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Abstract

Current acellular pertussis (aPV) vaccines promote a T-helper 2 (Th2)-dominated response, 
while Th1/Th17 cells are protective. As our previous study showed, after adding a non-toxic 
TLR4 ligand, LpxL1, to the aPV in mice, the Bordetella pertussis-specific Th2 response is 
decreased and Th1/Th17 responses are increased as measured at the cytokine protein level. 
However, how this shift in Th response by LpxL1 addition is regulated at the gene expression 
level remains unclear. Transcriptomics analysis was performed on purified CD4+ T-cells of 
control and vaccinated mice after in vitro restimulation with aPV antigens. Multiple key 
factors in Th differentiation, including transcription factors, cytokines, and receptors, were 
identified within the differentially expressed genes. Upregulation of Th2- and downregulation 
of follicular helper T-cell-associated genes were found in the CD4+ T-cells of both aPV- and 
aPV+LpxL1-vaccinated mice. Genes exclusively upregulated in CD4+ T-cells of aPV+LpxL1-
vaccinated mice included Th1 and Th17 signature cytokine genes Ifng and Il17a respectively. 
Overall, our study indicates that after addition of LpxL1 to the aPV the Th2 component is not 
downregulated at the gene expression level. Rather an increase in expression of Th1- and 
Th17-associated genes caused the shift in Th subset outcome. 
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Introduction

Pertussis or whooping cough, caused by the gram-negative bacterium Bordetella pertussis, 
remains endemic even in highly vaccinated populations [1-3]. This resurgence has been 
ascribed to multiple causes, including suboptimal programming of the adaptive immune 
response by second generation acellular pertussis (aPV) vaccines. This has been supported by 
several studies in different models, namely mice, baboons, and humans, which have revealed 
that a mixed T-helper 1 (Th1) and Th17 type of CD4+ T-cell response is induced by B. pertussis 
infection [4-7]. Moreover, these Th subsets have been shown, by both the mice and baboon 
models, to be crucial in the protection against B. pertussis [4, 7]. In contrast, the CD4+ T-cell 
response induced by current aPV is rather Th2-dominated [4, 8-10].

Th subsets are mainly identified by the production of Th subset signature cytokines, such as 
IFNγ (Th1), IL-4, IL-5, and IL-13 (Th2), IL-17A (Th17), IL-10 and TGFβ (regulatory T-cells (Treg)), 
and IL-21 (follicular helper T-cells (Tfh)). CD4+ T-cell differentiation has several underlying 
processes. After activation through their T-cell receptors, the functional programming of CD4+ 
T-cells is initiated by differentiation cytokines produced in the priming microenvironment, 
such as IL-12, interacting with their cognate receptors. This results in the activation of signal 
transducer and activator of transcription (Stat) proteins [11], which induce the expression of 
master transcription factors. Each Th subset can be defined by the expression of Stat proteins 
and master transcription factors, namely Stat4/Stat1/Tbet (Th1), Stat5/Stat6/Gata3 (Th2), 
Stat3/Rorγt (Th17), Stat5/FoxP3 (Treg), and Stat3/Bcl6 (Tfh) [11-13]. These master transcription 
factors subsequently induce expression of many Th subset-associated genes and silence 
genes expressed in other Th subsets. These genes include chemokine and cytokine receptors, 
which also can be used to discriminate between Th subsets. Th1 cells are characterized by 
CCR1/CCR5/CXCR3 expression, Th2 cells by CCR3/CCR4/CCR8 expression, Th17 cells by CCR4/
CCR6 expression, Treg cells by CD25 expression, and Tfh cells by CXCR5 expression [14].

Recently, the programming of aPV-induced CD4+ memory T-cells was investigated using 
genome-wide gene expression profiling of human CD4+ T-cells [15]. This approach revealed co-
expression of both Th2- and Th1-associated gene modules in reactivated CD4+ memory T-cells 
generated after aPV vaccination in children. This raised the question of how these in principle 
antagonistic gene modules can establish a predominantly functional Th2 type of CD4+ T-cell 
outcome. These gene modules, it was suggested, may exist in a dynamic equilibrium, and 
depending on ongoing response, the intensity of module components may tip the balance 
in Th subset outcome towards a Th1 or Th2 response. As several preclinical studies have 
demonstrated, steering the aPV-induced Th2-dominated response towards a more favorable 
Th1 and Th17 type of response at the cytokine protein level through the use of adjuvants is 
feasible, for example through replacement of the currently used adjuvant alum in the aPV 
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with TLR2 or TLR9 ligands [4, 16]. We recently showed that also adding the TLR4 ligand 
LpxL1, a non-toxic Neisseria meningitidis LPS derivative, to an alum-containing aPV skewed 
the vaccine-induced CD4+ T-cell response towards a Th1/Th17 type of CD4+ T-cell response 
at the cytokine level [10]. Yet, how the Th subset outcome in the aPV-induced B. pertussis-
specific CD4+ T-cell response by LpxL1 as adjuvant is regulated at the level of gene expression 
remains unclear. This insight is necessary to understand shortcomings and improvement of 
current aPV vaccination.

Therefore, in the present study we compared, in mice, gene expression profiles of B. pertussis-
specific CD4+ T-cells induced by aPV or LpxL1-adjuvanted aPV vaccination. Short stimulation 
of splenocytes of vaccinated mice with B. pertussis antigens activated the B. pertussis-specific 
CD4+ T-cells, after which microarray analysis was performed on RNA from isolated CD4+ 
T-cells. Distinct profiles in CD4+ T-cells were found that are potentially useful in the evaluation 
of new vaccine candidates and adjuvants.
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Results
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Figure 1 - Visualization of differences in gene expression in CD4+ T-cells of control, aPV-, and aPV+LpxL1-
vaccinated mice by principle component analysis. (A) Principal component analysis, based on the differentially 
expressed genes, showing (dis)similarities in gene expression in samples stimulated with the Ptx, FHA, and Prn 
combination (dark colors, n = 5 per group) and medium controls (light colors, n = 3 per group) in all vaccination 
groups (PBS (blue), aPV (red), aPV+LpxL1 (green)) are shown. (B) Venn diagram showing the amount of 
overlap between up- (red) and downregulated (green) genes in 24 hour B. pertussis antigen-stimulated CD4+ 
T-cells of aPV- and aPV+LpxL1-vaccinated mice, as compared to control mice, based on averaged normalized 
gene expression levels of groups.
 

