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4
A direct measurement of

tomographic lensing power spectra
from CFHTLenS

We measure the weak gravitational lensing shear power spectra and their cross-power in
two photometric redshift bins from the Canada–France–Hawaii Telescope Lensing Survey
(CFHTLenS). The measurements are performed directly in multipole space in terms of ad-
justable band powers. For the extraction of the band powers from the data we have imple-
mented and extended a quadratic estimator, a maximum likelihood method that allows us to
readily take into account irregular survey geometries, masks, and varying sampling densities.
We find the 68 per cent credible intervals in the σ8–Ωm plane to be marginally consistent with
results from Planck for a simple five-parameter Λ cold dark matter (ΛCDM) model. For the
projected parameter S 8 ≡ σ8(Ωm/0.3)0.5 we obtain a best-fitting value of S 8 = 0.768+0.045

−0.039.
This constraint is consistent with results from other CFHTLenS studies as well as the Dark
Energy Survey. Our most conservative model, including modifications to the power spectrum
due to baryon feedback and marginalization over photometric redshift errors, yields an upper
limit on the total mass of three degenerate massive neutrinos of Σmν < 4.53 eV at 95 per cent
credibility, while a Bayesian model comparison does not favour any model extension beyond
a simple five-parameter ΛCDM model. Combining the shear likelihood with Planck breaks
the σ8–Ωm degeneracy and yields σ8 = 0.818 ± 0.013 and Ωm = 0.300 ± 0.011 which is fully
consistent with results from Planck alone.

F. Köhlinger, M. Viola, W. Valkenburg, B. Joachimi, H. Hoekstra and K. Kuijken
2016, MNRAS, Volume 456, Issue 2, pp 1508–1527
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64 4. The CFHTLenS shear power spectrum

4.1 Introduction
The physical nature of the major components of current cosmological models is still unknown.
Nevertheless, a simple six-parameter model including dark matter and dark energy – the Λ-
dominated cold dark matter model (ΛCDM) – has been proven very successful in explaining
a multitude of cosmological observations ranging from the radiation of the cosmic microwave
background (CMB, e.g. Planck Collaboration XIII 2015a) to supernovae (e.g. Riess et al.
2011) and large-scale structure (LSS) probes (e.g. Aubourg et al. 2014).

The energy densities of dark matter and dark energy, at present, are very well constrained
by the aforementioned observations. The next frontier is pinning down the evolution of both
dark species, and observing effects from massive neutrinos. One promising probe is the
growth of structure as inferred from cosmic shear: the (very) weak-lensing effect due to cos-
mic large-scale structure bending the light perpendicular to the line-of-sight between observer
and background galaxies according to Einstein’s equivalence principle. The coherent image
distortions – the shear – due to the gravitational potential of a deflector can only be measured
statistically, which requires averaging over large numbers of sources. Therefore, wide-field
surveys covering increasingly larger volumes on the sky are required in order to improve the
precision of the measurements. An analysis of the weak-lensing signal as a function of red-
shift is sensitive to the growth of structure, and is thereby indirectly sensitive to the expansion
rate of the Universe as well as to the clustering behaviour of various matter species: massive
neutrinos, dark energy, cold dark matter, etc.

In order to constrain the dark energy equation-of-state and its possible time evolution it is
hence crucial to measure the cosmic shear signal in different redshift slices (Heymans et al.
2013; Benjamin et al. 2013; DES Collaboration 2015) or directly in 3D (Kitching et al. 2014).

Massive neutrinos also leave their distinct physical imprints on the matter power spectrum
and hence can be probed using weak lensing (e.g. Lesgourgues & Pastor 2006 and references
therein). Theoretically it is straightforward to study these features directly in Fourier space,
i.e. in terms of shear–shear power spectra. Traditionally, lensing analyses employ real-space
correlation functions for measuring cosmic shear. This introduces further complications in
the comparison of observations with theory (cf. section 4.3.2 of Planck Collaboration XIV
2015b), because different scales are highly correlated. Hence, the signal at very non-linear
scales requires proper modelling in order to avoid any bias in the cosmological parameters.
This is generally challenging due to our limited understanding of the effect of baryons on
the non-linear matter power spectrum (e.g. Semboloni et al. 2011, 2013). Therefore, in this
paper we apply a method for extracting the data in multipole space and in different redshift
bins in terms of band powers of the lensing power spectrum. In order to achieve this we
have implemented and expanded the quadratic estimator method originally formulated in the
context of weak lensing by Hu & White (2001). The first applications of this technique to
measured shear data were presented in Brown et al. (2003) and Heymans et al. (2005) using
the COMBO-17 and GEMS data sets, respectively. More recently, Lin et al. (2012) applied
the quadratic estimator technique to shear data measured from the Sloan Digital Sky Survey
(SDSS) Stripe 82. Other recent direct shear power spectrum analyses include the Dark En-
ergy Survey (DES; Becker et al. 2015) analysis and the SDSS-FIRST cross-power spectrum
analysis of Demetroullas & Brown (2015). All these studies did not split the power spectrum
analysis into redshift bins yet and the latter two studies employed a pseudo-C(`) power spec-
trum approach, the other major technique for direct power spectrum measurements. Alsing
et al. (2015) recently presented a hierarchical inference method that also makes direct use of
the shear power spectrum.

In this paper we apply our expanded tomographic version of the quadratic estimator to
publicly available data from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS;
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Heymans et al. 2012). CFHTLenS is currently the statistically most constraining weak lensing
data set and covers an area of about 154 deg2 on the sky. The data include also photometric
redshifts which thus allow us to carry out a tomographic analysis. As a further benefit to
the state-of-the-art data, CFHTLenS has already been used before in cosmological analyses
(Heymans et al. 2013; Benjamin et al. 2013; Kilbinger et al. 2013; Kitching et al. 2014) which
enables us to directly cross-check our results with the literature.

The paper is structured as follows: in Section 4.2 we introduce the weak-lensing formalism
in terms of power spectra. In Section 4.3 we describe the theory of the quadratic estimator
approach and generalize it to include tomography. Section 4.4 provides a brief overview of
the CFHTLenS data and how to perform shear measurements with it. Before presenting the
extracted lensing power spectra in Section 4.6, we test and validate the method on mock data
in Section 4.5. From the shear power spectra we derive cosmological parameters and discuss
our results in Section 4.7. Finally we present our conclusions in Section 4.8.

4.2 Theory
The deflection of light due to mass is a consequence of Einstein’s principle of equivalence and
is termed gravitational lensing. One particular case of gravitational lensing is weak lensing,
the very weak but coherent image distortions of background sources due to the gradients of
the gravitational potential of a deflector in the foreground.

These image distortions can only be measured in a statistical sense, given the fact that
galaxies are intrinsically elliptical, by averaging over large numbers of background sources.
The resulting correlations in the galaxy shapes can be used to study the evolution of all the
intervening large-scale structure between the sources and the observer, in that sense the whole
Universe acts as a lens. This particular form of weak lensing is called cosmic shear and studied
best in terms of wide-field surveys covering increasingly more volume in the sky (cf. Kilbinger
2015 for a recent review). We intentionally skip a more basic, mathematical introduction of
gravitational lensing and weak lensing in particular and refer the reader for details on that to
the standard literature (e.g. Bartelmann & Schneider 2001).

A wide-field observation of the sky as part of a weak-lensing survey yields two main
observables: the ellipticity of galaxies and their (photometric) redshifts. The estimates of the
ellipticity components e1, e2 at angular positions ni can be binned into pixels i = 1, ..., Npix

and (photometric) redshift bins zµ. The averages of the measured ellipticities in each pixel are
unbiased estimates of the two components of the spin-2 shear field, γ1(n, zµ) and γ2(n, zµ),
which is sourced by the convergence field κ. In the limit of the flat-sky approximation the
Fourier decomposition of this field can be expressed as

γ1(n, zµ) ± iγ2(n, zµ) =

∫
d2`

(2π)2

[
κ(`, zµ) ± iβ(`, zµ)

]
W(`)e±2iϕ`ei`·n , (4.1)

where ϕ` is the angle between the two-dimensional vector ` and the x-axis. To first order for
the lensing of density perturbations the field β vanishes in the absence of any systematics.
However, we still want to measure it as a systematic test and therefore include it in our nota-
tion. The Fourier transform of the pixel window function is denoted as W(`). This function
can explicitly be written out for square pixels of side length σpix in radians as

W(`) = j0

(
`xσpix

2
cosϕ`

)
j0

(
`yσpix

2
sinϕ`

)
, (4.2)

where the zeroth-order spherical Bessel function is defined as j0(x) = sin(x)/x.
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The two-point statistics of the shear field can either be expressed in real-space correlation
functions or equivalently in terms of their Fourier transforms, the shear power spectra.

Following Hu & White (2001) and expanding the notation to also include tomographic
bins we write out the shear correlations between pixels ni and nj in terms of their power
spectra as:

〈γ1iµγ1 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) cos2 2ϕ` + CBB

µν (`) sin2 2ϕ` −CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ2iµγ2 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) sin2 2ϕ` + CBB

µν (`) cos2 2ϕ` + CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ1iµγ2 jν〉 =

∫
d2`

(2π)2

[
1
2 (CEE

µν (`) −CBB
µν (`)) sin 4ϕ` + CEB

µν (`) cos 4ϕ`
]

W2(`)ei`·(ni−nj) , (4.3)

where we have suppressed the arguments of the shear components γa(ni, zµ) for clarity.
In the absence of systematic errors and shape noise the cosmological signal is contained

in the E-modes and their power spectrum is equivalent to the convergence power spectrum,
i.e. CEE(`) = Cκκ(`) and CBB(`) = 0 = CEB(`). Shot noise will generate equal power in E- and
B-modes.

The E-mode or convergence power spectra can be predicted for a given cosmological
model:

CEE
µν (`) =

9Ω2
mH4

0

4c4

∫ χH

0
dχ

gµ(χ)gν(χ)
a2(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (4.4)

where χ is the radial comoving distance, χH the distance to the horizon, a(χ) the scale factor,
Pδ(k; χ) is the three-dimensional matter power spectrum, and the angular diameter distance is
denoted as fK(χ). Note that we use the Limber approximation (Limber 1954) in the equation
above and the indices µ, ν run over the tomographic bins.

