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5
KiDS-450: The tomographic weak

lensing power spectrum and
constraints on neutrinos and

cosmological parameters

We present measurements of the weak gravitational lensing shear power spectrum based on
≈450 deg2 of imaging data from the Kilo-Degree Survey (KiDS). We employ a direct quadratic
estimator in two redshift bins and extract band powers of the redshift auto-correlation spectra
and cross-correlation spectrum in the multipole range 76 ≤ ` ≤ 1310. The cosmological
interpretation of the measured shear power spectra is performed in a Bayesian framework
assuming a flat Λ cold dark matter model, while accounting for small residual uncertainties in
the shear calibration, intrinsic alignments, and baryon feedback. This yields the constraint on
the parameter combination S 8 ≡ σ8

√
Ωm/0.3 = 0.742±0.057. This result is in tension at 1.8σ

with the constraint from Planck based on measurements of the cosmic microwave background
radiation. For the extension of the fiducial model with a free total mass of three degenerate
massive neutrinos we derive the upper limit Σmν < 3.46 eV at 95 per cent credibility from the
lensing data only. However, a Bayesian model comparison does not yield any evidence for
extending the baseline model with a free total neutrino mass.

F. Köhlinger and the KiDS Collaboration
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100 5. The KiDS-450 shear power spectrum

5.1 Introduction

The current cosmological concordance model successfully describes observations spanning
a wide range in cosmic volume from the cosmic microwave background (CMB) power spec-
trum (e.g. Planck Collaboration XIII 2015a), the Hubble diagram based on supernovae of type
IA (SNIa; e.g. Riess et al. 2016), big bang nucleosynthesis (BBN; e.g. Fields & Olive 2006),
to the distance scales inferred from baryon acoustic oscillations imprinted in the large-scale
clustering of galaxies (BAO; e.g. BOSS Collaboration 2015). Based on Einstein’s theory of
general relativity and the application of the Copernican principle to the whole Universe, the
Λ-dominated cold dark matter (ΛCDM) model requires in its simplest form only a handful of
parameters to fit all current observational data. However, the physical nature of two of these
parameters, dark matter and dark energy, is still unknown, although their energy densities at
present are very well constrained by observations. Within current limits dark energy can sill
be interpreted in terms of the cosmological constant Λ, but any observed deviation from a con-
stant value will have profound consequences that might eventually even lead to a revision of
our theory of gravity. The cosmological concordance model is also naturally linked to the stan-
dard model of particle physics and the discovery of the constituents of dark matter will make
its revision inevitable. However, experiments have already shown another shortcoming of the
standard model: the experimental discovery of neutrino oscillations (Super-Kamiokande Col-
laboration 1998; SNO Collaboration 2001, 2002) indicates that neutrinos possess mass, which
is in direct contradiction to its fiducial predictions.

Massive neutrinos affect the growth of cosmological large-scale structure (e.g. Lesgour-
gues & Pastor 2006 and references therein for a review) and hence a measurement of the
growth of large-scale structure yields a constraint on the total mass over all neutrino species
(e.g. Palanque-Delabrouille et al. 2015) which is an important complementary constraint to
particle physics experiments.

Cosmic shear, i.e. the weak gravitational lensing due to all intervening cosmic large-scale
structure between an observer and all sources along the line-of-sight, presents a viable tool
to study the evolution of the dark species. However, the tiny coherent image distortions, the
shear, of background sources caused by the bending of their emitted light perpendicular to the
line-of-sight of a foreground mass need to be studied in statistically large samples. Hence,
wide-field surveys covering increasingly more volume in the sky are the current and future
strategy for improving the precision of the measurements. Data from large weak-lensing
surveys such as the Kilo-Degree Survey (KiDS;1 de Jong et al. 2013, 2015; Kuijken et al.
2015), the Subaru Hyper SuprimeCam lensing survey2, and the Dark Energy Survey (DES;3

Jarvis et al. 2015) are currently building up. These surveys are expected to reach coverage
on the order of (several) 1000 deg2 within the next few years, which presents an order of
magnitude increase compared to currently available survey data (Erben et al. 2013; Kuijken
et al. 2015; Jarvis et al. 2015). Eventually, close to all-sky surveys will be carried out over
the next decade by the ground based Large Synoptic Survey Telescope4 (Ivezic et al. 2008))
and the spaceborne Euclid5 satellite (Laureijs et al. 2011) and the Wide Field Infrared Survey
Telescope.6

The cosmic shear signal as a function of redshift is sensitive to the growth of structure
and the geometry of the Universe and studying its redshift dependence allows us to infer the

1kids.strw.leidenuniv.nl
2www.naoj.org/Projects/HSC/
3www.darkenergysurvey.org
4www.lsst.org
5www.euclid-ec.org
6wfirst.gsfc.nasa.gov

kids.strw.leidenuniv.nl
www.naoj.org/Projects/HSC/
www.darkenergysurvey.org
www.lsst.org
www.euclid-ec.org
wfirst.gsfc.nasa.gov
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expansion rate as well as the clustering behaviour of cosmic species such as cold dark matter,
massive neutrinos, and dark energy.

There are several approaches to measure cosmic shear; the most common one to date is
based on the two-point statistics of real-space correlation functions (e.g. Kilbinger 2015 for a
recent review). The redshift dependence is either considered by performing the cosmic shear
measurement in tomographic redshift slices (e.g. Benjamin et al. 2013, Heymans et al. 2013,
Becker et al. 2015) or by employing redshift-dependent spherical Bessel functions (Kitching
et al. 2014). An alternative and mathematically equivalent approach is to switch to Fourier
space and measure the power spectrum of cosmic shear instead. One particular advantage
of direct shear power spectrum estimators over correlation-function measurements is that the
power spectrum measurements are significantly less correlated on all scales. This is very
important for the clean study of scale-dependent signatures such as, for example, those caused
by massive neutrinos. In addition, proper modelling is needed on non-linear scales in order to
avoid any bias in the cosmological parameters. This, however, is complicated because of the
feedback effects of baryon physics on the matter power spectrum of which we still have an
insufficient understanding (Semboloni et al. 2011, 2013). Direct power spectrum estimators
have already been applied to data, the quadratic estimator for example to the COMBO-17
dataset (Brown et al. 2003) and the GEMS dataset (Heymans et al. 2005). In a more recent
study Lin et al. (2012) applied a quadratic estimator and a direct pseudo-C(`) estimator based
on Hikage et al. (2011) to data from the SDSS Stripe 82. However, the direct power spectrum
estimators in these studies did not employ a tomographic approach. This was done for the first
time in Chapter 4, where we extended the quadratic estimator formalism to include redshift
bins and applied it to shear catalogues from the lensing analysis of the Canada–France–Hawaii
Telescope Legacy Survey (CFHTLenS; Erben et al. 2013, Heymans et al. 2012, Hildebrandt
et al. 2012).

Previous results from a six bin tomographic correlation-function analysis of CFHTLenS
(Heymans et al. 2013) and a re-analysis by Joudaki et al. (2016) incorporating new knowledge
regarding systematic errors in the photometric redshift distributions (Choi et al. 2015) found
cosmological parameter constraints to be in tension with CMB based results from Planck Col-
laboration XIII (2015a). However, our quadratic estimator re-analysis of CFHTLenS from
Chapter 4 using only two tomographic bins at higher redshifts and incorporating larger an-
gular scales, did not reveal any tension with results from Planck, which can be attributed
though to increased errorbars due to the more conservative analysis. Similarly, results from
a correlation-function analysis from DES (DES Collaboration 2015) are not in tension with
Planck either. However, due to the small area coverage of the science verification data their
errorbars are significantly larger compared to results from CFHTLenS.

Results from other low-redshift probes measuring the growth rate such as galaxy cluster
counts (e.g. Planck Collaboration XXIV 2015b, de Haan et al. 2016) or redshift space distor-
tions (e.g. Beutler et al. 2014, Samushia et al. 2014, Gil-Marín et al. 2016) consistently find a
lower amplitude of fluctuations (parametrized as σ8, the root-mean-square variance in spheres
of 8 h−1Mpc) at a given matter density (Ωm) with respect to results from Planck. Hence, there
are also claims in the literature (e.g. Spergel et al. 2015, Addison et al. 2016, Riess et al. 2016)
that systematic errors that are yet unaccounted for in the Planck analysis might be the reason
for the observed tension.

An intermediate data release from the ongoing KiDS covering an area of about 450 deg2

presents an independent dataset to re-evaluate whether or not cosmic shear results are in ten-
sion with Planck. The imaging data are taken with a combination of camera and telescope
designed to yield among the best shear data quality attainable from the ground and the setup
is different from the one employed for CFHTLenS. Latest results from a 4-bin tomographic
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correlation-function analysis employing these data (Hildebrandt et al. 2016) are in tension
with results from Planck, but agree well with results from other low-redshift probes. At the
moment it is yet too premature to decide whether the tension between Planck and low-redshift
probes is due to internal systematics that are yet unaccounted for in each probe (e.g. for low-
redshift probes the proper modelling of the matter power spectrum at very non-linear scales is
a concern) or if the tension is due to new physics implying that the current cosmological con-
cordance model is incomplete and requires physical parameter extensions (e.g. Di Valentino
et al. 2015).

In this paper we follow the fiducial analysis by Hildebrandt et al. (2016) closely but use the
tomographic quadratic estimator instead to measure the cosmic shear power spectrum directly
from the data over the same redshift range, using two tomographic bins. This presents an im-
portant cross-check of the robustness of the results derived with two independent data analysis
pipelines and estimators employing the same shear catalogues. Moreover, we explore model
extensions beyond ΛCDM which might alleviate or even strengthen the tension assuming that
all systematic errors are properly accounted for.

The paper is organized as follows: in Section 5.2 we summarize the theory for cosmic
shear power spectra and in Section 5.3 we present the quadratic estimator algorithm. Sec-
tion 5.4 introduces the KiDS-450 dataset and the most important properties of the lensing
source sample. In Section 5.5 we describe the calibrations applied to the measured shear sig-
nal. Section 5.6 summarizes the details of the employed covariance matrix of the data. In
Section 5.7 we present the measured cosmic shear power spectra and show a qualitative com-
parison to correlation-function measurements. The cosmological interpretation of the cosmic
shear power spectra is discussed in Section 5.8 before we summarize all results and conclude
in Section 5.9.