B. pertussis-specific CD4+ T-cell transcriptome of aPV- or aPV+LpxL1-vaccinated 
versus control mice

To determine how addition of LpxL1 to the aPV regulates the Th subset outcome of the 
vaccine-induced B. pertussis-specific CD4+ T-cells on the molecular level, gene expression 
profiles of these responding CD4+ T-cells were investigated. Splenocytes from control, aPV- 
and aPV+LpxL1-vaccinated mice were shortly stimulated with B. pertussis antigens, Ptx, 
FHA, and Prn, after which microarray analysis was performed on RNA from isolated CD4+ 
T-cells. The gene expression profiles of unstimulated CD4+ T-cells of all groups were taken 
as a baseline, to establish whether there is an intrinsic difference between the groups. No 

Figure 2 (Right) - Gene expression profiles of B. pertussis-specific CD4+ T-cells of aPV- and aPV+LpxL1- 
vaccinated mice. The heatmaps depict differential up- (red) or downregulation (green) of genes observed in 
24 hour B. pertussis antigen-stimulated CD4+ T-cells of vaccinated compared to control mice (FR ≥ 1.5). (A) 247 
genes were differentially expressed in CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice. (B) 137 genes 
were differentially expressed in CD4+ T-cells of exclusively aPV-vaccinated mice. (C) 111 genes were differentially 
expressed in CD4+ T-cells of exclusively aPV+LpxL1-vaccinated mice. Expression data shown are averages from 
the samples of 5 mice per group. 
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significant differentially expressed genes could be identified between these unstimulated 
samples (criteria: p-value ≤ 0.001, fold ratio (FR) ≥ 1.5). Nevertheless, to exclude small intrinsic 
non-significant differences, the expression intensities of the antigen-stimulated samples 
were corrected for the average expression intensities of unstimulated samples of their 
corresponding group. In total, 1876 differentially expressed genes (p-value ≤ 0.001, FR ≥ 1.5) 
were identified between averaged unstimulated samples and antigen-stimulated samples of 
the control, aPV-, or aPV+LpxL1-vaccinated groups. A principal component analysis on these 
genes showed differences in gene expression profiles between unstimulated and stimulated 
samples of all groups, including control mice, suggesting an effect of the stimulation on naive 
CD4+ T-cells (Figure 1A). However, distinct gene expression profiles between stimulated 
samples of all groups were still observed, revealing functionally differently programmed B. 
pertussis-specific CD4+ T-cells (Figure 1B). After comparing the B. pertussis antigen-stimulated 
samples of vaccinated mice with those of control mice, differential expression (FR ≥ 1.5) of 
384 and 358 genes was identified in the CD4+ T-cells of, respectively, aPV- and aPV+LpxL1-
vaccinated mice. Overlap comparison showed that 247 genes were differentially expressed 
in CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice, 137 genes were exclusively 
differentially expressed in CD4+ T-cells of aPV-vaccinated mice and 111 genes were exclusively 
differentially expressed in CD4+ T-cells of aPV+LpxL1-vaccinated mice (Figures 1 and 2).

Over-representation of immune- and metabolism-related terms after aPV- and 
aPV+LpxL1- vaccination

To provide more insight in the differentially expressed genes, functional annotation and over-
representation analysis (Benjamini-corrected p-value ≤ 0.05) in GO-BP and KEGG databases 
were performed using DAVID [17]. Analysis of the overlapping 247 differentially expressed 
genes in CD4+ T-cells from both aPV- and aPV+LpxL1-vaccinated mice showed that 74 GO-
BP terms and 8 KEGG pathways were enriched. Based on exclusion of overlapping terms/
pathways and their relevance, a selection of these terms/pathways is shown in Figure 3A. 
The enriched terms/pathways are mainly involved in the regulation of the adaptive immune 
response, as indicated by terms as regulation of lymphocyte activation (GO:0051249), 
proliferation (GO:0050670), and differentiation (GO:0045597), and cytokine signaling, 
including chemotaxis (GO:0006935) and Jak-STAT signaling pathway (mmu4630). Moreover, 
the enrichment of the asthma pathway (mmu05310) indicates the presence of Th2-associated 
genes. Further, terms involved in metabolic processes are enriched, including positive 
regulation of macromolecule metabolic process (GO:0010604) and positive regulation of 
protein metabolic process (GO:0051247).
Functional annotation and over-representation analysis (Benjamini-corrected p-value ≤ 
0.05) of the 137 genes differentially expressed in CD4+ T-cells of exclusively aPV-vaccinated 
mice revealed enrichment of 9 GO-BP terms. Five relevant terms are depicted in Figure 3B, 
which includes immune response-related terms, such as immune response (GO:0006955) 
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Figure 3 - Functional annotation and pathway enrichment of differentially expressed genes in B. pertussis-
specific CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice. Over-representation analysis (Benjamini-
corrected p-value ≤ 0.05) in GO-BP and KEGG databases was performed using genes differentially expressed 
in B. pertussis antigen-stimulated CD4+ T-cells of vaccinated compared to control mice. Functional annotation 
and pathway enrichment are depicted from genes differentially expressed in CD4+ T-cells of both aPV- and 
aPV+LpxL1 vaccinated mice (A), in CD4+ T-cells of exclusively aPV-vaccinated mice (B), and in CD4+ T-cells of 
exclusively aPV+LpxL1-vaccinated mice (C). The amount of up- or downregulated genes per term/pathway and 
the percentage of the genes in the total term/pathway population are shown.

and regulation of cytokine production (GO:0001817), and metabolism-related terms such 
as oxidation-reduction process (GO:0055114) and regulation of nitric oxide biosynthetic 
process (GO:0045428). Functional annotation and over-representation analysis of the 111 
genes solely altered in CD4+ T-cells of aPV+LpxL1-vaccinated mice showed enrichment of 9 
GO-terms, including inflammatory response (GO:0006954), chemotaxis (GO:0006935), and 
phagocytosis (GO:0006909) (Figure 3C).
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Differential expression of cytokine-encoding genes in vaccine-induced CD4+ 
T-cells

Our previous study investigated the type of CD4+ T-cell response at the protein level by 
determining the percentage of B. pertussis antigen-specific IL-5-, IFNγ-, and IL-17A-positive CD4+ 
T-cells using flow cytometry and by supernatant analysis. It showed that addition of LpxL1 to 
the aPV skews the CD4+ T-cell response of a Th2-dominated to a mixed response, dominated 
by Th1/Th17 [10]. Therefore, we investigated in more detail the expression of cytokine-
encoding genes. Some Th subset signature cytokine-encoding genes could be identified 
which were upregulated in the CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice, such 
as Il4, Il5, Il13, Il21, and Il10 (Figure 4A). No signature cytokine-encoding genes were found to 
be differentially expressed in the CD4+ T-cells of solely aPV-vaccinated mice, while both Ifng 
and Il17a were found to be upregulated exclusively in those of aPV+LpxL1-vaccinated mice 
(Figure 4C). In addition to the Th subset signature cytokines-encoding genes, other cytokine 
genes were differentially expressed of which 19 were found in CD4+ T-cells of aPV- as well as 
aPV+LpxL1-vaccinated mice. Genes Il3, Il9, Ccl1, Ccl17, and Ccl24 were upregulated, whereas 
downregulation was found for genes encoded for chemokines, Cxcl1, Ccl2, Cxcl2, Cxcl5, Cxcl3, 
Ccl3, and Csf3, and pro-inflammatory cytokines, Il1b, Il6, Tnf, and Il18 (Figure 4A). Five genes 
encoding other cytokines were detected in the CD4+ T-cells of exclusively aPV-vaccinated 
mice, which included downregulation of Cxcl10, IL12a, Il1a, and Tnfsf12 and upregulation of 
Flt3l (Figure 4B). Three upregulated genes were found only in those of aPV+LpxL1-vaccinated 
mice, namely Cxcl9, Ccl5, and Cxcl16 (Figure 4C). Together, these results indicate substantial 
overlap in the expression of cytokine-encoding genes, including Th2 signature cytokines, 
after both aPV- and aPV+LpxL1- vaccination, while expression of genes encoding Th1 and Th17 
signature cytokines is only induced by aPV+LpxL1 vaccination.
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Figure 4 - Gene expression profile of cytokine encoding genes 
in B. pertussis-specific CD4+ T-cells of aPV- and aPV+LpxL1-
vaccinated mice. Genes encoding cytokines differentially 
expressed in B. pertussis antigen-stimulated CD4+ T-cells of 
both aPV- and aPV+LpxL1-vaccinated mice (A), in CD4+ T-cells 
of exclusively aPV-vaccinated mice (B), and in CD4+ T-cells of 
exclusively aPV+LpxL1-vaccinated mice (C). Expression data 
shown are averages from the samples of 5 mice per group.
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Differential expression of transcription factor-encoding genes in vaccine-
induced CD4+ T-cells