The lensing kernels gµ(χ) are a measure for the lensing efficiency in each tomographic bin
µ and can be written as

gµ(χ) =

∫ χH

χ

dχ′ nµ(χ′)
fK(χ′ − χ)

fK(χ′)
, (4.5)

where nµ(χ) dχ = pµ(z) dz is the source redshift distribution.

4.3 Quadratic estimator
We summarize here the method originally proposed by Hu & White (2001) but make also
extensive use of the summary provided by Lin et al. (2012). Furthermore, we generalize the
approach to include tomographic redshift bins.

We start by assuming that the likelihood of the measured shear field in terms of band
powers B is Gaussian over most scales of interest for our analysis, i.e.

L =
1

(2π)N |C(B)|1/2
exp

[
− 1

2 dT[C(B)]−1d
]
, (4.6)

where d denotes the data vector with components

dµai = γa(ni, zµ) . (4.7)

It contains the two components of the measured shear in each pixel ni per redshift bin zµ
(note that the indices are all interchangeable as long as the order is consistent throughout the
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algorithm below). The full covariance matrix C is the sum of the cosmological signal Csig and
the noise Cnoise. The latter includes the contribution from shape and measurement errors. We
use the set of equations (4.3) to build up the lensing signal correlation matrix, where we label
the shear components with indices a, b, pixels with indices i, j, and redshift bins with indices
µ, ν:

Csig
= 〈γa(ni, zµ)γb(nj, zν)〉 . (4.8)

Furthermore, the contribution of shape noise to the signals can be encoded in the matrix

Cnoise
=
σ2
γ

Niµ
δi jδabδµν , (4.9)

where σγ denotes the root-mean-square intrinsic ellipticity per ellipticity component for all
the galaxies and Niµ is the effective number of galaxies per pixel i in redshift bin zµ.1 Thus we
assume that shape noise is neither correlated between different pixels ni, nj, and shear com-
ponents γa, γb, nor between different redshift bins zµ, zν. This is a well-motivated assumption
as long as the pixel noise of the detector is uncorrelated.

We approximate the angular power spectra Cθ
µν(`) with piecewise constant band powers

Bζθβ(`) of type θ ∈ (EE,BB,EB) spanning a range of multipoles `within the band β. The index
ζ runs only over unique redshift bin correlations. This enables us to write the components of
the cosmic signal covariance matrix as a linear combination of these band powers:

Csig
(µν)(ab)(i j) =

∑
ζ,θ,β

BζθβMζ(µν)

∫
`∈β

d`
2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
. (4.10)

The term in brackets in the above equation encodes the geometry of the shear field including
masks and its decomposition in Fourier space. The matrices Mζ map the redshift bin indices
µ, ν to the unique correlations ζ possible between those: for nz redshift bins there are only
nz(nz + 1)/2 unique correlations because zµ × zν = zν × zµ. The explicit expressions for these
matrices and the matrices Iθ and Qθ are given in Appendix 4.A.

The best-fitting band powers Bζθβ are determined by finding the cosmic signal Csig which
describes the measured shear data the best. For that purpose we use the Newton–Raphson
method iteratively in order to find the root of dL/dBA = 0 (Bond et al. 1998; Seljak 1998).
An improved estimate for the band powers BA is found by evaluating the expression

δBA ∝
∑

B

1
2 (F−1)AB Tr[(ddT

− C)(C−1DAC−1)] , (4.11)

where we have introduced now the superindex A for a particular index combination (ζθβ).
The matrices DA are derivatives of the full covariance matrix with respect to any band-power
combination. We skip here a rigorous definition of DA and refer the reader to Appendix 4.A
for derivations of these expressions. The elements of the Fisher matrix F can be calculated as
(Hu & White 2001)

FAB = 1
2 Tr(C−1DAC−1DB) . (4.12)

In previous work (cf. Hu & White 2001; Lin et al. 2012), the inverse of the Fisher matrix
was used as an estimator of the covariance between the extracted band powers. We refrain
from following this approach since the inverse Fisher matrix is only an approximation of the
true covariance in the Gaussian limit. Hence, we decided to estimate the covariance of the

1The effective number of galaxies per pixel can be calculated using equation (4.17) multiplied by the area of the
pixel Ω.



68 4. The CFHTLenS shear power spectrum

band powers from mock data instead. We present a detailed discussion of this approach in
Section 4.5.2.

For the comparison of the measured band powers to theoretical predictions, we have to
take into account that each measured band power BA = Bζθβ samples the power spectra with
its own window function. This can be computed by noting that the expectation value of the
band power, 〈Bζθβ〉, is related to the power spectrum at each wave number Bζθ(`) = `(` +

1)Cζθ(`)/(2π) through the band power window function Wζθβ(`) (Knox 1999; Lin et al. 2012),
i.e.

〈Bζθβ〉 =
∑
`

Wζθβ(`)Bζθ(`) , (4.13)

where the sum is calculated for integer multipoles `.2 The elements of the window function
matrix can be derived as (Lin et al. 2012)

Wζθβ(`) =
∑
χ,η,λ

1
2 (F−1)(ζθβ)(χηλ)Tχηλ(`) , (4.14)

where F−1 denotes the inverse of the Fisher matrix (cf. equation 4.12). The trace matrix T is
defined as

Tζθβ(`) = Tr(C−1DζθβC−1D`) . (4.15)

The derivative D` denotes the derivative of the full covariance C with respect to the power at
a single multipole `. We write it out explicitly in Appendix 4.A (cf. equation 4.46).

The likelihood-based quadratic estimator automatically accounts for any irregularity in
the survey geometry or data sampling while it still maintains an optimal weighting of the data.
This is important when dealing with real data because it allows for employing sparse sampling
techniques and it can deal efficiently with (heavily) masked data. The whole method and in
particular its ability to deal with masks are tested extensively in Section 4.5 before we apply
it to data from CFHTLenS in Section 4.6.

4.4 CFHTLenS measurements
In the following analysis we use the publicly available data3 from the lensing analysis of the
Canada–France–Hawaii Legacy Survey, hereafter referred to as CFHTLenS (Heymans et al.
2012). The survey consists of four patches (W1, W2, W3, W4) covering a total area of
≈154 deg2. Due to stellar haloes or artifacts in the images 19 per cent of the area is masked.
The lensing data we use in this work are a combination of data processing with THELI (Erben
et al. 2013), shear measurements with lensfit (Miller et al. 2013), and photometric redshift
measurements with PSF-matched photometry (Hildebrandt et al. 2012). A full systematic
error analysis of the shear measurements in combination with the photometric redshifts is
presented in Heymans et al. (2012), with additional error analyses of the photometric redshift
measurements presented in Benjamin et al. (2013). One of the main results of those extensive
systematic tests was the rejection of 25 per cent of the CFHTLenS tiles (1 deg2 each) for
cosmic shear studies. In this work we only use the 75 per cent of the tiles which passed
the systematic tests as outlined in Heymans et al. (2012). Note that this causes considerable
large-scale masking in each patch.

2For the cosmological analysis we employ a range 80 ≤ ` ≤ 2600. The lower limit is set by the smallest multipole
` included in the analysis and the upper limit must include multipoles ` higher than the maximum ` used in the
analysis (cf. Section 4.4).

3http://www.cfhtlens.org/astronomers/data-store

http://www.cfhtlens.org/astronomers/data-store
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Photometric redshift measurements have also been extensively tested (Hildebrandt et al.
2012; Benjamin et al. 2013) and they were found reliable in the range 0.1 < ZB < 1.3, where
ZB is the peak of the photometric redshift posterior distribution as computed by BPZ (Benítez
2000). In our analysis we only use galaxies in this redshift range.

We compile all tiles associated to a particular CFHTLenS patch into a single shear cat-
alogue. Coordinates in these catalogues are given in right ascension α and declination δ of
a spherical coordinate system. We deproject these spherical coordinates into flat coordinates
via a tangential plane projection. We centre the projection, its tangent point, on the central
pointing of each patch. In order to measure shears from the ellipticity components e1, e2
as measured by lensfit, we first divide the deprojected patch into square pixels of side length
σpix. We estimate the shear components ga per pixel at position n = (xc, yc) from the ellipticity
components ea inside that pixel:

ga(xc, yc) =

∑
i wi(ea,i − ca,i)

(1 + m)
∑

i wi
, (4.16)

where the index i runs over all objects inside the pixel and the index a is either 1 or 2 for
the two shear and ellipticity components, respectively. The weights w are computed during
the shape measurement with lensfit and they account both for the intrinsic shape noise and
measurement errors. The subscript of the coordinates indicates that the position of the average
shear is taken to be at the centre of the pixel. Note that we assume the galaxies are distributed
uniformly in the shear pixels. Although this is a simplifying assumption we argue that it has
only minor effects in the measurement considering the general width of the band powers. We
define distances ri j = |ni − nj| and angles ϕ = arctan (∆y/∆x) between all pixels i, j which
enter eventually in the quadratic estimator algorithm (cf. Section 4.3 and Appendix 4.A).

In each pixel we apply an average multiplicative correction (1 + m) to the measured shear.
This is necessary because of noise bias in shear measurements (Melchior & Viola 2012; Re-
fregier et al. 2012; Miller et al. 2013). The multiplicative correction has been computed from
a dedicated suite of image simulation mimicking CFHTLenS data (Miller et al. 2013). More-
over, we apply to each measured ellipticity an additive correction ca which is computed from
all the pass-tiles by requiring that the average ellipticity must vanish across the survey as a
function of galaxy size and signal-to-noise (Heymans et al. 2012). For CFHTLenS c1 was
found to be zero but for c2 a correction per object has to be applied (Heymans et al. 2012).

The highest multipole `pix up to which we want to extract band powers employing the
quadratic estimator method (cf. Section 4.3) is on the one hand set by the scales we want to
investigate because of expected modifications due to baryon feedback or massive neutrinos
(cf. Section 4.7.1). On the other hand the simplifying assumptions of the algorithm such as
Gaussianity also limit the maximum `pix. Hence, we only probe into the mildly non-linear
regime and consider a multipole `pix ≈ 2400 as the maximal physical scale resolved. This
corresponds to an angular scale of 0.◦15 = 9 arcmin and thus sets the pixel size σpix. We keep
parameters fixed throughout all CFHTLenS patches such as the side length of the shear pixels,
σpix, measured intrinsic shape noise per ellipticity component, σγ = 0.279, and band power
intervals. Because the sizes of the CFHTLenS patches are very different, the largest distance
between shear pixels differs. Therefore, we limit our analysis to `field ≥ 80 (corresponding
to an angular separation of pixels of about ∼4.◦5), but note that even lower multipoles suffer
from more sample variance. In summary, the physical scales for our analysis are 80 ≤ ` ≤
2300, which corresponds to angular scales 0.◦15 ≤ ϑ ≤ 4.◦5. In total, we choose seven band-
power intervals enclosing these physical scales as shown in Table 4.1 for the E-mode signal
extraction. The width of each band should at least be two times as wide as `field in order to
minimize correlations between the bands (Hu & White 2001). The band powers for the B-
mode signal extraction are the same except that we omit the lowest band power. Note that the



70 4. The CFHTLenS shear power spectrum

Table 4.1: Band-power intervals.

