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Chapter 4

The Use of Permutation Tests
in Linear Principal
Components Analysis

Principal components analysis (PCA) is often used in exploratory research
and does not standardly provide inferential statistics. In this chapter, the
statistical significance of the contribution of variables to the PCA solution
is assessed nonparametrically by the use of permutation tests. We compare
two different strategies. The first involves permuting the columns (variables)
of a data matrix independently and concurrently. This strategy destroys the
entire correlational structure of the data set, and is considered appropriate
for assessing the significance of the PCA solution as a whole. However, for
assessing the significance of the contribution of single variables, we propose an
alternative strategy, which involves permuting one variable at a time, while
keeping the other variables fixed. We conduct a simulation study, in which
the two strategies are compared, considering proportions of Type I and Type
II error. We use two corrections for multiple testing: the Bonferroni correc-
tion and controlling the False Discovery Rate (FDR). For the assessment of
the significance of the contribution of the variables in PCA, permuting one
variable at a time, combined with FDR correction, yields the most favorable
results.

This chapter has been co-authored by Bart Jan van Os and Jacqueline J. Meulman from
the Data Theory Group, Leiden University, the Netherlands.
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86 CHAPTER 4. PERMUTATION TESTS IN LINEAR PCA

4.1 Introduction

Principal components analysis (PCA) is a nonparametric analysis method fre-
quently used in the social and behavioral sciences to reduce a large number
of variables to a smaller number of uncorrelated underlying variables – called
principal components – that contain as much information from the observed
variables as possible. This objective can be achieved in different ways; in the
present study, we use the eigenvalue decomposition of the Pearson correlation
matrix of the observed variables. The advantage of analyzing the correla-
tion matrix instead of the covariance matrix is that differences in variance
between the variables do not have an influence on the analysis results, that is,
the principal components are not sensitive to the measurement units of the
variables.1 In practice, PCA is often treated as a form of exploratory factor
analysis. However, PCA has a different statistical background as well as a dif-
ferent objective compared to factor analysis: If the goal of the analysis is to
optimally reduce a large number of variables to a smaller number of composite
variables, instead of deriving a parsimonious model of the correlational struc-
ture between the variables, PCA is the more appropriate procedure (Fabrigar
et al., 1999).

Despite the fact that PCA is often treated as an exploratory analysis
method, it need not be deprived of inferential diagnostics. In Chapter 3, for
example, we established the stability of the PCA solution using the bootstrap
procedure (also see, for example, Timmerman et al., in press). In addition,
asymptotic confidence intervals for the component loadings have been estab-
lished for PCA based on the covariance matrix (Anderson, 1963; Girshick,
1939) as well as the correlation matrix (Ogasawara, 2004). Another way of
performing inference in this context is to establish the statistical significance
of the PCA results by using permutation tests (Buja & Eyuboglu, 1992).

In the current chapter, we will study the behavior of permutation tests
to establish the statistical significance of the contribution of the separate
variables to the PCA solution. Permutation tests involve generating new
data sets by randomly and independently permuting the columns of the data
matrix, which contain the variables. Subsequently, parameters of interest are
computed for each of the permuted data sets. These permutation results are
used to compose a permutation distribution for each of these parameters,
and the observed values can be compared to the corresponding permutation
distributions. Different strategies for permutation may destroy the structure
of the data set to a greater or lesser extent.

1When PCA is performed on the covariance matrix, variables with relatively much vari-
ance dominate the first few principal components (Jolliffe, 2002).
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The development of permutation tests for nonparametric inference has
quite a long history. The procedure originated as a nonparametric alterna-
tive to the t-test for comparing the means of two different groups of objects
(see Fisher, 1935; Good, 2000). The biologist Mantel (1967) developed a sig-
nificance test for the congruence of two distance matrices, by constructing a
null distribution from random permutations of the rows and columns of one
of the matrices, while keeping the other matrix fixed. Many extensions and
generalizations of this idea have been proposed (for example, see Dietz, 1983;
Smouse, Long, & Sokal, 1985), and the idea has been applied and modified
in several research fields, such as geography (Glick, 1979; Sokal, 1979), ecol-
ogy and evolutionary research (Douglas & Endler, 1982), and psychometrics
and classification (for example, see Hubert & Schultz, 1976; Hubert, 1984,
1985, 1987). Permutation tests have proved useful in multiple regression and
ANOVA (Anderson & Ter Braak, 2003; Ter Braak, 1992), and in several forms
of nonlinear multivariate analysis that use optimal scaling (for example, see
De Leeuw & Van der Burg, 1986; Heiser & Meulman, 1994; Meulman, 1992,
1993, 1996). Permutation tests were also used to establish the significance of
PCA results (Buja & Eyuboglu, 1992; Landgrebe et al., 2002).