Important in the differentiation of CD4+ T-cells to different Th subsets are the master 
transcription factors, T-bet, Gata3, Rorγt, Bcl6, and FoxP3 [11-13]. Within the CD4+ T-cells 
of both aPV- and aPV+LpxL1-vaccinated mice, Gata3, the gene encoding the Th2 master 
transcription factor was found upregulated whereas Bcl6, the gene encoding the Tfh master 
transcription factor was found downregulated (Figure 5A). Genes encoding other known 
master transcription factors were not found differentially expressed. The expression of 
master transcription factors is regulated by different Stat proteins [11]. Upregulation of only 
one Stat gene, namely Stat5a, which is involved in the differentiation of Th2 and Treg cells, 
was detected within CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice (Figure 5A). 
In addition, five genes encoding other transcription factors were identified as differentially 
expressed in the CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice, including 
upregulation of Pparg, Xbp1, and Ikzf3 and downregulation of Nrld2 and Cebpd (Figure 5A). 
Transcription factors Spic and Tgif1 were found downregulated only in the CD4+ T-cells of 
the aPV-vaccinated mice (Figure 5B), while transcription factors Atf3, Mafb and Batf3 were 
found upregulated only in the CD4+ T-cells of aPV+LpxL1-vaccinated mice (Figure 5C). Based 
on expression of Th differentiating transcription factors, both aPV and aPV+LpxL1 vaccination 
induce Th2 and inhibit Tfh differentiation. 

Atf3
Mafb
Batf3

Gata3
Xbp1
Ikzf3
Pparg
Stat5a
Cebpd
Bcl6
Nr1d2

PBS
aP

V
aP

V+L
px

L1

PBS
aP

V
aP

V+L
px

L1

A B

C

PBS
aP

V
aP

V+L
px

L1

Spic
Tgif1

0.02 0.14 1 7.4 55

Figure 5 - Gene expression profile of transcription factor 
encoding genes in B. pertussis-specific CD4+ T-cells of aPV- and 
aPV+LpxL1-vaccinated mice. Genes encoding transcription 
factors differentially expressed in B. pertussis antigen-stimulated 
CD4+ T-cells from both aPV- and aPV+LpxL1-vaccinated mice (A), 
in CD4+ T-cells of exclusively aPV-vaccinated mice (B), and in CD4+ 
T-cells of exclusively aPV+LpxL1-vaccinated mice (C). Expression 
data shown are averages from the samples of 5 mice per group.

Differential expression of receptor- and cell surface molecule-encoding genes 
in vaccine-induced CD4+ T-cells

Another way to characterize CD4+ T-cell subsets is by the expression of certain receptors 
and cell surface markers. Upregulation of markers Ccr1 and Ccr3 was detected in the CD4+ 
T-cells of aPV- and aPV+LpxL1-vaccinated mice (Figure 6A). Remarkably, higher expression of 
the Th2-associated Ccr3 was seen in aPV+LpxL1 samples than in aPV samples (Figure 6A). In 
addition to the markers used to characterize Th subsets, differential expression was found of 
genes encoding other receptors and cell surface molecules. Of these genes, 24 were found in 
CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice, and of these, 19 genes were upregulated, 
including as Il4ra, and 5 genes were downregulated, including Cxcr2 (Figure 6A). Within the 
CD4+ T-cells of aPV-vaccinated mice, 36 receptor- and cell surface marker-encoding genes were 
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downregulated, including Ly6a, and multiple genes encoding for proteins involved in pattern 
recognition, like Tlr2, Tlr13, Clec4a, Clec4n, and Cd14 (Figure 6B). The 26 upregulated receptor- 
and cell surface marker-encoding genes in the CD4+ T-cells of aPV+LpxL1-vaccinated mice 
included Havcr2, Itga1, and genes encoding proteins involved in the innate immune response, 
such as Tlr4, Clec7a, C3ar1, Fcgr1, Fcgr3, and Fcgr4 (Figure 6C). The 4 downregulated receptor- 
and cell surface marker-encoding genes in samples of aPV+LpxL1-vaccinated mice were Ackr3, 
Ltf, Trbv14, and Trav12-3. Together, these results suggest that aPV+LpxL1 vaccination induces 
expression of genes encoding receptors and cell surface markers associated with Th2 (Ccr3 
and Il4ra), Th1 (Havcr2), and Th17 (Il13ra1) subsets, while aPV vaccination only induced genes 
associated with the Th2 (Ccr3 and Il4ra) subset. 

Differential expression of genes encoding proteins involved in metabolism in 
vaccine-induced CD4+ T-cells

Recent studies have revealed that a shift in metabolism from oxidative phosphorylation 
toward aerobic glycolysis is important in the activation of T-cells [18]. Moreover, the 
production of IFNy in effector T-cells requires aerobic glycolysis [19]. For this reason, we 
also analyzed the expression of genes involved in these metabolic pathways. Only one 
gene encoding a protein involved in the oxidative phosphorylation was found differentially 
expressed, namely Fxn. The Fxn gene was downregulated in CD4+ T-cells of both aPV- and 
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Figure 6 - Gene expression profile of genes 
encoding receptors and cell surface markers 
in B. pertussis-specific CD4+ T-cells of aPV- and 
aPV+LpxL1-vaccinated mice. Genes encoding 
receptors and cell surface markers differentially 
expressed in B. pertussis antigen-stimulated 
CD4+ T-cells of both aPV- and aPV+LpxL1-
vaccinated mice (A), in CD4+ T-cells of exclusively 
aPV-vaccinated mice (B), and in CD4+ T-cells 
of exclusively aPV+LpxL1-vaccinated mice (C). 
Expression data shown are averages from the 
samples of 5 mice per group.
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aPV+LpxL1-vaccinated mice (Figure 7A). Additionally, six genes encoding for proteins with a 
function in the glycolytic process could be identified in the CD4+ T-cells (Figure 7B). Four genes 
were found upregulated in both vaccinated groups, namely Aldoc, Il3, Pfkm, and Pfkp. The Ier3 
gene was downregulated in CD4+ T-cells of aPV-vaccinated mice, while Igf1 was upregulated in 
those of aPV+LpxL1-vaccinated mice. In addition, a recent study has shown that regulation of 
glucose uptake induced by Notch signaling is important in the survival of memory CD4+ T-cells 
[20]. However, no genes involved in this pathway were found to be differentially expressed 
in the CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice. Overall, these data suggest that 
there is no difference in the expression of genes involved in metabolic pathways in CD4+ 
T-cells of aPV- and aPV+LpxL1-vaccinated mice.