5.2 Theory
A consequence of Einstein’s principle of equivalence is the deflection of light due to mass.
We call this gravitational lensing and in this paper we will specifically work in the frame-
work of weak gravitational lensing. It is called weak because the gradient of the gravitational
potential of a deflecting foreground mass only induces very weak but coherent distortions of
background sources. The measurement of the image distortions is only possible in a statistical
sense and requires to average over large samples of background galaxies due to the broad dis-
tribution of intrinsic ellipticities of galaxies. The very weak-lensing effect of all intervening
mass between an observer and all sources along the line-of-sight is called cosmic shear. The
resulting correlations of galaxy shapes can be used to study the evolution of the large-scale
structure and therefore cosmic shear becomes an increasingly valuable tool for cosmology
especially in the current era of large surveys (cf. Kilbinger 2015 for a recent review). For
details on the theoretical foundations of (weak) gravitational lensing we refer the reader to the
standard literature (e.g. Bartelmann & Schneider 2001).

The main observables in a weak-lensing survey are the shapes and (photometric) redshifts
of galaxies. The measured galaxy shapes in terms of ellipticity components e1, e2 at angular
positions ni are binned into pixels i = 1, ..., Npix and (photometric) redshift bins zµ. Averaging
then the ellipticities in each pixel yields estimates of the components of the spin-2 shear field,
γ1(n, zµ) and γ2(n, zµ). Its Fourier decomposition can be written in the flat-sky limit as

γ1(n, zµ) ± iγ2(n, zµ) =

∫
d2`

(2π)2

[
κ(`, zµ) ± iβ(`, zµ)

]
W(`)e±2iϕ`ei`·n , (5.1)

with ϕ` denoting the angle between the two-dimensional vector ` and the x-axis. For the lens-
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ing by density perturbations the convergence field κ contains all the cosmological information
and the field β usually vanishes in the absence of systematics. In the subsequent analysis we
will still extract it and treat it as a check for residual systematics in the data.

The Fourier transform of the pixel window function, W(`), can be written out as

W(`) = j0

(
`xσpix

2
cosϕ`

)
j0

(
`yσpix

2
sinϕ`

)
, (5.2)

where j0(x) = sin(x)/x is the zeroth-order spherical Bessel function and σpix is the side length
of a square pixel in radians.

The shear correlations between pixels ni and nj and tomographic bins µ and ν can be
expressed in terms of their power spectra and they define the shear-signal correlation matrix
(Hu & White 2001):

Csig
= 〈γa(ni, zµ)γb(nj, zν)〉 , (5.3)

with components

〈γ1iµγ1 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) cos2 2ϕ` + CBB

µν (`) sin2 2ϕ` −CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ2iµγ2 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) sin2 2ϕ` + CBB

µν (`) cos2 2ϕ` + CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ1iµγ2 jν〉 =

∫
d2`

(2π)2

[
1
2 (CEE

µν (`) −CBB
µν (`)) sin 4ϕ` + CEB

µν (`) cos 4ϕ`
]

W2(`)ei`·(ni−nj) . (5.4)

In the equations above we introduced the decomposition of the shear field into curl-free and
curl components, i.e. E- and B-modes, respectively. In the absence of systematic errors and
shape noise, the cosmological signal is contained in the E-modes and their power spectrum
is equivalent to the convergence power spectrum, i.e. CEE(`) = Cκκ(`) and CBB(`) = 0.
Shot noise will generate equal power in E- and B-modes. The cross-power between E- and
B-modes, CEB(`), is expected to be zero because of the parity invariance of the shear field.

The theoretical prediction for the convergence power spectrum per redshift-bin correlation
µ, ν can be calculated in the Limber approximation (Limber 1954) as

CEE
µν (`) =

∫ χH

0
dχ

qµ(χ)qν(χ)

f 2
K(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (5.5)

which depends on the radial comoving distance χ, the distance to the horizon χH, the angular
diameter distance fK(χ), and the three-dimensional matter power spectrum Pδ(k; χ).

The weight functions qµ(χ) depend on the lensing kernels and hence they are a measure
for the lensing efficiency in each tomographic bin µ:

qµ(χ) =
3ΩmH2

0

2c2

fK(χ)
a(χ)

∫ χH

χ

dχ′ nµ(χ′)
fK(χ′ − χ)

fK(χ′)
, (5.6)

where a(χ) is the scale factor and the source redshift distribution is denoted as nµ(χ) dχ =

nµ(z) dz. It is normalized such that
∫

dχ nµ(χ) = 1.

5.3 Quadratic estimator
There are two main techniques to extract the shear power spectrum directly from the data: one
is based on a maximum-likelihood technique and employs a quadratic estimator (Bond et al.
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1998; Seljak 1998; Hu & White 2001), whereas the other approach uses a pseudo spectrum
(also pseudo-C(`); Hikage et al. 2011). Moreover, there are pseudo-C(`) methods that are
based on correlation-function measurements (e.g. Becker et al. 2015). These present a hybrid
approach and do not directly estimate the power spectrum from the shear data.

Here we summarize the quadratic estimator algorithm applied to cosmic shear including
its extension to tomographic bins. For that we follow the original literature (Hu & White
2001; Lin et al. 2012) and the description in Chapter 4.

The likelihood of the measured shear field in terms of band powers B is assumed to be
Gaussian over most scales of interest for our analysis, i.e.

L =
1

(2π)N |C(B)|1/2
exp

[
− 1

2 dT[C(B)]−1d
]
. (5.7)

The data vector d with components

dµai = γa(ni, zµ) (5.8)

contains both components of the measured shear γa per pixel ni for each redshift bin zµ. The
covariance matrix C is written as the sum of the cosmological signal Csig (cf. equation 5.3
and the noise Cnoise.

As long as the pixel noise of the detector is uncorrelated, the noise matrix can be assumed
to be diagonal, i.e. shape noise is neither correlated between different pixels ni, nj and shear
components γa, γb, nor between different redshift bins zµ, zν:

Cnoise
=
σ2

e

Niµ
δi jδabδµν , (5.9)

where σe denotes the root-mean-square intrinsic ellipticity per ellipticity component for all
the galaxies and Niµ is the effective number of galaxies per pixel i in redshift bin zµ.7

As noted above we approximate the angular power spectra Cϑ
µν(`) with piecewise constant

band powers Bζϑβ(`) of type ϑ ∈ (EE,BB,EB) that span a range of multipoles ` within the
band β. Note that the index ζ runs only over unique redshift bin correlations: for nz redshift
bins there are only nz(nz + 1)/2 unique correlations because zµ × zν = zν × zµ. Hence, the com-
ponents of the cosmic signal covariance matrix can be decomposed into a linear combination
of these band powers:

Csig
(µν)(ab)(i j) =

∑
ζ,ϑ,β

BζϑβMζ(µν)

∫
`∈β

d`
2(` + 1)

[
w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)

]
. (5.10)

The geometry of the shear field, including its Fourier-space decomposition and masks, is en-
coded in the above expression written in square brackets. The matrices Mζ are required for
mapping the redshift-bin indices µ, ν to the unique correlations ζ possible between those. Ex-
plicit expressions for these matrices and the matrices Iϑ and Qϑ can be found in Appendix 4.A.

In order to find the best-fitting band powers Bζϑβ and the cosmic signal Csig that describes
the measured shear data the best, we employ a Newton–Raphson optimization. The algorithm
finds the root of dL/dBA = 0 (Bond et al. 1998; Seljak 1998), i.e. its maximum-likelihood so-
lution, by iteratively stepping through the expression Bi+1 = Bi +δB in which δB is calculated
in each step as

δBA ∝
∑

B

1
2 (F−1)AB Tr[(ddT

− C)(C−1DAC−1)] . (5.11)

7The effective number of galaxies per pixel can be calculated using equation (5.17) multiplied by the area of the
pixel Ω.
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In the following we simplify our notation by introducing the superindex A for a particular
combination of indices (ζϑβ). The matrices DA are derivatives of the full covariance matrix
with respect to any band-power combination. A rigorous definition of DA can again be found
in Appendix 4.A. The elements of the Fisher matrix F can be calculated as

FAB = 1
2 Tr(C−1DAC−1DB) . (5.12)

An important point for the subsequent cosmological analysis is the estimation of the band-
power covariance. The inverse of the Fisher matrix was used in previous work (cf. Hu &
White 2001; Lin et al. 2012) as an approximation of the true covariance. This, however, holds
only in the Gaussian limit. In this analysis we use a covariance matrix based on an analytical
calculation, which is discussed in more detail in Section 5.6.

For that calculation, but also for a proper comparison of theory to data in the subsequent
cosmological analysis, we also have to take into account that each measured band power
BA = Bζϑβ samples the corresponding power spectrum with its own window function. For a
general estimator we can relate the expectation value of the measured band power, 〈Bζϑβ〉, to
the power spectrum at integer multipole through the band-power window function WA(ζϑ)(`)
(cf. Knox 1999; Lin et al. 2012), i.e.

〈Bζϑβ〉 =
∑
`

W(ζϑβ)(ζϑ)(`)Bζϑ(`) , (5.13)

where W(ζϑβ)(ζϑ)(`) denotes the elements of the block diagonal of WA(ζϑ)(`) (A is again a su-
perindex for single indices over the band types, unique redshift correlations and bands). The
sum is calculated for integer multipoles ` in the range 10 ≤ ` ≤ 3000 since the cosmological
analysis is intended to use multipoles in the range 76 ≤ ` ≤ 2300 (cf. Section 5.4). Therefore,
the lowest multipole for the summation should extend slightly below `field = 76 and the high-
est multipole should include multipoles beyond ` = 2300 in order to capture the full behaviour
of the band window function below and above the lowest and highest bands, respectively.