In the present study, we consider two different permutation strategies.
The first involves permuting the variables independently and concurrently,
and was used by Buja and Eyuboglu (1992) to establish the significance of
the eigenvalues (indicating the variance-accounted-for by the principal com-
ponents in the entire data set), for which purpose we consider this particular
strategy appropriate. However, these authors assessed the significance of the
component loadings (indicating the variance-accounted-for per variable) by
using the same strategy. We propose an alternative strategy for this latter
purpose, that is, permuting the variables independently and sequentially, that
is, permuting one variable at a time, while keeping the others fixed.

First, we will briefly discuss permutation tests in general. Then, we de-
scribe the two permutation strategies mentioned above to assess the signifi-
cance of the VAF per variable. Next, we explain the design of the simulation
study we conducted to compare the effectiveness of these strategies, and fi-
nally, on the basis of this simulation study, we compare the proportions of
Type I and Type II error from both strategies. Since multiple testing is in-
volved, we include correction of the significance level with the well-known
Bonferroni correction, and with the somewhat less familiar correction method
of controlling the False Discovery Rate (FDR) (Benjamini & Hochberg, 1995).
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4.2 The Use of Permutation Tests in PCA

Permutation tests are used for nonparametric hypothesis testing. The objec-
tive of permutation tests is to determine whether an observed statistic deviates
significantly from its null distribution, which is established conditionally on
the data, and does not require a particular probability model. This charac-
teristic of the permutation procedure matches the nonparametric nature of
PCA, which makes the procedure suitable for inference in PCA.2

To establish a null distribution, first, the correlational structure of the
observed data is destroyed by randomly rearranging the values within each
variable (independent of the other variables). In this way, a data matrix of the
same size as the original data matrix is constructed, with a random structure.
If the variables are assumed to be interchangeable on the assumption of shared
marginal distributions between variables, the data may be fully permuted
between rows as well as columns. However, this assumption is unrealistic
in most cases (Buja & Eyuboglu, 1992), because variables mostly differ in
content and scaling. Therefore, usually, the data are only permuted within the
columns of the data set, on the assumption of shared marginal distributions
between the objects (Buja & Eyuboglu, 1992), or interchangeability of the
persons (Good, 2000). This permutation process is repeated a large number
of times. A null distribution for each parameter of interest is then composed
from the parameter values estimated for the permuted data sets.

Finally, the alternative hypothesis that the observed value deviates sig-
nificantly from the center of its null distribution is tested against the null
hypothesis that it does not. This test is executed by calculating the propor-
tion of the values in the permutation distribution that is equal to or exceeds
the observed statistic (the p-value). The p-value is then, as usual, compared
to a prechosen significance level α: If p < α, the result is called significant.3 A
p-value is computed as p = (q+1)/(P +1), with q the number of times a statis-
tic from the permutation distribution is greater than or equal to the observed
statistic, and P the number of permutations (Buja & Eyuboglu, 1992; Noreen,
1989). Because, under the null hypothesis, the observed data are assumed to
be just another permutation of a random data set, the denominator in this
equation is P +1 rather than P . The total number of possible permuted data

2In this study, we focus on the use of permutation tests with two-dimensional PCA
solutions. For high-dimensional solutions, the results might be different, for when the di-
mensionality approaches the number of variables (maximum dimensionality), the eigenvalues
of each of the components will all approach 1, and will thus become (almost) equal to each
other.

3In the literature, the null hypothesis is often rejected if the p-value is smaller than
or equal to the significance level, but in the current chapter, we chose the slightly more
conservative rule of rejecting when p is smaller than the significance level.
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sets is n!m−1, with n the number of persons and m the number of permuted
variables. Because this number increases rapidly with the number of persons
and variables, usually a random sample of the total set of permutations is
used. For weak effects, or for reporting p-values in publications, Buja and
Eyuboglu (1992) suggest using 99 or 499 permutations, because permutation
tests with a smaller number of permutations than 99 have too little power.