Distinct Th subset-associated gene modules expressed after aPV and aPV+LpxL1 
vaccination

Based on literature from human and murine studies, a network analysis was performed to 
visualize the expression patterns of genes associated with different Th subsets that were 
observed in the CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice (Figure 8). In addition to 
genes encoding the previously mentioned master transcription factors, signature cytokines, 
and surface markers, other differentially expressed genes associated with the main Th subsets 
were found. Mainly Th2-associated genes, such as the Th2 subset signature cytokines (Il4, Il5, 
and Il13), Gata3, Il3, Nabp1, and Slc37a3, were found upregulated in the CD4+ T-cells of both 
aPV- and aPV+LpxL1-vaccinated mice. Interestingly, another Th2-associated gene, Socs3, was 
downregulated in the CD4+ T-cells of exclusively aPV+LpxL1-vaccinated mice. Th1-associated 
genes were upregulated in CD4+ T-cells of aPV+LpxL1-vaccinated mice, including Havcr2 and 
chemokines Cxcl9 and Ccl5, while downregulation of Th1-associated genes Scl11a1 and Il12a is 
observed in those of aPV-vaccinated mice. Further, upregulation of Th17-associated genes 
Dse, Il13ra1, and Il17a was only observed in the CD4+ T-cells of aPV+LpxL1-vaccinated mice. 
Differential expression of Treg-associated genes was found in the CD4+ T-cells of aPV- as 
well as aPV+LpxL1-vaccinated mice, namely Il10 and Stat5a. However, other Treg-associated 
genes, Flt3l and Gzmb, were only upregulated in CD4+ T-cells of aPV-vaccinated mice. Only 2 
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Figure 7 - Gene expression profile of genes encoding proteins involved 
in metabolism in B. pertussis-specific CD4+ T-cells of aPV- and aPV+LpxL1-
vaccinated mice. Heatmaps depict genes involved in oxidative phosphorylation 
(A) and glycolytic process (B) that are differentially expressed in B. pertussis 
antigen-stimulated CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice 
compared to control mice. Expression data shown are averages from the 
samples of 5 mice per group.
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Figure 8 (Right) - Network analysis of Th subset-associated genes differentially expressed in B. pertussis-
specific CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice. A gene-function network analysis showing the 
Th subset-associated genes differentially expressed in B. pertussis antigen-stimulated CD4+ T-cells of aPV- and 
aPV+LpxL1-vaccinated was performed using Cytoscape to visualize the patterns of Th subset-associated genes 
induced by the different vaccines. Association of genes with the gene modules (blue rectangles) was based on 
literature from mouse (bold blue lines) and human (thin blue lines) studies. The interactions between genes 
(grey lines) were determined using the STRING database. The shape of the gene nodes indicate whether genes 
were differentially expressed in CD4+ T-cells of both vaccination groups (circles), had the highest fold-change in 
either the CD4+ T-cells of aPV-vaccinated mice (diamonds) or in those of aPV-LpxL1-vaccinated mice (triangles). 
The color intensity of the gene nodes indicate whether genes were differentially expressed in CD4+ T-cell of 
both aPV- and aPV+LpxL1-vaccinated mice (light green and red) or in CD4+ T-cells of exclusively aPV-vaccinated 
mice or in those of exclusively aPV+LpxL1-vaccinated mice (dark green and red).

Tfh-associated genes were found in our study, Bcl6 and Il21, which were respectively down- 
and upregulated in CD4+ T-cells of both the aPV- and aPV+LpxL1-vaccinated mice. Moreover, 
genes involved in glycolysis were found in CD4+ T-cells of both vaccination groups of which 2 
genes are associated with the Th2 subset, namely Pgkp and Il3. Based on this gene expression 
network, our results suggest that aPV vaccination induces mainly Th2 and Treg gene modules, 
while addition of LpxL1 to the aPV induces a shift towards Th1 and Th17 gene modules.

Enrichment of transcription factor-binding sites within the gene set of 
differentially expressed genes in CD4⁺ T-cells of aPV- or aPV+LpxL1-vaccinated 
mice

To further provide insight in the concerted regulation of the differentially expressed genes 
in CD4⁺ T-cells of aPV and aPV+LpxL1 mice, a transcription factor-binding site (TFBS) analysis 
was performed. This analysis revealed enrichment of binding sites for SPIB, RELA, and IRF2 
within the promoter regions of upregulated genes in the CD4⁺ T-cells of aPV-vaccinated 
mice and ELF5, SPI1, Klf4, SPIB, RELA, REL, ELK1, NF-kappaB, and FEV within the upregulated 
genes in the CD4⁺ T-cells of aPV+LpxL1-vaccinated mice, respectively (Figure S1). Binding 
sites for transcription factors within the downregulated genes in the CD4⁺ T-cells of aPV-
vaccinated mice were NF-kappaB and RELA, while no enrichment of TFBS was found within 
the downregulated genes in the CD4⁺ T-cells of aPV+LpxL1-vaccinated mice (Figure S1). An 
overview of the top 20 transcription factors from each analyzed gene set is given in Table S1. 
These results suggest the involvement of multiple transcription factors that regulate the 
distinct of Th subset-related gene expression observed after addition of LpxL1 to the aP 
vaccine. Whereas SPIB and RELA were found in both groups, SPI1, Klf4, and NF-kappaB were 
only involved after addition of LpxL1.
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Discussion

Addition of the TLR4 ligand LpxL1 to an aPV was found to dampen the Th2 dominance of  
the antigen-specific CD4+ T-cell response of vaccinated mice and to increase a Th1/Th17 type 
response, based on cytokine analysis [10]. In the present study, this skewing was investigated 
in more detail at the gene expression level. Analysis of the expression of Th subset signature 
cytokine-encoding genes revealed an increased expression of Ifng and Il17a in CD4+ T-cells 
of exclusively aPV+LpxL1-vaccinated mice, which is consistent with our previous findings. 
Most importantly, the Th2 subset signature cytokine genes Il4, Il5, and Il13 showed increased 
expression in the CD4+ T-cells of aPV- as well as aPV+LpxL1-vaccinated mice, suggesting that 
the Th2 component is not downregulated at the gene expression level of Th subset signature 
cytokines after addition of LpxL1 to the aPV.

Other Th1-, Th17-, and Th2-associated genes showed the same trend as the genes encoding 
Th signature cytokines. Genes associated with the Th1 subsets had increased expression 
in the CD4+ T-cells of exclusively aPV+LpxL1-vaccinated mice, including genes encoding 
chemokines (Ccl5 and Cxcl9) and cell surface marker Havcr2 (Tim3). Both Ccl5 and Cxcl9 are 
chemoattractants for Th1 cells and are described to be produced by human CD4+ T-cells [21, 
22]. Havcr2 is a cell surface marker preferentially expressed on Th1 cells and its expression 
is induced by Th1 master transcription factor T-bet [23]. Th17-associated genes that showed 
increased expression solely in the CD4+ T-cells of aPV+LpxL1-vaccinated mice were Il13ra1 and 
Dse. IL-13Rα1 is a functional receptor found on both murine and human Th17 cells while it is 
not expressed on Th0, Th1, Th2, and Treg cells [24]. Binding of IL-13 to this receptor attenuates 
the production of IL-17A [24]. Further, Dse is an intracellular enzyme involved in epitope 
processing and is preferentially expressed in human Th17 cells [25].