The elements of the window function matrix can be derived as (cf. Lin et al. 2012)

WA(ζϑ)(`) =
∑

B

1
2 (F−1)ABTB(ζϑ)(`) , (5.14)

where F−1 denotes the inverse of the Fisher matrix (cf. equation 5.12). The trace matrix T is
defined as

TA(ζϑ)(`) = Tr[C−1DAC−1Dζϑ(`)] . (5.15)

The derivative Dζϑ(`) denotes the derivative of the full covariance C with respect to the power
at a single multipole ` (per band type ϑ and unique redshift correlation ζ). We write it out
explicitly in Appendix 5.A (cf. equation 5.32).8

5.4 KiDS-450 measurements
In the following analysis we use the KiDS-450 dataset and only provide a concise summary of
it here. For full details we refer the reader to Hildebrandt et al. (2016) and references therein.

8Note that the definition of Dζϑ(`) has changed with respect to the one presented in Chapter 4. This is due to the
fact that in the previous analysis we only needed the EE to EE part of the band window matrix for convolving the
cosmological signal prediction with it. The approach of an analytical covariance, however, requires us to calculate
the full band window matrix with all possible cross-terms, which is now fully accounted for by the new notation
presented here in this paper.



106 5. The KiDS-450 shear power spectrum

KiDS is an ongoing ESO optical survey which will eventually cover 1500 deg2 in four
bands (u, g, r, and i). It is carried out using the OmegaCAM CCD mosaic camera mounted
at the Cassegrain focus of the VLT Survey Telescope (VST). The combination of camera and
telescope was specifically designed for weak-lensing studies and hence results in small camera
shear and an almost round and well-behaved point spread function (PSF). The data process-
ing pipeline from individual exposures in multiple colours to photometric redshift estimates
employs the ASTRO-WISE system (Valentijn et al. 2007; Begeman et al. 2013). For the lensing-
specific data reduction of the r-band images THELI (Erben et al. 2005, 2009, 2013; Schirmer
2013) is used. Finally, the galaxy shapes are measured from the THELI-processed data with
a new version of lensfit described in Fenech Conti et al. (2016). The full description of the
pipeline for previous data releases of KiDS (DR1/2) is documented in de Jong et al. (2015)
and Kuijken et al. (2015). All subsequent improvements applied to the data processing for
KiDS-450 are summarized in Hildebrandt et al. (2016). The lensfit-specific updates including
a description of the extensive image simulations for shear calibrations at the sub-percent level
are documented in Fenech Conti et al. (2016).

The interpretation of the cosmic shear signal also requires accurate and precise redshift
distributions, n(z) (cf. equation 5.6). For the estimation of photometric redshifts the code BPZ

(Benítez 2000) is used following the description in Hildebrandt et al. (2012). In previous KiDS
and CFHTLenS analyses the stacked n(z) based on the redshift probability distributions of
individual galaxies, P(z), as estimated by BPZ was used for that purpose. However, the output
of photometric redshift estimation codes such as BPZ is biased at a level that is intolerable for
current and especially future cosmic shear studies (cf. Newman et al. 2015; Choi et al. 2015
for a discussion).

Therefore, Hildebrandt et al. (2016) employ a weighted direct calibration (‘DIR’) of pho-
tometric redshifts with spectroscopic redshifts. This calibration method employs several spec-
troscopic redshift catalogues from surveys overlapping with KiDS, which are described in
detail in Hildebrandt et al. (2016). In practice, spectroscopic redshift catalogues are neither
complete nor a representative sub-sample of the photometric redshift catalogues currently
used in cosmic shear studies. In order to alleviate these practical shortcomings the photo-
metric redshift distributions and the spectroscopic redshift distributions are re-weighted in a
multi-dimensional magnitude space, so that the volume density of objects in this magnitude
space matches between photometric and spectroscopic catalogues (Lima et al. 2008). The di-
rect calibration is further cross-checked with two additional methods and found to yield robust
and precise estimates of the photometric redshift distribution of the galaxy source sample (cf.
Hildebrandt et al. 2016 for details).

The fiducial KiDS-450 dataset consists of 454 individual ≈1 deg2 tiles (cf. fig. 1 from
Hildebrandt et al. 2016). The median seeing is 0.66 arcsec and no r-band image has a see-
ing larger than 0.96 arcsec. Since the observations prioritized increasing the overlap with the
spectroscopic GAMA survey (Driver et al. 2011) the tiles are grouped into five patches (and
corresponding catalogues) covering an area of ≈450 deg2 in total. Due to stellar haloes or arte-
facts in the images the total area of KiDS-450 is reduced to an effective area usable for lensing
of about 360 deg2. Since the catalogue for an individual KiDS patch does not only consist of
one contiguous (GAMA) field but also contains long stripes (e.g. 1 deg by several degrees)
or individual tiles due to the pointing strategy, we exclude these disconnected tiles from our
analysis, which amounts to a reduction in effective area by ≈36 deg2 compared to Hildebrandt
et al. (2016). Moreover, the individual patches are quite large resulting in long run-times for
the signal extraction. Therefore, we split each individual KiDS patch further into two or three
subpatches yielding 13 subpatches in total with an effective area of 323.9 deg2. Each sub-
patch contains a comparable number of individual tiles and the splitting into subpatches was
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performed along borders that do not split individual tiles, because a single tile represents the
smallest data unit for systematic checks and further quality control tests.

The coordinates in the catalogues are given in a spherical coordinate system measured in
right ascension α and declination δ. Before we pixelize each subpatch into shear pixels, we
first deproject the spherical coordinates into flat coordinates using a tangential plane projection
(also known as gnomonic projection). The central point for the projection of each subpatch,
i.e. its tangent point, is calculated as the intersection point of the two great circles spanned by
the coordinates of the edges of the subpatch.

The shear components ga per pixel at position n = (xc, yc) are estimated from the ellipticity
components ea inside that pixel:

ga(xc, yc) =

∑
i wiea,i∑

i wi
, (5.16)

where the index a labels the two shear and ellipticity components, respectively, and the index
i runs over all objects inside the pixel. The ellipticity components ea and the corresponding
weights w are computed during the shape measurement with lensfit and they account both for
the intrinsic shape noise and measurement errors.

For the position of the average shear we take the centre of the pixel (hence the subscript ‘c’
in the coordinates). Considering the general width of our multipole band powers it is justified
to assume that the galaxies are uniformly distributed in each shear pixel. Finally, we define
distances ri j = |ni − nj| and angles ϕ = arctan (∆y/∆x) between shear pixels i, j which enter
in the quadratic estimator algorithm (cf. Section 5.3).

The lowest scale of the multipole band powers that we extract is in general set by the
largest separation θmax possible between two shear pixels in each subpatch. In a square-field
that would correspond to the diagonal separation of the pixels in the corners of the patch.
However, this would yield only two independent realizations of the corresponding multipole
`min. Hence, defining the lowest physical multipole `field as corresponding to the distance
between two pixels on opposite sides of the patch ensures that there exist many independent
realizations of that multipole so that a measurement thereof is statistically meaningful. In
general, the subpatches used in this analysis are not square but rectangular and hence we
follow the conservative approach of defining `field corresponding to the shorter side length of
the rectangle. Choosing then the shortest side length among all 13 subpatches yields `field = 76
corresponding to a distance θ ≈ 4.◦74. The lowest multipole over all subpatches is `min = 34
corresponding to a distance θ ≈ 10.◦5 but we set the lower border of the first band power
even lower to ` = 10. That is because the quadratic estimator approach allows us to account
for any leftover DC offset, i.e. a non-zero mean amplitude, in the signal by including even
lower multipoles than `min in the first band power (cf. Section 5.5). The highest multipole
`max available for the data analysis is set by the side length of the shear pixels. The total
number of shear pixels in the analysis is also a critical parameter for the run-time of the
algorithm because it sets together with the number of unique redshift correlations and the
duality of the shear components the dimensionality of the fundamental covariance matrix
(cf. equation 5.3). Moreover, Gaussianity is one of the assumptions behind the quadratic
estimator which naturally limits the highest multipole to the mildly non-linear regime (cf.
Hu & White 2001). Hence, we set σpix = 0.◦14 corresponding to a maximum multipole
`pix = 2571. However, the borders of the last band should extend to at least 2`pix ≈ 5150 due
to the increasingly oscillatory behaviour of the pixel window function (cf. equation 5.2) close
to and beyond `pix. The width of all intermediate bands should be at least 2`field in order to
minimize the correlations between them (cf. Hu & White 2001). Given all these constraints
we extract in total seven E-mode band powers over the range 10 ≤ ` ≤ 5150. However, for the
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Table 5.1: Band-power intervals.

Band No. `-range θ-range Comments

1 10–75 2160.0–288.0 arcmin (a), (b)
2 76–220 284.2–98.2 arcmin –
3 221–420 98.0–51.4 arcmin –
4 421–670 51.3–32.2 arcmin –
5 671–1310 32.2–16.5 arcmin –
6 1311–2300 16.5–9.4 arcmin (a)
7 2301–5150 9.4–4.2 arcmin (a)

Notes. (a) Not used in cosmological analysis. (b) No B-mode extracted.
The θ-ranges are just an indication and cannot be compared directly to θ-ranges used in real-
space correlation function analyses due to the non-trivial functional dependence of these anal-
yses on Bessel functions (cf. Section 5.7.1).

Table 5.2: Properties of the galaxy source sample.

redshift bin zmedian N neff σe

z1: 0.10 < zB ≤ 0.45 0.41 5 923 897 3.63 arcmin−2 0.2895
z2: 0.45 < zB ≤ 0.90 0.70 6 603 721 3.89 arcmin−2 0.2848

Notes. The median redshift zmedian, the total number of objects N, the effective number density
of galaxies neff (cf. equation 5.17), and the dispersion of the intrinsic ellipticity distribution
σe per redshift bin for the KiDS-450 dataset used in our analysis.

cosmological analysis we will drop the first and last band powers due to their potential noise-
contamination which reduces the physical multipole range to 76 ≤ ` ≤ 2300. In addition
to the E-modes we extract six B-mode band powers. Their multipole ranges coincide with
the ranges of the E-mode bands 2–7 (due to the expected strong signal in the first E-mode
band power a potential B-mode contamination is negligible). All ranges are summarized in
Table 5.1 where we also indicate the corresponding angular scales. Note, however, that the
naïve conversion from multipole to angular scales is insufficient for a proper comparison to
correlation function results. An outline of how to compare both approaches properly is given
in Section 5.7.1.