Band No. `-range ϑ-range Comments

1 30–80 720–270 arcmin (a), (b)
2 80–260 270–83 arcmin –
3 260–450 83–48 arcmin –
4 450–670 48–32 arcmin –
5 670–1310 32–16.5 arcmin –
6 1310–2300 16.5–9.4 arcmin (a)
7 2300–5100 9.4–4.2 arcmin (a)

Notes. (a) Not used in cosmological analysis. (b) No B-mode extracted.
The ϑ-ranges are just an indication and cannot be compared directly to ϑ-ranges used in real-
space correlation function analyses due to the non-trivial functional dependence of these anal-
yses on Bessel functions.

Table 4.2: Effective number densities.

redshift bin W1 W2 W3 W4

z1: 0.50 < ZB ≤ 0.85 3.36 2.80 3.48 3.25
z2: 0.85 < ZB ≤ 1.30 2.86 2.00 2.63 2.22

Notes. Shown is the effective number density of galaxies neff (cf. equation 4.17) in arcmin−2

for all four CFHTLenS patches per tomographic redshift bin used in this analysis.

first band power includes scales below `field intentionally in order to absorb any DC offsets in
the data. The last band should include multipoles above `pix, because the window function of
square pixels has a long tail to high multipoles. In that sense the enclosing bands are designed
to catch noise and therefore they are dropped in the cosmological analysis. We compute the
effective number density of galaxies that is used in the lensing analysis and in the creation of
mock data (cf. Section 4.5) following the definition of Heymans et al. (2012):

neff =
1
Ω

(
∑

i wi)2∑
i w2

i

, (4.17)

where Ω is the unmasked area used in the analysis and w is again the lensfit weight. We show
all effective number densities per patch and redshift bin in Table 4.2.

Following the conclusions from Benjamin et al. (2013) regarding intrinsic galaxy align-
ments, which we discuss in more detail in Section 4.6, we define two redshift bins z1 and z2
in the ranges z1 : 0.50 < ZB ≤ 0.85 and z2 : 0.85 < ZB ≤ 1.30. These cuts are performed
with respect to the peak of each galaxy’s photometric redshift distribution ZB. For each of the
two tomographic bins we compute the galaxy redshift distribution by summing the posterior
photometric redshift distribution of all galaxies in the bin, weighted by the lensfit weight:

p(z) =

∑
i wi pi(z)∑

i wi
. (4.18)
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Table 4.3: Fiducial cosmology of the CFHTLenS Clone and the GRFs.

Ωm ΩΛ Ωb h ns σ8 Σmν

0.279 0.721 0.046 0.701 0.96 0.817 0 eV

Notes. Cosmological parameters used in the creation of the CFHTLenS Clone (Heymans et al.
2012) which were also used to create the Gaussian random field (GRF) realizations.

The full galaxy redshift distribution is required in the calculation of the theoretical lensing
power spectrum (cf. equation 4.5) and it is also needed in the creation of additional mock data
(cf. Section 4.5).

4.5 Method validation and covariances
In order to test and validate the algorithm outlined in Section 4.3 we employ two types of mock
data: first we make use of the publicly available CFHTLenS Clone4 (Heymans et al. 2012)
and second we use Gaussian random fields (GRFs). This twofold approach is necessary since
the multipole scales we employ in the cosmological analysis of Section 4.7 are not covered in
the CFHTLenS Clone.

The CFHTLenS Clone is a mock galaxy catalogue that consists of 184 independent line-
of-sight shear (and convergence) maps with a side length of ≈3.◦58. These were extracted
via ray-tracing through the TCS simulation suite (Harnois-Déraps et al. 2012) which was
produced with the CUBEP3M N-body code (Harnois-Déraps et al. 2013). The CFHTLenS Clone
is especially tailored to CFHTLenS in terms of the redshift distribution of lensing sources
and the noise properties including, for example, realistic small scale masks (due to stars etc.).
In addition to these small scale masks, we randomly mask out three non-overlapping tiles of
≈1 deg2 each per shear field in order to mimic the effect of the additional ‘bad field’ masks
also employed in the data. These mask typically 25 per cent of the total area of a patch (cf.
Section 4.4 and Heymans et al. 2012) and their distribution over a patch does not show any
systematic preferences. The input cosmology used in the creation of the CFHTLenS Clone
is WMAP5-like (Komatsu et al. 2009) and summarized in Table 4.3. Eventually, we want to
extract scales on the order of several degrees from the data. Kilbinger et al. (2013) showed,
however, that the power on large scales is significantly underestimated in the CFHTLenS
Clone.

In order to also validate the signal extraction on large scales, we created 184 Gaussian
random field realizations (GRFs) of shear fields in two tomographic bins. The fields are
20 × 20 deg2 each and generated from convergence power spectra that have been computed
for the same cosmology as the clone, using the measured redshift distributions of our two
tomographic bins and the modified HALOFIT version of Takahashi et al. (2012) for the non-
linear contributions to the matter power spectrum. Source galaxies are placed randomly in
the fields with an arbitrary but high enough density of 10 arcmin−2 per tomographic bin, and
the shears are linearly interpolated to these positions. We apply the mosaic masks of each
CFHTLenS patch to all GRF realizations in turn, and also apply the patch-specific ’bad field’
mask pattern masking about 25 per cent of the total area of a CFHTLenS patch. When we
compile the actual input mock catalogues from the GRF shear fields, we also add shape noise

4http://vn90.phas.ubc.ca/jharno/CFHT_Mock_Public/

http://vn90.phas.ubc.ca/jharno/CFHT_Mock_Public/
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Figure 4.1: Residuals between the mean of measured E-mode band powers and predicted band powers
for 184 Gaussian random field realizations of patch W3. The 1σ-error on the mean includes the scaling
by 1/

√
N for N = 184 measurements. The predicted band powers use the known input cosmology (cf.

Table 4.3) and take the convolution with the band window function into account. The residuals of each
redshift correlation are shown from left to right.

by resampling the GRF shear from a Rayleigh distribution with width σγ = 0.279 as measured
from the data. Furthermore, we randomly sample lensfit weights from the corresponding
tomographic data catalogues such that the effective number densities (cf. equation 4.17) in
the GRF mock catalogues match the ones in the data (cf. Table 4.2).

The (inverse) Fisher matrices calculated in the quadratic estimator algorithm (cf. Sec-
tion 4.3) are only an approximation of the true (inverse) covariance of the extracted band
powers in the Gaussian limit. In the context of a cosmological interpretation of the band
powers, however, additional non-Gaussian contributions due to the non-linear evolution of the
underlying matter power spectrum are expected (cf. Takada & Jain 2009). Hence, we will use
our mock data also for estimating a more realistic band-power covariance matrix.

4.5.1 Signal extraction validation

The input cosmology is known for the GRFs and the Clone, and we apply a realistic CFHTLenS
mask to both sets of mock data. We extract the lensing power spectrum using the quadratic es-
timator from the GRFs and the Clone and compare it to the input power spectrum. In Fig. 4.1
we show the residuals between the mean of the extracted band powers and the predicted band
powers for the input cosmology for patch W3. The 1σ-errors on the mean include the scaling
by 1/

√
N for N = 184 GRFs for each tomographic bin correlation. The binning in multipoles

` is the same as the one we employ in the final data extraction (cf. Section 4.4 and Table 4.1).
Note that for this test we only extracted E-modes. For the calculation of the band-power
predictions we take the convolution with the band window matrices (cf. equation 4.14) into
account but these are computed for only one randomly drawn realization of a GRF. This is due
to long run-time and we have confirmed for patch W2 that the randomly drawn band window
matrix is a fair representation of the ensemble (since the noise properties of all GRFs are very
similar). Fig. 4.1 demonstrates that the quadratic estimator algorithm reproduces the input
signal to sufficient accuracy and precision, especially given the actual noise level of the data
(cf. Fig. 4.4).
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4.5.2 Band-power covariance
The extracted band powers for each of the 184 shear fields from the Clone or 184 GRFs per
patch can be used to estimate the run-to-run covariance of the band powers:

ĈB(`)(A, B) =
1

Ascale(nµ − 1)

nµ∑
µ

(BµA − B̄A)(BµB − B̄B) , (4.19)

where nµ is the total number of independent realizations per patch, B̄ is the mean of each band
power per band over all realizations, Bµ are the extracted band powers per realization, and
Ascale is the scaling factor between each line-of-sight clone realization and the actual size of a
CFHTLenS patch.5 The indices A and B denote again the previously introduced superindices
and run over all bands and redshift correlations.

In order to combine the small-scale covariance estimated from the Clone and the large-
scale covariance based on the GRFs, we stitch both matrices together per patch by using the
GRF covariance and then replacing all values associated with a band index for which we want
to use the Clone covariance. Based on the extensive analysis of the Clone and the estimation
of covariances from it in Kilbinger et al. (2013), we decide to use values from the Clone
covariance for multipoles ` ≥ 670 which corresponds to bands 5, 6, and 7 (cf. Table 4.1).
Note that bands 7, 6, and 1 are not included in any cosmological data analysis though (cf.
Section 4.7 and Table 4.1).

Due to noise the measured inverse covariance Ĉ
−1
B(`) is not an unbiased estimate of the true

inverse covariance matrix C−1
B(`) (Hartlap et al. 2007). In order to derive an unbiased estimate

of the inverse covariance we need to apply a correction derived in Kaufmann (1967) so that
C−1
B(`) = αKĈ

−1
B(`). Assuming a Gaussian distribution of the measured band powers B(`), this

correction factor is:

αK =
nµ − p − 2

nµ − 1
, (4.20)

where nµ is the total number of independent mocks, i.e. 184 in our case, and p is the number
of data points used in the analysis. In Section 4.7 we combine the data of all four CFHTLenS
patches consisting of four band powers in three tomographic power spectra per patch, thus
p = 12 for each ‘patch covariance’.