Remarkably, several other Th2-associated genes also showed increased expression in CD4+ 
T-cells of both aPV- and aPV+LpxL1-vaccinated mice, of which most genes showed the same 
trend as the expression of the Th2 subset signature cytokine-encoding genes. These other 
Th2-associated genes include Th2 master transcription factor Gata3, Stat protein Stat5a, 
chemokine-receptors Ccr1 and Ccr3, and cytokine-receptor Il4ra, and other genes, namely 
Rab19, Nabp1, Scl37a3, and Pfkp [15]. Interestingly, downregulation of Th2-associated Socs3 
is observed in the CD4+ T-cells of exclusively aPV+LpxL1-vaccinated mice. Socs3, suppressor 
of cytokine signaling-3, is preferentially expressed in Th2 cells [26] and inhibits Th1 and 
Th17 differentiation by suppressing STAT4 and STAT3 activation, respectively [27, 28]. 
Downregulation of Socs3 in CD4+ T-cells of aPV+LpxL1-vaccinated mice suggests reduced 
active suppression of Th1 and Th17 differentiation when LpxL1 is present in the aPV and 
thereby favors Th1 and Th17 differentiation.
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In addition to the involvement of the Th1, Th2, and Th17 subsets, this study in aPV- and 
aPV+LpxL1-vaccinated mice revealed gene expression modules pointing at the induction or 
inhibition of other Th subsets, namely Treg and Tfh. Treg cells were induced by both aPV and 
aPV+LpxL1 vaccination, since increased expression of a Treg subset signature cytokine gene, 
Il10, as well as the Treg-associated Stat gene, Stat5a, was detected in CD4+ T-cells of both 
groups. However, expression of Gzmb, encoding Granzyme B, which has cytolytic functions 
and is expressed in different cells including Tregs [29,30], showed increased expression in the 
CD4+ T-cells of exclusively aPV-vaccinated mice. Together with the increased expression of 
Flt3l, which is involved in the expansion of Treg cells [31], in only the samples of aPV-vaccinated 
mice, this suggests that increased numbers of Treg cells were induced after vaccination with 
the aPV alone. Tfh master transcription factor Bcl6 showed decreased expression in the CD4+ 
T-cells of both aPV- and aPV+LpxL1-vaccinated mice, indicating that differentiation towards 
the Tfh subset was suppressed. This seems contradictory given the increased expression of 
the Tfh subset signature cytokine gene Il21. However, this cytokine can also be produced by 
Th17 cells [32]. Some induction of Th17 cells by aPV vaccination might explain the increased 
expression of Il21. A study of Ross et al. indeed showed that Th17 cells could be detected in 
mice after aPV vaccination [4]. These results are consistent with the increased expression of 
Ikzf3 in CD4+ T-cells of both aPV- and aPV+LpxL1-vaccinated mice, since this gene is specifically 
expressed in Th17 cells [33].

In addition to Th subset associated genes, genes encoding proteins that are involved in 
metabolism were investigated, since a shift in metabolism from oxidative phosphorylation 
toward aerobic glycolysis is important in the activation of T-cells [18]. Only a small number of 
genes involved in oxidative phosphorylation and glycolysis were differentially expressed in 
the CD4+ T-cells of aPV- and aPV+LpxL1-vaccinated mice. The genes encoding proteins involved 
in glycolysis, namely Il3, Pfkp, Aldoc, and Pfkm, showed increased expression in the samples 
of both aPV- and aPV+LpxL1-vaccinated mice. Interestingly, Il3 and Pfkp are also associated 
with Th2 cells [15]. Overall, these results suggest little or no difference in the activation of 
CD4+ T-cells based on metabolism by the different vaccines.

Within the set of genes differentially expressed in CD4+ T-cells of aPV- and aPV+LpxL1-
vaccinated  mice, genes were found encoding proteins with a known function in the innate 
immune system, including cytokines (Il6, Il1b, Tnf, and Il12a), complement components (C1qa, 
C1qb, C1qc, Cd55, Cfb, C3, Cd93, C3ar1, Itgam), Toll-like receptors (Tlr2, Tlr13, and Tlr4), C-type 
lectin receptors (Clec4a, Clec4d, Clec4n, Clec7a, Cd302), and Fc-receptors (Fcgr1, Fcgr3, and 
Fcgr4). It is unlikely that these innate gene signatures can be fully explained by contamination 
of innate immune cells within the CD4+ T-cell fraction, since the purity of the samples was 
>95%. Interestingly, several of these innate immunity genes are known to be expressed in CD4+ 
T-cells, including complement components such as Itgam, C3ar1, and Cd55 [34-36]. Signaling 
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through C3a receptor 1, upregulated gene in aPV+LpxL1 samples, by binding a derivative 
of C3, downregulated gene in aPV samples, has been associated with a Th2 [37] and a Th1 
response [38], and with inhibition of Treg function [39]. Moreover, some TLRs, such as TLR2 
and TLR4, are also expressed on CD4+ T-cells. Signaling via TLR2, which is downregulated in 
aPV samples, has been found to induce IFNγ production by Th1 cells [40] and might even 
inhibit IL-4 production [41]. In addition, TLR2 signaling promotes the differentiation of Tregs 
into Th17 cells in human [42]. Signaling through TLR4 which gene expression is upregulated 
in aPV+LpxL1 samples is reported to provide a signal for proliferation and cell survival and 
seems to regulate persistence of Th lineages [43]. Furthermore, the Fc-gamma receptor Fcgr3 
gene, which was upregulated in aPV+LpxL1 samples, was shown to be expressed on a small 
proportion of CD4+ T-cells with an effector memory phenotype [44] and activated CD4+ T-cells 
expressing IFNγ and T-bet [45]. Together these data indicate that the differential expression 
of innate genes could have a function in CD4+ T-cells.

TFBS analysis indicated enrichment of binding sites for three members of the NF-κB family, 
REL, RELA, and NF-kappaB, in the gene set from the CD4⁺ T-cells of aPV+LpxL1-vaccinated 
mice, while enrichment of binding sites of only one member, RELA, was observed in those 
of aPV-vaccinated mice. Signaling via multiple receptors, including T-cell receptor, TLRs, 
including TLR4, and pro-inflammatory cytokine receptors, can lead to the activation of NF-
κB [46]. Together with the observed upregulation of Tlr4 in the gene set of CD4⁺ T-cells 
of exclusively aPV+LpxL1-vaccinated mice, this suggests that LpxL1 might directly activate 
these transcription factors via TLR4 signaling. Moreover, there is evidence that and RELA 
is associated with Th17 differentiation [47] and REL with Th1 [48] and Th17 differentiation 
[47], although conflicting results are published regarding the association of REL with Th17 
differentiation [49]. In addition, enrichment of binding sites of Klf4 was observed in the gene 
set of CD4⁺ T-cells of exclusively aPV+LpxL1-vaccinated mice, which is also associated with 
Th17 differentiation [50]. Binding sites for SPI1 were also enriched within this gene set, which 
is known to inhibit the expression of Th2 cytokines [51]. Together, the data indicate that LpxL1 
activates several transcription factors associated with Th1 and Th17 differentiation, which 
corroborates our findings of the expression of Th-related genes. Furthermore, the results 
suggest that LpxL1 might activate these transcription factors via TLR4 signaling.

