservation, Solow and Polasky77

indicated the potential utility in future from one of the preserved species as78

a cure of some yet unknown disease (see [23]).79

Some molecules, when considered in isolation look inefficient, but as part80

of a portfolio may contribute to the decreasing risk of a portfolio as a whole81

and may be included in a portfolio as they are located in sparsely sampled82

regions of chemical space and are different from more promising molecules.83

In addition, the limited budget provided for buying molecules and the fixed84

size of the portfolio are taken into account in the introduced drug portfolio85

model as constraints.86

This article is structured as follows: In the next section 2, we consider87

the general (multiobjective) formulation of the (financial) portfolio selection88

problem and, then, in section 3, we model the lead subset selection problem as89

portfolio optimization. In section 4, we propose algorithms to solve portfolio90

selection formulations, and in section 5, we discuss results obtained for three91

molecule datasets. Finally, in section 6, we draw conclusions and indicate92
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directions for future research.93

2. Related Work94

2.1. Portfolio selection as a multi-objective optimization problem95

The most-widely used formulation of portfolio selection problem was de-96

veloped by Markowitz early in the 50s [15]. It addresses a way of selecting97

a combination of several assets called portfolio that collectively would be of98

the best quality and be as diverse as possible. Hence, portfolio optimiza-99

tion should simultaneously satisfy two conflicting goals, minimizing risk and100

maximizing expected return of the portfolio, that is formally:101

minσ2(x) =

NTotal∑
i=1

NTotal∑
j=1

qijxixj = x>Qx; (1)

maxE(x) =

NTotal∑
i=1

rixi = r>x;

s.t.

NTotal∑
i=1

xi = 1;

xi ∈ [0, 1], i = 1, . . . , NTotal,

where NTotal is the number of assets; xi is the proportion of money invested102

in the asset i; ri is the expected return (per period) of the asset i; and qij is103

the real-valued covariance of expected returns of the assets i and j.104

As a result of optimizing this problem not a single portfolio but a set105

of portfolios are selected that are optimal with respect to the two specified106

objectives.107
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For this problem the search space of portfolios S is [0, 1]NTotal . The set of108

feasible portfolios F is the subset of portfolios in S with
∑NTotal

i= xi = 1. We109

consider two real valued objective functions defined on S, σ2(x) = x>Qx and110

E(x) = r>x. Each portfolio x is associated with a 2-dimensional evaluation111

vector in the objective space, (σ2(x), E(x))>, where the risk objective is to112

be minimized and the return objective is to be maximized.113

Optimizing two or more conflicting objectives simultaneously is referred114

to as Multiobjective Optimization (MOO). The portfolio selection problem115

formulated as in (1) is bi-objective: Minimizing the risk and maximizing116

the expected return should be taken into consideration and optimized at the117

same time. These objectives are generally in conflict with each other and118

finding a portfolio with minimal risk and maximal return simultaneously is119

infeasible. Hence, decreasing risk for a portfolio can be obtained at the cost120

of lowering its return only.121

Interestingly, including some assets, which look inefficient when consid-122

ered in isolation, may benefit the portfolio as a whole, since they contribute123

to decreasing the risk of a portfolio when considered in combination with124

other assets. This is due to their location in sparsely sampled regions of125

search space and their difference from more promising assets. Cost of assets126

may also be taken into account as a separate objective, but we included it127

in the return (which is reduced by the costs invested in initial assets) and in128

the budget constraint.129

Recently, the principles of portfolio optimization have been successfully130
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applied not only for optimizing financial portfolio selection [24], but also in131

other domains, such as strategic decision making [14] (for instance, team132

management), projects selection [11], IT project portfolio management [3],133

and evolutionary algorithms selection [29]. For instance, for evolutionary134

algorithms selection it is important to keep good, but different individuals,135

which should avoid fast convergence of the population to a single individual136

or few similar individuals. Hence, the selection procedure should simultane-137

ously optimize quality and diversity of population. In [29], a multiobjective138

evolutionary algorithm based on the portfolio selection idea was introduced139

and results comparable to the results of the state-of-the-art algorithms were140

obtained.141

2.2. A posteriori Markowitz model142

The general idea of the a posteriori approach to solving MOO problems143

rephrased in terms of portfolios is: first, to compute the set of efficient (or144

non-dominated) portfolios and, then, to select a single portfolio from it. The145

selection of a final portfolio can be done by the decision maker or expert,146

e.g. with the help of multi-criteria decision aiding approaches, see e. g. [2].147

Given two objective functions, in our case σ2(x) = x>Qx and E(x) = r>x,148

one can associate to each solution x a 2-dimensional evaluation vector in the149

objective space, (σ2(x), E(x))>, where the risk objective is to be minimized150

and the return objective is to be maximized; r and Q are defined as before151

in (1).152
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A portfolio x(1) dominates a portfolio x(2) (in symbols x(1) ≺ x(2)), if153

and only if E(x(1)) ≥ E(x(2)) and (σ2(x(1)) < σ2(x(2)) or E(x(1)) > E(x(2)))154

and σ2(x(1)) ≤ σ2(x(2)). The efficient set XE (of portfolios) is given by the155

portfolios that are not dominated by any other portfolio. The image of this156

set is called the Pareto front PF , i. e.157

PF = {(y1, y2)> ∈ R2 | ∃x ∈ XE : y1 = σ2(x) and y2 = E(x)}.

An example of Pareto fronts of optimal portfolios can be seen in Figure158

4. Note that we chose the first coordinate (y1) for the risk objective (or159

variance), and the second coordinate (y2) for the expected return objective,160

thereby following the convention in portfolio optimization.161

It should be noted that here the formulation (1) is adapted from the162

continuous version to a discrete, in particular an integer one. In integer163

adaptation an asset is either taken or not at a fixed price. The search space164

of the problem S is {0, 1}NTotal .165

The Pareto front will be obtained at the upper left boundary of the166

set of attainable solutions Y = {(y1, y2)> ∈ R2 | ∃x ∈ {0, 1}NTotal : y1 =167

σ2(x) and y2 = E(x)}. It can, for instance, be obtained by a series of con-168

strained single objective optimization problems. Moreover, a fixed budget169

B is allocated for buying assets of a portfolio, which in research projects is170

lost if not spent. Hence, the integer adaptation of the Markowitz model is as171
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follows:172

E(x) → max; (2)

σ2(x) → min;

s.t.

