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Chapter 5

The Use of Permutation Tests
in Nonlinear Principal
Components Analysis:
Application

Nonlinear principal components analysis (NLPCA) is a nonlinear analysis
method that transforms ordered and unordered categories to numeric val-
ues, and simultaneously performs linear PCA. Because in nonlinear PCA the
properties of the distributions of the outcome values are unknown, classical
statistical approaches cannot be used for hypothesis testing on the results.
Alternatively, permutation tests can be used to establish the statistical sig-
nificance of the contribution of the variables to the nonlinear PCA solution
(VAF). In this study, we apply permutation tests in nonlinear PCA to an
empirical data set. In our approach, the variables are independently and se-
quentially permuted, that is, one variable at a time is permuted, keeping the
others fixed. Complementary to hypothesis testing, we propose a measure of
effect size, based on the difference between the outcome value estimated from
the observed data and the center of the permutation distribution. Finally, the
permutation results are compared to the results from a previous bootstrap
study, considering statistical significance of the contribution of the variables
to the nonlinear PCA solution.
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112 CHAPTER 5. PERMUTATION TESTS IN NONLINEAR PCA

5.1 Introduction

Nonlinear principal components analysis is a generalization of linear princi-
pal components analysis (PCA). Its goal equals the objective of linear PCA,
namely to explore correlational structures in a large set of variables by replac-
ing those variables by a small number of principal components that represent
the information in the observed data as closely as possible. The outcomes of
nonlinear and linear PCA are much alike, both including eigenvalues, com-
ponent loadings and person scores (also referred to as component scores or
object scores). The main difference between linear and nonlinear PCA is that
linear PCA assumes all variables to be numeric and linearly related to each
other, whereas nonlinear PCA incorporates variables with ordered as well as
unordered categories, and can discover and deal with nonlinear relationships
between variables. Because data in the social and behavioral sciences often
contain categorical variables that are nonlinearly related to each other, non-
linear PCA can be a valuable alternative to linear PCA. Nonlinear PCA is
available as PRINQUAL in SAS (SAS, 1992), and as CATPCA (Categorical
PCA) in SPSS Categories (Meulman, Heiser, & SPSS, 2004). In the applica-
tion in this study, CATPCA is used.

Essentially, every variable can be viewed as a categorical variable, with as
many categories as observed values. With numeric variables, the categories
are equally-spaced, and can be used as real numbers, whereas in nonnumeric
variables, the categories can only be viewed as (ordered or unordered) labels.
In nonlinear PCA, the categories of nonnumeric variables are transformed to
numeric values, on which linear PCA is performed simultaneously. This trans-
formation process is referred to as optimal quantification or optimal scaling.
The term “optimal” refers to the fact that each quantification is calculated
so that it gives the smallest possible loss of information in the transformed
variables. In other words, when performing a principal components analysis
with a prechosen number of components, nonlinear PCA ensures that these
components explain as much variance in the quantified variables as possible.
This objective is achieved by maximizing the sum of the first p eigenvalues of
the correlation matrix of the optimally quantified variables, where p denotes
the chosen dimensionality (Gifi, 1990) (also see Chapter 2). In the approach
to nonlinear PCA used in this chapter, the sum of squared errors is minimized
over the object scores, the quantified variables, and the component loadings,
using a least squares loss function. This sum of squared errors is indicated by
the difference between the object scores on the one hand, and the component
loadings multiplied by the transformed variables on the other. For more in-
formation on the mathematical procedure and the nonlinear PCA algorithm
used in SPSS, see Gifi (1990), SPSS Inc. (2007) (see also Chapter 2).
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The optimal quantification of the variables is carried out in accordance
with the analysis (or scaling) levels of the variables. Such an analysis level
is specified by the user, and need not be equal to the measurement level
of a variable. If only the grouping information in the data is considered
important, and nonlinear relations between variables exist, a nominal analysis
level is called for. If, in addition, the ordering information in the observed
variable should be preserved in the category quantifications, and nonlinear
monotone relationships between variables are assumed, an ordinal level may
be preferred. Finally, if the relative spacing between observed category values
should be preserved and linear relationships are assumed, a numeric level
is the most appropriate. The analysis levels and their properties are more
extensively described in Chapter 2.

Despite the fact that nonlinear as well as linear PCA are often used in
exploratory research, these methods need not be deprived of confirmatory
statistics, such as stability measures or p-values. In Chapter 3, we established
the stability of linear and nonlinear PCA solutions using the bootstrap proce-
dure. For the particular data set used, we found that, after merging categories
with relatively small frequencies, the nonlinear PCA solution was remarkably
stable, also when compared to the stability of the linear PCA solution.

Another way of performing inference in PCA is to look at the statistical
significance of its results. A nonparametric way to do this is by permutation
tests, which involve comparing statistics for the observed data to their null
distribution, which is established conditionally on the observed data set it-
self. A null distribution for a statistic consists of the values for that statistic,
computed on a large number of Monte Carlo data sets that are generated by
randomly permuting the original variables. Permutation tests have been used
in, for example, homogeneity analysis (Heiser & Meulman, 1994), multiple
regression and ANOVA (Anderson & Ter Braak, 2003; Ter Braak, 1992), and
linear PCA (Buja & Eyuboglu, 1992), but have not been applied to nonlinear
PCA before.

In linear PCA, permutation tests have proved to work quite well in de-
termining the significance of the VAF of the solution as a whole (Buja &
Eyuboglu, 1992). In Chapter 4, we proposed an effective strategy for assess-
ing the significance of the contribution of the variables to the PCA solution,
which approach will be applied to nonlinear PCA in the current study. Be-
cause nonlinear PCA does not make distributional assumptions, the nonpara-
metric character of the permutation approach suits this method especially
well.
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In the remaining part of this chapter, we will first discuss the use of per-
mutation tests in linear PCA, and then explain the strategy we used in the
application to nonlinear PCA. Consecutively, we will apply permutation tests
to nonlinear PCA on an empirical data set (NICHD Early Child Care Research
Network, 1996). We will assess permutation distributions for these data, and
establish the significance of the contribution of the variables to the solution.
Complementary to p-values, we will propose a measure of effect size based
on the distance from an observed outcome to the center of the permutation
distribution. Finally, we will compare the permutation results to the results
from the bootstrap study in Chapter 3, considering the statistical significance
of the contribution of the variables to the nonlinear PCA solution.