We compare the correlation matrix derived from the stitched covariance matrix with the
correlation matrix based on the inverse Fisher matrix which is calculated in the quadratic
estimator algorithm (cf. equation 4.12) in Fig. 4.2 for patch W3. The correlation matrices are
calculated by normalizing the corresponding covariance matrix with the factor (MAA MBB)−1/2,
with MAB = CB(`)(A, B) or MAB = F−1

AB. We only include E-mode bands employed later in the
cosmological analysis in this comparison and find that the matrix structure in both approaches
is very similar albeit with the correlation based on the Fisher estimate being smoother, as
expected. Finally, we compare both approaches in terms of their variance as shown in Fig. 4.3
for each patch individually again only for E-modes used in the cosmological analysis. From
this comparison we conclude that given the noise level in our data the Fisher approach still
yields compatible error estimates. Nevertheless, we decide to use the stitched covariance
for our subsequent analysis. This is also motivated by the fact that future surveys will yield
significantly improved statistical noise levels and thus require a proper covariance estimation
beyond the Fisher approach.

5Note that Ascale = 1 in the case of GRFs by construction. For the clones we follow (Kilbinger et al. 2013) by
matching 90 per cent (due to overlapping area between the tiles) of 16 CFHTLenS tiles (minus three due to the ‘bad
field’ masking also employed in the clones) into one clone field. The ratio of this number over the number of used
tiles in one patch (i.e. excluding the ‘bad fields’) is then 1/Ascale.
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Figure 4.2: Comparison of correlation matrices for CFHTLenS patch W3: the stitched correlation matrix
(upper right) is compared to the correlation matrix based on the inverse of the Fisher matrix (lower
left; cf. equation 4.12). We show only tomographic E-mode bins that enter in the final cosmological
likelihood analysis, i.e. bins 0–3 correspond to 80 ≤ ` ≤ 1310 in the low-redshift auto-correlation bin,
bins 4–7 correspond to the same `-range in the redshift cross-correlation bin, and bins 8–11 correspond
to the high-redshift auto-correlation bin (cf. Tables 4.1 and 4.2).
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4.5.3 Computing resources

We want to comment on the computational requirements for our tomographic quadratic esti-
mator approach: the generalization of the method to include tomographic redshift bins is com-
putationally demanding. The dimension of the covariance matrix defined in equation (4.8) is
set by the size of the shear field (times two for the two shear components) and the pixel scale.
Introducing also two redshift bins increases the number of entries in this matrix by a factor of
4. While this is still efficiently calculated in parallel for smaller patches like W2 (≈22.6 deg2)
and W4 (≈23.3 deg2), it becomes demanding for patches W3 and W1 (e.g. dim(CW2) = 30762

versus dim(CW1) = 93402) even when exploiting multiprocessing and optimized libraries such
as the Intel c© Math Kernel Library (MKL6). Nevertheless, the data extraction including the cal-
culation of the band window matrices takes at most a day on typical cluster machines.7 The
computationally most demanding part in our current analysis, however, is the estimation of the
covariance between the band powers. This required 184 runs on clones and 184 runs per GRF
realization per patch. The total runtime for these calculations was on the order of a month on
the same cluster configuration for one set of 184 realizations.

Ongoing and upcoming weak-lensing surveys come with the advantage of at least an or-
der of magnitude increase in survey area compared to CFHTLenS and more regular survey
geometries. Therefore, it will be possible to split these surveys into a statistically meaningful
number of patches still containing scales up to several degrees. This will allow for estimating
the patch-to-patch covariance directly from the data via resampling techniques as an alterna-
tive to estimating it from mock data alone. However, this approach limits the lowest multipole
scale to the patch-size and the run-to-run covariance will be underestimated at scales close
to the patch-size. Finally, the rapid advance in terms of number of cores, clock speed, and
internal memory of graphics processing units (GPUs) presents a solution to the increase in
complexity when extending our approach to more redshift bins, and/or more band powers,
and/or larger contiguous patch sizes. The advantage of GPUs lies in their customized design
to solve linear algebra problems very efficiently and massively in parallel which meets exactly
the requirements of the tomographic quadratic estimator approach. We leave an update and
porting to GPU programming languages for future work.

4.6 The CFHTLenS shear power spectrum

For each of the four CFHTLenS patches we extract seven E-mode and six B-mode band pow-
ers enclosing an interval of physically interesting scales of 80 ≤ ` ≤ 2300 (cf. Section 4.4
and Table 4.1). Moreover, we consider two broad mid- to high-redshift bins (cf. Table 4.2)
per CFHTLenS patch in order to perform a tomographic analysis following Benjamin et al.
(2013). Doing so, we attempt to decrease the expected contamination due to intrinsic galaxy
alignments which is dominant at low redshifts and high multipoles `. Benjamin et al. (2013)
concluded that any contamination due to intrinsic alignments is at most a few per cent for
each redshift bin combination. We cross-check this conclusion with state-of-the-art intrinsic
alignment models constrained by recent data from Sifón et al. (2015). For the three intrinsic
alignment models8 employed in there we do not find a significant contribution of intrinsic
alignments to the cosmological signal in any of the redshift bin correlations and `-scales em-
ployed in our subsequent cosmological analysis. Based on these results intrinsic alignments

6Version number 11.0.4
724 cores @2.4 GHz, 256 GB RAM
8These models include intrinsic alignment due to intrinsic ellipticity correlations, i.e. II, and also intrinsic align-

ment due to a gravitational shear–intrinsic ellipticity correlation, i.e. GI.
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Figure 4.4: Measured E-mode band powers in tomographic bins averaged with inverse variance weights
over all four CFHTLenS patches for illustrative purposes only. From left to right we show the auto-
correlation signal of the low-redshift bin (blue), the cross-correlation signal between the low- and the
high-redshift bin (orange), and the auto-correlation signal of the high-redshift bin (red). The low-redshift
bin contains objects with redshifts in the range 0.5 < z1 ≤ 0.85 and the high-redshift bin covers a
range 0.85 < z2 ≤ 1.3. The 1σ-errors in the signal are derived from a run-to-run covariance over 184
independent mock data fields (cf. Section 4.5.2) whereas the extent in `-direction is the width of the
band. Band powers in the shaded regions (grey) to the left and right of each panel are excluded from the
cosmological analysis (cf. Fig. 4.5). The solid line (black) shows the power spectrum for the best-fitting
five-parameter ΛCDM model derived in the subsequent analysis (cf. Section 4.7 and Table 4.4). Note,
however, that the band powers are centred at the naive `-bin centre and thus the convolution with the
band window function is not taken into account in this plot, in contrast to the cosmological analysis. We
present the E-mode signal for each individual CFHTLenS patch in Appendix 4.B.

will be ignored in the modelling of the signal in our subsequent analysis.
In Fig. 4.4 we show the extracted E-mode band powers for each tomographic bin. For

illustrative purposes we combine the band powers extracted from each patch by averaging
them with inverse variance weights. The errors on the signal are estimated from the stitched
covariance matrix (cf. Section 4.5.2) whereas the extension of the box in `-direction is just the
width of the band. Only bands outside the (grey) shaded areas enter in the cosmological anal-
ysis (thus we omit explicitly the ‘noise catcher’ bands, cf. Section 4.4 and Table 4.1). Note,
however, that for the cosmological likelihood analysis we do not use the averaged signals, but
instead sum the likelihood of each patch as described in Section 4.7.2.

We extract E- and B-modes simultaneously. As described in Section 4.2 the cosmological
signal is contained in the E-modes in the absence of systematic errors. Hence, we use the
B-mode signal as a systematic cross-check and generally expect it to be zero within errors.
We do not extract the EB-modes, which would hint at parity-violation in the data, because
Kitching et al. (2014) found no evidence for EB-modes in the CFHTLenS data. Hence, we
decided to only include the extraction of B-modes as a non-trivial systematic check. We show
the extracted B-mode signal per tomographic bin in Fig. 4.5. For illustrative purposes we
averaged the B-mode signal again with inverse variance weights over all four CFHTLenS
patches. In contrast to the E-modes, the 1σ-errors on the B-modes are derived from the B-
mode part of the Fisher matrix (cf. equation 4.12). This is a very conservative approach since it
will generally underestimate the errorbars. The masking in the data might cause leakage of E-
mode power into B-mode power. In principle, this should also be captured by the Fisher matrix
but as we argued in Section 4.5.2 the Fisher matrix underestimates the E-mode error in the
intermediate multipole regime due to the mildly non–Gaussian intrinsic field. This propagates
into an underestimated B-mode Fisher-error when compared directly to a run-to-run B-mode
error. However, that does not pose a problem as long as we can establish that the B-modes are
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Figure 4.5: Same as Fig. 4.4 but for B-mode band powers. Note, however, the different scale (linear) and
normalization used here with respect to Fig. 4.4; for reference we also plot the best-fitting E-mode power
spectrum as solid line (black). We show the measured B-modes as (black) dots with 1σ-errors derived
from the inverse Fisher matrix. Based on these signals we define the shaded regions (grey) to the left and
right of each panel. E-mode band powers in these regions are excluded from the cosmological analysis
(cf. Fig. 4.4 and see text for details). We present the B-mode signal for each individual CFHTLenS
patch in Appendix 4.B.

consistent with zero using the underestimated errorbars. We assess the consistency of the B-
modes with zero via a χ2-goodness-of-fit measure and find: χ2

red(W1) = 1.54, χ2
red(W2) = 0.93,

χ2
red(W3) = 1.07, and χ2

red(W4) = 0.24 for 15 degrees of freedom, i.e. including all B-mode
bands except the last one, which was designed to catch only noise due to the long tail of the
window function of square pixels beyond `pix. However, further tests conducted on the GRF
mock data show that noise from the last band leaks into the second-to-last band depending
on the pixel-scale, σpix, employed. This is due to the strong oscillatory behaviour of the
Fourier-transform of a real-space square pixel (cf. fig. 2 in Hu & White 2001) around `pix
corresponding to σpix. The oscillations are amplified if the band is noise-dominated. For that
reason the B-mode in the second-to-last band appears to be more significant than the B-modes
in the other bands. Removing the second-to-last B-mode band power from the χ2-goodness-
of-fit measure yields the following improved reduced χ2-values for 12 degrees of freedom:
χ2

red(W1) = 0.92, χ2
red(W2) = 0.80, χ2

red(W3) = 0.61, and χ2
red(W4) = 0.23. Hence, we

conclude that the B-modes in these remaining bands are consistent with zero. Therefore, we
only use bands 2–5 in the cosmological analysis of the E-mode signal.