NTotal∑
i=1

cixi = x> · c ≤ B;

xi ∈ {0, 1}, i = 1, . . . , NTotal,

where ci refers to the cost of an asset, which can be different for different173

assets.174

The set of feasible portfolios F is now the subset of portfolios in S with175 ∑NTotal

i=1 cixi = x> · c ≤ B.176

Earlier VS for drug discovery was formulated as a multiobjective opti-177

mization problem in [17], where both activity and diversity were maximized178

simultaneously. Our portfolio-based formulation is similar, however, different179

diversity measure based on Solow-Polasky diversity [23] is used, see section180

3.2, and expected return based on activity is computed instead of activity181

score maximization.182

2.3. A priori Sharpe ratio model183

All portfolios belonging to the efficient set present tradeoffs between re-184

turn and risk. Eventually however, from the set of efficient portfolios a single185

one should be chosen. Instead of letting the decision maker make a subjec-186

tive decision by viewing solutions on the Pareto front (a posteriori decision187
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making) one could also establish beforehand a criterion by which the best188

solution on the Pareto front is selected (a priori decision making).189

The investment management suggests a large number of measures to eval-190

uate return-to-risk ratios of portfolios, relatively to time period (e. g., stan-191

dard deviation), to market behavior (e. g., beta ratio), to benchmark asset192

(e. g., tracking error, excess return, Sharpe ratio). The Sharpe ratio, also193

called reward-to-volatility ratio, is the most widely used risk-adjusted per-194

formance index [5] and will be used here.195

The Sharpe ratio can be defined with the help of the capital allocation line196

(CAL). It is a straight line on the return-risk graph (see Figure 1) that shows197

all possible combinations of risky portfolios with the risk-free asset rf ≥ 0.198

The risk-free asset, rf , has a return that is smaller than the minimal expected199

return of an efficient portfolio rf < rmin, and it assumes risk-free investment.200

The optimal CAL corresponds to the portfolios with lowest risk for any given201

value of return r > rf . The slope of the optimal CAL is a sub-derivative of202

the function that defines the Pareto front of efficient portfolios. The point203

at which the CAL touches the front of efficient portfolios corresponds to the204

Sharpe ratio that provides an optimal risky portfolio.205

Here, the risk free investment is chosen to be rf = −B, as this will be

the exact return if we do not invest in the research. Then the Sharpe ratio

is defined as

Sh(x) =
E(x)− rf
σ(x)

.
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Figure 1: Sharpe ratio on intersection of CAL and Pareto front

The Sharpe ratio characterizes how well the return of a portfolio compensates206

the risk taken, and it measures excess of return per unit of risk. When207

comparing two portfolios, the one with the higher Sharpe ratio gives more208

return per risk. Finding the portfolio with maximal Sharpe ratio yields the209

following nonlinear integer programming problem:210

E(x)− rf
σ(x)

→ max; (3)

s.t. x> · c ≤ B;

xi ∈ {0, 1}, i = 1, . . . , NTotal,

where B refers to the budget, which in research projects if not spent is lost.211

2.4. Portfolios with fixed size212

The problem with the Markowitz (2) and optimal Sharpe ratio (3) for-213

mulations is that they both favor selection of empty portfolios as they may214

be best at minimizing risk of any losses. One way to neutralize this effect215

is to require a fixed number of assets to be selected into the portfolio. This216
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problem formulation is referred to as fixed size portfolio selection and it as-217

sumes that the number of assets to be selected is limited to a specific number218

NPortfolio. Then, in addition to the formulation (2) or (3), a constraint of the219

following form is assumed:220

x> · e = NPortfolio,

where e is in {0, 1}NTotal ; each coordinate is either 0 or 1, summing up to221

portfolio of NPortfolio size (with NPortfolio << NTotal not all molecules being222

selected in portfolio out of NTotal).223

This formulation is equivalent to the 0-1 quadratic knapsack problem.224

Problems of this form were intensively studied in the literature due to their225

simple and practical formulation, but there are difficulties in finding exact226

solutions for them (as indicated in [16] and [20]).227

3. Drug subset selection as portfolio optimization228

Several formulations from the previous section can be used for selecting229

portfolio of molecules that are potential drugs. For formulating such prob-230

lems the following model variables are considered:231

1. A fixed budget B is available and has to be spent. Money that is not232

used will be lost.233

2. Each successful molecule is associated with a gain G, which is the value234

(expressed in monetary units) gained if the molecule becomes a drug.235
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The gain is the same for each successful molecule Gi = G and is zero236

for unsuccessful molecules.237

3. For each available molecule i = 1, . . . , NTotal a probability of success pi238

is given or obtained a priori.239

4. For each candidate molecule i = 1, . . . , NTotal the cost ci for buying240

and testing it is known. The cost of different molecules may vary241

significantly, and this cost does not involve indirect costs, e. g. costs of242

the in vitro testing.243

5. From a given set of NTotal candidates, a subset of NPortfolio molecules244

is selected such that245

(a) the budget B is not exceeded.246

(b) The expected return E is to be maximized, where the expected247

return is given by the expected value of the random variable of248

the return R of a portfolio of molecules selected for testing.249

(c) The risk σ associated with the expected return is to be minimized.250

3.1. A posteriori Markowitz model with fixed size portfolio251

The problem corresponding to a posteriori Markowitz model with limited252

budget and fixed size of portfolio constitutes a two-objective optimization253

problem that is formulated as follows:254
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E(x) → max; (4)

σ2(x) → min;

s.t. x> · c ≤ B;

x> · e = NPortfolio;

xi ∈ {0, 1}, i = 1, . . . , NTotal,

and is referred in the text as the Markowitz model with fixed size portfolios.255

