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1
Introduction

1.1 A brief history of the Universe

The questions concerning the origin, evolution, and fate of the Universe are probably as old
as conscious mankind. For millennia the attempts to answer these questions were fundamen-
tally connected to the religious narratives emerging throughout all human cultures. Just a
few centuries ago with the rise of modern natural sciences based on observations and exper-
iments, with which predictive mathematical theories can be falsified, the task of answering
these cosmological questions moved beyond religious belief and physical cosmology started
to emerge.

Just about a century ago Albert Einstein presented his field equations of gravity, the key
equations of his theory of general relativity, to the Prussian Academy of Science in Berlin
(Einstein 1915b). Within two years, in 1917, Einstein applied these field equations to the
whole Universe and established the field of relativistic cosmology (Einstein 1917), which
until today is at the very roots of our view on the cosmos.

Nowadays the theory of general relativity is regarded as a triumph of human mind, but at
the time there was really no observational evidence supporting such a major revision of the
prevalent gravity theory of Newtonian mechanics. Only the tiny precession of Mercury’s per-
ihelion hinted already in 1859 at an inconsistency in Newtonian mechanics (Le Verrier 1859),
although astronomical zeitgeist favoured explaining the discrepancy rather with a never-to-be-
detected planet ‘Volcano’.

General relativity could naturally explain the precession of Mercury’s perihelion (Einstein
1915a) and further observational evidence for it became available in 1919. During a solar
eclipse Arthur S. Eddington observed the deflection angles of stars in close projected vicinity
on the sky to the Sun (Eddington 1920). The observations employed the gravitational lensing
effect, the phenomenon that light from a background source is deflected due to the mass
of a foreground lens. In this particular case, the mass of the Sun deflects the light of stars
in close projected vicinity to it on the sky. The observations convincingly showed that the
stars visible during the eclipse did not appear at positions deflected by an angle predicted by
Newtonian gravity. These results made Einstein world famous over night and contributed to
the general acceptance of his new theory of gravity in the scientific community. This triggered
rich theoretical research in this new field by Willem de Sitter (e.g. de Sitter 1917), Alexander
Friedmann (e.g. Friedmann 1922), and Georges Lemaître (e.g. Lemaître 1927), and many
others.

Around the same time, in 1920, the ‘Great Debate’ between astronomers Harlow Shapley
and Heber Curtis was in full progress about what the actual size of the Universe is (Shapley
& Curtis 1921). Shapley argued that the Milky Way represents the entirety of the Universe.
Thus, he was convinced that the peculiar ‘spiral nebulae’, of which more and more were
being observed as bigger and bigger telescopes became available, were contained in the Milky
Way. Curtis, however, believed the nebulae to be ‘island universes’ arguing that they are
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2 1. Introduction

extragalactic and galaxies just like the Milky Way. Eventually, the debate was settled by the
work of Edwin Hubble (Hubble 1925) and others who showed that the ‘spiral nebulae’ were
indeed galaxies of their own. Spectral data of these nebulae taken by Slipher and interpreted
by Lemaître and Hubble showed that almost all galaxies also seemed to be moving away from
us (Slipher 1917; Lemaître 1927; Hubble 1929). This cosmic recession, however, was already
interpreted by Lemaître in a cosmological sense as actually being the effect of an expanding
Universe rather than the Doppler shifted peculiar motions of galaxies. The discovery of the
expansion of the Universe made Einstein admit his ‘greatest blunder’ by which he referred
to the introduction of the cosmological constant in his field equations in order to make the
Universe eternal and static.