5.2 Permutation Tests

The objective of permutation tests is to determine whether an observed sta-
tistic deviates significantly from its null distribution. This distribution is not
presupposed, but is established nonparametrically from the observed data
themselves by generating a large number of Monte Carlo data sets. In each of
these data sets, the values of a variable are randomly rearranged, thereby de-
stroying the correlational structure between the observed variables. Because
in most data sets, variables are not interchangeable, due to differences in
range, scale, or content (Good, 2000), permutation usually takes place within
the columns, and not within the rows of a data set. For each permuted data
set, the value of the statistic of interest is computed, and all of the com-
puted values form the permutation distribution for the statistic. Then, the
alternative hypothesis that the observed statistic deviates significantly from
its permutation distribution is tested against the null hypothesis that it does
not. A p-value is assessed by computing the proportion of values in the permu-
tation distribution that is equal to or exceeds the observed statistic (Hubert
& Schultz, 1976; Hubert, 1984, 1985, 1987; Noreen, 1989).

As the total number of possible permutations is usually huge, a random
sample is drawn from all possible permutations. Under the null hypothesis, the
observed data set is viewed as just another random permutation. Therefore,
instead of the number of permutations P , the number P + 1 is taken to be
a round number. P should be taken large enough to obtain an acceptable
amount of power. For weak effects, Buja and Eyuboglu (1992) recommend
99 or 499 permutations. In the study in Chapter 4, 999 permutations showed
satisfactory results, specifically for data sets with between 100 and 200 cases
or more.
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5.2.1 Permutation tests in linear PCA

Buja and Eyuboglu (1992) constructed permutation distributions for the com-
ponent loadings in linear PCA by independently and concurrently permuting
all the variables (in the columns of the data set), entirely destroying the
structure of the observed data. In Chapter 4, we proposed an alternative
strategy to establish the significance of the VAF of the variables (i.e., their
sum of squared component loadings across the principal components), that
is, permuting the variables independently and sequentially (one variable is
permuted, while keeping the other variables fixed). When this strategy is
applied, only the correlational structure between the permuted variable and
the other variables is destroyed, whereas the relationships between the fixed
variables are preserved. This strategy helps answer the question whether the
variable contributes more to the structure of the other variables than a ran-
dom variable would, and thus seems theoretically the most sensible when the
contribution of the variables to the PCA solution is of interest. On the other
hand, the strategy of permuting the entire data set is focused on assessing
whether the data set as a whole differs from a random structure.

These two permutation strategies were compared under different data con-
ditions: data sets with a strong, moderate or random structure, varying in
size from 20 variables and 100 cases to 40 variables and 500 cases. The au-
thors used a standard significance level of 0.05 as well as two corrections for
multiple testing: the Bonferroni correction and controlling the false discovery
rate (FDR) (Benjamini & Hochberg, 1995). For determining the significance
of the contribution of the variables to the solution, the strategy of permuting
one variable while keeping the others fixed, especially when combined with the
FDR correction of the significance level, proved to be favorable over permut-
ing the entire data set. The former strategy yielded acceptable proportions
of Type I error of around 0.05 or lower for all data conditions (except when
the data did not show any component structure). In addition, it had much
higher power than the strategy of permuting the entire data set: Permuting a
single variable resulted in a power of more than 80% under all data conditions
with more than 100 objects, whereas permuting the entire data set resulted
in much lower power (even less than 10% in some conditions, when combined
with the Bonferroni correction).
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5.2.2 Permutation tests in nonlinear PCA

In the current chapter, we will apply the sequential permutation strategy (per-
muting one variable at a time while keeping the others fixed) to the variables
in the nonlinear PCA solution. Different approaches might be taken to de-
termine the significance of the nonlinear PCA solution, which are suitable in
different situations. The first approach involves applying nonlinear PCA to
the observed data set, and consequently performing a permutation study on
the quantified variables. In other words, the optimal quantification process
takes place only once, prior to the permutation process. This approach is
sensible when the entire data set is permuted, and thus, the permuted data
sets have an entirely random structure, with the variables only related due
to chance. Evidently, in such a case, the optimal quantification objective
of maximizing the relationships between the quantified variables should not
be pursued, because relevant relationships are supposed to be nonexistent.
Therefore, it seems insensible to permute the observed data set and perform
nonlinear PCA (including optimal scaling) on each of the permuted data sets.
However, this alternative approach would be preferable in the current study,
in which the contribution of the variables to the PCA solution is of interest
and we permute only a single variable while keeping the others fixed. In this
case, the permuted data set is still expected to show a particular stucture, de-
termined by the fixed variables. Therefore, the optimal quantification process
should be performed on each permuted data set. In the current study, we
perform 999 permutations per variable, which are used to compute p-values.

5.3 Effect Size

P -values are frequently reported, but they do not provide information about
the size of effects. For instance, if the analysis involves a very large sample,
quite small effects will obtain small (significant) p-values. Therefore, mea-
sures of so-called practical significance (effect size) are often reported (see, for
example, Gliner et al., 2002) in addition. In the context of permutation tests,
p-values can be particularly precarious, because they have a minimum bound.
That is, the p-value is the proportion of values in the permutation distribu-
tion that is equal to or exceeds the observed value, which can be computed
as p = (q + 1)/(P + 1), with q the number of values equal to or higher than
the observed value, and P the number of permutations. (In this computation,
the 1 is added, because under the null hypothesis, the observed value is also
considered to be a random permutation.) Thus, when 999 permutations are
performed, the lower bound for the p-value is (0 + 1)/(999 + 1) = 0.001. All
values that lie outside the permutation distribution obtain this same p-value.
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However, some of these observed values will lie quite close to the permutation
distribution, whereas others will lie rather far away. Obtaining a measure of
effect size based on this distance between the observed value and the (center
of the) permutation distribution may be of substantial interest.