Here, xi, i = 1, . . . , NTotal, denote the decision variables; xi = 1 means256

that the i-th molecule is selected and xi = 0 means that it is not selected;257

NTotal is the number of available molecules. The search space of the problem258

S is {0, 1}NTotal . The set of feasible portfolios F is now the subset of portfolios259

in S with
∑NTotal

i=1 xi = NPortfolio, where NPortfolio is the size of the portfolio.260

We consider two real valued objective functions defined on S, σ2(x) = x>Qx261

and E(x) = r>x. Each portfolio x is associated with a 2-dimensional evalu-262

ation vector in the objective space, (σ2(x), E(x))T , where the risk objective263

is to be minimized and the return objective is to be maximized; r and Q are264

defined as before in (1).265

The computation of return E(x) and risk σ2(x) is discussed next. The

return E(x) is defined as the gains minus the losses. For the expected return

it is important to realize that money from the budget that is not invested in

molecules is lost. Therefore, the losses will be B and the gains will be the
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cumulated gains from molecules that become successful drugs. Hence,

E(x) = Gp · x−B =

(
NTotal∑
i=1

Gpixi

)
−B.

Due to the probabilistic nature of the return (we get it only in case of

successful drug(s)), it can be modeled as a random variable. Let x̃i denote

a random variable of Bernoulli type that models the uncertain return on

investment in a molecule i:

x̃i =


G− ci
ci

, return rate with probability pi in case of success;

0− ci
ci

= −1, return rate with probability 1− pi in case of no success.

Then, the expected return of a molecule i is defined by:

E(x̃i) =
G− ci
ci

· pi +
−ci
ci
· (1− pi).

Following the classical model of Markowitz, the risk σ2(x) can be ex-266

pressed by means of a covariance matrix Q as follows:267

σ2(x) = x>Qx =

NTotal∑
i=1

NTotal∑
j=1

xiqijxj,

where qij is a correlation between the return from the i-th molecule ri and268

the return from the j-th molecule rj. The computation of the covariance on269

the basis of a distance matrix will be derived from the Solow-Polasky model270
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as discussed in the next section.271

3.2. Solow-Polasky diversity measure272

One possible interpretation of the covariance can be done using a measure273

for estimating diversity of a (biological) population introduced by Solow and274

Polasky (see [23]). Originally, they were searching for a measure that can be275

used for evaluating population diversity rigorously, assuming some particular276

properties for this measure are respected. A measure which counts essentially277

different species and is used in the context of species preservation. Within278

the utilitarian model of Solow and Polasky the more species is considered279

to be more useful because of e.g. their potential future medical benefits. In280

general there are other reasons for species preservation, e.g. for stability of281

eco-system or ethical reasons. But in our context utilitarian motivation for282

species preservation fits well.283

Hence, they suggested a diversity function:284

D(s) = e>F (s)−1e,

where e is an NTotal-vector of 1’s and F (s) is a non-singular NTotal-by-NTotal285

distance matrix F (s) = [f(d(si, sj))], with a distance function f(dij) taken286

for each pair of species d(si, sj). Each entry of the Solow-Polasky matrix287

indicates distance between species si and sj, where i = 1, . . . , NTotal and288

j = 1, . . . , NTotal.289

When compared to other diversity measures, e.g. proposed in [28], Solow-290
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Polasky distance takes into account not only the distance between species in291

the population but also provides a measure for the number of different species292

in it. This model is inspired by probabilistic modeling of a set of species, but293

can be adapted to drug discovery.294

Let S = {s1, s2, . . . , sNTotal
} be a set of molecules, |S| = NTotal. Let S ′ be295

any subset of S, then B(S ′) denotes the composite event that at least one296

molecule in S ′ is successful. By Pr(B(S ′)) we denote the probability of this297

composite event. The expected benefit of S ′ can be measured by the product298

Pr(B(S ′)) ·V , where V is a fixed unit value of benefit. Based on this benefit299

measure different subsets of S can be compared.300

Knowing a priori information on the performance of different molecules301

with respect to the specified goal(s), the probability of their benefit can be302

defined as Pr(Bi) = pi, where Bi denotes the event that the i-th molecule is303

successful. Otherwise, if probabilities are unknown, they may be considered304

as equal Pr(Bi) = p for all Bi, i = 1, . . . , NTotal. For the event Bj being305

successful, the conditional probability for the event Bi is defined in [23] as306

Pr(Bi|Bj) = p+(1−p)f(dij), where f is a function selected with the following307

properties: f(0) = 1, f(∞) = 0, f ′ ≤ 0. Here, as remarked by Solow and308

Polasky, f can be interpreted as a correlation function.309

Finding the NTotal-variate distribution Pr(B(S)) from univariate and bi-310

variate probabilities is not possible. However, the lower bound on it was311

defined in [10]. One example of the distance function for computing this312

distance matrix is provided in [23]: f(d) = e−θd(si,sj), and it will be used313
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here.314

3.3. A posteriori Markowitz model with Solow-Polasky diversity315

In addition to difficulties with computing an exact solution for a fixed316

size portfolio, in some cases the tendency of selecting the cheapest solutions317

in the portfolio may be observed if enough diversity is reached at the cost of318

cheapest assets. Hence, relaxing the constraint on the number of assets in319

the portfolio may be beneficial.320

Fortunately, Solow and Polasky specified a set of requirements which a321

biological diversity measure should satisfy; see [23] for more details. One322

of the requirements is monotonicity in species, which suggests that the di-323

versity of a set increases with adding new elements to it and decreases with324

removing elements. This property is taken into account in the next portfolio325

optimization model.326

Since minimizing risk of selecting similar assets into a portfolio can also be327

interpreted as maximizing diversity of selected portfolio of assets, different328

formulations of diversity can be taken in the portfolio selection problem.329

Here, we propose to use Solow-Polasky diversity as a second objective instead330

of the risk measure calculated as a variance of the returns.331

The Solow-Polasky diversity measure is calculated as the sum of the en-332

tries of the inverse of the correlation matrix for selected assets:333

D(x) = e>F (x)−1e =

NTotal∑
i=1

NTotal∑
j=1

F (x)−1ij ,
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where F (x)−1ij is the inverse of the correlation matrix for all selected assets.334

Then, the two objectives to be optimized are: the return and the diversity335

of the portfolio, which can be presented in the following model:336

E(x) → max; (5)

D(x) → max;

s.t. x> · c ≤ B;

xi ∈ {0, 1}, i = 1, . . . , NTotal.