4.2.1 Two permutation strategies

Buja and Eyuboglu (1992) (from here on, for short, referred to as B & E)
assessed the significance of the eigenvalues from a PCA solution by permuting
all variables in a data set independently and concurrently. In the context of
PCA, it is also worthwhile to look at the significance of the contribution of the
separate variables, as we can use this information to interpret the solution.
Thus, we distinguish two forms of significance in PCA. The first form relates
to the variance-accounted-for in the entire data set by the first c principal
components, with c the number of components selected to represent the data
set sufficiently. This fit measure, called total VAF (TVAF), is equal to the
sum of the eigenvalues of the first c components.4 The second form relates to
the contribution of each separate variable to the TVAF, which is given by the
sum of the squared component loadings for each variable (a component loading
being defined as the Pearson correlation between a variable and a principal
component). B & E use the same strategy of permuting the entire data set
for assessing both forms of significance. These authors note correctly that the
two forms (significance of the summary statistic and of its constituents) do
not always have to go together. In their terminology, loadings may be quite
weak (insignificant), but if they are numerous, the largest eigenvalues may be
relatively high (significant), whereas if strong loadings (that are significant)
are few in number, the eigenvalue may be relatively low (insignificant). Thus,
it is important to realize that in case the solution as a whole is not significant,
the VAF for particular variables may still be significant, and vice versa.

The strategy of permuting all the variables in a data set concurrently,
enables the fit of a variable in an observed data set to be compared to the fit of
variables with the same univariate distributions (its permutations) in a dataset
with a completely random structure. We believe that this may not be the most
appropriate setting to establish the significance of the contribution of a single
variable to a principal components structure, which is supported by the fact
that B & E (1992) found surprisingly few significant loadings. We consider it

4The eigenvalues in PCA equal the eigenvalues of the Pearson correlation matrix of the
variables. Principal components are ordered according to their eigenvalues, with the first
component associated with the largest eigenvalue.
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more appropriate to assess the significance of the VAF of a variable, given the
structure among the other variables. To attain this, not the entire data set,
but only the scores of one variable at a time should be randomly permuted,
while keeping the other variables fixed. In this way, the correlational structure
between the permuted variable and the other variables is destroyed, while
the correlational structure among the other variables remains unchanged. A
consequence of this approach is that more permutations are needed: If the
first strategy is performed with 999 permutations, the alternative strategy
will involve 999 × m permutations (with m the number of variables in the
data set).

B & E (1992) stated that establishing the significance of the component
loadings was somewhat problematic, because eigenvectors are only determined
up to a sign, which means that component loadings from similar solutions
may have different signs. This problem is easily fixed by using the VAF as the
statistic in the permutation study, which is given by the squared component
loadings. In this study, we mainly focus on the sum of squared component
loadings across components as a VAF measure, because this value remains
constant over possible rotations or reflections of the solution. We establish
the significance of the VAF for each variable, both by permuting the entire
data set (B & E), and by permuting one variable while keeping the others
fixed, and we compare the results of these two strategies.

4.3 Design of the Monte Carlo Study

To compare the effectiveness of the two permutation strategies described
above, we performed an extensive Monte Carlo simulation study, varying sev-
eral aspects of the design. We used a large number of Monte Carlo replications
(R) of three different types of simulated data sets: data with a strong principal
components structure, data with a moderately strong structure, and data with
no distinct structure. Each Monte Carlo replication consists of the following
steps: (1) generating a data set of a specific size and structure, (2) permuting
the generated data set a large number of times, (3) using the permutation
results to establish a null distribution for the VAF of each variable in the
data set, and (4) computing p-values. The null hypothesis is that there is no
distinct correlational structure, and thus no contribution of the variables to
the first two principal components. Because the simulated data sets are gen-
erated with a prespecified principal components structure, we can formulate
alternative hypotheses in which specific variables contribute to the solution,
while others do not.

The most important factor in the design is the permutation strategy: To
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obtain a permuted data set, either each column of the observed or generated
data set is permuted independently and concurrently (i.e., the correlational
structure of the entire data set is destroyed), or each column is permuted in-
dependently and sequentially (i.e., one variable at a time is permuted, while
keeping the others fixed). We refer to the first condition as permutation of
the entire data set, abbreviated as PermD. This condition requires 999 per-
mutations in each Monte Carlo replication. The second condition is called
permutation of a single variable, abbreviated as PermV, and requires 999×m
permutations in each replication. We studied the behavior of each strategy
with respect to its incorrect indications of the (in)significance of the contribu-
tion of each variable (VAF) to the principal components structure (TVAF).
The overall performance of each strategy is assessed in terms of proportions
of both Type I error (incorrectly marking a result significant) and Type II
error (incorrectly marking a result insignificant).5

The results of the Monte Carlo study are expected to vary with the size of
the data set, as a principal components structure may be more easily detected
in larger data sets. Therefore, for each principal components structure, we
varied the size of the data set, from quite small (with 20 variables and 100
objects) to relatively large (with 40 variables and 500 objects). In Figure 4.1,
the complete design is presented schematically. We estimated the p-values for
the VAF per variable by using a large number of Monte Carlo replications for
each cell of the design. The details of the study are fully described in the next
paragraphs.