Effect size can be defined as the “degree to which the null hypothesis is
false” (Cohen, 1988, pp. 9-10). If the null hypothesis is true, the effect size is
zero. In the literature, there are many measures of effect size, for example d
for the difference of two means in a t-test context, the correlation coefficient
r, q for differences between correlation coefficients, g for proportions, h for
differences between proportions, f for analysis of variance and covariance, f2

for multiple regression and correlation analysis, and so on (Cohen, 1988). One
of the properties of such effect size measures is that they are pure (dimension-
less) numbers, independent of the variable’s measurement unit (Cohen, 1988),
which can be achieved through standardization. For example, the Pearson
correlation coefficient r has this property, as well as r2. Because in the PCA
context, a component loading is a Pearson correlation coefficient between a
variable and a principal component, the observed squared component loading
may be viewed as a measure of effect size. This measure indicates to which de-
gree the observed VAF differs from zero, and would work well in a traditional
hypothesis test setting, because all observed values are supposed to have the
same population distribution. However, in the permutation test setting, the
permutation distributions differ across variables. As a VAF measure gives no
information on the degree to which the observed value differs from the permu-
tation distribution, an additional effect size measure indicating the distance
from the observed value to the center of the permutation distribution may be
warranted.

In traditional hypothesis testing, the center of the distribution used for
testing can be specified beforehand, because the distribution (for example,
the normal distribution) is known. However, in the context of permutation
testing, the center of the null distribution has to be assessed from the data
themselves. The permutation distributions for the VAF of the variables in
(nonlinear) PCA can be quite skewed: In many cases, the squared component
loadings have a value close to zero, in fewer cases, their value is somewhat
higher, and in very few cases, their value may be more substantial. As the
mean can be highly influenced by a few outliers in the distribution, the most
suitable measure for the center of the permutation distribution would be the
median, instead of the mean. The difference between the observed VAF and
the median of the permutation distribution may then be an insightful measure
of effect size. This difference can be viewed as the difference between two r2

measures. Cohen (1988) describes this as a measure of effect size that is
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similar to q, which measures the difference between two correlations, using
the Fisher z-transformation. Cohen (1988) also gives guidelines for the size
of the difference between two r2 measures: values between 0.05 and 0.08
indicate small effects, values between 0.15 and 0.23 indicate medium effects,
and values between 0.28 and 0.38 can be called large effects. As these indicated
ranges show gaps, we slightly adjusted these criteria for the current study: We
indicated effect sizes between 0.05 and 0.15 as weak, between 0.15 and 0.28
as medium, and above 0.28 as strong effects.

5.4 Relation between Statistical Significance and
Stability

Statistical significance and stability of a solution are often examined con-
currently. In traditional hypothesis test settings, a 95% confidence interval
gives the boundary values outside of which a two-sided significance test with
α = 0.05 leads to rejection of the null hypothesis. In other words, if an
observed value is more extreme than either of the boundaries of the 95% con-
fidence interval, the null hypothesis is rejected at a two-sided α = 0.05. In
such a parametric setting, we would assume that the component loadings are
approximately normally distributed, and centered at zero. The corresponding
null hypothesis to be tested would be that the component loadings do not
differ from zero.

Permutation tests and the bootstrap are nonparametric methods to assess
the significance and confidence intervals of a specific value. The bootstrap
gives an approximation of the population distribution of the parameter of in-
terest from which a (multi-dimensional) confidence region can be established.
Following the reasoning applied in traditional hypothesis testing, if a 95%
bootstrap confidence interval contains the value 0 on a component, we would
expect the corresponding loading to be insignificant on that component at a
two-sided significance level of 0.05. If a bootstrap interval does not contain
the value zero on a particular component, the loading would be significant
on that component at a two-sided significance level of 0.05. Permutation
tests give an approximation of the population distribution of parameters from
random data, for which a confidence region may also be established. If the
observed value lies outside of this confidence region, the results are considered
significant. Thus, if the reasoning from traditional hypothesis testing applies,
we might assume that both methods would render the same results, and the
bootstrap results are sufficient to assess both the stability and the statistical
signficance of the component loadings, which would leave permutation tests
redundant.
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However, permutation tests render specific p-values, which is an obvious
advantage over the bootstrap results that would only be able to give a global
indication of significance. In addition, it is not sensible to simply generalize
rules that apply to traditional significance tests (in which normal distributions
are assumed) to nonparametric inference in (nonlinear) PCA. For nonlinear
PCA, neither the bootstrap distributions, nor the permutation distributions
are normal. The latter will be shown in section 5.5.1. The fact that the distri-
bution of bootstrap points across confidence ellipses can deviate strongly from
normal has been discussed in Chapter 3 (also see section 5.5). In addition,
we permute only one variable at a time, which renders different results from
permuting all variables concurrently, and is less comparable to the bootstrap
procedure.

Also theoretically, the results for the bootstrap and permutation tests are
not equivalent, but may complement each other. This idea is supported by
Buja and Eyuboglu (1992), who noted that significance is concerned with
the question of whether the magnitude of a result is likely to be due to
chance alone, whereas stability considers the question of whether a result
would change much due to slight changes in the data. Theoretically, it is not
unlikely that significant loadings are unstable, whereas stable loadings are
insignificant.