Following Becker et al. (2015) we define the signal-to-noise ratio, S/N, of our band-
power measurements with respect to the cosmological signal in the mock data from which we
estimate the covariance:

S/N =
dT

measC
−1
B(`)dmock√

dT
mockC−1

B(`)dmock

. (4.21)

Considering only the band powers used in the cosmological analysis (cf. Table 4.1), we detect
a cosmic shear signal in W1 at 7.1σ, in W2 at 5.5σ, in W3 at 5.7σ, and in W4 only marginally
at 2.5σ. Note, however, that the above definition of S/N depends on the cosmology employed
in the mocks. A discrepancy between the mock cosmology and the actual cosmology preferred
by the data decreases the significance in general.
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4.7 Cosmological inference
After having extracted the shear power spectrum and having derived a more robust estimate
of the data covariance, we can proceed to the next step: the cosmological interpretation of the
tomographic signals, employing a Bayesian framework. We estimate cosmological parameters
p by sampling the likelihood L(p) with a Monte Carlo Markov Chain (MCMC) method. In
addition to the parameter estimation we also want to compare various model extensions to a
baseline model.

The Bayesian evidence Z is simply the normalization factor of the posterior over the
parameters p:

Z =

∫
dn pL(p)π(p) , (4.22)

where n denotes the dimensionality of the parameter space and π(p) is the prior. Since the
evidence is the average of the likelihood over the prior it automatically implements Occam’s
razor: a simpler theory with fewer parameters, i.e. a more compact parameter space, will have
a higher evidence than a more complicated one requiring more parameters, unless the latter
model explains the data significantly better. If we wish to decide now between models M1
and M0, we can compare their posterior probabilities given the observed data D and define
the Bayes factor:

K1,0 ≡
Z1

Z0

Pr(M1)
Pr(M0)

, (4.23)

where Pr(M1)/Pr(M0) is the a priori probability ratio for the two models, usually set to unity
unless there are strong (physical) reasons to prefer one model over the other a priori. In our
subsequent analysis we always assume Pr(M1)/Pr(M0) = 1. A Bayes factor K1,0 > 1 implies a
preference of model M1 over model M0. Kass & Raftery (1995) have proposed a quantitative
classification scheme for the interpretation of the Bayes factor K (or equivalently 2 ln K).

Evaluating the usually high-dimensional integral of equation (4.22) is a challenging com-
putational and numerical task. Here, we employ the nested sampling algorithm MULTINEST9

(Feroz & Hobson 2008; Feroz et al. 2009, 2013) via its PYTHON-wrapper PYMULTINEST (Buch-
ner et al. 2014) in the framework of the cosmological likelihood sampling package MONTE

PYTHON10 (Audren et al. 2012).

4.7.1 Theoretical power spectrum
In Section 4.2 we described the calculation of the tomographic lensing power spectra (cf.
equation 4.4). These encode the 3D matter power spectrum smoothed by tomographic lensing
kernels (cf. equation 4.5). For the calculation of the matter power spectrum, Pδ(k; χ), we
employ the Boltzmann-code CLASS11 (Blas et al. 2011; Audren & Lesgourgues 2011). This
already includes the non-linear corrections for which we chose to use the HALOFIT algorithm
including the recalibrations by Takahashi et al. (2012). Furthermore, CLASS allows us to in-
clude (massive) neutrinos (Lesgourgues & Tram 2011). The main effect of massive neutrinos
is a redshift- and scale-dependent reduction of power which also propagates into the lensing
power spectra CEE

`, µν but is smoothed by the lensing kernels of the corresponding tomographic
bins (cf. Fig. 4.6). Over the multipole range of interest massive neutrinos lower the lens-
ing power spectrum by an almost constant factor. This introduces a degeneracy with other
cosmological parameters that affect the normalization of the lensing power spectrum.

9Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
10Version 2.1.4 from www.montepython.net
11Version 2.4.3 from www.class-code.net

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
www.montepython.net
www.class-code.net
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We follow Harnois-Déraps et al. (2015) to describe the modifications of the power spec-
trum due to baryon feedback:

b2(k, z) ≡
Pmod
δ (k, z)

Pref
δ (k, z)

, (4.24)

where Pmod
δ and Pref

δ denote the power spectra with and without baryon feedback, respectively.
The baryon feedback can be computed from hydrodynamical simulations. We use in this

work the fitting formula for the baryon feedback derived by Harnois-Déraps et al. (2015) using
the OverWhelmingly Large Simulations (OWLS; Schaye et al. 2010, van Daalen et al. 2011):

b2(k, z) = 1 − Abary(Aze(Bz x−Cz)3
− DzxeEz x) , (4.25)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez are functions of the scale
factor a = 1/(1 + z) which are also dependent on the baryonic feedback model (cf. Harnois-
Déraps et al. 2015 for the specific functional forms and constants). Additionally, we introduce
here a general free amplitude Abary which we will use as a free parameter to marginalize over
while fitting for the cosmological parameters. In Fig. 4.6 we show the effect of including
baryonic feedback on the matter and lensing power spectrum, respectively. In contrast to the
effect of massive neutrinos baryon feedback causes a significant reduction of power in the
lensing power spectrum only at high multipoles. However, this is also degenerate with the
effect of massive neutrinos on these scales. Hence, a proper anchoring of the main cosmo-
logical parameters at low multipoles with high precision is paramount if one wants to break
degeneracies between all these effects. Operating directly in multipole space with respect to
both theory and data facilitates the identification of distinct features in the power spectra.

4.7.2 The shear likelihood
To compare the measured, tomographic band powers Bi

α (cf. Section 4.6) to predictions
〈Bi

α〉
model (cf. Section 4.2), we define the shear likelihood as a function of cosmological pa-

rameters p:
−2 lnL(p) =

∑
i

∑
α, β

di
α(p)(C−1)i

αβ di
β(p) , (4.26)

where the index i runs over the four CFHTLenS patches (cf. Section 4.4) and the indices
α, β run over the tomographic bins. Note that we follow all previous CFHTLenS studies in
ignoring any covariance between the individual CFHTLenS patches.

The components of the data vector per patch are calculated as

di
α(p) = (Bi

α − 〈B
i
α(p)〉model) , (4.27)

where the predicted band powers, 〈Bi(`)〉model, depend on the cosmological parameters p.
They are calculated with equations (4.13) and (4.4), i.e. the band window functions are prop-
erly taken into account. The inverse of the covariance matrix C−1 is estimated from a large
suite of mock data especially tailored to CFHTLenS as described in detail in Section 4.5.2.

4.7.3 Models and discussion
In the first part of this cosmological analysis we consider the shear likelihood without further
combining it with any other external cosmological probe. The lensing power spectrum is most
sensitive to cosmological parameters modifying its normalization and slope. Therefore, the
normalization of the primordial power spectrum, ln(1010As), and the fraction of cold dark
matter, Ωcdm, are the primary parameters of interest. For an easier comparison of our results
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Figure 4.6: Upper panel: the ratio of modified matter power spectra over the dark matter only power
spectrum. The dashed line (blue) shows the effect of the baryon feedback bias in the AGN model
from OWLS (Schaye et al. 2010; van Daalen et al. 2011) using the implementation by Harnois-Déraps
et al. (2015) (cf. equation 4.25). The modifications due to three degenerate massive neutrinos with
total mass Σmν = 0.18 eV is demonstrated by the dash–dotted line (red). The redshift for the power
spectrum calculation is z = 1.05 corresponding to the median redshift of the high-redshift bin used in
the subsequent analysis (cf. Table 4.2). Lower panel: same as upper panel but for the lensing power
spectrum of the high-redshift bin z2 : 0.85 < ZB ≤ 1.30 (cf. Table 4.2).
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with the literature, we also derive the root-mean-square variance of the density field smoothed
with the Fourier transform of a top-hat filter on a scale R = 8 h−1Mpc in real-space, i.e.
σ8, and the total fraction of matter in the Universe, Ωm. Our baseline model to which we
refer subsequently only as ‘ΛCDM’ includes in addition to these parameters three more free
variables: the Hubble parameter h, the slope of the primordial power spectrum ns, and the
fraction of baryonic matter Ωb. The ranges for the flat priors on these parameters are listed in
Table 4.4. They follow mostly the ranges employed in the CFHTLenS studies by Benjamin
et al. (2013) and Heymans et al. (2013) in order to assure a fair comparison of our results with
these studies.

Data from particle physics experiments indicate that neutrinos have mass (e.g. Lesgour-
gues & Pastor 2006 and references therein). Hence, we follow Planck Collaboration XIII
(2015a) in including already two massless and one massive neutrino with the (fixed) mini-
mal mass of Σmν = 0.06 eV (assuming a normal mass hierarchy with one dominant mass
eigenstate) in our baseline ΛCDM model. Moreover, we always assume a flat cosmological
model.

The first extension of the baseline model is to introduce a free total mass Σmν for three
degenerate massive neutrinos. We refer to this model as ‘ΛCDM+ν’. Since we expect the
effect of massive neutrinos to be degenerate with the effect of baryonic feedback, especially at
high multipoles (cf. Section 4.2 and Fig. 4.6) we investigate this effect in the model ‘ΛCDMa’:
here, we additionally include the fiducial baryon feedback model of equation (4.25) with
Abary = 1 for the AGN model taken from the OWLS project (Schaye et al. 2010; van Daalen
et al. 2011). The degeneracy between baryonic feedback and massive neutrinos is investigated
in the model ΛCDMa+ν, where Σmν is free to vary but which includes the fixed fiducial baryon
feedback model. We relax the assumption of a fixed baryon feedback model in the model
‘ΛCDM+Abary’ by allowing the amplitude of the feedback Abary to vary (cf. equation 4.25).
Combining the assumption of a free amplitude in the baryon feedback model and a free total
mass of three degenerate massive neutrinos, Σmν in the model ‘ΛCDM + ν + Abary’ yields a
maximally degenerate model in baryonic feedback and neutrinos. In total this model consists
of seven free parameters.