Even though both a posteriori approaches use the correlation function sug-337

gested by Solow and Polasky, the Markowitz model minimizes the sum of338

the correlation matrix entries, while the Solow-Polasky diversity model max-339

imizes the sum of the entries of the inverse of the correlation matrix. Hence,340

the former model favors smaller size portfolios, while the latter one gives341

preference to larger portfolios.342

4. Solution algorithms343

Different methods can be used to compute efficient portfolios to the given344

portfolio selection problem. In this section, the methods that proved to be345

robust solvers are presented. In general, the difficulty of finding efficient346

portfolios depends on the number of candidate molecules NTotal and the size347

of the subset that is selected NPortfolio.348

Portfolio optimization problems belong to the class of NP hard problems349
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and, under the P 6= NP assumption, the effort needed to solve them ex-350

actly is growing exponentially with increasing NTotal. Portfolio optimization351

problems can be formulated either as discrete or continuous/parametric op-352

timization problems. The former presentation is more common due to faster353

performance on small and medium size problems (with up to 500 assets) with354

interior-point optimizers. However, in [24], it was shown that for large-scale355

problems (in the range of 1,000 to 3,000 assets) continuous formulation may356

be computationally more efficient when solved with some optimizers. Re-357

cently, new exact solvers such as Gurobi (see [12]) show fast performance for358

large instances (at least with datasets with up to 5,000 assets considered in359

this work) with branch and bound method.360

However, for finding the Pareto fronts in Markowitz models and com-361

puting Sharpe ratio, some adaptations to the formulations presented earlier362

need to be performed before applying exact solvers. This will be discussed363

next, first for the Pareto front computation in the Markowitz model with364

fixed size portfolio and then for the Sharpe ratio maximization. For the case365

of the Markowitz model with Solow-Polasky diversity optimization instead366

of the original risk objective, exact solvers cannot be applied due to the367

complexity of the risk objective function. But approximate algorithms, such368

as meta-heuristics and multiobjective evolutionary algorithms in particular,369

could and will be applied to find approximate solutions.370
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4.1. Markowitz model with fixed size portfolio computation using ε-constraint371

method372

To find the Pareto front and efficient set of the problem, it is proposed373

to use the ε-constraint method, see e.g. [18]. This is done by formulating a374

series of single objective constrained optimization problems (SOCOPs) with375

moving constraint on one of the objective function values. Then one objective376

is optimized subject to the other objective fixed and expressed as a constraint.377

To obtain, sayNPareto, points on the Pareto front, we solve the following series378

of NPareto SOCOPs for ascending expected returns Ej, j = 1, . . . , NPareto:379

σ2(x) → min; (6)

s.t. E(x) ≥ Ej;

x> · c ≤ B;

x> = NPortfolio;

xi ∈ {0, 1}, i = 1, . . . , NTotal.

The resulting optima will be called x∗j , and their risk σ2∗
j and return E∗j380

values. The values of E∗j are taken evenly spaced between lower bound Emin
381

and upper bound Emax. The computation of the lower and upper bounds,382
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Emin and Emax, is done by solving the SOCOPs, respectively:383

E(x) → min; (7)

s.t. x> · c ≤ B;

xi ∈ {0, 1}, i = 1, . . . , NTotal,

and384

E(x) → max; (8)

s.t. x> · c ≤ B;

xi ∈ {0, 1}, i = 1, . . . , NTotal.

Let xmin denote the solution obtained for the first problem (7) and xmax
385

denote the solution obtained for the second problem (8). Then, the lower386

bound for the return is Emin = E(xmin) and the upper bound for the return387

is Emax = E(xmax).388

4.2. Sharpe ratio with fixed size portfolio computation using quadratic pro-389

gramming390

In order to maximize the Sharpe ratio, it would be beneficial to get rid of391

the nonlinear and non-quadratic term
E(x)−rf
σ(x)

in the problem formulation (3),392

and then use a quadratic solver. For this, homogenization has been suggested393

in [5]. However, our experience was that the resulting mixed integer quadratic394

programming (QP) problem was difficult to solve due to resulting covariance395
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matrix being not of a semidefinite type.396

Alternatively, it is also possible to compute the Pareto front with (1) and

find the point on the Pareto front that maximizes the Sharpe ratio computed

with (3). Given a sufficiently dense approximation of the Pareto front this is

accomplished by evaluating the Sharpe ratio of all points on the Pareto front

i.e.:

xsharpe = arg max{Sh(x1), . . . , Sh(xNPareto
)}.

It is important in this context that points that maximize the Sharpe ratio397

are part of the efficient set.398

4.3. Markowitz model with Solow-Polasky diversity computation using multi-399

objective genetic algorithms400

In case of Markowitz model with Solow-Polasky diversity considered as401

a risk objective (5), the need of obtaining the inverse of the distance matrix402

makes the application of quadratic programming difficult. An alternative ap-403

proach is to use approximate methods, for instance, meta-heuristics. While404

meta-heuristics do not guarantee reaching an optimal solution, they can typ-405

ically obtain good approximations to optima fairly quickly even for NP hard406

combinatorial problems, which is the case of knapsack / portfolio optimiza-407

tion problems considered in this work.408

Among many meta-heuristics developed so far, multiobjective evolution-409

ary algorithms (MOEAs) are particularly common for solving multi-objective410

optimization problems. In this study, two common MOEAs are considered:411
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NSGA-II (see [6]) and SMS-EMOA (see [7]). Using otherwise standard imple-412