5.5 Application: The ORCE Data

We used CATPCA to analyze categorical data on 594 6-month olds from the
National Institute of Child Health and Human Development Study of Early
Child Care (NICHD Early Child Care Research Network, 1996). These chil-
dren were observed in their primary non-maternal caregiving environment
(child care center, care provided in caregiver’s home, care provided in child’s
home, grand-parent care, or father care). In this chapter, we apply our meth-
ods to the variables concerning the interactions between the caregiver and the
focus child, measured by the Observational Record of the Caregiving Envi-
ronment (ORCE) (NICHD Early Child Care Research Network, 1996). The
ORCE provides “behavior scales” that are the averaged frequencies of specific
caregiver behaviors over a particular observation period, as well as “qualitative
ratings” that are averaged 4-point rating scales of overall caregiver behavior
during an observation period, ranging from 1 (“not at all characteristic”) to
4 (“highly characteristic”).

As CATPCA is developed for analyzing integers (see Chapter 2), we
rounded the scores on the behavior scales and (averaged) ratings to obtain
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variables with integer values.1 In this bootstrap study, we found that cate-
gories with small marginal frequencies were quite unstable in the CATPCA
solution. Therefore, we recoded the ORCE variables such that each category
contained at least 15 observations. Only the variable “Negative physical ac-
tions” still contained only 8 observations in the second category, and 586 in
the first, and remained quite unstable in the bootstrap study. We decided
to use these recoded ORCE variables in the current study, anticipating com-
parisons between the bootstrap and permutation results. Bar charts of these
variables are in Figure 5.1.

In accordance with Chapter 3, we performed a two-dimensional CATPCA
on the recoded ORCE data, with all of the variables treated ordinally. Ordinal
analysis levels were chosen, because we wished to retain the ordering informa-
tion in the data, but did not assume the variables to be linearly related. The
eigenvalues of the first and second dimension are respectively 7.034, indicating
a VAF of approximately 33.5%, and 2.028, indicating a VAF of approximately
9.7%. The component loadings of the two-dimensional CATPCA solution for
the ORCE data are presented in Table 5.1. The variables form three groups:
The first and second group determine the first component, the first indicating
a certain degree of positive engagement with the child (PE), and the second a
degree of disengagement (DE). The third group, which determines the second
dimension, includes variables indicating “overt negative behaviors” toward the
child (ON). In Table 5.1, loadings of .30 or higher are in boldface, and the
group abbreviations are given in parentheses behind the variable name. All
variables except “Flatness” and “Negative physical actions” clearly belong to
one of these groups. “Flatness” shows a substantial loading on both compo-
nents, but as the loading on the first dimension is clearly higher, this variable
is most associated with the second group (DE). “Negative physical actions”
has a relatively small loading on both components, but distinctly higher on
the second than on the first, so that it is associated most with overt nega-
tive behaviors (ON). An elaborate description of this nonlinear PCA solution
is available in Chapter 2. The interpretation of these component loadings
makes sense, but the question is whether or not the loadings are statistically
significant. The next section addresses this issue.

1We could also have used one of the discretizing options available within CATPCA, but
in accordance with the bootstrap study in Chapter 3, we decided to take this very simple
approach to obtaining integers.
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Figure 5.1: Bar charts for the recoded ORCE variables. N=594. On the x-axis
the categories of the ORCE variables after recoding are displayed.
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Table 5.1: Component loadings for the 21 recoded ORCE variables from a two-
dimensional CATPCA. Nr. Cat.= the number of categories of the variable.
Loadings >.30 are in boldface. Three groups indicating positive engagement
(PE), negative engagement (NE), and overt negative actions (ON) can be dis-
tinguished. Group abbreviations are in parenthesis behind the variable names.

Component 1 Component 2
Variable Nr. Cat. Load. VAF Load. VAF

1 Distress (PE) 3 -.561 .315 -.253 .064
2 Nondistress (PE) 3 -.789 .623 -.205 .042
3 Intrusiveness (ON) 3 .047 .002 .645 .416
4 Detachment (DE) 4 .763 .582 .142 .020
5 Stimulation (PE) 4 -.743 .552 .026 .001
6 Positive regard (PE) 3 -.793 .629 -.120 .014
7 Negative regard (ON) 2 -.001 .000 .613 .375
8 Flatness (DE) 3 .514 .264 .316 .010
9 Positive affect (PE) 12 -.599 .359 .149 .022

10 Positive physical (PE) 8 -.628 .394 -.011 .000
11 Vocalization (PE) 13 -.702 .493 .087 .008
12 Reads (PE) 5 -.335 .112 -.075 .006
13 Asks question (PE) 11 -.767 .589 .114 .013
14 Other talk (PE) 13 -.852 .725 .129 .017
15 Stimulates cognitive (PE) 8 -.724 .524 .115 .013
16 Stimulates social (PE) 4 -.352 .124 .165 .027
17 Facilitates behavior (PE) 11 -.742 .550 .196 .039
18 Restricts activity (ON) 6 -.158 .025 .618 .382
19 Restricts physical (DE) 7 .406 .165 -.083 .007
20 Negative speech (ON) 2 .083 .007 .629 .395
21 Negative physical (ON?) 2 .006 .000 .261 .068

5.5.1 P -values for the contribution of the ORCE variables

The nonlinear PCA solution for the rounded and recoded NICHD data was
subjected to a permutation study in which each variable was permuted 999
times, keeping the others fixed. In other words, 999 × 21 = 20, 979 permuted
data sets were constructed. For each of these data sets, nonlinear PCA was
performed with ordinal transformation of the variables.

In Figure 5.2, the permutation distributions of the VAF in the variables
across components are displayed. In each plot, the sample value is indicated
by a star, and the corresponding p-value is given (for the computation of these
values, see section 5.2.3). The permutation distributions are all quite skewed,
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Figure 5.2: Histograms for the permutation distributions of the VAF (on the
x-axis) of the ORCE variables. N=594. The sample values are indicated by
stars.



124 CHAPTER 5. PERMUTATION TESTS IN NONLINEAR PCA

Table 5.2: VAF across components, and corresponding p-values, and the dis-
tance between observed value and median permutation value (DMP).