We calculate the effective number density of galaxies used in the lensing analysis follow-
ing Heymans et al. (2012) as

neff =
1
Ω

(
∑

i wi)2∑
i w2

i

, (5.17)

where w is the lensfit weight and the unmasked area is denoted as Ω. In Table 5.2 we list
the effective number densities per KiDS patch and redshift bin. Note that there exist also
alternative definitions for neff but the one used here has the practical advantage that it can be
used directly to set the source number density in the creation of mock data.

In order to compare results later on to Hildebrandt et al. (2016) we only use sources in the
range 0.10 < zB ≤ 0.90, where zB is the Bayesian point estimate of the photometric redshifts.
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Figure 5.1: The normalized redshift distributions for the two tomographic bins employed in this study
and estimated from the weighted direct calibration scheme (‘DIR’) presented in Hildebrandt et al. (2016).
The dashed (grey) vertical lines mark the median redshift per bin (cf. Table 5.2) and the (grey) shaded
regions indicate the target redshift selection by cutting on the Bayesian point estimate for photometric
redshifts zB.

We divide this range further into two broad tomographic bins z1: 0.10 < zB ≤ 0.45 and z2:
0.45 < zB ≤ 0.90 with similar effective number densities (cf. Table 5.2 and Fig. 5.1). Note
that zB is only used as a convenient quantity to define tomographic bins but does not enter
anywhere else in the analysis. The limitation to only two redshift bins is due to run-time since
the dimension of the fundamental covariance matrix (cf. equation 5.3) depends very strongly
on the number of unique redshift correlations as noted already earlier.

5.5 Multiplicative bias correction and sensitivity to large-
scale additive bias

The observed shear γobs, measured as a weighted average of galaxy ellipticities, is generally
a biased estimator of the true shear γ. The bias is commonly parametrized as (Heymans et al.
2006)

γobs = (1 + m)γ + c , (5.18)

where m and c refer to the multiplicative bias and additive bias, respectively.
The multiplicative bias is mainly caused by the effect of pixel noise in the measurements

of galaxy ellipticities (Melchior & Viola 2012; Refregier et al. 2012; Miller et al. 2013), but
it can also arise if the model used to describe the galaxy profile is incorrect, or if stars are
misclassified as galaxies. The latter two effects are generally subdominant compared to the
noise bias. We quantify the amplitude of the multiplicative bias in the KiDS data by means
of a dedicated suite of image simulations (Fenech Conti et al. 2016). We closely follow the
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procedure described in Hildebrandt et al. (2016) and we derive a multiplicative correction for
each tomographic bin, i.e. mfid

z1
= −0.013 ± 0.010 and mfid

z2
= −0.012 ± 0.010. The errorbars

account both for statistical uncertainties and systematic errors due to small differences be-
tween data and simulations. In our likelihood analysis we apply the multiplicative correction
to the measured shear power spectrum and in order to marginalize over the uncertainties on
the m-correction we propagate them into the likelihood analysis. As the errors on the mfid

zµ are
fully correlated (Hildebrandt et al. 2016) we only need to include one free nuisance parame-
ter. We vary mz1 very conservatively within a 2σ tophat prior centred on its fiducial value in
each step i of the likelihood estimation. The value for mz2 is then fixed through the relation
mi

z2
= mfid

z2
+ ∆mi with ∆mi = mi

z1
− mfid

z1
.

Additive biases are mainly caused by a residual PSF ellipticity in the shape of galaxies
(e.g. Hoekstra 2004; van Uitert & Schneider 2016). More generally, any effect causing a
preferential alignment of shapes in the galaxy source sample will create an additive bias. For
example, in an early stage of the KiDS-450 data processing a small fraction of asteroids ended
up in the galaxy source sample. This resulted in strongly aligned shape measurements with
very high signal-to-noise causing a substantial c-term (cf. appendix D4 in Hildebrandt et al.
2016). This example also demonstrates that a potential c-term correction can only be derived
empirically from the data: it is impossible to include every source for an additive bias in image
simulations.

Here we demonstrate how the quadratic estimator can naturally deal with a residual addi-
tive shear in the data. This is a clear advantage over correlation function measurements, where
the residual additive shear needs to be properly quantified and subtracted from the data, usu-
ally hampering the ability of measuring the cosmic shear signal at large angular separations.

If sufficiently low multipoles are included in the extraction of the first multipole band
of the shear power spectrum band powers, this band accounts for any residual DC offset in
the data such as the effect of a global c-term. For a clean demonstration of this feature,
we employ Gaussian random fields (GRFs) with realistic CFHTLenS survey properties (e.g.
masking, noise level; cf. Chapter 4 for details). The GRFs were readily available and for this
demonstration the differences in survey properties are negligible. We extract E- and B-modes
simultaneously from four GRFs that match the W1, W2, W3, and W4 fields from CFHTLenS
in size and shape. The measurements are performed in two broad redshift bins but we use
the same multipole binning and shear pixel size σpix as used in the analysis of the KiDS-450
data (cf. Table 5.1). In a first step we extract a reference signal from the GRFs to which
no additional global c-term was added. In a second step we apply a global additive term of
c = 2 × 10−3 to both ellipticity components and re-extract the shear power spectra. In Fig. 5.2
we show the residuals between these two signals for all tomographic and multipole bins. As
expected, only the first multipole bin is affected substantially by the global c-term, but all
remaining bands are essentially unaffected. Hence, removing the first multipole bin from a
subsequent cosmological analysis replaces a sophisticated global c-correction at reasonable
computational costs.

5.6 Covariance
An important ingredient for an accurate and precise inference of cosmological parameters
from the measured band powers is the covariance matrix. There are several approaches to
estimate the covariance matrix: the brute-force approach of extracting it directly from a sta-
tistically significant number (to reduce numerical noise) of mock catalogues, an analytical
calculation or, as a special feature of the quadratic estimator, the inverse of the Fisher matrix.
Of course, each method has its specific advantages and disadvantages. The brute-force ap-
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Figure 5.2: The residuals between a shear power spectrum extracted from reference Gaussian random
fields (GRFs) and the one extracted from GRFs where a global c-term of c = 2×10−3 was applied to both
ellipticity components. From left to right the unique correlations of the two redshift bins are shown. The
GRFs were created to match the four fields of CFHTLenS in area, shape, noise properties, and redshift
range (i.e. z1: 0.50 < zB ≤ 0.85 and z2: 0.85 < zB ≤ 1.30). The signal extraction, however, employs
the multipole binning that is also used in the subsequent KiDS data analysis and extends to multipoles
significantly below the one set by the field size. The globally applied c-term only affects the band power
estimate of the first multipole bin but has no effect on the remaining bands. Hence, removing the first
band power from a subsequent cosmological analysis is sufficient to account for a leftover global c-term
in the data. The 1σ errorbars are based on the Fisher matrices and the horizontal dashed (grey) lines
indicate ±20 per cent margins.

proach requires significant amounts of additional run-time, both for the creation of the mocks
and the signal extraction. This can become a severe issue especially if the signal extraction
is also computationally demanding, as is the case for the (tomographic) quadratic estimator.
Moreover, if the mocks are based on N-body simulations the particle resolution and box size
of these set fundamental limits for the scales that are available for a covariance estimation
and to which level of accuracy and precision that is possible. In contrast, the Fisher matrix is
computationally the cheapest estimate of a covariance matrix since it comes at no additional
computational costs. However, it is only an accurate representation of the true covariance in
the Gaussian limit and hence the errors for the non-linear scales will be underestimated. More-
over, the largest scale for a Fisher matrix based covariance is limited to the size of the patch.
Therefore, the errors for scales corresponding to the patch size will also be underestimated.
A possible solution to the shortcomings of the previous two approaches is the calculation of
an analytical covariance matrix. This approach is computationally much less demanding than
the brute-force approach and does not suffer from the scale-dependent limitations of the pre-
vious two approaches. Moreover, the non-Gaussian contributions at small scales can also be
properly calculated. Hence, we follow the fiducial approach of Hildebrandt et al. (2016) and
adopt their method for computing the analytical covariance (except for the final integration to
correlation functions). The model for the analytical covariance consists of the following three
components:
(i) a disconnected part that includes the Gaussian contribution to shape-noise, sample vari-
ance, and a mixed noise-sample variance term,
(ii) a non-Gaussian contribution from in-survey modes originating from the connected matter-
trispectrum, and
(iii) a contribution from the coupling of in-survey and super-survey modes.
All cosmology dependent calculations employ a WMAP9 cosmology (Hinshaw et al. 2013)
and a detailed description of the full model will be presented in Joachimi et al. (in prepara-
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tion).
We calculate the analytical covariance matrix C(ζϑ)(γφ)(`, `′) at integer multipoles `, `′ over

the range 10 ≤ `, `′ ≤ 30009 where the index pairs ζ, γ and ϑ, φ label the unique redshift
correlations and band types (EE and BB), respectively. Note that the EE to BB and vice versa
the BB to EE part of this matrix is zero, i.e. there is no power leakage for an ideal estimator.
Finally, we create the analytical covariance matrix of the measured band powers by convolving
C(ζϑ)(γφ)(`, `′) with the full band window matrix:

CAB = W̃Aζϑ(`) C(ζϑ)(γφ)(`, `′) (W̃
T
)Bγφ(`′) , (5.19)

where the superindices A, B run over the band powers, their types (i.e. EE and BB), and
the unique redshift correlations. W̃ is the band window matrix defined in equation (5.14)
multiplied with the normalization for band powers, i.e. `(`+1)/(2π). Note that the convolution
with the band window matrix propagates all properties of the quadratic estimator into the band
power covariance.