Within the CD4+ T-cells of aPV+LpxL1-vaccinated mice, increased expression of Th1- and 
Th17-associated genes, including the signature cytokine genes Ifng and Il17a, was observed. 
However, no increased expression of the master transcription factors of Th1 and Th17 
cells, Tbx21 and Rorc respectively, was found. An in vitro effect of 24-hour stimulation with 
B. pertussis antigens might underlie this effect, since in our previous study IFNγ and IL-17A 
production by naive CD4+ T-cells was detected after stimulation with the B. pertussis antigens 
[10]. Indeed, in the current study, differently expressed genes found between unstimulated 
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versus antigen-stimulated CD4+ T-cells of control mice were detected, including the Th1 
master transcription factor gene Tbx21 and Th1 Stat gene Stat1. Therefore, we interpret 
the lack of differential expression of Th1 and Th17 master regulators in the samples of the 
vaccinated mice compared to those of control mice to be a result of an increased background 
expression in naive CD4+ T-cells induced by the in vitro B. pertussis antigen stimulation. 
This in vitro activation of naive CD4+ T-cells could also explain why only a few genes were 
found corresponding to proteins involved in metabolism, since the metabolism is altered by 
activation of CD4+ T-cells [18].

Although addition of LpxL1 to the aPV led to a decreased percentage of Th2 cells and 
reduced in vitro Th2 cytokine levels in B. pertussis antigen-stimulated CD4+ T-cell cultures 
from vaccinated mice in our previous study [10], no or only a limited decrease in expression 
of Th2-associated genes was observed in the current study, except for Socs3. This might 
be explained by the duration of in vitro stimulation of the CD4+ T-cells, since in the gene 
expression analysis the duration was shorter (24 hours) than in the functional read-out study 
(8 days). In addition, there might be reduced translation of the Th2 cytokine mRNA due to 
Th1- and Th17-associated miRNA translational repression. Such mechanism was shown for 
Th1-specific miR-135b [52] repressing Th2-associated genes Stat6 and Gata3 mRNA translation 
to protein [53]. Therefore, we propose that the shift towards a mixed Th1 and Th17 response 
is likely due to increased expression of Th1- and Th17-associated gene modules rather than 
downregulation of the Th2-associated gene module. Interestingly, White et al. (2012) also 
found a decisive role for the Th1 gene network module in the outcome of Th responses. 
In their study, extreme Th2 dominance in atopic allergy was associated with the complete 
absence of the Th1 gene network module [15]. A limitation of our study is that the differences 
on gene expression are measured on the total splenic CD4+ T-cell population. Therefore, the 
question remains whether the shifts in gene modules observed at the population level also 
occur within the same cell. In future research, investigating the gene expression on single cell 
level can overcome this limitation, as was described by Chattopadhyay et al. [54].

In summary, this study provides a gene expression network model that may explain why aPV 
vaccination induces Th2 and Treg differentiation of CD4+ T-cells, and why addition of LpxL1 to 
the aPV leads to the induction of Th1 and Th17 cells. Together with our previous data, showing 
a shift from a Th2-dominated response to a mixed Th1/Th17 response at the cytokine protein 
level, this study indicates that only a small change in the balance between the expression 
of Th1/Th17- and Th2-associated genes results in a shift in Th type. Moreover, this model 
can be used in the evaluation of the effects of new adjuvants on vaccination-induced T-cell 
responses, in particular in the context of improving acellular pertussis vaccines.
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Materials and Methods

Ethics statement
This study was approved by the Committee on Animal Experimentation of the Netherlands 
Vaccine Institute (Bilthoven, The Netherlands) under permit number 201200115. Animal 
handling in this study was carried out in accordance with relevant Dutch national legislation, 
including the 1997 Dutch Act on Animal Experimentation.

Vaccines and antigens
Pertactin P.69 (Prn) was expressed in Escherichia coli, purified as described previously [55] 
and was tested for E. coli LPS impurities using a Limulus Amebocyte Lysate (LAL) test. The 
endotoxin level was < 0.015 EU/ml. Purified filamentous hemagglutinin (FHA) and pertussis 
toxin (Ptx) were obtained from Kaketsuken (Japan) and Ptx was heat-inactivated at 95°C for 
15 minutes before use. The registered combined pentavalent diphtheria, tetanus, and acellular 
pertussis vaccine (Infanrix; aPV) was purchased from GlaxoSmithKline and one human dose 
(HD) contains a minimum of 30 I.E. diphtheria toxoid, a minimum of 40 I.E. tetanus toxoid, 25 
μg FHA, 25 μg Ptx, and 8 μg Prn, all absorbed to aluminumhydroxide. LpxL1, a meningococcal 
LPS derivative, was engineered and obtained as described elsewhere [56].

Mice and immunization
Adult (6-8 weeks old) Balb/c mice (Harlan, The Netherlands) were vaccinated s.c. on day 0 
(right flank) and day 28 (left flank) with 0.3 ml of 1/4 HD aPV, 1/4 HD aPV supplemented with 
1 µg non-adsorbed LpxL1 (aPV+LpxL1), or as a control with PBS, with 5 mice per group. Mice 
were sacrificed on day 38, after which spleens were harvested from each mouse.

Isolation and in vitro restimulation of splenocytes
From each mouse, homogenized splenocytes were treated with erythrocyte lysis buffer 
(8.3 g/L NH4CL, 1 g/L NaHCO3, 5000 IE/L Heparin in dH20; pH 7.4) and transferred to 24-well 
plates (6x106 cells/well). The cells were cultured in IMDM medium (Gibco) supplemented 
with 8% FCS, 100 units penicillin, 100 units streptomycin, 2.92 mg/ml L-glutamine, and 20 μM 
β-mercaptoethanol (Sigma) at 37°C in a humidified atmosphere of 5% CO2. The cells were 
either left unstimulated or stimulated for 24 hours with a combination of Prn, Ptx, and FHA (1 
µg/ml each)(2 replicate wells per condition), after which the cells were harvested and pooled 
per culture condition per mouse.

CD4+ T-cell isolation and purity check
From each cultured splenocyte sample CD4+ T-cells were isolated by positive selection 
using CD4 magnetic microbeads and a magnetic cell separator (Miltenyi Biotech) according 
to the manufacturer’s instructions. The purity of the CD4+ T-cells was determined using 
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flowcytometry. Briefly, the isolated cells were stained with Pacific blue-conjugated anti-CD4 
(Biolegend) in FACS buffer (PBS (pH 7.2) supplemented with 0.5% BSA (Sigma Aldrich) and 
0.5 mM EDTA (ICN Biomedicals). After washing, data were acquired on a FACS Canto II (BD 
Biosciences) and analyzed using FlowJo software (Tree Star). The purity of the isolated CD4+ 
T-cells was >95%.