Variable VAF p DMP
Distress 0.379 0.001 0.37
Nondistress 0.665 0.001 0.65
Intrusiveness 0.418 0.001 0.41
Detachment 0.602 0.001 0.59
Stimulation 0.553 0.001 0.54
Positive regard 0.643 0.001 0.63
Negative regard 0.375 0.001 0.37
Flatness 0.364 0.001 0.35
Positive affect 0.381 0.001 0.36
Pos. physical 0.394 0.001 0.37
Vocalization 0.500 0.001 0.48
Reads 0.118 0.003 0.11
Asks question 0.602 0.001 0.58
Other talk 0.742 0.001 0.71
Stim. cognitive 0.537 0.001 0.52
Stim. social 0.151 0.001 0.14
Fac. behavior 0.589 0.001 0.56
Restricts act. 0.407 0.001 0.38
Restricts phys. 0.172 0.001 0.16
Negative speech 0.402 0.001 0.40
Neg. physical 0.068 0.004 0.06

as could be expected, because they represent squared values. Variables with
few categories (see Table 5.1) show relatively little spread in the permutation
distributions, because the distortion of these variables due to permutation is
less than for variables with many categories.

The p-values for the VAF across components are also displayed in Ta-
ble 5.2. (This table will be discussed in more detail in section 5.5.2) This
table, along with Figure 5.2, shows that all variables except “Reads” and
“Negative physical action” obtain a p- value of (0 + 1)/(999 + 1) = 0.001,
which is the smallest possible p-value with 999 permutations. This result is
due to the fact that all these observed values lie completely outside of their
permutation distribution.

The VAF in the variables across components indicates the contribution of
the variables to the total VAF of the solution. However, for the interpreta-
tion of the solution, it is more interesting to look at the VAF in the variables
per component. The VAF in the variables by both components separately is
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displayed in Figure 5.3. This figure shows boxplots for each variable on each
principal component. All values larger than Q3 + 1.5IQR (i.e., 1.5 times the
interquartile range above the third quartile) are displayed as outliers outside
the boxplot, and the observed VAF is indicated by an S. The VAF’s of “Intru-
siveness,” “Negative regard,” “Restricts activity,” and “Negative speech” lie
outside the permutation distribution on the second component. For “Negative
physical actions,” the observed VAF lies within the permutation distribution
on both dimensions. The contribution of that variable may therefore be ques-
tioned. All other variables show VAF’s outside of the permutation distribution
on the first but not on the second component. The p-values of the VAF of the
ORCE variables on both components separately are displayed in Table 5.3.
(This table will be discussed in more detail below.) Whether the values cor-
responding to these p values are statistically significant is dependent on the
significance level used. This issue will be discussed in section 5.5.3. As men-
tioned above, p-values do not indicate the importance (practical significance)
of a variable in the solution. For instance, “Flatness” has rather low VAF
(thus little practical significance), especially on the second component, but is
statistically highly significant (see the small p-values on both components).
Therefore, measures of effect size will be the focus of the next section.

5.5.2 Effect sizes for the ORCE variables

In Figure 5.2, the p-values are 0.001 for almost all variables. However, the
distance from the observed VAF to the permutation distribution varies consid-
erably. In Table 5.2, the difference between the observed VAF and the median
of the permutation distribution is displayed as a measure of effect size (see
section 5.3). This measure is abbreviated as DMP (distance to the median
permutation value). As DMP is calculated by subtracting two r2 measures,
we can apply the criteria derived from Cohen (1988) (see section 5.3) to the
DMP values in Table 5.2. Using these criteria, across components, “Negative
physical action,” “Reads,” and “Stimulates social” show weak effects, “Re-
stricts physical” shows a medium effect, and all other variables show strong
effects.

Table 5.3 shows VAF and DMP for the variables per component. On
the first component, as expected, the variables belonging to the first and
second group of variables – indicating degree of positive engagement with the
child – show strong effects, except “Flatness” and “Restricts physical” which
show medium effects, and “Reads” and “Stimulates social” which show weak
effects. The variables from the third group indicating overt negative behaviors
(“Intrusiveness,” “Negative regard,” “Restricts activity,” “Negative speech,”
and “Negative physical”) show no effect on the first component. However
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Figure 5.3: Boxplots for the permutation distributions of the VAF for the
ORCE data per dimension. N=594. The observed sample values are indicated
by the letter S. On the x-axis, the dimension numbers are displayed.
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Table 5.3: VAF per component, and corresponding p-values, distance from
observed value to the median permutation value (DMP), and FDR corrected
signficance levels (cfdr) for the ORCE variables. Rank numbers for assessing
FDR significance (rp) are assigned over components. Significant VAF’s after
FDR correction are in boldface.

Component 1 Component 2
Variable VAF1 p DMP rp cfdr VAF2 p DMP rp cfdr

Distress 0.315 0.001 0.31 1 0.0095 0.064 0.004 0.06 22 0.0274
Nondistress 0.623 0.001 0.62 2 0.0024 0.042 0.038 0.04 25 0.0298
Intrusiveness 0.002 0.445 0.00 32 0.0381 0.416 0.001 0.41 17 0.0226
Detachment 0.582 0.001 0.58 3 0.0036 0.020 0.253 0.01 30 0.0357
Stimulation 0.552 0.001 0.55 4 0.0048 0.001 0.916 -0.01 40 0.0476
Positive regard 0.629 0.001 0.63 5 0.0012 0.014 0.248 0.01 29 0.0345
Negative regard 0.000 0.965 0.00 41 0.0488 0.375 0.001 0.37 18 0.0179
Flatness 0.264 0.001 0.26 6 0.0119 0.100 0.001 0.09 19 0.0250
Positive affect 0.359 0.001 0.36 7 0.0155 0.022 0.387 0.01 31 0.0369
Pos. physical 0.394 0.001 0.39 8 0.0143 0.000 0.969 -0.01 42 0.0500
Vocalization 0.493 0.001 0.49 9 0.0131 0.008 0.712 -0.01 38 0.0452
Reads 0.112 0.001 0.11 10 0.0214 0.006 0.608 0.00 36 0.0429
Asks question 0.589 0.001 0.59 11 0.0071 0.013 0.599 0.00 35 0.0417
Other talk 0.725 0.001 0.72 12 0.0060 0.017 0.541 0.00 34 0.0405
Stim. cognitive 0.524 0.001 0.52 13 0.0083 0.013 0.476 0.00 33 0.0393
Stim. social 0.124 0.001 0.12 14 0.0202 0.027 0.140 0.02 27 0.0321
Fac. behavior 0.550 0.001 0.55 15 0.0107 0.039 0.196 0.02 28 0.0333
Restricts act. 0.025 0.010 0.02 24 0.0286 0.382 0.001 0.37 20 0.0238
Restricts phys. 0.165 0.001 0.16 16 0.0190 0.007 0.644 -0.01 37 0.0440
Negative speech 0.007 0.086 0.01 26 0.0310 0.395 0.001 0.39 21 0.0167
Neg. physical 0.000 0.906 0.00 39 0.0464 0.068 0.004 0.06 23 0.0262
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all of these variables, except “Negative physical”) show strong effects on the
second component. All but two (“Distress” and “Flatness”) of the variables
from the first and second group show no effect on the second component. In
general, the DMP shows quite well which variables are important on the first
and second component. Most variables only have an effect on one of the two
components. The importance of the variables “Reads,” “Stimulates social
development,” and “Negative physical action” might be questioned.