mentations of these meta-heuristic solvers, we introduce two problem specific413

adaptations. These are the mutation and the recombination operators, which414

were specifically designed for the subset selection problem.415

MOEAs maintain a population (multi-set) of individuals that is changing416

over time due to the application of variation and selection operators. From a417

given population P (t) at time t pairs of parents are selected – in the so-called418

mating selection step – and offspring are then generated by recombination419

and mutation based on these parents. Then from the offspring and the420

individuals of previous population P (t) a set of individuals is selected – in421

the so-called environmental selection step – that forms the next population422

P (t+1). While the two selection steps are based on choosing individuals with423

the best objective function values, the two variation steps – recombination424

and mutation – seek to generate new individuals that resemble some of the425

traits of their parents. Recombination combines the information of parents,426

and mutation does a small random modification of a solution.427

The NSGA-II and SMS-EMOA algorithms differ in their selection steps:428

In NSGA-II, a new offspring population of the same size as the population429

P (t) is generated, and, subsequently, the new population P (t + 1) is se-430

lected based on so-called non-dominated sorting and crowding-distance. In431

SMS-EMOA, only one offspring is generated based on P (t) and the next432

population P (t+ 1) is obtained by non-dominated sorting and selecting the433

subset that maximizes the hypervolume indicator. Here, the hypervolume in-434
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dicator, which the SMS-EMOA seeks to maximize, is a measure computed to435

show how well a population serves to mark the boundary between the dom-436

inated and non-dominated spaces, and, thus, how well it serves to represent437

the true Pareto front. The MOEA for the portfolio subset selection problems438

represents individuals (that are portfolios) as sorted index lists. For instance,439

the sequence (1, 4, 6, 29) represents the portfolio that selects the 1st, the 4th,440

the 6th and the 29th molecules.441

The mutation is done by (1) deleting a single randomly chosen molecule442

from the portfolio, (2) adding a randomly chosen new molecule, and (3)443

replacing a molecule inside the portfolio by a molecule outside the portfolio.444

Each of these mutation operators is applied with a certain probability for each445

molecule, which is denoted by pMD, pMA, and respectively pMR. In case of a446

fixed number of molecules in the portfolio, only replacement is used. While447

pMD and pMA determine probability of adding and deleting a single molecule448

per portfolio, the replacement probability pMR is defined per molecule in the449

portfolio.450

As a recombination operator m-point crossover is applied. This means451

we randomly select m points for the number of molecules. After each point452

we change the parent we use to copy from. To make it applicable for subsets,453

the subset membership is interpreted as a bit-string (one means a molecule is454

a member of portfolio, zero means a molecule is not a member of portfolio),455

and the crossover determines membership based on either one of the two456

parents selected randomly. The probability of crossover is pCO. If crossover457
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is not applied, then one of the two parents chosen randomly is copied and458

will serve as offspring (before mutation).459

5. Experimental results460

5.1. Molecular portfolio selection model assumptions461

First, the information on a covariance matrix Q needs to be formulated.462

In chemistry, the distance between molecules can be defined by evaluating463

similarities/differences in the structure of two molecules. Being able to mea-464

sure the distance d(xi, xj) between each pair of molecules i and j, provides465

means for defining the matrix F (x) of NTotal-by-NTotal size, e.g. as suggested466

in [23] with elements fij = e−θd(xi,xj), where θ is set to θ = 0.5. The distance467

between molecules can be computed based on their similarity, e.g. according468

to the Tanimoto similarity, see [25] also used in [22].469

Tanimoto similarity SimT is a measure of similarity between two bit470

vectors A and B. The bit-vectors used here are the molecular fingerprints.471

A molecular fingerprint is a bit vector, where each bit represents whether a472

chemical substructure is part of the molecule (1) or not (0). The Tanimoto473

similarity can be defined as:474

SimT (A,B) =

∑
z Az ∧Bz∑
z Az ∨Bz

,

where the index z corresponds to a particular property of molecule structure.475

In this study, circular fingerprints (FCFP4) calculated with Pipeline476
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Pilot 9.0.2.1 were used [21]. To predict activity of molecules, we used a477

Proteochemometric model as published by van Westen et al. in [26]. The478

molecules selected here originated from the Enamine building blocks [8] with479

prices defined per 100mg.480

Then, we can calculate the distance between two molecules as a dissimi-481

larity measure, which is diversity:482

d(xi, xj) = 1− SimT , (9)

where SimT is Tanimoto similarity.483

Second, the information on (bio-)activities of the candidate molecules484

needs to be translated into success probabilities. Activity ai is normally485

given as logarithmized activity li; in this case, we can use ai = eli .486

Moreover, from experience chemists know an average probability of suc-487

cess p̄, for the sake of the argument estimated as p̄ = 1/100. Let us consider488

a vector of NTotal activities (exponentiated) A = {a1, . . . , aNTotal
} and let489

P = {p1, . . . , pNTotal
} denote the success probabilities. Then, the average490

probability of success can be calculated as:491

p̄ =
1

NTotal

∗
NTotal∑
i=1

pi, (10)

and we know that activities are proportional to success probability. Hence,492
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for some constant k it holds:493

pi = k ∗ ai, ∀i = 1, . . . , NTotal. (11)

By substituting pi in (10) as defined in (11), we can obtain k:494

k = p̄ ∗ NTotal∑NTotal

i=1 ai
. (12)

Combining 11 and 12 we get:495

pi = ai ∗ p̄ ∗
NTotal∑NTotal

i=1 ai
. (13)