RNA extraction
From each CD4+ T-cell preparation, cells were lysed in Qiazol (Qiagen) and RNA isolation 
was performed using a miRNeasy Mini Kit with DNAse treatment (Qiagen) according to the 
manufacturer’s protocol. RNA concentrations and quality were determined using respectively 
UV spectroscopy (Tech3 module, Synergy Mx, BioTek) and electrophoresis (RNA nano 6000 
kit, 2100 Bioanalyzer, Agilent Technologies). 

Microarray analysis
Amplification, labeling and hybridization of RNA samples to microarray chips (GeneChip HT 
MG-430 PM Array Plate; Affymetrix) were carried out at the Microarray Department of the 
University of Amsterdam (The Netherlands) according to Affymetrix protocols. Array plates 
were scanned with a Genechip HT array plate scanner and analyzed with the Affymetrix 
HT software suite. Microarray analysis was performed on 3 unstimulated and 5 antigen 
stimulated samples per group.

Data analysis of gene expression
Quality control and normalization of Affymetrix CEL files were performed using the 
ArrayAnalysis website (www.arrayanalysis.org) [57], using the Robust Multichip Average 
(RMA) method [58] and the MBNI custom CDF version 15 [59]. Normalized data consisted 
of Log2 transformed signal values for 17306 genes. All slides passed quality control. Further 
analysis of normalized data was performed in R (www.r-project.org) and Microsoft Excel. 
Genes differentially expressed between the different groups of immunized mice were identified 
by using ANOVA. Fold ratio induction or repression of individual genes was calculated by 
comparing mean gene expression levels of the different immunization groups. Probes were 
considered differentially expressed if they met the following two criteria: (i) a p-value ≤ 0.001 
(ANOVA), which corresponds to a Benjamini-Hochberg False discovery rate (FDR) of 5%; and 
(ii) an absolute fold ratio ≥ 1.5. Heatmaps visualizing differently expressed genes were made 
using GeneMaths XT software (Applied Maths). Hierarchical clustering of the differentially 
expressed genes was performed in GeneMaths XT software using Euclidean distance (with 
variances) as a distance metric and UPGMA linkage. Additional data visualization was done 
by Principal Component Analysis in R. Functional enrichment with an over-representation 
analysis (ORA) was performed using DAVID [17] based on Gene Ontology biological processes 
(GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 
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Transcription factor-binding site analysis
For the transcription factor binding site (TFBS) analysis, the platform oPOSSUM3.0 (http://
opossum.cisreg.ca/oPOSSUM3) was used. To evaluate whether a TFBS is enriched within 
the different gene sets, the software detects known transcription factor binding sites in the 
promoter sequences of the co-expressed genes [60]. Up- and downstream sequences (5000 
bp) of up- or downregulated genes in CD4⁺ T-cells of aPV- or aPV+LpxL1-vaccinated mice were 
analyzed using the default parameters in oPOSSUM 3.0 Single Site Analysis (SSA). A TFBS 
was considered enriched when it met the following criteria, Z-score > 10 and Fischer score > 
7, which are the recommended criteria at the oPOSSUM site.

Gene network analysis
To construct a gene-function network, genes associated with Th subsets and metabolism 
were determined using text mining in murine and human studies.  Interactions between genes 
associated with Th subsets and metabolism were determined using the STRING database 
(http://string.embl.de/) with high confidence (0.700) and using co-occurrence, co-expression, 
experiments, databases, and text mining as types of evidence. The network visualization was 
performed using Cytoscape (version 2.8.3).
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Supplementary information

Figure S1 - Over-representation of transcription factor-binding sites. Using the web-based platform 
oPOSSUM3.0 (http://opossum.cisreg.ca/oPOSSUM3) over-representation of transcription factor binding sites 
(TBFS) was analyzed within all upregulated genes in CD4⁺ T-cells of aPV-vaccinated (A) or aPV+LpxL1-vaccinated 
(B) mice, or within all downregulated genes in CD4⁺ T-cells of aPV-vaccinated (C) or aPV+LpxL1-vaccinated (D) 
mice. A TFBS was considered over-represented when it met the following criteria, Z-score > 10 and Fischer 
score > 7, which are the recommended criteria at the oPOSSUM site.
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Top 20 over-represented TFBS within upregulated genes in CD4⁺ T-cells of aPV vaccinated mice (A)

Transcription 

factor
JASPAR ID Class Family

Target 

gene hits

Target 

TFBS  hits
Z-score

Fisher 

score

REL MA0101.1 Ig-fold Rel 87 291 17.504 6.387

Pax4 MA0068.1 Helix-Turn-Helix Homeo 3 3 16.198 4.191

IRF2 MA0051.1 Winged Helix-Turn-Helix IRF 14 14 13.414 8.012

Stat3 MA0144.1 Ig-fold Stat 79 227 12.747 4.469

SPIB MA0081.1 Winged Helix-Turn-Helix Ets 140 1449 11.833 10.628

RELA MA0107.1 Ig-fold Rel 65 131 11.748 8.211

FEV MA0156.1 Winged Helix-Turn-Helix Ets 115 693 11.428 3.568

NF-kappaB MA0061.1 Ig-fold Rel 69 172 11.185 5.745

ELK1 MA0028.1 Winged Helix-Turn-Helix Ets 107 478 10.969 6.278

ELF5 MA0136.1 Winged Helix-Turn-Helix Ets 133 959 9.624 9.058

STAT1 MA0137.2 Ig-fold Stat 54 98 9.482 4.676

Pax6 MA0069.1 Helix-Turn-Helix Homeo 17 17 8.211 6.710

Hand1::Tcfe2a MA0092.1 Zipper-Type Helix-Loop-Helix 105 477 8.111 3.784

MEF2A MA0052.1 Other Alpha-Helix MADS 64 121 7.405 8.167

EBF1 MA0154.1 Zipper-Type Helix-Loop-Helix 91 324 6.954 4.987

SPI1 MA0080.2 Winged Helix-Turn-Helix Ets 128 789 6.414 8.651

NFATC2 MA0152.1 Ig-fold Rel 121 726 5.493 6.012

NR3C1 MA0113.1 Zinc-coordinating Hormone-nuclear Receptor 22 28 5.094 3.164

EWSR1-FLI1 MA0149.1 Winged Helix-Turn-Helix Ets 3 3 4.797 2.055

FOXF2 MA0030.1 Winged Helix-Turn-Helix Forkhead 31 51 4.707 2.120

Table S1 – Top 20 TFBS found in gene sets from CD4⁺ T-cells of aPV- or aPV+LpxL1-vaccinated mice.
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Top 20 over-represented TFBS within downregulated genes in CD4⁺ T-cells of aPV vaccinated mice (C)