For all permutation distributions in this example, the median of the per-
mutation distribution is a small value, resulting in similar orderings and mag-
nitude of DMP and VAF. However, these measures are not exactly equal:
Variables with higher VAF do not necessarily show a larger difference be-
tween observed VAF and the center of the permutation distribution. Thus,
VAF and DMP are not simply interchangeable (which will be explained in the
Discussion).

5.5.3 Significance of the contribution of the ORCE variables
to the nonlinear PCA solution

Whether the ORCE variables have significant VAF should be assessed using a
particular significance level, for example, the conventional 0.05 or 0.01 level,
or some corrected level. In Chapter 4, we showed that permutation of separate
variables combined with controlling the false discovery rate (FDR) (Benjamini
& Hochberg, 1995) leads to acceptable proportions of both Type I and Type
II errors with structured data sets. Also, the procedure is theoretically sound
in the context of exploratory data analysis (Keselman et al., 1999; Verhoeven
et al., 2005). The FDR procedure involves sorting the p-values for all of the
variables in an ascending order, and, starting with the highest p-value, testing
each p-value by a significance level of (r/t)α, with t the number of tests (in
this case equal to the number of variables m), and r the rank number of the
p-value. Thus, smaller p-values are subjected to stricter significance levels.

With permutation tests, all observed values that lie outside of the permu-
tation distribution obtain the same p-value, because p-values have a minimum
bound of 1/(P +1). In other words, ties in the ranking of p-values occur. With
FDR correction, the comparison of p-values to the FDR corrected significance
level (cfdr) starts with the highest p-value (with the largest rank number).
Going down the list of p-values, the results corresponding to the first p-value
smaller than cfdr, as well as the results corresponding to all p-values with
smaller rank numbers are marked significant. Thus, if p-values are tied, they
will either all indicate signficance or all insignificance, and the ordering within
groups of equal p-values is irrelevant. We simply assigned rank numbers to
equal p-values in the order of the variables in the data set.
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The VAF for the variables across components, as displayed in Figure 5.2,
is significant for all variables, which is immediately evident, as the smallest
FDR controlled significance level is equal to (r/t)α = (1/21)0.05 = 0.0024,
and all p-values are below that value.

In Table 5.3, the significance of the VAF of the variables is determined for
the components separately, using the FDR corrected significance level. Signif-
icant VAF values are in boldface. Because the p-values for the two principal
components are established on the same data, they are sorted across compo-
nents, in an ascending order (the smallest p-value obtaining the lowest rank
number). The FDR significance level is calculated as (r/t)α = (r/2m)α =
(r/42)0.05. From rank number 24 down, all p-values indicate significance.
Table 5.3 shows that the variables from the first and second group (degree
of positive engagement with the child) load significantly on the first and not
on the second component, whereas the variables from the third group (overt
negative behaviors) load significantly on the second and not on the first com-
ponent. The only exceptions to this rule are “Distress” and “Flatness” from
the first group and second group, which also have significant (although small)
loadings on the second dimension, and “Restricts activity” with a (small) sig-
nificant loading on the first dimension. In other words, most variables in this
data set load significantly on only one dimension.

5.6 Permutation and Bootstrap Results Compared

In Chapter 3, a bootstrap study was performed on the ORCE data to establish
the stability of the nonlinear PCA results, including the component loadings.
We compare the results from this bootstrap study to results from the cur-
rent chapter to learn more about the relationship between the bootstrap and
permutation tests.

To find out how the bootstrap and permutation tests relate in the nonpara-
metric practice, we compare the p-values for the squared component loadings
as reported in the current chapter to the 95% bootstrap confidence intervals
for the component loadings obtained from Chapter 3. The bootstrap results
are computed for the component loadings, whereas the p-values are calculated
from the permutation results for the squared component loadings. This dif-
ference in calculation does not pose a problem, because the relative position
of the loadings is equal to the relative position of the squared loadings: If, for
example, four loadings in the permutation distribution are more extreme (far-
ther from zero) than the observed loading, also four squared loadings will be
more extreme than the observed squared loading, and thus, in both situations,
the resulting p-value would be 5/1000 = 0.005 (with 999 permutations).
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Figure 5.4: Distribution of the bootstrap points of the variable “Reads” from
the original ORCE data within the corresponding confidence ellipse. The
white square indicates the center of the bootstrap distribution, and the white
circle indicates the observed component loading point. The white bar indicates
bias.