Tracing the evolution of an expanding Universe backwards in time leads to the conclusion
that there must have been a point in space-time from which the Universe started its expansion,
the ‘Big Bang’, estimated to have happened about 13.8 billion years ago. The Big Bang cos-
mology also predicts that the Universe was very dense and hot in its beginning and became
cooler and less dense while expanding. When the Universe cooled down to a temperature
that allowed for creating the first neutral hydrogen atoms out of the hot particle and radia-
tion plasma, the Universe became transparent to radiation (around 380 000 years after the Big
Bang). Even today we are able to observe the relics of this thermal radiation, the afterglow
released right after the formation of the first neutral atoms, redshifted to very long (radio)
wavelengths. In 1964, Arno Penzias and Robert Wilson discovered this cosmic microwave
background (CMB) radiation by chance (Penzias & Wilson 1965). Today ever more pre-
cise and accurate measurements of the tiny temperature fluctuations in the CMB, for example
by the Wilkinson Microwave Anisotropy Probe (WMAP; Hinshaw et al. 2013) or the Planck
satellite (Planck Collaboration XIII 2015a), led to a detailed view on the Universe and its
constituents expressed in terms of just a handful of cosmological parameters. The tiny tem-
perature fluctuations, the seeds for all subsequent cosmic large-scale structure, are interpreted
to be due to quantum fluctuations in the primordial plasma present directly after the Big Bang.
These fluctuations are believed to be magnified to cosmic size during inflation, the extremely
short period of exponential expansion of the Universe just 10−36 seconds after the Big Bang.
Moreover, inflation theories whose development started in the early 1980s (Guth 1981; Linde
1982; Steinhardt 1982) also address and solve major problems of Big Bang cosmology:
(i) the horizon problem – the distribution of the tiny temperature fluctuations in CMB maps are
extremely isotropic and homogeneous even for regions of space that must have been causally
disconnected, i.e. behind an observational horizon, due to expansion and the finiteness of the
speed of light by the time the CMB radiation was released.
(ii) the flatness problem – the observed flatness of space today presents a fine-tuning problem
because in the past space must have been even ‘flatter’ in the sense that today’s measured tiny
curvature parameter must have been orders of magnitude tinier in the past.
(iii) the magnetic-monopole problem – in the extreme temperature and density conditions just
after the Big Bang the weak, strong, and electromagnetic forces are believed to be unified,
which is commonly referred to as the grand unification theory (GUT). However, as soon as
the conditions become less extreme the GUT force is expected to undergo a spontaneous sym-
metry breaking into the three forces we know today during which magnetic monopoles are
predicted to have been produced in large abundances. However, these have not been observed
yet.

An extremely short inflationary period right after the Big Bang for about 10−35 to 10−34

seconds solves all three problems: a flat region of space sufficiently small to be isotropic
and homogeneous is magnified to cosmic size which solves the horizon and flatness prob-
lems. If inflation also happened before the density and temperature conditions allowed for the
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Figure 1.1: A brief history of the Universe from the Big Bang to today (Credit: ESA, C. Carreau).

production of magnetic monopoles, then these would form later already separated by cosmic
distances while the Universe continues to expand. Hence, their observable density would be
reduced by many orders of magnitude. Although inflation solves the problems of Big Bang
cosmology, its physical nature is not at all understood yet. Moreover, no direct evidence for
inflation, such as primordial gravitational waves, has been detected yet either (BICEP2 Col-
laboration 2014), but instruments becoming increasingly more sensitive might change this
already in the very near future.

A major revelation of the modern cosmological concordance model is that all atoms and
particles, which we and all the matter interacting with us in daily-life consist of, contribute
only about 20 per cent to the total matter in the Universe. The remaining 80 per cent con-
sists of something that we refer to as ‘dark matter’ (so that at least we have a name for it).
However, the total matter of the Universe represents only about 30 per cent of its total energy
density. The remaining 70 per cent of the energy density is usually attributed to the even more
mysterious ‘dark energy’. This cosmological ingredient is required to explain the accelerated
expansion of the Universe as indicated by the observations of supernovae in the late 1990s
(Riess et al. 1998; Perlmutter et al. 1999). The source of the accelerated expansion is coun-
teracting the tendency of matter to cluster on cosmologically large scales due to gravity. An
attempt of connecting the accelerated expansion of space to the standard model of particle
physics interprets Einstein’s ‘greatest blunder’, the cosmological constant, as the energy den-
sity of the vacuum. The standard model of particle physics predicts that the vacuum possesses
energy due to the constant production and annihilation of particles and antiparticles within
the limits of Heisenberg’s uncertainty principle. Unfortunately, quantitative predictions for
this vacuum energy are off by about 100 orders of magnitude. In principle, this discrepancy
can be explained by postulating an additional symmetry which cancels the effect of vacuum
energy up to the small amount we measure today and attribute to the cosmological constant.
Therefore, alternative explanations for the accelerated expansion are explored (for example it
might be time-dependent) and in order to combine them into a common framework, we call
the physical cause just ‘dark energy’ (a term that is also liked better by funding agencies).
However, any dark energy theory must still explain why the cosmological constant can be set
to zero. Lovelock (1972) showed that the cosmological constant is a fundamental ingredient
to Einstein’s field equations under general mathematical assumptions: Einstein’s field equa-
tions explicitly including the cosmological constant are the only unique formulation of tensor



4 1. Introduction

equations depending only on the metric up to its second-order derivatives in four dimensional
space-time.