5.7 The KiDS-450 shear power spectrum

For each of the 13 subpatches of the five KiDS fields we extract the weak-lensing power
spectrum in band powers spanning the multipole range 10 ≤ ` ≤ 5150 (cf. Section 5.4 and
Table 5.1). The measurement is performed in two redshift bins in the ranges z1: 0.10 <
z ≤ 0.45 and z2: 0.45 < z ≤ 0.90 (cf. Table 5.2). This yields in total two auto-correlation
spectra and one unique cross-correlation spectrum per subpatch. In the subsequent analysis we
combine all spectra by weighting each spectrum with the effective area of the subpatch. This
weighting is optimal in the sense that the effective area is proportional to the number of galaxy
pairs per patch and the number of pairs sets the shape-noise variance of the measurements.
We present the resulting seven E-mode band powers in Fig. 5.3. The errors on the signal are
estimated from the analytical covariance (cf. Section 5.6), which includes contributions from
shape noise, cosmic variance, and super-sample variance. The extension along the multipole
axis indicates the width of the band. The signal is plotted at the naïve centre of the band
whereas for the subsequent likelihood analysis we take the window functions of the bands
into account (cf. equation 5.13). Only the bands between the (grey) shaded areas enter in
the cosmological analysis. We exclude the first band as it contains by construction multipoles
that extend below the lowest physical multipole (i.e. `field ≈ 76) in order to account for any
remaining DC offset in the data (such as an additive global c-term, cf. Section 5.5). The last
band at the highest multipoles is also excluded as it is designed to sum up the oscillating part
of the pixel window function at high multipoles.

We simultaneously extract E- and B-modes. As noted in Section 5.2 the cosmological
signal is contained entirely in the E-modes in the absence of systematics. Hence, the B-mode
signal is used as a test for residual systematics in the data. We show the effective area weighted
six B-mode band powers in Fig. 5.4. The B-mode errors are derived from the B-mode part of
the inverse Fisher matrix as described in Chapter 4. We do not use the B-mode errors derived
from the analytical covariance since they currently do not account for survey-boundary effects
and therefore are underestimated.

In order to use the B-mode band powers as an independent test for residual systematics,
we have to confirm that there is no significant leakage of power from E-modes to B-modes.

9This range is matching the range over which we later perform the summation when we convolve the theoretical
signal predictions with the band window functions.
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From a previous analysis (Lin et al. 2012) we do not expect the quadratic estimator to in-
duce power leakage from E- to B-modes. However, if the shape noise is misestimated we
might expect some power leakage for the highest multipole band powers. We investigate
this using the band window functions derived from the full band window function matrix (cf.
equation 5.14), which is also computed as an average over all subpatches with effective area
weights. In Fig. 5.5 we show (red points) the convolution of a fiducial cosmological E-mode
signal (employing the same WMAP9 cosmology used for the calculation of the analytical co-
variance) for the low-redshift auto-correlation with the corresponding band window functions
of all possible cross-terms (e.g. EE, z1 × z1 to BB, z2 × z2). The fiducial E-mode signal is
plotted as the solid black line and the errorbars are derived from the analytical covariance.
Additionally, we show a second set of errorbars in grey. These indicate the amplitude of the
Fisher matrix based B-mode errors. We expect the signal to appear only in the leftmost panel
depicting the auto-contribution (i.e. from EE, z1 × z1 to EE, z1 × z1). Indeed, the cross-term
contributions are order(s) of magnitude lower than the E-mode band powers and well within
the statistical B-mode errors. Hence, there is no significant power leakage from E- to B-modes
which would introduce a detectable spurious B-mode signal.

Hence, the significance of the measured B-modes can now be used to assess whether or
not there are residual systematics in the data. Qualitatively this is shown in Fig. 5.4. We test
the hypothesis that the B-modes in the first five bands are consistent with zero by means of a
χ2-goodness-of-fit measure. This yields a reduced χ2 of χ2

red = 1.06 for 14 degrees of freedom.
We conclude that the B-modes are consistent with zero over the multipole range used in the
cosmological analysis.

In passing we note that Fig. 5.5 shows that the estimates of the fiducial E-mode power
spectrum with the band window functions for bands 6 and 7 are biased low and high, re-
spectively. This is visible in the auto-contribution (EE, z1 × z1) to (EE, z1 × z1), i.e. the
leftmost panel. Therefore, we decide to conservatively remove band 6 from the subsequent
cosmological analysis, which reduces the available multipole range to 76 ≤ ` ≤ 1310.

5.7.1 Qualitative comparison to correlation functions

Most cosmic shear studies to date employ real-space correlation functions (e.g. Heymans et al.
2013; Becker et al. 2015; Hildebrandt et al. 2016) because they are conceptually easy and fast
to compute. In contrast to direct power spectrum estimates, correlation functions measured
at a given angular separation sum up contributions over a wide range of multipoles. Due to
this mode-mixing it is non-trivial to compare angular scales to multipole ranges, as well as to
cleanly separate linear and non-linear scales.

As an example we qualitatively compare here correlation function measurements based
on the angular scales presented in Hildebrandt et al. (2016) to the direct power spectrum
measurements employing the quadratic estimator. For that purpose we calculate a fiducial
shear power spectrum (cf. equation 5.5) employing a Planck cosmology (Planck Collaboration
XIII 2015a) and the redshift distributions derived for our two tomographic bins. A correlation-
function based estimator such as ξ± is related to the shear power spectrum Cµν(`) through

ξ
µ,ν
± (θ) =

1
2π

∫
d` `Cµν(`)J0,4(`θ) ≡

∫
d` Iξ± (`θ) , (5.20)

where θ is the angular distance between pairs of galaxies and J0,4 is the zeroth- (for ξ+) or
fourth-order (for ξ−) Bessel function of the first kind. In contrast, the quadratic estimator
(QE) convolves the theoretical shear power spectrum with its band window matrix WA(`) (cf.
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Figure 5.3: Measured E-mode band powers in tomographic bins averaged with the effective area per
patch over all 13 KiDS-450 subpatches. From left to right we show the auto-correlation signal of the
low-redshift bin (blue), the cross-correlation signal between the low and the high-redshift bin (orange),
and the auto-correlation signal of the high-redshift bin (red). Note that negative band powers are shown
at their absolute value with an open symbol. The low-redshift bin contains objects with redshifts in the
range 0.10 < z1 ≤ 0.45 and the high-redshift bin covers a range 0.45 < z2 ≤ 0.90. The 1σ-errors in the
signal are derived from the analytical covariance convolved with the averaged band window matrix (cf.
Section 5.6) whereas the extension in `-direction is the width of the band. Band powers in the shaded
regions (grey) to the left and right of each panel are excluded from the cosmological analysis (see text
for details). The solid line (black) shows the power spectrum for the cosmological model from (Planck
Collaboration XIII 2015a). Note, however, that the band powers are centred at the naïve `-bin centre and
thus the convolution with the band window function is not taken into account in this plot, in contrast to
the cosmological analysis.

101 102 103

`

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C
B
B
(`
)
(
£1
09
) z1 £ z1

CPlanck`

101 102 103

`

z2 £ z1

101 102 103

`

z2 £ z2

Figure 5.4: Same as Fig. 5.3 but for B-mode band powers. Note, however, the different scale (linear) and
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Figure 5.5: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the low-
redshift auto-correlation (i.e. z1 × z1) convolved with the corresponding band window functions (red
points) of all possible cross-combinations. The first panel from the left depicts the auto-contribution
from (EE, z1 × z1) to (EE, z1 × z1). The grey errorbars show the statistical uncertainties associated with
the B-modes. Open symbols denote negative values plotted at their absolute value. The corresponding
plots for the remaining (EE, z2 × z1) and (EE, z2 × z2) cross-combinations are shown in Appendix 5.B.

equation 5.14):

BA =
∑
`

`(` + 1)
2π

WA(`)CA(`) ≡
∑
`

IQE(`) , (5.21)

where the superindex A runs again over all multipole bands and unique redshift correlations.
The convolved power spectra as a function of multipoles defined at the right-hand sides of
both equations are shown in Fig. 5.6 for the lowest redshift bin. In the upper panel we indicate
the borders of the bands used in our cosmological analysis (grey dashed lines; cf. Table 5.1).
In the two bottom panels we show the lower and upper limits of our power spectrum analysis.
For the calculation of Iξ± (`θ) we use the central values of the θ±-intervals from the cosmic
shear analysis of Hildebrandt et al. (2016). Fig. 5.6 shows that the ξ+-measurements are
highly correlated and anchored at very low multipoles, whereas the ξ−-measurements show a
high degree of mode-mixing. In contrast, the quadratic estimator measurements of the power
spectrum are much more cleanly separated and the degree of mode-mixing is much lower.
We also note that correlation-function measurements get contributions from lower multipoles
than ` < 76 as well as multipoles larger than ` > 1310, which in contrast do not contribute to
the signal in our power spectrum analysis. Most of the cosmological information is contained
in high multipoles and although the correlation-function measurements extend further into
the high multipole regime, the contributions from these scales are non-negligible only for
angular scales θ < 3 arcmin. Hence, we do not expect significant differences in the precision
of cosmological parameters between both approaches. However, the interpretation of the
correlation-function signal at these scales requires accurate knowledge of the non-linear part
of the matter power spectrum at high wavenumbers k.

5.8 Cosmological inference
The cosmological interpretation of the measured tomographic band powers Bα derived in
Section 5.7 is done in a Bayesian framework. For the estimation of cosmological parameters
p we sample the shear likelihood

−2 lnL(p) =
∑
α, β

dα(p)(C−1)αβ dβ(p) , (5.22)
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Figure 5.6: Top panel: measurement of a fiducial shear power spectrum using the quadratic estimator
(cf. equation 5.21) in five band powers between 76 ≤ ` ≤ 1310. The borders of the bands are indicated
by the vertical dashed (grey) lines. Mid panel: measurement of the same fiducial shear power spectrum
using the ξ+-statistics for correlation functions (cf. equation 5.20) in an angular range 0.7 arcmin ≤
θcen

+ ≤ 50 arcmin. Bottom panel: measurements of the same fiducial shear power spectrum using the ξ−-
statistics for correlation functions (cf. equation 5.20) in an angular range 6 arcmin ≤ θcen

− ≤ 200 arcmin.
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where the indices α, β run over the tomographic bins. The covariance matrix C is the one
calculated in Section 5.6 but employing only its E-mode part. The components of the data
vector are calculated as

dα(p) = (Bα − 〈Bα(p)〉model) , (5.23)

where the dependence on cosmological parameters enters only in the calculation of the pre-
dicted E-mode band powers, 〈Bi(`)〉model (cf. equations 5.13 and 5.5).