The 95% bootstrap confidence intervals and corresponding p-values for
the component loadings obtained for the recoded ORCE variables are in Ta-
ble 5.4. We focus on the bootstrap intervals per component instead of the
graphical representation by two-dimensional ellipses, because the permutation
results are also per component, and ellipses can be somewhat conservative in
displaying the distribution of the bootstrap points when the distribution of
the bootstrap points across the ellipse is not normal. An example of an ex-
tremely nonnormal bootstrap distribution is given in Figure 5.4. This figure
displays the confidence ellipse of the variable “Reads” from the original ORCE
data set (before recoding). The bootstrap points clearly form two subgroups:
the group of points with high loadings on the second component is obtained
from bootstrap samples containing relatively many children that experienced
overt negative interaction, and the group with low loadings on the second
component corresponds to bootstrap samples obtaining relatively few of such
children. Because such “dual” solutions are not desirable, and should not
be interpreted, we recoded the ORCE variables in Chapter 3. However, the
possible occurrence of such nonnormal bootstrap distributions indicates that
assuming (multivariate) normally distributed results is not always sensible
with nonparametric confidence intervals.

In the comparison of the bootstrap confidence intervals and the permu-
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Table 5.4: Lower (Low) and upper (Up) boundaries of the 95% bootstrap confi-
dence intervals (BCI) for the component loadings for the recoded ORCE vari-
ables in a two-component nonlinear PCA, and corresponding p-values from a
permutation test. BCI’s that do not contain zero and p-values smaller than
0.05 are in boldface.

Component 1 Component 2
BCI BCI

Variable Load Low Up VAF p Load Low Up VAF p
Distress -.561 -.618 -.493 .315 .001 -.253 -.355 -.121 .064 .004
Nondistress -.789 -.818 -.758 .623 .001 -.205 -.290 -.116 .042 .038
Intrusiveness .047 -.048 .138 .002 .445 .645 .503 .739 .416 .001
Detachment .763 .725 .780 .582 .001 .141 .040 .240 .020 .253
Stimulation -.743 -.784 -.702 .552 .001 .026 -.104 .142 .001 .961
Positive regard -.793 -.821 -.762 .629 .001 -.120 -.200 -.046 .014 .248
Negative regard -.001 -.072 .065 .000 .965 .613 .437 .732 .375 .001
Flatness .514 .440 .580 .264 .001 .316 .190 .425 .100 .001
Positive affect -.599 -.657 -.550 .359 .001 .149 .017 .296 .022 .378
Positive physical -.628 -.690 -.569 .394 .001 -.011 -.162 .128 .000 .969
Vocalization -.702 -.748 -.664 .493 .001 .087 -.020 .189 .008 .712
Reads -.335 -.412 -.252 .112 .001 -.075 -.200 .185 .006 .608
Asks question -.767 -.806 -.734 .589 .001 .114 .000 .217 .013 .599
Other talk -.852 -.875 -.828 .725 .001 .130 .044 .200 .017 .541
Stimulates cognitive -.724 -.762 -.687 .524 .001 .115 .024 .214 .013 .476
Stimulates social -.352 -.427 -.277 .124 .001 .165 -.023 .357 .027 .140
Facilitates behavior -.742 -.780 -.708 .550 .001 .196 .096 .279 .039 .196
Restricts activity -.158 -.230 -.072 .025 .010 .618 .501 .715 .382 .001
Restricts physical .406 .334 .493 .165 .001 -.083 -.247 .119 .007 .644
Negative speech .083 .013 .154 .007 .086 .629 .471 .733 .395 .001
Negative physical .006 -.062 .070 .000 .906 .261 .060 .464 .068 .004

tation p-values, we assume the simple null hypothesis that the component
loadings do not differ from zero. In accordance with that assumption, boot-
strap confidence intervals not containing the value zero as well as p-values
smaller than 0.05 are displayed in boldface in Table 5.4. Using a one-sided
5% significance level for the squared component loadings is equivalent to a
two-sided 5% significance level for the component loadings, as the upper 5%
tail of the permutation distribution for the squared component loadings will
contain the upper and lower 2.5% of the distribution for the component load-
ings together.
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Table 5.4 shows that, mostly, the results from the permutation tests and
bootstrap study agree with each other: Bootstrap confidence intervals not con-
taining the value zero correspond with p-values smaller than 0.05, and confi-
dence intervals containing the value zero correspond with p-values larger than
0.05. However, there are some exceptions: The variable “Negative speech”
has a confidence interval for the loading on the first dimension that does not
contain the value zero, but the p-value for its VAF on that component exceeds
0.05. On the second component, the same apparent contradiction applies to
the variables “Detachment,” “Positive affect,” “Other talk,” “Stimulates cog-
nitive,” and “Facilitates behavior.” Thus, bootstrap confidence intervals and
permutation p-values do not always lead to the same conclusion concerning
significance. However, the lower boundaries of the confidence intervals for all
the variables mentioned above are very close to zero, and the corresponding
VAF values are relatively small (ranging from 0.013 to 0.039).

From Table 5.4, we can also conclude that stability and small p-values, and
instability and large p-values do not necessarily go together. Some variables,
like “Intrusiveness,” “Negative regard,” and “Negative speech” have quite
small confidence intervals on the first component, but show p-values larger
than 0.05. In addition, some variables – for instance, “Negative regard” and
“Negative physical” on the second component – show relatively large confi-
dence intervals, but still have p-values smaller than 0.05. In Chapter 3, we
started performing the bootstrap study on the original ORCE data (before
recoding), and found that some variables – specifically, “Intrusiveness,” “Neg-
ative regard,” “Flatness,” “Positive physical,” “Reads,” “Stimulates social,”
“Restricts activity,” “Restricts physical,” and “Negative speech” – had very
unstable loadings on the second component, due to categories with relatively
small marginal frequencies (see Figure 3.3). We did a permutation study on
the original ORCE data to find out whether these variables also showed prob-
lems with establishing the statistical significance. We found that the VAF
values on the second component of these unstable variables do not per se
show small p-values: “Intrusiveness” (p = 0.003), “Flatness” (p = 0.019),
“Restricts activity” (p = 0.011), and “Negative speech” (p = 0.011) all have
p-values smaller than 0.05.