In that regard, explaining the physical nature of dark matter is considered to be a slightly
easier task: although no particle of the standard model possesses the properties of dark matter
one can think of extensions, such as super-symmetry, that predict a stable Weakly Interact-
ing Massive Particle (WIMP), whose properties match the ones of dark matter. However,
even at the currently most powerful particle collider experiment, the Large Hadron Collider
(LHC), super-symmetric particles have not been detected yet. This is either a sign that super-
symmetry is not the correct extension or that the energies reached by the LHC are still just too
low.

Neutrinos, particles that interact only via gravity and the weak force, were once a candi-
date for hot dark matter. Measurements and simulations of the cosmic large-scale structure
formation have shown though, that dark matter must be cold in the sense that their velocity
dispersion is small. Hence, their free streaming length, the distance indicating how far dark
matter particles could move in the early Universe before being affected by gravitational col-
lapse, sets the minimum length scale for subsequent structure formation. Density fluctuations
within this minimum length scale are washed out due to the free streaming of dark matter par-
ticles. In order to explain the observationally established bottom-up scenario of cosmic struc-
ture formation then, potential dark matter particles must be cold. The bottom-up scenario of
structure formation implies that large structures such as galaxy clusters build up from smaller
structures like galaxies and hence they formed later. Despite not being a viable dark matter
candidate anymore, neutrinos are still required as an ingredient for our cosmological model
since they affect the growth of cosmic large-scale structure (cf. Lesgourgues & Pastor 2006
for a review). Large ground experiments such as Super-Kamiokande and the Sudbury Neu-
trino Observatory (SNO) measured neutrino oscillations, i.e. the mixture of neutrino flavour
eigenstates (electron, muon, and tau neutrino) with their mass eigenstates (m1, m2, and m3),
for the first time around the year 2000 (Super-Kamiokande Collaboration 1998; SNO Collab-
oration 2001, 2002). These flavour oscillations imply that neutrinos possess a (tiny) mass,
which is in contradiction with fiducial standard model predictions implying massless neutri-
nos. However, with this kind of experiments it is only possible to measure (squared) mass
differences. The absolute mass scale of neutrinos, however, determines the mass-hierarchy
between the three neutrinos: in the normal hierarchy scenario one mass eigenstate is the low-
est and the other two are increasingly more massive. In contrast to that, the inverted hierarchy
predicts three degenerate mass eigenstates. The lower mass bound is set at Σmν ≥ 0.06 eV by
the lowest measured mass difference. The most stringent upper mass bounds come, however,
from cosmological probes. For example, CMB constraints from Planck set an upper bound
of Σmν < 0.72 eV (Planck Collaboration XIII 2015a), whereas a combination of Lyα power
spectrum measurements with constraints from baryon acoustic oscillations (BAO) yields an
upper bound of Σmν < 0.14 eV (Palanque-Delabrouille et al. 2015). Pushing this boundary
to values lower than ∼0.1 eV in combination with the measured (squared) mass differences
will enable us to determine the absolute values of the three mass eigenstates. Hence, neutrino
masses are yet another current research topic linking once more the cosmological concordance
model and the standard model of particle physics.

In summary, a host of observations can be reconciled within a cosmological concordance
model. It is based on general relativity, and we have very precise and accurate measurements
of the energy densities for the constituents of the Universe. However, we do not at all under-
stand what the physical nature of the two dominant species, dark matter and dark energy, is.
Revealing that is the major motivation behind current cosmological research. An advance in
that direction is also naturally linked to new insights regarding the standard model of particle
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physics and its inevitable extension.

1.2 Gravitational lensing
Already Newtonian gravity predicts the perpendicular deflection of light from a source behind
a mass distribution, a lens, along the line-of-sight towards an observer (assuming a corpuscular
theory of light though). However, general relativity predicts the effect to be twice as large,
which was confirmed by the larger deflection angles observed by Eddington (1920).