Moreover, we want to test the effect of a photometric redshift bias which causes a coher-
ent shift of the photometric redshift distributions per tomographic bin (cf. equation 4.5) by
∆zµ. Hildebrandt et al. (2012) showed that the bias on photometric redshifts in CFHTLenS
is ∆z < 0.02 (cf. their fig. 8). However, this estimate does not account for outliers which
can increase the photometric redshift bias significantly. Therefore, we make a more conser-
vative assumption and treat the photometric redshift biases ∆zµ within a flat prior range of
−0.05 ≤ ∆zµ ≤ 0.05 as nuisance parameters to marginalize over. In the most complex model
ΛCDM + ν + Abary + ∆zµ, which we abbreviate subsequently to ‘ΛCDM + all’, we include
a free amplitude for the baryon feedback model, massive neutrinos and treat the photometric
redshift biases ∆zµ as nuisance parameters.

All models, their prior ranges and the parameter estimates derived from the likelihood
sampling are summarized in Table 4.4, where we always quote the weighted median value
for each varied parameter. The errors denote the 68 per cent credible interval of the posterior
distribution after marginalization over all other free parameters.
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Table 4.4: Cosmological parameters from shear likelihood only.

Model Ωcdm ln(1010As) Ωm σ8 Ωb ns h Σmν (eV) Abary ∆z1 ∆z2

Prior ranges [0., 1.] [0., 10.] derived derived [0., 0.1] [0.7, 1.3] [0.4, 1.] [0.06, 6.] [0., 10.] [−0.05, 0.05] [−0.05, 0.05]
ΛCDM 0.21+0.09

−0.15 3.53+1.49
−1.52 0.26+0.09

−0.15 0.84+0.24
−0.23 0.05+0.03

−0.03 1.01+0.29
−0.23 0.62+0.09

−0.22 ≡ 0.06 – – –
ΛCDMa 0.21+0.09

−0.14 3.50+1.43
−1.62 0.25+0.11

−0.15 0.85+0.24
−0.24 0.05+0.02

−0.03 1.00+0.26
−0.22 0.64+0.10

−0.22 ≡ 0.06 ≡ 1. – –
ΛCDM + ν 0.21+0.08

−0.13 3.65+1.52
−1.44 0.30+0.09

−0.14 0.75+0.16
−0.15 0.04+0.02

−0.03 1.05+0.25
−0.28 0.70+0.18

−0.16 1.37+0.69
−1.31 – – –

ΛCDMa + ν 0.21+0.09
−0.13 3.69+1.37

−1.52 0.29+0.11
−0.14 0.76+0.16

−0.16 0.04+0.02
−0.03 1.05+0.25

−0.27 0.71+0.22
−0.18 1.34+0.60

−1.28 ≡ 1. – –
ΛCDM + Abary 0.21+0.10

−0.14 3.62+1.51
−1.47 0.26+0.10

−0.14 0.85+0.25
−0.26 0.05+0.02

−0.03 1.00+0.19
−0.24 0.60+0.09

−0.20 ≡ 0.06 2.90+1.54
−2.90 – –

ΛCDM + ν + Abary 0.22+0.08
−0.13 3.69+1.44

−1.42 0.30+0.09
−0.15 0.76+0.15

−0.15 0.04+0.02
−0.03 1.06+0.24

−0.28 0.69+0.17
−0.17 1.29+0.67

−1.23 2.51+1.19
−2.51 – –

ΛCDM + ∆zµ 0.24+0.10
−0.14 3.26+1.28

−1.32 0.29+0.10
−0.15 0.80+0.21

−0.22 0.05+0.03
−0.03 0.98+0.19

−0.21 0.62+0.10
−0.21 ≡ 0.06 – 0.03+0.02

−0.01 −0.02+0.02
−0.03

ΛCDM + all 0.24+0.09
−0.13 3.57+1.34

−1.44 0.32+0.10
−0.13 0.74+0.14

−0.14 0.04+0.02
−0.03 1.04+0.26

−0.25 0.67+0.16
−0.17 1.32+0.56

−1.26 2.49+1.17
−2.49 0.03+0.02

−0.01 −0.02+0.02
−0.03

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution.

Table 4.5: Cosmological parameters from a combined analysis of the shear and Planck likelihoods.

Model Ωcdm ln(1010As) Ωm σ8 Ωb ns h τreio APlanck

Prior ranges [0.1, 0.4] [2., 4.] derived derived [0., 0.1] [0.8, 1.2] [0.5, 0.8] [0.04, 0.12] [90., 110.]
Planck (TT+lowP) 0.263+0.012

−0.013 3.093+0.037
−0.034 0.313+0.013

−0.014 0.830+0.014
−0.015 0.049+0.001

−0.001 0.966+0.007
−0.006 0.674+0.010

−0.010 0.079+0.018
−0.019 100.04+0.27

−0.26

Planck+Shear 0.251+0.010
−0.010 3.077+0.037

−0.035 0.300+0.011
−0.011 0.818+0.013

−0.013 0.048+0.001
−0.001 0.971+0.006

−0.006 0.684+0.008
−0.009 0.074+0.020

−0.018 100.02+0.27
−0.26

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution. For the model Planck (TT+lowP) we resampled a simplified version of the original likelihood that includes only one additional
nuisance parameter, APlanck.
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We compare the 68 and 95 per cent credible intervals for the baseline ΛCDM model and
the most complex ΛCDM + all model in Fig. 4.7. Both models are marginally consistent with
the 68 per cent credible interval from Planck Collaboration XIII (2015a, TT+lowP) and the
most complex ΛCDM + all model is fully consistent with Planck at 95 per cent credibility.
This model is very conservative because it also accounts for a possible photometric redshift
bias per tomographic bin, and thus is expected to yield the largest errorbars. For this model we
show marginalized 1D posteriors for every free parameter (cf. Table 4.4) and marginalized 2D
contours for every parameter combination in Fig. 4.8. From this figure but also from Table 4.4
it is apparent that our parameter constraints are weaker than those derived from Planck. The
shear data are also unable to constrain the slope of the primordial power spectrum, ns, espe-
cially once the models also include massive neutrinos, since both parameters influence the
slope of the lensing power spectrum in a similar way. Hence, the estimate on ns is following
the flat prior distribution. From our most conservative model extension, ΛCDM+all, we derive
an upper limit on the total mass of three degenerate massive neutrinos at 95 per cent credibility
of Σmν < 4.53 eV. In contrast, Planck Collaboration XIII (2015a, TT+lowP) derive an upper
limit (95 per cent) on the total mass of three degenerate massive neutrinos of Σmν < 0.72 eV.
Combining the primary CMB data with secondary data and/or other external probes lowers
the upper limit to <0.17 eV.

In the σ8–Ωm plane we can directly compare to the results from the CFHTLenS analysis
by Heymans et al. (2013). They employed a 6-bin tomographic real-space correlation ap-
proach and in Fig. 4.9 we show the 68 per cent credible intervals for their conservative model
including a marginalization over intrinsic alignments. The 68 per cent credible intervals of our
baseline ΛCDM model is consistent with the one derived by Heymans et al. (2013). However,
the contours of our model are generally broader because we use only two tomographic bins.

The shear power spectrum is most sensitive to the parameters Ωcdm and ln(1010As) or
equivalently to Ωm and σ8. However, as can be seen in, for example, Fig. 4.7 the relation
between Ωm and σ8 is degenerate and what lensing can actually constrain best is the combina-
tion of both parameters in the projected quantity σ8(Ωm/0.3)α. The value of α depends on the
scales probed and is connected to the width of the likelihood contour. We derive it from fitting
the function lnσ8(Ωm) = −α ln Ωm+const. to the likelihood surface in theσ8–Ωm plane. Since
we find it to be consistent with ≈0.5 in all our models, we follow DES Collaboration (2015) in
defining the quantity S 8 ≡ σ8(Ωm/0.3)0.5. We present values for this parameter combination
obtained from the above shear-only likelihood sampling in Table 4.6. We compare the values
of S 8 for all our models in Fig. 4.10, where we also show the constraint on that parameter
combination by Planck Collaboration XIII (2015a, TT+lowP). For this combination all our
tested models are consistent with each other. However, all models are in mild tension with the
constraint on S 8 derived from Planck (TT+lowP).

Moreover, we present in Fig. 4.10 the constraints on S 8 of other lensing studies. In par-
ticular, we compare to the recent constraint from DES Collaboration (2015, ‘Fiducial DES
SV cosmic shear’). This study employed a real-space correlation function approach in three
tomographic bins. We find our constraints to be consistent with theirs which is mainly due
to the large errorbars of the measurement on S 8 from the Dark Energy Survey (DES). In ad-
dition to their own results DES Collaboration (2015) also resampled the likelihoods of the
CFHTLenS studies from Kilbinger et al. (2013) and Heymans et al. (2013) and derived con-
straints on S 8. We show these constraints also in Fig. 4.10. Kilbinger et al. (2013) employed
a non-tomographic real-space correlation function approach and their constraint in Fig. 4.10
employs ‘all scales’ out to large angular scales ϑ ≈ 350 arcmin. The constraint from Heymans
et al. (2013) in Fig. 4.10 uses only the ‘original conservative scales’. Our results are consistent
with both these studies, as was already the case for Heymans et al. (2013) in the full σ8–Ωm
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Figure 4.7: Shown are 68 and 95 per cent credible intervals (blue, inner and outer contour, respectively)
for our baseline ΛCDM model where Ωm, σ8, h, ns, and Ωb are free to vary. Additionally shown are
the 68 and 95 per cent credible intervals (red, respectively) for our most complex model ΛCDM+all
where also the total mass of neutrinos Σmν, the amplitude for the Baryon feedback model Abary, and a
systematic photometric redshift bias per tomographic bin ∆zµ are free to vary. We marginalize over all
other free parameters. Finally, we plot the 68 and 95 per cent credible intervals derived from Planck
Collaboration XIII (2015a, TT+lowP).

Table 4.6: Constraints on S 8 and σ8(Ωm/0.3)α.