Third, the gain from a new lead compound (i.e. a molecule that may496

lead to a new drug) may vary between, e.g. GL = 10, 000 and GU = 100, 000497

USD.498

Fourth, several findings for the current drug portfolio selection model are499

based on the analysis of these model assumptions. Since the return of each500

molecule, which is equal to the product of gain and probability of success501

(for GL ri = 10, 000 ∗ 0.0001 = 1 or for GU ri = 100, 000 ∗ 0.0001 = 10), is502

very small, it turns out that it is not profitable to invest into molecules in the503

early stages of drug discovery. Besides having economical profitability, it is504

often the case that a budget for drug discovery is made available in research505

projects to stimulate medical innovation.506

Fifth, for the fixed size portfolio model, we assume that 100 molecules507
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need to be selected out of each dataset into the portfolio of molecules to be508

tested in vitro: NPortfolio = 100.509

Sixth, the budget to be spent and to be taken into account as a constant in510

the model is calculated assuming a fixed number of molecules NPortfolio = 100511

will be bought. Hence, the budget can be obtained as an average cost512

multiplied by the number of molecules to be bought: B = NPortfolio ∗513 ∑NTotal

i=1 ci/NTotal.514

Seventh, the budget is set to a hundred times the average cost of molecules515

in the dataset: B = 100∗ c̄. For the dataset of 1000 molecules this yields B =516

34, 502USD, for the dataset of 2500 molecules this yields B = 34, 400USD517

and for the dataset of 5000 molecules this results in B = 34, 622USD.518

Eighth, based on comparison of performance of the algorithms on all three519

datasets, it was observed that larger datasets perform better, when compared520

to smaller datasets, assuming the same fixed number of 100 molecules is521

selected from all three datasets. One could argue that this may be the result522

of applying more iterations in the bigger datasets. However, this is not523

the case as all datasets converge after 100, 000 iterations, which means that524

running the algorithms for more iterations will not be effective.525

The reason for this behavior is the way success probabilities of molecules526

are computed: The success probability of a molecule is calculated inversely527

proportional to average activity of all molecules belonging to the dataset.528

It would be a correct approach if the datasets would be uniformly selected529

from the vendor database. However, in our case the datasets were sorted by530
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activity before selection and from the same sorted dataset top 1000, 2500 and531

5000 most active molecules were selected. The datasets are sorted based on532

activity because chemists usually do not consider molecules below the cut-off533

activity. Thus, larger datasets, e.g. with 2500 and 5000 molecules, contain534

molecules with lower activity on average, when compared to smaller datasets535

with higher average activity, e.g. with 1000 molecules.536

To avoid the situation when the average success probability of a given537

molecule is lower in a bigger dataset when compared to the average suc-538

cess probability of the same molecule in a smaller dataset, its calculation is539

adjusted. In particular, the average probability of success of a molecule is540

computed in such a way that it is independent of the size of the considered541

dataset, and in such a way it suits better to datasets with a non-uniform542

distribution of activities.543

As before it is assumed that success probability is proportional to the ac-544

tivity. However, now the average probability p̄1000 is fixed to be proportional545

to the average activity ā1000 of the 1000 molecules dataset:546

p̄1000 = k ∗ ā1000, ∀i = {1, . . . , NTotal}. (14)

which leads to the k computed as:547

k1000 = p̄1000 ∗
1

ā1000
, (15)
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Thus, the probability of success of each molecule can be computed as:548

pi = ai ∗ p̄1000 ∗
1

ā1000
. (16)

Hence, this fixed average probability p̄1000 of the 1000 molecules dataset will549

be used for computing the probabilities of success of molecules pi in the550

datasets with 2500 and 5000 molecules.551

5.2. Molecular compounds datasets552

For testing efficiency of the proposed models for molecule subset selection,553

we have used 3 datasets of 1000, 2500 and 5000 molecules taken from the554

ZINC database of molecular compounds (see [13]), as available at vendor555

Enamine. Each molecule was provided with its known structure and its556

cost per 100mg. The Tanimoto similarity was calculated for each pair of557

molecules.558

These three datasets are demonstrated in Figure 2 (a) with activity and559

cost of the 1000 molecules set depicted in (dark) green, the 2500 molecules560

set depicted in green and (light) pink, and the 5000 molecules set depicted561

in green, pink and blue.562

5.3. Experimental settings for MOEAs563

In the experiments of this study, the following settings are used: pMA =564

0.5 (per portfolio), pMD = 0.1 (per portfolio), and pMR = 0.01 (per molecule).565

The number of crossover points was set to 1, and the probability of crossover566
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(a) (b)

Figure 2: (a) Cost and activity of molecules in three data sets. (b) Size of the population
of portfolios in a single run (depicted in a circle) of SMS-EMOA for three data sets

was set to pCO = 0.2. In other words, for every 10 offspring there are 2 that567

have been created using 2 parents, while the other 8 offspring are copies of568

some parents. Replacing a molecule in the portfolio with pMR = 0.01 means569

replacing one molecule per offspring on average. A molecule is added to half570

of the offspring on average: pMA = 0.5, and is removed from a portfolio571

once per 10 offspring on average: pMD = 0.1. The size of the population of572

portfolios P (t), t = 1, 2, . . . was set to 10 in order to conform with the setting573

we used to sample the Pareto front by means of quadratic programming.574

For fair comparison of MOEAs, in all experiments we run NSGA-II for575

10, 000 iterations and SMS-EMOA for 100, 000 for the dataset of 1000 molecules.576

This is due to the fact that SMS-EMOA creates 1 offspring at each iter-577

ation, whereas NSGA-II creates 100 offspring at each iteration. For the578

larger datasets, we increased the number of iterations with the same factor579

as the dataset size. That is, for the 2500 molecules dataset we ran NSGA-580
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II for 25, 000 iterations and SMS-EMOA for 250, 000 iterations, whereas for581

the 5000 molecules dataset, we ran NSGAII for 50, 000 iterations and SMS-582

EMOA for 500, 000 iterations.583

Due to the design of mutation operator used in this work, which allows not584

only replacing molecules in portfolio, but also adding or removing portfolios585

in the population, the population size varies. Figure 2 (b) gives insight into586

the cardinality of the sets of portfolios in the population obtained after a587

typical run of MOEAs (SMS-EMOA in this case, but similar results were588

obtained for NSGA-II).589

A problem with the model (2) that minimizes risk without a cardinality590

constraint can be observed. In particular, this model allows selection of very591

small subsets of portfolios, and even the empty set of portfolios, as a part of592

the optimal front. Given the model this makes sense as there is no subset of593

portfolios with a higher return other than the one with a variance of 0USD.594

However, in practice this is undesirable.595

5.4. Discussion of the experimental results596

We tested the portfolio selection problem models formulated in sections597

2 and 3 with the algorithms presented in section 4 on all three datasets598

discussed above.599

All experiments were performed on a desktop PC with an i5 core 3.2 GHz600

processor and 4 GB memory under Windows XP operating system. Gurobi601

MIP solver version 4.0 was used and MOEAs were encoded in Python version602
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3.3.603