Treating the propagation of light in the full framework of general relativity employing
arbitrarily curved space-times is challenging. Employing the space-time of the cosmological
concordance model, which encodes the observationally established isotropy and homogeneity
of the Universe when averaged over sufficiently large scales, reduces the complexity of the
equations substantially. Furthermore, we can assume for a typical configuration of observer,
lens, and source that the diameter of the lens is negligible compared to the distances from
source to lens, from source to observer, and from lens to observer. Moreover, the peculiar mo-
tion of the lens is usually also negligible compared to the speed of light. Then the complexity
of the equations simplifies to the level of geometrical optics: the deflection of light rays from a
background source due to a mass in its foreground can be described by an effective refraction
index, altering the propagation speed of the emitted light in the vicinity of the lens.

The geometrical configuration of the observer-lens-source system and the mass distribu-
tion of the lens determine whether we observe strong image distortions and/or multiple im-
age systems or only weak but coherent deflections in the lensed image(s) of the background
source. We refer to these two regimes as strong and weak lensing, respectively. Mathemati-
cally the image distortions due to gravitational lensing can be described in terms of a mapping
from the plane of each background source to the plane of the lens (or image plane). Curves
in the lens plane along which this mapping becomes singular (and hence where it is locally
not invertible) are called ‘critical curves’. Mapping these critical curves back into the source
plane yields ‘caustic curves’ (following the nomenclature of mathematical singularity theory).
When a source crosses a caustic curve towards the lens a pair of strongly magnified images
is created in the lens plane, which can be observed as a pair of multiple images of the same
source. In general, caustic curves are not smooth and hence more than two images of the same
source can occur in the lens plane. Critical curves and correspondingly strong lensing phe-
nomena only occur in close vicinity to the lens, whereas weak lensing can still be observed at
large distances from the lens. Fig. 1.2a shows an example of a strongly lensed and highly dis-
torted multiple image system forming a ‘horseshoe’ of one and the same background galaxy.
When the mass distribution of the lens is axis-symmetric and the source, observer, and lens
are aligned along the line-of-sight a perfectly circular ‘Einstein ring’ of multiple images can
be observed.

Already in the 1930s when dark matter entered the scientific discussion, Fritz Zwicky
pointed out that clusters of galaxies must contain much more mass than estimated from their
light alone. He reached this conclusion by applying the virial theorem to the Coma and Virgo
clusters of galaxies assuming that the systems are in hydrostatic equilibrium (Zwicky 1937b).
Back of the envelope calculations further show that galaxies or entire clusters of galaxies are
due to their high masses ideal objects to target for observing strong lensing phenomena (e.g.
Zwicky 1937a). It still took until 1979, however, before the first strong lensing object, a
doubly lensed quasar, was discovered (Walsh et al. 1979). The first luminous arcs, i.e. highly
distorted images of background galaxies, were found in galaxy clusters and also attributed to
strong gravitational lensing in 1987 (Lynds & Petrosian 1986; Soucail et al. 1987; Paczynski
1987). Today strong lensing has developed into a major tool for estimating the mass of a
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(a) (b)

Figure 1.2: (a) Horseshoe ‘Einstein ring’ observed with the Hubble Space Telescope. The ‘horseshoe’
is actually the strongly lensed image of a galaxy in the background of the lens, the massive elliptical
galaxy in the centre of the horseshoe (Credit: ESA/Hubble & NASA). (b) Composite image of the
merging Bullet cluster. The hot intra-cluster gas observed through its thermal Bremsstrahlung in X-rays
(red contours) lags behind the dark matter dominated mass component (blue contours) as inferred from
weak lensing (Credit: NASA/CXC/M. Weiss).

lens (e.g. Johnson et al. 2014; Zitrin et al. 2015), which is possible if one can model very
accurately and precisely the lensing geometry including, for example, the positions of where
multiple images or luminous arcs are expected to occur. Moreover, the most massive lenses,
i.e. galaxy clusters, are used as dedicated ‘natural telescopes’ in the search for the light of the
oldest galaxies in the Universe (e.g. Coe et al. 2013; Bouwens et al. 2014). Just like in regular
optics, lensed images are also magnified and thus allow for detailed spectral studies of objects
that are too far away to be resolved even with our current best telescopes.