In addition to sampling the likelihood for the derivation of cosmological parameter con-
straints, we also intend to compare various model extensions to a baseline model in terms of
the Bayes factor which is based on the evidences of the models. The Bayesian evidence Z is
the normalization of the posterior over the parameters p (and usually ignored if one is only
interested in parameter constraints). In that sense, however, it can also be interpreted as the
average of the likelihood over the prior

Z =

∫
dn pL(p)π(p) , (5.24)

where π(p) is the prior and n is the dimension of the parameter space. Hence, the Bayesian
evidence naturally implements Occam’s razor: a simpler theory with fewer parameters, i.e.
a more compact parameter space, will result in a higher evidence compared to a theory that
requires more parameters, unless the latter explains the data significantly better.

Based on the evidences for models M1 and M0 and the a priori probability ratio for the
two models, Pr(M1)/Pr(M0), the Bayes factor is defined as

K1,0 ≡
Z1

Z0

Pr(M1)
Pr(M0)

, (5.25)

and can be used to make a decision between models M1 and M0 because K1,0 > 1 implies,
for example, a preference of model M1 over model M0. Usually, Pr(M1)/Pr(M0) = 1 unless
there are strong (physical) reasons to prefer one model over the other a priori which is not the
case in our subsequent analysis. Furthermore, we will use the classification scheme of Kass
& Raftery (1995) for the interpretation of the Bayes factor K (or equivalently 2 ln K).

For an efficient evaluation of the high-dimensional integral of equation (5.24) we employ
the nested sampling algorithm MULTINEST10 (Feroz & Hobson 2008; Feroz et al. 2009, 2013).
Conveniently, its PYTHON-wrapper PYMULTINEST (Buchner et al. 2014) is included in the frame-
work of the cosmological likelihood sampling package MONTE PYTHON11 (Audren et al. 2013)
with which we derive all cosmology-related results in this analysis.

5.8.1 Theoretical power spectrum
The calculation of the tomographic shear power spectrum Cµν(`) is described in Section 5.2
and summarized by noting that it is just the projection of the 3D matter power spectrum Pδ

along the line-of-sight weighted by lensing weight functions qµ that take the lensing efficiency
of each tomographic bin into account.

For the calculation of the matter power spectrum Pδ(k; χ) in equation (5.5) we employ the
Boltzmann-code CLASS12 (Blas et al. 2011; Audren & Lesgourgues 2011). The non-linear cor-
rections are implemented through the HALOFIT algorithm including the recalibration by Taka-
hashi et al. (2012). Additionally, the effects of (massive) neutrinos are also implemented in

10Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
11Version 2.2.1 from https://github.com/baudren/montepython_public
12Version 2.5.0 from https://github.com/lesgourg/class_public

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
https://github.com/baudren/montepython_public
https://github.com/lesgourg/class_public
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CLASS following Lesgourgues & Tram (2011). Massive neutrinos introduce a redshift- and
scale-dependent reduction of power in the matter power spectrum Pδ. However, this reduction
of power also propagates into the lensing power spectra Cµν(`), though smoothed by the lens-
ing weight functions qµ. In the multipole range considered in this analysis, we expect massive
neutrinos to decrease the lensing power spectrum by an almost constant factor. Hence, the
effect of massive neutrinos causes a degeneracy with cosmological parameters affecting the
normalization of the lensing power spectrum.

In addition to massive neutrinos, the effect of baryon feedback is another source of a scale-
dependent reduction of power, especially in the non-linear regime. Although the full physical
description of baryon feedback is not established yet, hydrodynamical simulations offer one
route to estimate its effect on the matter power spectrum. In general, the effect is quantified
through a bias function with respect to the dark-matter only Pδ (e.g. Semboloni et al. 2013;
Harnois-Déraps et al. 2015):

b2(k, z) ≡
Pmod
δ (k, z)

Pref
δ (k, z)

, (5.26)

where Pmod
δ and Pref

δ denote the power spectra with and without baryon feedback, respectively.
In this work we make use of the results obtained from the OverWhelmingly Large Simula-

tions (OWLS; Schaye et al. 2010, van Daalen et al. 2011) by implementing the fitting formula
for baryon feedback derived in Harnois-Déraps et al. (2015):

b2(k, z) = 1 − Abary(Aze(Bz x−Cz)3
− DzxeEz x) , (5.27)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez are functions of the scale
factor a = 1/(1 + z). These terms also depend on the baryonic feedback model and we refer
the reader to Harnois-Déraps et al. (2015) for the specific functional forms and constants.
Additionally, we introduce a general free amplitude Abary which we will use as a free parameter
to marginalize over while fitting for the cosmological parameters in some models.

We demonstrate the effects of massive neutrinos and baryon feedback on the 3D matter
power spectrum and the shear power spectrum (employing the KiDS-450 lensing kernel of
our analysis) in Fig. 5.7. Baryon feedback causes a significant reduction of power in the high
multipole regime whereas massive neutrinos lower the amplitude of the shear power spectrum
over all scales by an almost constant value.

In general, the observed shear power spectrum is a biased tracer of the cosmological con-
vergence power spectrum due to the effect of intrinsic alignments (IA):

Ctot
µν (`) = CGG

µν (`) + CII
µν(`) + CGI

µν (`) , (5.28)

where CII is the power spectrum of intrinsic ellipticity correlations between neighbouring
galaxies (termed ‘II’) and CGI is the power spectrum of correlations between the intrinsic
ellipticities of foreground galaxies and the gravitational shear of background galaxies (termed
‘GI’). For the theoretical description of these effects we follow Hildebrandt et al. (2016) and
employ the ‘linear non-linear’ model of intrinsic alignments (Hirata & Seljak 2004; Bridle &
King 2007; Joachimi et al. 2011), so that we can write:

CII
µν(`) =

∫ χH

0
dχ

nµ(χ)nν(χ)F2(χ)

f 2
K(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (5.29)

CGI
µν (`) =

∫ χH

0
dχ

qν(χ)nµ(χ) + qµ(χ)nν(χ)

f 2
K(χ)

F(χ)Pδ

(
k =

`

fK(χ)
; χ

)
, (5.30)
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Figure 5.7: Upper panel: the ratio of modified matter power spectra over the dark matter only power
spectrum. The dashed line (blue) shows the effect of the baryon feedback bias in the AGN model from
OWLS (Schaye et al. 2010; van Daalen et al. 2011) using the implementation by Harnois-Déraps et al.
(2015) (cf. equation 5.27 with Abary = 1). The modifications due to three degenerate massive neutrinos
with total mass Σmν = 0.18 eV is demonstrated by the dash-dotted line (red). The redshift for the power
spectrum calculation is z = 0.7 corresponding to the median redshift of the high-redshift bin used in
the subsequent analysis (cf. Table 5.2). Lower panel: same as upper panel but for the lensing power
spectrum of the high-redshift bin z2 : 0.45 < zB ≤ 0.90 (cf. Table 5.2). The vertical dashed (grey) lines
mark the multipole range of the subsequent cosmological analysis (cf. Table 5.1).
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with the lensing weight function qµ(χ) defined as in equation (5.6) and

F(χ) = −AIAC1ρcrit
Ωm

D+(χ)
. (5.31)

Here we also introduce a dimensionless amplitude AIA which allows us to rescale and vary
the fixed normalization C1 = 5 × 10−14 h−2M�−1Mpc3 in the subsequent likelihood analysis.
The critical density of the Universe today is denoted as ρcrit and D+(χ) is the linear growth
factor normalized to unity today. In general, equation (5.31) can include also a luminosity de-
pendence and/or an additional redshift scaling. The majority of the KiDS-450 source sample
consists of late-type galaxies for which no significant detection of intrinsic alignments exists
to date. For massive early-type galaxies, however, a luminosity-dependent alignment signal
has been measured with no indication for a redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). For their re-analysis of CFHTLenS, which is of similar statistical power as KiDS-
450, Joudaki et al. (2016) concluded that the full flexibility of the intrinsic alignment model
including either a luminosity dependence, or a redshift dependence, or both cannot be con-
strained sufficiently by the data. As a cross-check, we select galaxies between 20 < mr < 24
from COSMOS (Laigle et al. 2016) as a proxy for the KiDS sample and study their r-band lu-
minosities. The ratio between the mean luminosities of the two tomographic bins used in this
analysis is 1.03. Therefore, we can indeed neglect any luminosity dependence in the mod-
elling of intrinsic alignments for our galaxy source sample. Hence, we follow Hildebrandt
et al. (2016) and do not consider a luminosity dependence and/or additional redshift scaling.
In order to facilitate the notation of equations (5.29) and (5.30) we have not introduced these
additional terms in equation (5.31). Therefore, only a free amplitude AIA is allowed for the
modelling of intrinsic alignments in the subsequent likelihood analysis.