4.3.1 Generating data matrices with different principal
component structures

To examine the behavior of the two strategies under different conditions, data
matrices have been constructed with three different types of prespecified prin-
cipal components structures. Each type can be represented by two blocks of
variables: one block with variables that may contribute significantly to the
principal components of C (the signal variables), and another block with vari-
ables that do not (the noise variables). We assume that in the population
there is no correlation between the two blocks of variables. The blocks of
variables are created as follows.

We generate a block-diagonal population correlation matrix C (see Fig-
ure 4.2) with two blocks on the diagonal. The first block, C1, contains the
correlations between m1 (possibly) signal variables, and the second block, C2,

5The probability of making a Type II error is also referred to as β, where 1− β approxi-
mates the power.
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Figure 4.1: Complete design of the Monte Carlo study; m is the total number
of variables in a data set, n is the number of objects. In each cell, Type I and
II errors for the uncorrected (UNC), Bonferroni corrected (BF), and FDR
corrected (FDR) 5% significance levels are computed.

the correlations between m2 noise variables. The off-diagonal blocks of C
consist of zeros, thus the variables in C1 and C2 do not correlate.

A C1 block is generated according to one of three types of structure:

1. A strong principal components structure;

2. A moderately strong principal components structure;

3. No principal components structure.

In the C1 blocks with a strong structure, the m1 variables in the block corre-
late highly with each other, and the first principal component accounts for ap-
proximately 50% of the TVAF, while the second principal component accounts
for approximately 30%. The remaining variance is approximately equally di-
vided among the remaining components, thus the associated eigenvalues are
approximately equal. In C1 blocks with a moderately strong structure, the
first two components account for 30% and 10% of the TVAF respectively.
C1 blocks without a particular principal components structure are generated
such that the proportion of variance-accounted-for by each component ap-
proximately equals 1/m.



4.3. DESIGN OF THE MONTE CARLO STUDY 93
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Figure 4.2: Block structure of the simulated correlation matrices.

The noise variables in C2 do not contribute to the principal components
structure of C. In reality, the population data will never exactly concur
with the null hypothesis, and thus the noise variables will not be perfectly
uncorrelated. Therefore, to obtain a more realistic situation, we impose a
very weak one-dimensional structure among them (for example, as in a simple
form of method effect). Consequently, the proportion of variance-accounted-
for by each component in C2 is not exactly 1/m2 (which is the value we would
expect when the variables are uncorrelated), but is slightly higher for the first
component. The details of the procedure developed for generating the data
are fully described in Appendix D.

To keep the results as comparable as possible, and to not further compli-
cate the design, the same ratio of variables from C1 to C2 has been used to
create small and large data sets. The ratio of m1 to m2 is 3 : 1, resulting in
m1 = 15 and m2 = 5 for the data sets with 20 variables, and m1 = 30 and
m2 = 10 for the data sets containing 40 variables.

When assessing the significance of the contribution of the variables to the
PCA solution, we are testing the general null hypothesis that none of the
variables contributes, which can be specified in the following null hypothesis
for each of the variables in the data set: The observed VAF value does not
differ from the center of its permutation distribution. When we perform a two-
dimensional PCA on data with a strong or moderately strong two-dimensional
principal components structure, the null hypothesis should be rejected for the
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variables in C1, and not rejected for the variables in C2. For the data without
a distinct principal components structure, the null hypothesis should not be
rejected. To find out whether the two permutation strategies are able to detect
the imposed components structure in terms of the VAF, a large number of p-
values are computed. These p-values are used to establish the number of times
each variable is found to be significant. We use different significance levels,
either corrected or uncorrected for multiple testing, and record the number of
errors in marking variables significant.