The effects due to weak lensing are not visible by eye and can only be studied statistically.
Images of objects in the outskirts of lenses, for example, are only very weakly distorted by the
gradient of the lens’ gravitational potential. Assuming that the intrinsic shapes of galaxies are
randomly distributed in the Universe, averaging the shapes of a statistically large sample of
background galaxies around a lens yields the gravitational shear contribution, i.e. the coherent
image distortions due to the lens, since the signal of the randomly distributed intrinsic shapes
averages out. Again this technique can be used to study the mass scale and distribution within
objects such as galaxy clusters very accurately and precisely. However, instead of looking at
single lenses, we can also look at the weak-lensing effect due to the entire cosmic large-scale
structure along the line-of-sight and study its mass distribution, in that sense we use the entire
Universe as a lens. This approach is referred to as ‘cosmic shear’. Cosmic shear signals were
detected for the first time in 2000 (Bacon et al. 2000; Van Waerbeke et al. 2000; Wittman et al.
2000; Kaiser et al. 2000). Studying it also as a function of redshift, for example in tomographic
redshift slices, allows us to infer the growth rate of structures in and the geometry of the
Universe (cf. Kilbinger 2015 for a recent review). Apart from measuring shapes for millions
of galaxies very accurately and precisely this also requires to estimate their redshifts. In
order to measure shapes and (photometric) redshifts at the same time, large dedicated optical
multi-band imaging surveys such as the Kilo-Degree Survey (KiDS; Jong et al. 2012; de Jong
et al. 2015; Kuijken et al. 2015), the Subaru Hyper SuprimeCam survey (HSC), and the Dark
Energy Survey (DES; Flaugher 2005; Jarvis et al. 2015) are carried out right now. They
are expected to cover several 1000 square degrees in the next few years, which presents an
improvement by an order of magnitude compared to weak-lensing surveys that are currently
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available. Within the next decade this development will culminate in nearly all-sky surveys
carried out by spaceborne observatories such as the Euclid satellite (Laureijs et al. 2011).

1.3 Cosmic large-scale structure
The largest gravitationally bound objects in the Universe are clusters of galaxies. The time
it takes for a member galaxy to cross a cluster once is an order of magnitude shorter than
a Hubble time. Therefore, cluster member galaxies had enough time to cross low-redshift
galaxy clusters several times and hence virialized galaxy clusters can be observed in the local
Universe. The application of equilibrium physics to such virialized clusters by Fritz Zwicky
in 1937 showed already that the stellar, i.e. light emitting mass, was not enough to explain
why clusters are gravitationally bound (Zwicky 1937b). Today it is an observationally well-
established fact that indeed galaxy clusters are dominated by dark matter, and intra-cluster gas
together with the stellar mass of the constituent member galaxies make up only a small fraction
of the total mass in a cluster. This makes galaxy clusters ideal objects to study properties of
dark matter, as for example the famous merging ‘Bullet cluster’ in Fig. 1.2b shows: whereas
the baryons of the smaller ‘Bullet cluster’, i.e. mainly the intra-cluster gas as observed in
X-rays (red contours), lag behind due to colliding with the baryons of the bigger cluster, the
dominant dark matter of both clusters (blue contours) passed right through (Markevitch et al.
2002; Clowe et al. 2006), also implying that the cross-section of potential dark matter particles
must be tiny (e.g. Markevitch et al. 2004).

The cosmological concordance model also predicts a universal density profile for an en-
semble of galaxy clusters (Navarro et al. 1997). Although the physical principles behind such
a profile are not fully understood yet, studying the mass distribution of galaxy clusters is an
important cosmological test and strong lensing, for example, can be used to produce very
accurate and precise measurements of the mass distribution in the core region of a cluster.
Moreover, the number of clusters per cosmic volume of a given mass at a given redshift is
strongly dependent on parameters of the cosmological model influencing the growth of struc-
ture. Hence, with the detection of hundreds of massive clusters over recent years mainly due
to applying new observation techniques such as the Sunyaev–Zel’dovich (SZ) effect (Sunyaev
& Zeldovich 1972), cluster counts have become an important independent cosmological probe
(e.g. Planck Collaboration XXIV 2015b). The SZ effect describes the average energy boost a
low-energy CMB photon gains due to inverse Compton scattering with high-energy electrons
of the hot intra-cluster gas when passing through a galaxy cluster. This effect is independent
of the redshift of the cluster and although many massive clusters have already been discovered
employing the SZ effect, it has one shortcoming: in order to estimate the actual mass of the
cluster, which is an essential ingredient for the cluster counts, from the measured strength of
the SZ effect, one has to rely on scaling relations calibrated with other mass measurement
techniques such as weak lensing. The level of uncertainty of the mass estimates for clusters
is fundamentally limited by the accuracy and precision of these scaling relations. Investigat-
ing the statistical uncertainties and systematic errors of different mass calibration methods is
hence an important topic of current research in order to improve the precision and accuracy of
cluster counts as a competitive cosmological probe.