5.8.2 Models

The two most important parameters entering in the calculation of the shear power spectrum are
Ωm the energy density of matter in the Universe today and As the amplitude of the primordial
power spectrum. These two quantities determine the tilt and the total amplitude of the shear
power spectrum, respectively. However, simultaneous changes in these two parameters have
only a subtle net effect on the shear power spectrum and lead in general to a degeneracy in
these two parameters. Moreover, observationally it is easier to work instead of As with the
quantity σ8 which is the root-mean-square variance of the density field smoothed with the
Fourier transform of a tophat filter on a scale R = 8 h−1Mpc in real-space. Hence, the lensing-
intrinsic degeneracy is usually referred to as a degeneracy in Ωm andσ8 and the 2D projections
of credibility intervals in this parameter plane define the lensing ‘bananas’. The extent of these
degeneracy ‘bananas’ (i.e. the top and bottom of the ‘banana’) is sensitive to the choice of
sampling parameters (e.g. As or ln(1010As)) and their prior ranges. Moreover, a principal
components analysis shows that the parameter combination σ8(Ωm/0.3)α, which essentially
measures the width of the ‘banana’, is most robustly constrained by cosmic shear. In Fig. 5.8
we explicitly show this for two sets of priors as specified in Table 5.3. Increased priors for
Ωbh2 and h have a significant impact on the extent of the ‘banana’ along the degeneracy line
in the Ωm–σ8 plane as shown in Fig. 5.8. However, the increased prior ranges hardly influence
the constraint on the parameter combination σ8(Ωm/0.3)α for which we find σ8(Ωm/0.3)α =

0.709± 0.037 for the fiducial prior ranges and σ8(Ωm/0.3)α = 0.709± 0.039 for the increased
prior ranges. Hence, we adopt the following strategy for the parameter sampling in this paper:
we will sample in ln(1010As) and Ωcdmh2 and treat σ8 and Ωm as derived quantities in order to
calculate the combined constraint σ8(Ωm/0.3)α. As opposed to previous analyses we refrain



5. The KiDS-450 shear power spectrum 121

0.0 0.2 0.4 0.6 0.8 1.0

­m

0.2

0.4

0.6

0.8

1.0

1.2

1.4

¾
8

¤CDM; wider priors

¤CDM; fiducial priors

Figure 5.8: The 68 and 95 per cent credibility intervals in the Ωm–σ8 plane for the same baseline
ΛCDM model employing two different sets of priors (cf. Table 5.3). The ‘fiducial priors’ (red con-
tours) artificially cut the extent of the degeneracy ‘banana’ but leave its width unchanged in comparison
to the ‘wider priors’ (blue contours). This results in consistent constraints on σ8(Ωm/0.3)α yielding
σ8(Ωm/0.3)α = 0.709 ± 0.037 for the ‘fiducial priors’ σ8(Ωm/0.3)α = 0.709 ± 0.039 for the ‘wider
priors’.

from showing any further ‘banana’-plots due to their sensitivity to priors as shown in Fig. 5.8
in order to avoid any misleading interpretations (cf. the discussions of that in Joudaki et al.
2016; Hildebrandt et al. 2016).

In addition to the parameter combination σ8(Ωm/0.3)α also the quantity S 8 ≡ σ8
√

Ωm/0.3
is used in the literature based on the observation that the exponent α is usually found to be
≈ 0.5.

In the following likelihood analysis we assume a flat cosmological model and use the
same set of parameters and priors from the analysis in Hildebrandt et al. (2016) for our fidu-
cial model (referred to as ‘ΛCDM’ henceforth): Ωcdmh2, ln(1010As), Ωbh2, ns, h. The value
of the Hubble parameter today is denoted as h, Ωbh2 is the baryonic matter density mul-
tiplied with h2 and ns is the exponent of the primordial power spectrum. Since data from
particle physics experiments indicate that neutrinos have mass, we include two massless and
one massive neutrino with a fixed minimal mass of Σmν = 0.06 eV. Moreover, we include
a nuisance parameter mz1 for the multiplicative correction in the first redshift bin and corre-
late the m-correction for the second redshift bin with it (cf. Section 5.4 for details). Since
Hildebrandt et al. (2016) have shown that the uncertainty in the photometric redshift dis-
tribution is substantially smaller than the measurement errors and sampling variance on the
cosmic shear signal, we do not include any nuisance parameter for the photometric redshift
uncertainties. Having demonstrated the robustness of σ8(Ωm/0.3)α and S 8 under a change of
priors and in the interest of run-time we choose to employ narrow priors on h and Ωbh2. The
prior range on h corresponds to the ±5σ uncertainty centred on the distance-ladder constraint
from Riess et al. (2016) of h = 0.730 ± 0.018. Note that the corresponding prior range of
0.64 < h < 0.82 still includes the preferred value from Planck Collaboration XIII (2015a).
The prior on Ωbh2 is based on BBN constraints listed in the 2015 update from the Particle
Data Group (Olive & Particle Data Group 2014) again adopting a conservative width of ±5σ
such that 0.019 < Ωbh2 < 0.026.

Since we also want to constrain the total mass of massive neutrinos, we introduce as the
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Table 5.3: Set of priors used for Fig. 5.8.

Parameter fiducial priors wider priors

Ωcdmh2 [0.01, 0.99] [0.01, 0.99]
ln(1010As) [1.7, 5.] [1.7, 5.]

Ωbh2 [0.019, 0.026] [0.001, 0.010]
ns [0.7, 1.3] [0.7, 1.3]
h [0.64, 0.82] [0.3, 1.]

Σmν (eV) ≡ 0.06 ≡ 0.06
mz1 [−0.033, 0.007] [−0.033, 0.007]
Ωm derived derived
σ8 derived derived

Notes. The primary cosmological and nuisance parameters for the baseline ΛCDM model for
two sets of prior ranges used for Fig. 5.8. The ‘fiducial priors’ are used in the subsequent
cosmological analysis.

first model extension the free parameter Σmν (the model is referred to as ‘ΛCDM+Σmν’).
However, as we have discussed in Section 5.8.1 there are other physical effects that we need
to take into account because they might create degenerate signatures in the matter and/or shear
power spectra. The first of such physical parameters is the amplitude for the intrinsic align-
ment model, i.e. AIA. We refer to this model subsequently as ‘ΛCDM+AIA’. The second
physical nuisance is baryon feedback and hence the model ‘ΛCDM+Abary’ includes the free
amplitude Abary. We combine both physical nuisance effects and study their combined impact
on cosmological constraints in the model ‘ΛCDM+AIA+Abary’. Finally, we combine all previ-
ous extensions into one model which we dub ‘ΛCDM+all’ for brevity instead of showing all
extensions explicitly, i.e. AIA, Abary, and Σmν.

5.8.3 Results and discussion
The resulting cosmological parameter constraints for all models and the corresponding prior
ranges are summarized in Table 5.4. In order to highlight parameter degeneracies we show
all possible 2D parameter projections in Fig. 5.10 in Appendix 5.B for the model ΛCDM+all.
This model can be considered as the most conservative one as it includes marginalizations
over several nuisance parameters (cf Section 5.8.2). For this model we derive an upper bound
on the total mass for three degenerate massive neutrinos. We find Σmν < 3.46 eV at 95 per
cent credibility from lensing alone. This is very similar to the constraint from our previous
CFHTLenS re-analysis in Chapter 4. In contrast, the upper bound at 95 per cent confidence
found by Planck Collaboration XIII (2015a, TT+lowP) is Σmν < 0.72 eV. Combining the
Planck CMB results with measurements of the Lyα power spectrum and BAO measurements
yields the very stringent upper limit of Σmν < 0.14 eV at 95 per cent confidence (Palanque-
Delabrouille et al. 2015).
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Table 5.4: Cosmological parameter constraints.

Model Ωcdmh2 ln(1010As) Ωm σ8 Ωbh2 ns h Σmν (eV) mz1 AIA Abary

Prior ranges [0.01, 0.99] [1.7, 5.] derived derived [0.019, 0.026] [0.7, 1.3] [0.64, 0.82] [0.06, 10.] [−0.033, 0.007] [−6., 6.] [0., 10.]
ΛCDM no sys. 0.13+0.06