4.3.2 Correction for multiple testing

It is common practice to consider a test result significant if its p-value is
smaller than 0.05. We will refer to this criterion as the uncorrected significance
level (UNC). When we consider the VAF for each variable, however, several
tests are performed on the same data set, and when a significance level of
0.05 is used for each separate result, the chance of incorrectly marking one of
the results significant will be inflated. To overcome this problem in multiple
testing, we use two different methods to correct the significance level.

The first correction method we use is the simple Bonferroni correction
(BF), which is aimed at controlling the so-called familywise error rate (FWE).
The FWE is defined as the probability of making one or more false rejections
in a “family” of hypothesis tests (see Shaffer, 1995). Thus, the probability
that any of the results is incorrectly marked significant is controlled. The BF
divides the significance level α by the number of tests performed on one data
set. In this study, applying the BF reduces to dividing the significance level
by the total number of variables in the data set (α/m), because we perform
a significance test on each of the variables. As this type of correction is easy
to understand and implement, it is quite often used by applied researchers.

The second correction method that is used is a less conservative alter-
native to the Bonferroni correction, developed by Benjamini and Hochberg
(1995). Instead of controlling the FWE, this method is aimed at controlling
the false discovery rate (FDR), which is the proportion of falsely rejected
null-hypotheses within the total set of rejections. Suppose we obtain a list of
results from several hypothesis tests for one data set, with a 5% significance
level α. Methods controlling the FWE ensure that the probability of the list
containing at least one false rejection is at most 5%, that is, that the probabil-
ity of the entire list being correct (does not contain false rejections) is at least
95%. Alternatively, controlling the false discovery rate (from here on referred
to as the FDR correction) ensures that the proportion of rejections that is
false is kept below 5% (i.e., that at most 5% of the significant results on the
list is incorrect). The FWE is always larger than or equal to the FDR, thus
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FWE control automatically implies FDR control, and FDR control will lead
to a gain in power compared to FWE control. In the context of exploratory
research, FDR control seems more sensible, as accepting a certain amount of
error is common practice (Keselman, Cribbie, & Holland, 1999; Verhoeven,
Simonsen, & McIntyre, 2005).

The FDR procedure starts with sorting the p-values for all the variables
of one data set in an ascending order, and assigning each of them a rank
number. Next, starting with the largest p-value (the one with the highest
rank number, i.e. the last one in the sorted list), each p-value is tested by
a significance level of r/t × α, with t the number of tests (in this study, t
equals the number of variables m), and r the rank number of the p-value.
When a p-value is smaller than the FDR corrected significance level, the VAF
value corresponding to this p-value as well as the VAF values corresponding
to all p-values with lower rank numbers are marked significant. Benjamini
and Hochberg (1995) have shown that the performance of this procedure with
respect to the proportion of Type I error is quite satisfactory. The major ad-
vantage of the FDR procedure over the Bonferroni correction is that it attains
greater power (i.e., a smaller proportion of Type II error). In addition, FDR
control proved to be more powerful than several other correction procedures,
specifically when the number of hypotheses tested increased (Keselman et al.,
1999).

4.3.3 Computing proportions of Type I and Type II error

To establish which permutation strategy has an overall better performance in
establishing significance of the VAF per variable, Type I and Type II error
rates are calculated for each cell of the design, both without correction as well
as with BF and FDR correction. For each type of correction, the specific form
of Type I error rate that is supposed to be controlled is calculated.

For the uncorrected results, the Type I error rate is defined in the following
way. Variables involved in a random correlational structure (the variables
in C2) are supposed to show no significant VAF. The proportion of times
these variables do show significant VAF gives the Type I error rate. This
proportion is computed as TypeI = siguC2/m2, where siguC2 is the number
of times that the VAF of a variable in C2 is incorrectly found significant with
an uncorrected significance level of 0.05, and m2 is the number of significance
tests with a possible false positive outcome that are performed on one data set.
(In data sets with no structure, m2 equals the total number of variables in the
data set, m.) The Type I error rate is averaged over all R data replications.
For the Bonferroni corrected results, the Type I error rate is computed as
follows: FWE = datsigbC2>0/R, with datsigbC2>0 the number of data sets in
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which there is at least one false significant result at a Bonferroni corrected
significance level of 0.05/m, and R the number of replications. Finally, for
the FDR corrected results, we computed the Type I error rate as: FDR =
sigfC2/(sigfC2 + sigfC1), that is, the number of false significant results
within the total number of significant results at an FDR corrected significance
level (r/t×α). The FDR is averaged over replications. Note that the number
of significant results in the block C2 differs for each type of significance level
condition, as the significance level used depends upon the correction method.