In the big picture of cosmic large-scale structure galaxy clusters are the nodes of the ‘cos-
mic web’: filaments of dark matter, gas, and galaxies extend through space-time in a web-like
structure and the ‘empty’, i.e. extremely under-dense, regions in between are referred to as
‘cosmic voids’. The evolution of the large-scale structure over cosmic time is very sensitive
to the clustering properties of dark and luminous matter. Hence, studying its evolution, for
example by means of measuring the cosmic shear signal as a function of redshift, is a very
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Figure 1.3: A map of the cosmic large-scale structure as seen in the Sloan Digital Sky Survey. Every dot
in this picture represents an entire galaxy (Credit: M. Blanton and the Sloan Digital Sky Survey).

promising cosmological probe, especially in the current era of dedicated large-area imaging
surveys serving as pathfinder missions in anticipation of the close to all-sky surveys of the
next decade.

1.4 This thesis
In the following chapters we present applications of strong and weak gravitational lensing in
a cosmological context.

We start in Chapter 2 with the very detailed study of the strong lens model required to ex-
plain the occurrences of giant luminous arcs and multiple image systems based on high-quality
data from the Cluster Lensing And Supernova survey with Hubble (CLASH; Postman et al.
2012) in the massive and very X-ray luminous merging cluster RX J1347.5–1145. In addition
to presenting a consistent lens model derived with two independent modelling approaches, we
finally measure the mass profile of and the mass distribution in the cluster core.

In Chapter 3 we look at ensembles of galaxy clusters and address the limitations of weak
lensing in deriving mass estimates for ensembles of clusters. We study this with a focus on the
future Euclid mission (Laureijs et al. 2011) and derive the level of statistical uncertainties on
the mass estimates for this mission and study the impact of various sources of bias. In partic-
ular, we investigate the bias due to cluster member galaxies that due to erroneously assigned
photometric redshifts are scattered into the galaxy source sample. For stacks of galaxy clusters
this effect is severe and must be properly accounted for. Finally, we investigate the bias due to
miscentring, the displacement between the true position of the minimum of the gravitational
potential of the galaxy cluster and any observationally defined cluster centre. With respect to
the expected low level of statistical uncertainties this bias is significant. However, comple-
mentary future missions such as the X-ray survey eROSITA (Merloni et al. 2012) will allow us
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to put very informative priors on miscentring parameters, making it possible to mitigate this
bias.

In the final two chapters we take the leap from studying galaxy clusters to studying the
entire cosmic large-scale structure using cosmic shear. Significant advances in computer tech-
nology allow us also to employ a computationally demanding maximum-likelihood algorithm
to extract the power spectrum of cosmic shear in terms of band powers instead of following
the standard approach in the literature of using shear-shear correlation-functions to measure
the cosmic shear signal in real-space. A major advantage of the power-spectrum estimator is
that scale-dependent features such as those caused by massive neutrinos or baryon feedback
can be studied much more cleanly in the cosmic shear power spectrum. In order to improve
cosmological parameter constraints, in Chapter 4 we extend the technique to include red-
shift bins and test it extensively on mock data before applying it to shear catalogues from the
lensing analysis of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLenS; Erben
et al. 2013; Heymans et al. 2012).

Finally, in Chapter 5 we use state-of-the-art shear data based on 450 square degrees of
imaging data from an intermediate data release from KiDS. Again, we apply the cosmic shear
power spectrum estimator to it and derive cosmological parameter constraints. The se results
are in tension with latest CMB results from Planck Collaboration XIII (2015a) but agree well
with other low-redshift probes.
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