5.4.1. Markowitz model with fixed portfolio size604

Gurobi MIP results In the first experiment we computed Pareto front605

of portfolios optimal from the point of view of their return and risk according606

to the Markowitz model with fixed size portfolios (NPortfolio = 100) using the607

formulation (6) as discussed in section 2.2. Here it is assumed that probability608

of success for each molecule is proportional to its activity and is computed609

by (11), and covariance between molecules is computed based on a distance610

as defined in (9).611

The ε-constraint approach to MOO was used. In particular, the return612

objective was set to a constraint (computed for 15 different points between613

lower and upper return bounds, Emin and Emax, respectively) and Gurobi614

MIP solver utilizing branch and bound method was applied to the three615

datasets with 1000, 2500 and 5000 molecules. The results of runs for all616

three datasets are presented in Figures 4 (a), (b) and (c), respectively, in617

black color.618

Next, we analyze the content of portfolios belonging to the Pareto front619

of optimal portfolios with 100 molecules selected in each portfolio using the620

dataset with 2500 molecules as an example. In particular, we show four621

heat-maps indicating the similarity of selected molecules for portfolios with622

three different return values equal to 0USD, 1104USD and 1449USD and623

one randomly selected portfolio of 100 molecules demonstrated in Figure 3624
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(a), (b), (c) and (d), respectively. (Random selection was performed using a625

random percent filter in Pipeline Pilot using seed 333.) The darker the color626

the more similar the molecules are: the blue color gradient corresponds to a627

similarity equal to 1, dodger-blue to a similarity equal to 0.5, and white to a628

similarity equal to 0.629

When compared to the baseline portfolio with 100 randomly selected630

molecules depicted in Figure 3 (d), the portfolio with 0USD return value631

depicted in Figure 3 (a) looks much more diverse, the portfolio with 1104USD632

return value depicted in Figure 3 (b) is slightly more diverse, and the portfolio633

with 1449USD return value depicted in Figure 3 (c) is much less diverse.634

The portfolio with 1104USD return value shown in Figure 3 (b) shows better635

diversity when compared to the baseline and relatively high return portfolios,636

being either close to or exactly the portfolio with optimal Sharpe ratio. This637

output is in line with the portfolio selection theory, according to which higher638

return portfolios are less diverse, since they also have higher risk, and the639

lower return portfolios are more diverse and have lower risk.640

MOEAs results Comparison of MOEAs results is not trivial: On the641

one hand, due to the randomness of the population initialization and of the642

application of the crossover and mutation operators for individuals of the643

population, not a single run, but some averaged performance of MOEAs’644

several runs should be compared for evaluating performance of each MOEA.645

On the other hand, comparison of the convergence of each algorithm is dif-646

ficult due to the fact that no true Pareto front is known. Therefore, only647

36



Figure 3: Similarity of 100 molecules portfolios belonging to the Pareto front and selected
from the set of 2500 molecules with (a) 0USD return, (b) 1104USD return, (c) 1449USD
return and (d) portfolio with 100 randomly selected molecules.

a visual comparison can be made based on the attainment surfaces [9] (or648

attainment curves for bi-objective optimization, which is our case) covered649

by each MOEA. This approach allows the comparison of lowest and highest650

Pareto front solutions achieved by each algorithm as well as their average651

performances. For computing the attainment surface a generalization of the652

median as an average is used, which is robust against outliers. In the next ex-653

periments only best front is taken from all runs of an algorithm for comparing654

to other algorithms performance.655

Comparison of Gurobi MIP solver and MOEAs result: We com-656

pared results obtained by the Gurobi MIP solver using branch and bound657

method to the results obtained by two MOEAs, NSGA-II and SMS-EMOA.658

To make comparison fair we run all algorithms for circa 10 minutes for the659
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Figure 4: Comparison of the performance of the Gurobi MIP solver and the two MOEAs:
NSGA-II and SMS-EMOA (on the plot denoted as QP, NSGA avg and SMS avg, respec-
tively) for the 1000, 2500, 5000 molecules dataset, (a) (b) and (c), respectively.

dataset with 1000 molecules, for circa 20 minutes for the dataset with 2500660

molecules, and for circa 30 minutes for the dataset with 5000 molecules.661

The results of this comparison presented in Figures 4 (a), (b) and (c) show662

the best performance of the exact Gurobi MIP solver for the datasets with663

1000 and 5000 molecules, and better performance of the SMS-EMOA when664

compared to NSGA-II on all three datasets. As can be seen from Figure 4665

(b) in some concave regions of the Pareto front SMS-EMOA outperformed666

Gurobi MIP solver, which means that specified time limit was not sufficient667

for branch and bound method of Gurobi MIP solver to find optimal solution.668

5.4.2. Sharpe ratio with fixed portfolio size669

We now show and discuss the results obtained for model (3). Figure 5 (a)670

demonstrates values of Sharpe ratio computed for 100 molecules selected from671

the 1000-molecule dataset at each of the 15th iterations of the ε-constraint672

method. These portfolios belong to the Pareto front of optimal portfolios673

and are obtained with the Gurobi MIP solver. In this case the portfolio674
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(a) (b)

Figure 5: (a) Sharpe ratios of 15 portfolios of 100 molecules belonging to the Pareto front
and selected from the set of 1000 molecules. (b) Prices and activities of the 1000 dataset
molecules (in red) and of the Sharpe optimal portfolio molecules (in black).

obtained at the 13th iteration has the highest Sharpe ratio value and should675

be selected as the most promising one for potential drug discovery. Next, we676

will analyze the content of this portfolio.677

In Figure 5 (b), the molecules of the 1000 dataset are presented. Here,678

the molecules are allocated according to their activity (see X-axis) and price679

(see Y-axis), respectively. The molecules selected in the Sharpe optimal680

portfolio are marked in red and the non-selected molecules are depicted in681

black. As can be observed from this figure, not only the cheapest molecules682

are selected and not only the most active ones, but some balance between683

price and activity is reached for the portfolio of molecules as a whole.684
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(a) (b) (c)

Figure 6: Comparison of NSGA-II and SMS-EMOA for Solow-Polasky diversity model
with 1000, 2500 and 5000 molecules dataset, (a), (b), and (c), respectively.