In conclusion, obviously there is a stronger relation between the signifi-
cance of a variable’s VAF and the magnitude of the VAF value than between
the significance and the stability of a VAF value. In general, relatively high
VAF values are significant, although it is not always true that higher VAF val-
ues obtain smaller p-values, due to differences in permutation distributions.
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5.7 Conclusions and Discussion

Permutation tests seem to be an effective method for assessing the statistical
significance of the contribution of variables to the nonlinear PCA solution.
The results of this study show that, as expected, high VAF’s turned out
significant, and low VAF’s did not. The distance from the observed value
to the median permutation value (DMP) as a measure of effect size, judged
by Cohen’s (1988) criteria, offers information additional to p-values, that is
useful for the interpretation of the results.

The information derived from the DMP effect size measure did not differ
much from the information that can be derived from looking at the VAF in the
variables: Especially for the variables that contributed highly to the solution,
VAF values and DMP values were almost equal. This small difference is due
to the fact that the median of the permutation distribution was a small value
for all variables (which will probably be the case in most data sets, because
permutation distributions are expected to have small spread). Thus, only a
small value was subtracted from the VAF in all cases. However, the ordering
of the variables according to VAF did not perfectly correspond to the ordering
of the variables according to effect size, and thus the two measures provide
somewhat different information.

As we would expect, for the ORCE data, significant VAF’s always show
some degree of effect (weak, medium or strong), and insignificant VAF’s show
no effect at all (see Table 5.3). Specifically in the context of permutation
testing, effect size provides information complementary to p-values (or sig-
nificance), because all variables with VAF’s lying outside of the permutation
distribution obtain the same p-value.

The distance from the observed value to the median of the permutation
distribution is not the only plausible measure of effect size for permutation
results. Depending on the question to be answered, alternatives, like the
distance from the observed value to the maximum or mean permutation value,
or a distance measure divided by a spread measure, such as the interquartile
range or the standard deviation, might also work well. Another option might
be to use the mean result from a bootstrap study (see, for example, Chapter
3) and compare that to the mean of the permutation distribution.

In the data set used in this study, almost all variables had a significant
VAF on only one of the two components. In other data sets, however, this
might not be the case, and rotation might be warranted to obtain a simple
interpretation of the components. If the solution is rotated, the VAF of the
variables across components stays the same, but the VAF of a variable per di-
mension changes. In case the researcher wishes to rotate the original solution
(for example toward a simple structure), it seems the most accurate to ro-
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tate the permutation solutions toward the rotated original solution. However,
rotation will probably not make much difference for the permutation distrib-
ution of a variable, because in unrotated as well as rotated distributions, the
permuted variable is expected to obtain small loadings, independent of the
observed data structure.

The number of possible different permutations with nominal or ordinal
variables is usually smaller then with numeric variables, because numeric vari-
ables mostly have a larger number of different values. In a data set with n
persons, the number of possible permutations of a variable is n!. However, in
case a variable has less than n different values, some of these permutations
are equal. The number of different permutations when one variable (j) is
permuted is n!/

∏kj

k=1(fk!), with kj the number of different values in variable
j, and fk the frequency of persons scoring a specific value k. For instance, if a
variable has three categories with respective frequencies 10, 6, 4, the number
of different permutations is 20!/(10!× 6! × 4!) = 38, 798, 760. In such a case,
although the number of different values with nonnumeric variables is mostly
smaller than with numeric values, the total number of permutations is still
very large, and the risk of obtaining the same permutation several times is
quite small. Only in cases when n is small, and almost all persons scored the
same category, the number of possible permutations gets small, and caution
is warranted. Note that in general, such variables with small variation, do not
give much information, and are difficult to analyze properly with any analysis
method.

The study in this chapter is an application of the results from a simulation
study on permutation tests in linear PCA. To find out whether the strategy
that performed best for linear PCA also performs best for nonlinear PCA,
such a simulation should also be performed with permutation in nonlinear
PCA.

In this study, we used permutation tests to assess the significance of the
contribution of the variables in nonlinear PCA, but there are other useful
applications of permutation studies in this context. For example, Buja and
Eyuboglu (1992) used permutation tests to choose the appropriate number of
components to retain in the linear PCA solution. This procedure may also be
applicable to nonlinear PCA, although some adaptations may be needed.

The permutation procedure used in this study is programmed in Matlab
code. Shortly, we will implement this code along with the bootstrap code into
the CATPCA module in SPSS, which will make these procedures accessible
to a large group of researchers. This effort will hopefully promote a wider
use of nonlinear PCA by enabling researchers to report common and easily
interpretable inferential statistics, which will render more easily publishable
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research results for categorical data.
We compared the 95% confidence intervals from the bootstrap study to

the p-values from the permutation study. Considering traditional null hy-
pothesis testing theory, this is a valid comparison. However, as we did several
hypothesis tests on the same data, a corrected significance level should be
used to assess the significance of the VAF values instead of the uncorrected
5% significance level. FDR correction has proved to be the most effective in
linear PCA, and was used in Table 5.3. Multistage comparison procedures for
assessing significance, such as controlling the FDR, have no straightforward
confidence interval interpretations within traditional testing situations, but
more complicated intervals can sometimes be constructed (see Shaffer, 1995).

The stability and statistical significance of the nonlinear PCA results
should be taken into account concurrently. The bootstrap results cannot
be used as a substitute for the permutation results regarding the significance
of a variable’s contribution to the total VAF of the nonlinear PCA solution.
This conclusion especially applies to the current study, because we used the
strategy of permuting one variable at a time, instead of the entire data set.
Additionally, the specific p-values resulting from the permutation test are more
informative than the bootstrap intervals considering the significance. On the
other hand, permutation tests do not give information about the stability of
analysis results. The significance of a variable’s VAF is more related to the
magnitude of the VAF value than to the stability. So, if researchers are in-
terested in the stability and the significance of (nonlinear) PCA results, they
should consider both the bootstrap and permutation tests valuable inferential
equipment.