Transcription 

factor
JASPAR ID Class Family

Target 

gene hits

Target 

TFBS  hits
Z-score

Fisher 

score

RELA MA0107.1 Ig-fold Rel 82 160 15.089 7.836

CEBPA MA0102.2 Zipper-Type Leucine Zipper 132 512 13.306 4.313

IRF1 MA0050.1 Winged Helix-Turn-Helix IRF 69 129 12.800 4.975

NF-kappaB MA0061.1 Ig-fold Rel 94 197 11.408 8.238

REL MA0101.1 Ig-fold Rel 104 298 10.831 3.265

Pou5f1 MA0142.1 Helix-Turn-Helix Homeo 35 53 10.466 3.484

SRY MA0084.1 Other Alpha-Helix High Mobility Group 149 900 10.233 2.121

IRF2 MA0051.1 Winged Helix-Turn-Helix IRF 12 13 9.305 3.641

Sox17 MA0078.1 Other Alpha-Helix High Mobility Group 134 633 9.059 1.267

FOXI1 MA0042.1 Winged Helix-Turn-Helix Forkhead 120 436 8.792 2.032

NFATC2 MA0152.1 Ig-fold Rel 155 871 8.686 4.624

Pax4 MA0068.1 Helix-Turn-Helix Homeo 2 2 7.997 1.911

MEF2A MA0052.1 Other Alpha-Helix MADS 67 140 7.877 2.385

AP1 MA0099.2 Zipper-Type Leucine Zipper 168 1090 7.388 5.808

Foxq1 MA0040.1 Winged Helix-Turn-Helix Forkhead 77 190 7.258 1.596

TAL1::TCF3 MA0091.1 Zipper-Type Helix-Loop-Helix 72 138 7.064 2.383

CTCF MA0139.1 Zinc-coordinating BetaBetaAlpha-zinc finger 34 40 7.008 3.675

HLF MA0043.1 Zipper-Type Leucine Zipper 57 93 6.971 3.164

NFE2L2 MA0150.1 Zipper-Type Leucine Zipper 64 98 6.156 4.404

FEV MA0156.1 Winged Helix-Turn-Helix Ets 151 746 6.033 3.577

Top 20 over-represented TFBS within upregulated genes in CD4⁺ T-cells of aPV+Lpxl1 vaccinated mice (B)

Transcription 

factor
JASPAR ID Class Family

Target 

gene hits

Target 

TFBS  hits
Z-score

Fisher 

score

REL MA0101.1 Ig-fold Rel 142 427 20.407 10.808

NF-kappaB MA0061.1 Ig-fold Rel 114 270 16.938 10.145

Stat3 MA0144.1 Ig-fold Stat 125 341 16.304 5.797

FEV MA0156.1 Winged Helix-Turn-Helix Ets 192 1036 14.583 8.724

SPIB MA0081.1 Winged Helix-Turn-Helix Ets 222 2152 14.425 14.405

RELA MA0107.1 Ig-fold Rel 103 193 13.908 11.579

Hand1::Tcfe2a MA0092.1 Zipper-Type Helix-Loop-Helix 165 737 13.518 4.257

ELF5 MA0136.1 Winged Helix-Turn-Helix Ets 217 1444 13.409 17.278

STAT1 MA0137.2 Ig-fold Stat 86 150 13.184 6.474

Klf4 MA0039.2 Zinc-coordinating BetaBetaAlpha-zinc finger 181 1006 12.993 15.421

Pax4 MA0068.1 Helix-Turn-Helix Homeo 3 3 11.558 3.002

ELK1 MA0028.1 Winged Helix-Turn-Helix Ets 175 695 11.443 11.310

SPI1 MA0080.2 Winged Helix-Turn-Helix Ets 208 1215 11.341 15.465

TP53 MA0106.1 Zinc-coordinating Loop-Sheet-Helix 1 1 10.490 2.186

EBF1 MA0154.1 Zipper-Type Helix-Loop-Helix 146 491 9.990 7.340

IRF2 MA0051.1 Winged Helix-Turn-Helix IRF 15 15 8.227 4.583

SP1 MA0079.2 Zinc-coordinating BetaBetaAlpha-zinc finger 164 792 8.115 14.017

Pax6 MA0069.1 Helix-Turn-Helix Homeo 22 23 7.843 5.516

MEF2A MA0052.1 Other Alpha-Helix MADS 100 175 7.795 10.702

EWSR1-FLI1 MA0149.1 Winged Helix-Turn-Helix Ets 5 5 7.401 2.985



207

Transcriptome signatures of acellular pertussis vaccine-induced CD4⁺ T-cells

6

Top 20 over-represented TFBS within downregulated genes in CD4⁺ T-cells of aPV+Lpxl1 vaccinated mice (D)

Transcription 

factor
JASPAR ID Class Family

Target 

gene hits

Target 

TFBS  hits
Z-score

Fisher 

score

CEBPA MA0102.2 Zipper-Type Leucine Zipper 55 211 8.947 2.472

HNF4A MA0114.1 Zinc-coordinating Hormone-nuclear Receptor 30 57 8.647 2.461

NR3C1 MA0113.1 Zinc-coordinating Hormone-nuclear Receptor 13 17 8.374 2.699

IRF1 MA0050.1 Winged Helix-Turn-Helix IRF 25 53 8.352 1.359

CTCF MA0139.1 Zinc-coordinating BetaBetaAlpha-zinc finger 18 19 7.731 4.622

IRF2 MA0051.1 Winged Helix-Turn-Helix IRF 5 6 7.628 2.094

RELA MA0107.1 Ig-fold Rel 32 61 7.584 2.969

NF-kappaB MA0061.1 Ig-fold Rel 41 80 7.105 5.341

Hand1::Tcfe2a MA0092.1 Zipper-Type Helix-Loop-Helix 61 232 6.954 3.950

Pax4 MA0068.1 Helix-Turn-Helix Homeo 1 1 6.848 1.405

ELF5 MA0136.1 Winged Helix-Turn-Helix Ets 69 454 6.602 2.604

Foxq1 MA0040.1 Winged Helix-Turn-Helix Forkhead 34 81 6.029 1.712

AP1 MA0099.2 Zipper-Type Leucine Zipper 65 454 5.905 1.136

TAL1::TCF3 MA0091.1 Zipper-Type Helix-Loop-Helix 30 59 5.843 1.561

SPI1 MA0080.2 Winged Helix-Turn-Helix Ets 65 383 5.763 2.058

SPIB MA0081.1 Winged Helix-Turn-Helix Ets 74 663 5.619 3.587

MEF2A MA0052.1 Other Alpha-Helix MADS 25 57 4.946 0.794

EBF1 MA0154.1 Zipper-Type Helix-Loop-Helix 47 154 4.936 1.926

znf143 MA0088.1 Zinc-coordinating BetaBetaAlpha-zinc finger 7 8 4.731 1.652

Egr1 MA0162.1 Zinc-coordinating BetaBetaAlpha-zinc finger 25 46 4.661 2.009



About the cover: The Perito Moreno glacier located in the Los Glaciares National Park in Patagonia, Argentina.  Part of the 
Southern Patagonian Ice field which is the third largest reserve of fresh water. The end of the glacier is 5 km wide, with 
an average height of 74 metres and moves 1 - 2 metres each day. In 2016, René attended the 11th International Bordetella 
Symposium that was held in Buenos Aires, Argentina.