5.4.3. Markowitz model with Solow-Polasky diversity685

We now show and discuss the results obtained for model (5). Note that686

these results are for MOEAs only, as application of the MIP solver is com-687

plicated due to the need of obtaining the inverse of distance matrix.688

Comparison of Pareto fronts obtained by NSGA-II and SMS-EMOA for689

Solow-Polasky diversity model provided in Figures 6 (a), (b), and (c) for690

datasets with 1000, 2500 and 5000 molecules, respectively, show outperfor-691

mance of SMS-EMOA when compared to NSGA-II.692

The formulation of the Solow Polasky diversity measure includes the in-693

version of a matrix making it difficult to optimize this measure by means694

of an exact solver, unlike the Sharpe ratio maximization formulation, which695

can be solved by quadratic programming. However, it might be possible to696

construct an approximation algorithm with an exact error bound for com-697

puting Solow Polasky diversity measure. Based on numerical experiments we698

conjecture that the Solow Polasky diversity is a submodular set function. If699

this is true, a greedy subset selection heuristic would yield an approximation700
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with approximation ratio (1 − 1/e). We were not able to provide a formal701

proof for submodularity and leave this question to the future work.702

6. Conclusion and future research703

In this work, we presented a new approach to formulating the selection704

of molecules for de-novo drug discovery. In particular, the well-known in705

finance portfolio-based approach was used to model molecular subset selec-706

tion for drug discovery as a portfolio selection. In addition to taking into707

account (bio-)activity of the molecules selected in the portfolio, the model708

considers the diversity of such portfolio. Moreover, it respects the limited709

budget provided for buying molecules and the fixed size of the portfolio as710

constraints. Molecules selected in the portfolio are balanced in terms of their711

price, expected individual performance and diversity.712

Three models were proposed and tested on three molecular compounds713

datasets, in particular, classical Markowitz portfolio selection model, Sharpe714

ratio optimization and diversity optimization models. For solving Markowitz715

model with fixed size portfolio that optimizes return and risk simultaneously,716

we used ε-constrained approach in combination with Gurobi MIP solver and717

applied approximation approaches, in particular, multiobjective evolution-718

ary algorithms, NSGA-II and SMS-EMOA. As expected QP solver was most719

efficient in calculating Pareto fronts except for some parts, which is due to a720

QP’s fixed exploration time threshold. SMS-EMOA outperformed NSGA-II721

for Markowitz portfolio selection model. For the single objective Sharpe ratio722
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maximization model we adjusted Gurobi MIP solver and analyzed content723

of the selected optimal portfolios. Finally, for solving diversity optimization724

model only approximate algorithms, NSGA-II and SMS-EMOA, were used,725

with SMS-EMOA performing better than NSGA-II on all datasets. Solv-726

ing this model with a quadratic solver requires obtaining inverse of distance727

matrix, which is difficult in practice as initial research shown. The pre-728

sented preliminary test results of these novel formulations obtained for three729

molecular compounds datasets look promising and encourage us to do future730

research.731

We have also discerned a number of future research topics that could be732

investigated further. In particular, different formulations of risk could be733

tested. For instance, other popular risk measures, such as Value-at-Risk (or734

return-to-standard deviation index) and the diversity inversely proportional735

to the number of species in the population can be investigated further. It736

would also be interesting to construct Sharpe ratio as a tangential point to737

the Pareto front (with CAL) and directly compute the Sharpe ratio opti-738

mum via homogenization. As the initial trials indicated the later approach739

is really challenging, but it might turn out to be easier for alternative risk740

formulations. Furthermore, alternative diversity measures, e.g. Weitzman741

diversity [28], can be considered in optimization models. A sensitivity analy-742

sis for some parameters of the models (e.g., theta parameter in Solow-Polasky743

diversity measure) will be of value for the proposed portfolio approach.744

Current results show that application of existing QP solvers to large size745
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problems (bigger than 5000 molecules) is difficult due to large run times. To746

improve exact solvers’ performance for large models, relaxation of integrity747

constraints can be applied. This would lead to rounding-off running time to748

polynomial, but will require covariance matrix to be positive definite. Alter-749

natively, a MOEA could be used for preselection and QP solver for the final750

portfolio selection. It should be noted, however, that it takes approximately751

10 minutes for SMS-EMOA to find Pareto front of portfolios for a dataset752

of 1000 molecules. Hence, in this case either parallelization or fast heuristic753

filters can be used for preselection as well.754

An important task for future work is not only to scale up the models755

proposed in this work for larger portfolios, but also to further investigate the756

availability of exact solvers and performance for smaller portfolios. Moreover,757

experience with actual performance of the models in drug discovery practice758

needs to be assessed by comparing data of outcomes of a larger number of759

in vitro drug discovery studies with what has been predicted by the models.760

In this work, only structural similarity of molecules was taken into ac-761

count. Recent research [19] has shown that biological similarity plays an762

important roles in comparison of molecules. Similarly to structural diversity,763

biological diversity can be maximized as a third objective in the last pro-764

posed model. Two other models can also be adjusted to take into account765

biological similarity in the risk calculation. Moreover, at the later stages of766

drug discovery process additional objectives can be considered for molecular767

portfolio selection, such as minimizing side effects of the discovered lead can-768
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didates. The experimental validation of the discovered molecular portfolio769

via in vitro testing and chemists feedback on the results of such testing will770

be a natural next stage for the proposed in this work molecular portfolio771

selection approach.772
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