Model S 8 ≡ σ8(Ωm/0.3)0.5 Mean error on S 8 σ8(Ωm/0.3)α α

Shear likelihood only
ΛCDM 0.768+0.045

−0.039 0.042 0.762+0.044
−0.038 0.538

ΛCDMa 0.770+0.047
−0.039 0.043 0.765+0.044

−0.038 0.533
ΛCDM + ν 0.737+0.057

−0.054 0.056 0.737+0.057
−0.055 0.479

ΛCDMa + ν 0.741+0.055
−0.047 0.051 0.741+0.056

−0.046 0.465
ΛCDM + Abary 0.777+0.048

−0.040 0.044 0.773+0.046
−0.040 0.531

ΛCDM + ν + Abary 0.748+0.055
−0.049 0.052 0.748+0.054

−0.050 0.479
ΛCDM + ∆zµ 0.771+0.050

−0.039 0.045 0.767+0.045
−0.037 0.555

ΛCDM + all 0.755+0.059
−0.059 0.059 0.755+0.059

−0.059 0.491

Notes. We quote median values for the constraints on S 8 ≡ σ8(Ωm/0.3)0.5 and σ8(Ωm/0.3)α.
The errors denote the 68 per cent credible interval derived from the marginalized posterior
distribution.
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Figure 4.8: Shown are all parameter constraints from sampling the likelihood of model ΛCDM+all. The
dashed lines in the marginalized 1D posteriors denote the weighted median and the 68 per cent credible
interval (cf. Table 4.4). The contours in each 2D likelihood contour subplot are 68 and 95 per cent
credible intervals smoothed with a Gaussian.
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Figure 4.9: We show the 68 per cent credible interval (blue) for our baseline ΛCDM model. Additionally
shown is the 68 per cent credible interval for the 6-bin tomographic real-space analysis from Heymans
et al. (2013, cf. also their fig. 4) where intrinsic alignments are marginalized over (red). Finally, we plot
the 68 per cent credible interval from Planck Collaboration XIII (2015a, TT+lowP).

plane (cf. Fig. 4.9).
For the comparison of our results to other CFHTLenS studies and the originally published

constraints from Kilbinger et al. (2013) and Heymans et al. (2013) we have to resort to the
parameter combination σ8(Ωm/0.3)α. The exponent α is in general quite similar between the
quoted lensing studies but not the same, which the reader should bear in mind when looking
at Fig. 4.11. For completeness, we show again the constraints on that parameter combination
from Heymans et al. (2013) and Kilbinger et al. (2013). Kitching et al. (2014) employed
a 3D lensing approach which allows for control over the k-scales included in the analysis.
However, their constraint on σ8(Ωm/0.3)α for which we quote the value including large scales,
i.e. k ≤ 5 hMpc−1, yields by far the largest errorbars due to which their constraint is consistent
with all other CFHTLenS studies and also consistent with the Planck constraint. The analysis
by Benjamin et al. (2013) is the most similar to the one presented here: although their analysis
employed a real-space correlation function approach and did not include scales as large as the
ones used here, the two redshift bins in their tomographic analysis are exactly the same ones
employed in this analysis. The constraints are also consistent with each other and especially
our ΛCDM model also yields comparable errorbars.

In summary, all models are consistent with each other mainly due to increasing errorbars
for increasingly more free parameters. For the comparison of our analysis to other cosmic
shear studies we derived a constraint on the projected parameters S 8 or σ8(Ωm/0.3)α. In
general, we find consistency in these projected parameters with all other CFHTLenS studies
and DES. Employing the Bayesian model comparison framework, we can decide which of the
tested models describes the shear data best: in Table 4.7 we present the natural logarithms of
the evidence for each model. Comparing these models in terms of their Bayes factor K with
respect to the simplest models ΛCDM or ΛCDMa, we find no evidence for any of the tested
extensions except for a very weak preference of the model ΛCDM+∆zµ over our baseline
model which is according to the interpretation scheme of Kass & Raftery (1995) ‘not worth
more than a bare mention’.

Hence, we conclude that the extracted band powers of the tomographic shear power spectra
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Figure 4.10: Shown are 1σ-constraints on the parameter combination S 8 ≡ σ8(Ωm/0.3)0.5 for all of our
tested models (cf. Tables 4.4 and 4.6). We compare them to constraints from other lensing analyses and
to the constraint from Planck Collaboration XIII (2015a, TT+lowP). Note that for Heymans et al. (2013)
and Kilbinger et al. (2013) we quote the values derived in DES Collaboration (2015) for the ‘original
conservative scales’ and for ‘all scales’, respectively. ‘DES 2015’ refers to the fiducial result from DES
Collaboration (2015, ‘Fiducial DES SV cosmic shear’).

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

¾8 (m=0:3)
®

¤CDM

¤CDM+all

Benjamin 2013

Heymans 2013

Kilbinger 2013b

Kitching 2014b

DES 2015

Planck 2015

Figure 4.11: Shown are 1σ-constraints on the parameter combination σ8(Ωm/0.3)α for our ΛCDM and
ΛCDM+all models (cf. Table 4.4). We compare them to constraints from other lensing analyses and to
the constraint from Planck Collaboration XIII (2015a, TT+lowP). Note that for Heymans et al. (2013)
we quote the value derived by marginalising over intrinsic alignments. For Kilbinger et al. (2013) and
Kitching et al. (2014) we cite values including the largest scales in their analyses.
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Table 4.7: Evidences from shear likelihood only.

Model lnZ 2 ln K (K ≡ Zi/ZΛCDM) Interpretation

ΛCDM −40.96 ± 0.06 0 –
ΛCDMa −41.07 ± 0.06 −0.22 Support for ΛCDM

ΛCDM + ν −41.63 ± 0.07 −1.34 Support for ΛCDM
ΛCDMa + ν −41.83 ± 0.07 −1.74 Support for ΛCDM

ΛCDM + Abary −41.66 ± 0.06 −1.40 Support for ΛCDM
ΛCDM + ν + Abary −42.48 ± 0.07 −3.04 Support for ΛCDM

ΛCDM + ∆zµ −40.75 ± 0.07 0.42 Preference over ΛCDM ‘not worth more than a bare mention’
ΛCDM + all −42.19 ± 0.07 −2.46 Support for ΛCDM

Notes. For each model we calculate the global log-evidence, lnZ, and compare all evidences
in terms of the Bayes factor K (or equivalently 2 ln K) to the baseline ΛCDM model. The
interpretation of the Bayes factor is following the scheme proposed by Kass & Raftery (1995).

measured over a range 80 ≤ ` ≤ 1310 are described sufficiently well within their errors by a
standard five-parameter ΛCDM model.

Finally, we combine our shear likelihood with the most recent data and likelihood release12

from Planck Collaboration XIII (2015a) in order to break the degeneracy between the parame-
ters Ωm and σ8. In particular we employ the Planck primary CMB temperature data (TT) from
high multipoles ` in combination with the Planck low multipole polarization data (lowP). Due
to long run-time we chose to use the PLIK HIGHL-LITE likelihood code which requires only to
marginalize over one nuisance parameter, APlanck. The Bayesian model comparison showed
no evidence for any model extension beyond a baseline ΛCDM model for describing the shear
likelihood. This implies that we would essentially reproduce Planck-only results if we were
to add parameters for which there is no evidence. Hence, we consider only six cosmologi-
cal parameters and one nuisance parameter for the combined ‘Planck+Shear’ model: Ωcdm,
ln(1010As), h, Ωb, ns, τreio, and APlanck. Again we assume one dominant neutrino mass eigen-
state in the normal hierarchy with Σmν = 0.06 eV and a flat cosmology. In comparison to our
shear-only likelihood analysis we chose to use narrower prior ranges for most parameters (cf.
Table 4.5). Due to the reduced set of nuisance parameters with respect to the original Planck
analysis, we also resample the Planck likelihood for the seven parameter baseline model so
that comparisons of likelihood contours are fair.

Prior ranges and parameter constraints for the resampled Planck likelihood and the com-
bination of Planck+Shear are presented in Table 4.5. Fig. 4.12 demonstrates that combining
the shear likelihood with the Planck likelihood yields improved constraints on σ8 and Ωm and
breaks the degeneracy between the two parameters. The 68 and 95 per cent credible intervals
are largely overlapping and show marginal consistency between the two data sets as already
observed above. We find the constraints σ8 = 0.818 ± 0.013 and Ωm = 0.300 ± 0.011 which
are consistent with the constraints from the resampled Planck-only likelihood (cf. Table 4.5).

4.8 Conclusions
In this work we generalized the original quadratic estimator approach by Hu & White (2001)
to include tomographic bins. We validated the method and its extension to tomographic bins
by applying it to mock data tailored to the survey specifications of CFHTLenS. In particular
we made use of the official CFHTLenS Clone but produced also our own sets of Gaussian

12PLC-2.0 from http://pla.esac.esa.int/pla/

http://pla.esac.esa.int/pla/
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Figure 4.12: We show 68 and 95 per cent credible intervals (red, inner and outer contour, respectively)
derived from sampling only the Planck likelihood (TT+lowP) with the simplified model consisting of six
cosmological parameters and only one nuisance parameter (cf. Table 4.5). We combine the Planck like-
lihood then with the shear likelihood and sample from the combined likelihood for the same simplified
model and derive 68 and 95 per cent credible intervals (blue, inner and outer contour, respectively).

random field realizations in order to test the performance for the larger scales used in our
analysis. We also used the 184 independent shear catalogues from the CFHTLenS Clone and
our GRFs to derive a run-to-run covariance. We applied the method to public shear data from
CFHTLenS in two tomographic bins to extract band powers of the lensing power spectrum.