−0.08 2.60+0.78
−0.90 0.29+0.10

−0.14 0.72+0.19
−0.17 0.022+0.004

−0.004 0.93+0.16
−0.22 0.74+0.08

−0.06 ≡ 0.06 – – –
ΛCDM 0.14+0.06

−0.07 2.61+0.84
−0.91 0.29+0.09

−0.14 0.72+0.12
−0.17 0.023+0.004

−0.003 0.93+0.12
−0.20 0.74+0.08

−0.09 ≡ 0.06 −0.007+0.014
−0.009 – –

ΛCDM+Σmν 0.17+0.06
−0.09 2.53+0.63

−0.83 0.37+0.13
−0.11 0.62+0.08

−0.11 0.022+0.003
−0.004 1.05+0.24

−0.16 0.76+0.06
−0.05 1.67+0.73

−1.61 −0.008+0.015
−0.013 – –

ΛCDM+AIA 0.12+0.05
−0.07 2.73+1.10

−1.03 0.27+0.09
−0.12 0.74+0.16

−0.18 0.023+0.004
−0.003 0.95+0.16

−0.19 0.74+0.08
−0.07 ≡ 0.06 −0.007+0.014

−0.010 −0.22+1.63
−1.34 –

ΛCDM+Abary 0.12+0.06
−0.07 2.80+1.01

−1.10 0.27+0.07
−0.12 0.79+0.14

−0.20 0.022+0.003
−0.003 1.09+0.21

−0.13 0.74+0.08
−0.07 ≡ 0.06 −0.008+0.015

−0.009 – 3.85+1.90
−2.94

ΛCDM+AIA+Abary 0.12+0.05
−0.06 2.91+1.27

−1.21 0.26+0.08
−0.11 0.80+0.18

−0.20 0.023+0.003
−0.003 1.10+0.20

−0.11 0.74+0.08
−0.05 ≡ 0.06 −0.007+0.014

−0.007 −0.34+1.51
−1.33 4.03+2.31

−2.73

ΛCDM+all 0.14+0.05
−0.07 2.82+1.03

−1.12 0.32+0.09
−0.12 0.69+0.10

−0.15 0.022+0.003
−0.003 1.13+0.17

−0.13 0.75+0.07
−0.05 1.16+0.54

−1.10 −0.007+0.014
−0.011 −0.32+1.43

−1.23 3.15+1.81
−3.15

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution.
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The cosmological main results for each model, i.e. σ8(Ωm/0.3)α and S 8, are summarized
in Table 5.5. We derive the exponent α from fitting the function lnσ8(Ωm) = −α ln Ωm +const.
to the likelihood surface in the Ωm–σ8 plane. Since indeed α ≈ 0.5 for all models, we com-
pare their S 8 values in Fig. 5.9 to each other but also to constraints from other cosmic shear
analyses and CMB constraints. The values we derive for each of the models in this analysis
are consistent with each other and as expected introducing a free total neutrino mass is shift-
ing S 8 to lower values. Most of our models are also consistent with previous results from
CFHTLenS, where we compare in particular to a correlation-function re-analysis employing
six tomographic bins and marginalization over various nuisance parameters from Joudaki et al.
(2016). In addition to that, we show results from our previous quadratic estimator analysis of
CFHTLenS from Chapter 4, which employed two tomographic bins at higher redshift com-
pared to the bins used here. In that study the basic five-parameter model was also labelled
‘ΛCDM’ but did not include a marginalization over the shear calibration uncertainties. The
label ‘ΛCDM+all’ used in that study also refers to an extension of the ‘ΛCDM’ model with
a free total neutrino mass and marginalization over baryon feedback, but does not take in-
trinsic alignments into account. The errors are comparable to the errors in this study, since
CFHTLenS and KiDS-450 have comparable statistical power. The comparison to the KiDS-
450 constraint from the correlation-function analysis with four tomographic bins (Hildebrandt
et al. 2016) shows that the errorbars of that study are about 32 per cent smaller than the ones
derived here. Following the discussion of Section 5.7.1 we attribute this mainly to the in-
creased resolution along the line-of-sight for four tomographic bins, which improves the pre-
cision on the intrinsic alignment modelling. A small increase in the errorbars might also be
explained by the multipole range used in this analysis compared to the effective multipole
range used in Hildebrandt et al. (2016). Our results are also consistent with the result from the
DES science verification (SV) correlation-function analysis (DES Collaboration 2015, ‘Fidu-
cial DES SV cosmic shear’).

More interesting is the comparison of our results to CMB constraints including pre-Planck
(Hinshaw et al. 2013; Calabrese et al. 2013) and Planck (Planck Collaboration XIII 2015a;
Spergel et al. 2015) data. We find them to be most distinctively in tension with the results
from Planck Collaboration XIII (2015a) at 1.8σ. We remind the reader to be cautious when
quantifying tension between datasets based on parameter projections of the multi-dimensional
likelihoods (cf. appendix A in MacCrann et al. 2015) which, for example, suffices to explain
the mild tension in S 8 between our previous CFHTLenS results and Planck. However, this
projection effect can certainly not explain the current tension in S 8 with Planck.

Finally, we want to decide which of our tested models fits the data the best. As indicated in
Section 5.8 we employ for that a Bayesian model comparison framework based on evidences,
their ratios, and the quantitative interpretation scheme of these by Kass & Raftery (1995).
The results for the comparison of all model extensions to the baseline ΛCDM model are
summarized in Table 5.6. In conclusion, none of the model extensions yields any positive
evidence against the baseline ΛCDM model. Only adding a baryon feedback amplitude Abary
yields evidence ‘not worth more than a bare mention’ against the baseline ΛCDM model.

5.9 Conclusions
In this study we applied the quadratic estimator to state-of-the-art shear data from KiDS-
450 in two redshift bins over the range 0.10 < zB ≤ 0.90 and extracted the band powers
of the auto-correlation and cross-correlation shear power spectra for multipoles in the range
76 ≤ ` ≤ 1310. The covariance matrix is based on an analytical calculation which is then
convolved with the full band window matrix. We derive the parameter combination S 8 ≡
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Table 5.5: Constraints on S 8 and σ8(Ωm/0.3)α.

Model S 8 ≡ Mean error σ8 α

σ8
√

Ωm/0.3 on S 8 (Ωm/0.3)α

ΛCDM no sys. 0.707+0.041
−0.036 0.038 0.704+0.038

−0.034 0.544
ΛCDM 0.712+0.039

−0.038 0.039 0.709+0.038
−0.036 0.543

ΛCDM+Σmν 0.696+0.040
−0.036 0.038 0.692+0.039

−0.036 0.468
ΛCDM+AIA 0.703+0.053

−0.044 0.048 0.699+0.051
−0.043 0.542

ΛCDM+Abary 0.754+0.047
−0.050 0.048 0.747+0.044

−0.045 0.563
ΛCDM+AIA+Abary 0.742+0.057

−0.056 0.057 0.734+0.057
−0.050 0.555

ΛCDM+all 0.710+0.053
−0.051 0.052 0.710+0.053

−0.051 0.501

Notes. We quote weighted mean values for the constraints on S 8 ≡ σ8
√

Ωm/0.3 and
σ8(Ωm/0.3)α. The errors denote the 68 per cent credible interval derived from the marginal-
ized posterior distribution.
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Figure 5.9: The 1σ-constraints on the parameter combination S 8 ≡ σ8
√

Ωm/0.3 for all of our tested
models (cf. Tables 5.4 and 5.5). We compare them to constraints from other cosmic shear and CMB
analyses. For cosmic shear analyses we indicate the type of estimator used with ‘CF’ for correlation
functions and ‘QE’ for the quadratic estimator.
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Table 5.6: Evidences from likelihood sampling.

Model lnZ 2 ln K (K ≡ Zi/ZΛCDM) Evidence against ΛCDM

ΛCDM no sys. −10.43 ± 0.06 – –
ΛCDM −10.77 ± 0.06 0 –

ΛCDM+Σmν −11.24 ± 0.06 −0.94 –
ΛCDM+AIA −11.80 ± 0.06 −2.06 –
ΛCDM+Abary −10.74 ± 0.06 0.06 ‘not worth more than a bare mention’

ΛCDM+AIA+Abary −11.76 ± 0.06 −1.98 –
ΛCDM+all −12.74 ± 0.07 −3.94 –

Notes. For each model we calculate the global log-evidence, lnZ, and compare all evidences
in terms of the Bayes factor K (or equivalently 2 ln K) to the baseline ΛCDM model. The
interpretation of the Bayes factor is following the scheme proposed by Kass & Raftery (1995).

σ8
√

Ωm/0.3 for a baseline ΛCDM model and several model extensions including a free total
mass of neutrinos and physical nuisances such as intrinsic alignments and baryon feedback.
All models also include a marginalization over the small uncertainties of the shear calibration.

A Bayesian model comparison yields no evidence against the baseline ΛCDM model
for any of the extensions introduced here including a free total mass for three degenerate
massive neutrinos (Σmν) or physical nuisances such as baryon feedback (Abary) or intrinsic
alignments (AIA). We take the conservative approach of considering the extended model
ΛCDM+AIA+Abary as our fiducial model for which we find S 8 = 0.742 ± 0.057. The flat
five-parameter ΛCDM model without any systematics yields S 8 = 0.707 ± 0.038. Thus,
marginalizing over the shear calibration and the physical nuisance parameters increases the
errorbars by ≈50 per cent.

For the model ΛCDM+all we derive an upper limit on the total mass of three degenerate
neutrinos: Σmν < 3.46 eV at 95 per cent credibility from lensing alone. This constraint is
currently not competitive with respect to constraints derived from CMB or other large-scale
structure measurements or the combination of both, but it is consistent with the constraint we
derived already in our re-analysis of CFHTLenS whose statistical power is comparable to this
analysis.

Most interestingly, the constraint on S 8 is in tension with the constraint from Planck at
1.8σ. This confirms the result from a 4-bin tomographic correlation-function analysis by
Hildebrandt et al. (2016) with lower significance though due to the weaker S 8 constraint of our
study. Moreover, the fact that this study uses less of the very non-linear scales in comparison
to Hildebrandt et al. (2016) also disfavours insufficient modelling of these scales as a possible
explanation for the discrepancy with Planck.
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5.A Updated derivation of the window function matrix
The full index notation for all matrices and tensors used in the quadratic estimator algorithm
can be found in Appendix 4.A. Here, we only update the notation for the derivatives of the
full covariance matrix C with respect to the power at an integer multipole `, i.e. Dζϑ(`). These
are required for the calculation of the window function matrix (cf. equation 5.14) and enter
explicitly in the computation of the trace matrix T (cf. equation 5.15):

∂C(µν)(ab)(i j)

∂Bζϑ(`)
=

Mζ(µν)

2(` + 1)

[
w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)

]
≡ D(µν)(ab)(i j)(ζ)(ϑ)(`) ≡ Dζϑ(`) , (5.32)

where we have used that

Csig
(µν)(ab)(i j) =

∑
ζ,ϑ,`

Bζϑ(`)
Mζ(µν)

2(` + 1)
[w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)] .

5.B Additional figures
In order to highlight possible parameter degeneracies we show in Fig. 5.10 all 2D projec-
tions of the parameters used in the most extended model ΛCDM+all (cf. Section 5.8.2 and
Table 5.4).

Figures 5.11 and 5.12 show the additional contributions from a fiducial cosmological E-
mode signal (EE, z2 × z1 and EE, z2 × z2) to all possible cross-terms (cf. Section 5.7).

http://dx.doi.org/10.1051/0004-6361/201526601
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
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Figure 5.10: The parameter constraints derived from sampling the likelihood of model ΛCDM+all. The
dashed lines in the marginalized 1D posteriors denote the weighted median and the 68 per cent credible
interval (cf. Table 5.4). The contours in each 2D likelihood contour subplot are 68 and 95 per cent
credible intervals smoothed with a Gaussian for illustrative purposes only.
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Figure 5.11: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the redshift
cross-correlation (i.e. z2 × z1) convolved with the corresponding band window functions (red points) of
all possible cross-combinations. The second panel from the left depicts the auto-contribution from (EE,
z2× z1) to (EE, z2× z1). The grey errorbars show the statistical uncertainties associated with the B-modes.
Open symbols denote negative values plotted at their absolute value.
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Figure 5.12: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the high-
redshift auto-correlation (i.e. z2 × z2) convolved with the corresponding band window functions (red
points) of all possible cross-combinations. The third panel from the left depicts the auto-contribution
from (EE, z2 × z2) to (EE, z2 × z2). The grey errorbars show the statistical uncertainties associated with
the B-modes. Open symbols denote negative values plotted at their absolute value.