We use the extracted band powers and the run-to-run covariance estimated from our suite
of mock data in order to sample the shear likelihood. The sampling is performed in a Bayesian
framework. We derive constraints on cosmological parameters as well as the Bayesian evi-
dence for each model. In addition to the five baseline cosmological parameters, our most
conservative model extension includes a free total mass of three degenerate massive neutri-
nos, a free amplitude for the baryon feedback model of the matter power spectrum and pho-
tometric redshift biases to marginalize over. For this model we derive an upper limit on the
total mass of three degenerate massive neutrinos of Σmν < 4.53 eV at 95 per cent credibil-
ity. Based on the analysis of the shear likelihood we find no evidence for any of the tested
model extensions though: a standard, five parameter ΛCDM model is sufficient to describe
the lensing power spectrum band powers measured over a range of 80 ≤ ` ≤ 1310 in two
tomographic bins. The main parameters constrained by the lensing power spectra are σ8 and
Ωm and we find the 68 percent credible intervals in this parameter plane to be marginally
consistent both with Planck Collaboration XIII (2015a) and the CFHTLenS analysis by Hey-
mans et al. (2013). Because the constraints on σ8 and Ωm are degenerate, we combine both
parameters into the projected parameter S 8 ≡ σ8(Ωm/0.3)0.5. For the baseline ΛCDM model
we obtain a best-fitting value of S 8 = 0.768+0.045

−0.039. Marginalization over a photometric red-
shift bias per tomographic bin increases the errorbars on S 8 by ≈7 per cent. Furthermore,
we compare our constraints on cosmological parameters with other CFHTLenS studies and
the recent result from DES and we find general agreement. Combining the shear likelihood
with the Planck likelihood (TT+lowP) and sampling a simple six-parameter ΛCDM model
breaks the degeneracy between Ωm and σ8 and yields the constraints Ωm = 0.300± 0.011 and
σ8 = 0.818 ± 0.013. These constraints are consistent with the ones derived from resampling
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the Planck-only likelihood and the errorbars decrease by ≈19 per cent for Ωm and ≈10 per
cent for σ8.

Data from larger weak-lensing surveys such as the Kilo-Degree Survey13 (de Jong et al.
2013, 2015; Kuijken et al. 2015), the Subaru Hyper SuprimeCam lensing survey,14 and the
DES15 (Flaugher 2005; Jarvis et al. 2015; Becker et al. 2015) are building up right now, and
these surveys will reach full coverage in the next years. This development will culminate
in the surveys carried out by the Large Synoptic Survey Telescope16 (Ivezic et al. 2008) and
the spaceborne Euclid17 survey (Laureijs et al. 2011). Given these surveys, we consider our
analysis also as a proof of concept in preparation for the order(s) of magnitude increase in
survey area, which also implies a significant reduction in statistical uncertainties.
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4.A Indices and derivatives
In Section 4.3 we described the generalization of the quadratic estimator to include tomo-
graphic bins. This requires a great amount of indices in a strict notation. For brevity we
switched rather quickly to a set of superindices and we also refrained from showing the ex-
plicit forms of certain matrices. Here, we give now the explicit forms of these matrices and we
also calculate the derivatives used, for example, in equations (4.11) or (4.15) in index notation.

First, we start with specifying the components of the vector B which contains all band
powers β of type θ for each unique redshift bin correlation ζ as Bζθβ. Note that the total
number of unique correlations between nz redshift bins is ncorr = nz(nz + 1)/2, because all
cross-correlations contain the same information by construction. Likewise we define the com-
ponents of the tensor G which encodes all geometric information of the field depending on the
band power β, the band type θ and the redshift bin correlation ζ as

Gζθβ(µν)(ab)(i j) ≡ Mζ(µν)

∫ `max(β)

`min(β)

d`
2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
. (4.28)

We also note here that each realization of G for a given band power β of type θ and correlation
ζ can be represented as a matrix Gζθβ. We can write out the matrices Iθ and Qθ for the EE-,
BB-, and EB-band powers as (Hu & White 2001)

IEE =

(
J0 + c4J4 s4J4

s4J4 J0 − c4J4

)
, (4.29)

IBB =

(
J0 − c4J4 −s4J4
−s4J4 J0 + c4J4

)
, (4.30)

IEB =

(
−2s4J4 2c4J4
2c4J4 2s4J4

)
, (4.31)

and

QEE
=

(
J0 + 2c4J4 + c8J8 s8J8

s8J8 −J0 + 2c4J4 − c8J8

)
, (4.32)

QBB
=

(
−J0 + 2c4J4 − c8J8 −s8J8

−s8J8 J0 + 2c4J4 + c8J8

)
, (4.33)

QEB
=

(
−2s8J8 2J0 + 2c8J8

2J0 + 2c8J8 2s8J8

)
. (4.34)
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In these equations we suppressed the argument of the Bessel functions Jn which in each case
is the product ` ri j, where ri j = |ni − nj| is the distance between pixels i, j (cf. Section 4.4).
Moreover, we employ the shorthand notations cn = cos(nϕ) and sn = sin(nϕ), where ϕ is the
angle between the x-axis and the distance vector ri j between pixels i, j (cf. Section 4.4). Note
that in equation (4.33) we corrected the misprint in the original reference pointed out by Lin
et al. (2012). Note also, that each block in the matrices of equations (4.29)–(4.34) defines
again a matrix in the indices i, j.

The matrices Mζ in equation (4.28) map between the redshift bins and their unique corre-
lations. In order to construct them, we start with the standard basis eµν for µ× ν matrices with
µ, ν ∈ (1, ..., nz). For example, the standard basis for nz = 2 can be written explicitly as:

e11 =

(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, (4.35)

e21 =

(
0 0
1 0

)
, e22 =

(
0 0
0 1

)
. (4.36)

The index pairs (µ, ν) can be trivially mapped to only one index ζ′ which yields for the example
above, i.e. µ, ν ∈ (1, 2):

(1, 1)→ 1, (1, 2)→ 2, (2, 1)→ 3, (2, 2)→ 4. (4.37)

Imposing now, however, the symmetry condition (µ, ν) = (ν, µ), which guarantees that for
nz redshift bins we only consider ncorr = nz(nz + 1)/2 independent correlations, yields the
symmetric mapping matrices:

M1 =

(
1 0
0 0

)
= e11, (4.38)

M2 =

(
0 1
1 0

)
= e12 + e21, (4.39)

M3 =

(
0 0
0 1

)
= e22 (4.40)

which implies the following mapping from (µ, ν) to ζ:

(1, 1)→ 1, (1, 2) = (2, 1)→ 2, (2, 2)→ 3. (4.41)

Next we construct the signal matrix Csig as the sum over bands β, band types θ, and redshift-
correlations ζ of the product of the band power vector Bζθβ with the geometry matrices Gβθζ ,

Csig
(µν)(ab)(i j) =

∑
ζ,θ,β

BζθβGζθβ(µν)(ab)(i j) . (4.42)

Note that the full covariance matrix C also includes contributions from the shape noise matrix
Cnoise (cf. equation 4.9) which is constant. Thus if we wish to take the derivative of the
full covariance matrix with respect to every possible band-power combination B(µν)(βθ), this
constant noise term vanishes and we are left with

∂C(µν)(ab)(i j)

∂Bζθβ
=
∂Csig

(µν)(ab)(i j)

∂Bζθβ
(4.43)

= Gζθβ(µν)(ab)(i j)

≡ Dζθβ ≡ DA . (4.44)
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In order to simplify our notation with respect to the Newton–Raphson algorithm we introduced
in the last step the superindex A: each specific index combination (ζθβ) can be mapped to a
single index A18, i.e. we denote a specific derivative matrix now as DA instead of Dζθβ. Hence
the components of the generalized Fisher matrix F can be written as

FAB = 1
2 Tr(C−1DAC−1DB) . (4.45)

All other equations employed in the Newton–Raphson algorithm still hold with respect to this
new set of superindices (A, B).

Finally, it only remains to write out explicitly the derivatives of the full covariance matrix
C with respect to the power at an integer multipole `. This is required for the calculation of
the window function matrix (cf. equation 4.14) in which the derivatives D` enter in computing
the trace matrix T (cf. equation 4.15):

∂C(µν)(ab)(i j)

∂B(`)
=

∑
ζ,θ

Mζ(µν)

2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
≡ D(µν)(ab)(i j)(`) ≡ D` , (4.46)

where we have used that

Csig
(µν)(ab)(i j) =

∑
ζ,θ,`

Bζθ(`)
Mζ(µν)

2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
.

4.B Additional figures
In the following figures we show the extracted E- and B-modes for each CFHTLenS patch
individually. Note that these E-mode signals enter directly in the likelihood sampling whereas
the combined signal presented in Fig. 4.4 serves just for illustrative purposes.

18For example, consider again two redshift bins, i.e. ζ ∈ (1, 2, 3), from which we wish to extract four band powers,
i.e. β ∈ (1, 2, 3, 4), of a single band type EE =̂ θ = 0. Then we can map each unique combination of ζθβ to an integer
A ∈ (0, ..., 12).
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Figure 4.13: Measured E-mode band powers in tomographic bins for the CFHTLenS patch W1. From
left to right we show the auto-correlation signal of the low-redshift bin (blue), the cross-correlation
signal between the low- and the high-redshift bin (orange), and the auto-correlation signal of the high-
redshift bin (red). The low-redshift bin contains objects with redshifts in the range 0.5 < z1 ≤ 0.85 and
the high-redshift bin covers a range 0.85 < z2 ≤ 1.3. The 1σ-errors in the signal are derived from a
run-to-run covariance over 184 independent mock data fields (cf. Section 4.5.2) whereas the extent in
`-direction is the width of the band. Band powers in the shaded regions (grey) to the left and right of
each panel are excluded from the cosmological analysis (cf. Fig. 4.5). The solid line (black) shows the
power spectrum for the best-fitting five-parameter ΛCDM model derived in the subsequent analysis (cf.
Section 4.7 and Table 4.4). Note, however, that the band powers are centred at the naive `-bin centre and
thus the convolution with the band window function is not taken into account in this plot, in contrast to
the cosmological analysis.
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Figure 4.14: Same as Fig. 4.13 but for B-mode band powers. Note, however, the different scale (linear)
and normalization used here with respect to Fig. 4.13; for reference we also plot the best-fitting E-mode
power spectrum as solid line (black). We show the measured B-modes as (black) dots with 1σ-errors
derived from the inverse Fisher matrix. Based on these signals we define the shaded regions (grey) to
the left and right of each panel (cf. Section 4.6 for details). E-mode band powers in these regions are
excluded from the cosmological analysis (cf. Fig. 4.4).



4. The CFHTLenS shear power spectrum 97

102 103

`

10-6

10-5

10-4

10-3
`(
`
+
1
)C
(`
)=
2¼

z1 £ z1
CBF (`)

102 103

`

z1 £ z2

102 103

`

z2 £ z2

Figure 4.15: Same as Fig. 4.13 but for CFHTLenS patch W2. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.16: Same as Fig. 4.14 but for CFHTLenS patch W2. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.17: Same as Fig. 4.13 but for CFHTLenS patch W3. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.18: Same as Fig. 4.14 but for CFHTLenS patch W3. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.19: Same as Fig. 4.13 but for CFHTLenS patch W4. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.20: Same as Fig. 4.14 but for CFHTLenS patch W4. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.