The Type II error rate for the strong and moderate two-dimensional data
structures is given by the proportion of times that a variable contributing
to the two-dimensional data structure (i.e., a variable in C1) does not come
up with a significant VAF. The proportion of Type II error is computed as
TypeII = insigC1/m1, with insigC1 the number of times a variable in C1

is falsely found insignificant (at the significance level corresponding to the
correction method used), and m1 the number of tests with a possible false
insignificant outcome. Data sets without a principal components structure
contain no variables that contribute to a two-dimensional structure (i.e., have
no possiblity of rendering false insignificant results), and thus for such data,
Type II errors do not exist.

4.3.4 Choosing the number of Monte Carlo samples

The Type I and Type II error rates are sample estimates that are expected to
deviate from the population values by some error margin. We used confidence
intervals for proportions to decide how many Monte Carlo replications are
needed to obtain an acceptable margin of error. Because we did not wish the
total confidence interval to be larger than 1%, we chose 0.005 as an accept-
able margin of error. We used the Wilson estimate (Wilson, 1927) to avoid
the margin of error of the confidence intervals becoming 0 (also see Agresti
& Coull, 1998). In Appendix E, the exact procedure we used to calculate
the number of Monte Carlo replications R with these criteria is given. The
results from this procedure show that it is sufficient to use 1500 Monte Carlo
replications for data sets with 20 variables, and 750 Monte Carlo replications
for data sets with 40 variables. In the next section, we will discuss the results
for the different data conditions, in terms of proportions of Type I and Type
II errors for both permutation strategies.
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4.4 Results

The main question of this study is which combination of permutation strat-
egy (PermD or PermV) and significance level condition (UNC, BF, or FDR)
performs best for different sizes and structures of data sets. In the following
sections, we will first focus on the most useful results for answering that ques-
tion, that is, the data sets with 20 variables, as these show higher error rates
than the data sets with 40 variables. The relatively high error rates for data
sets with 20 variables result from the fact that we kept the dominance of the
first two principal components constant across the two data size conditions.
Consequently, the principal components structure is more evident in data sets
with 40 variables than in data sets with 20 variables. In a moderately struc-
tured data set with 40 variables, C1 contains 30 variables, of which 30% of
the variance is accounted for by the first component, and 10% by the second
component. This leads to eigenvalues of approximately 0.30× 30 = 9 for the
first component, and 0.10× 30 = 3 for the second component. The remaining
components are all approximately equally unimportant and have eigenvalues
close to 1. For a similarly structured data set with 20 variables, with C1

containing 15 variables, the eigenvalues will be approximately 0.30× 15 = 4.5
for the first, 0.10 × 15 = 1.5 for the second, and 1 for the other components.
In other words, when the proportion of VAF by the first two components is
constant, a data set with 40 variables will have a relatively stronger principal
components structure compared to a data set with 20 variables.

4.4.1 Permutation strategies: Overall comparison

First, we will focus on the general comparison between the two permutation
strategies (permutation of the entire data set, PermD, and permutation of
the separate variables, PermV). Table 4.1 displays a selection of some general
results of the study, showing the proportions of Type I and Type II error for
these two different strategies. The error proportions have been determined
with an uncorrected 5% significance level (UNC). These general results show
that proportions of Type I error are smaller with PermD, while proportions
of Type II error are considerably smaller with PermV. The mean proportion
of Type I error over numbers of objects is 0.005 for PermD and 0.063 for
PermV, and the mean proportion of Type II error is 0.271 for PermD and
0.043 for PermV. The differences between the two strategies after correcting
the significance level for multiple testing (BF and FDR) will be discussed in
detail below. These results will be shown to point in the same direction, and
to be even more pronounced for the proportions of Type II error.

These general differences between the two strategies can be explained as
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Table 4.1: Proportions of Type I and Type II errors, and the total proportion
of errors for permutation of the entire data set (PermD) and permutation
of separate variables (PermV). Results are based on 1500 replications on data
sets with a moderately strong principal components structure and 20 variables.
Uncorrected 5% significance levels were used.

Type I Type II Total
Nr. of objects PermD PermV PermD PermV PermD PermV

100 0.015 0.063 0.538 0.159 0.553 0.222
200 0.004 0.064 0.303 0.011 0.307 0.075
300 0.001 0.062 0.177 0.001 0.178 0.063
500 0.000 0.064 0.067 0.000 0.067 0.064

mean 0.005 0.063 0.271 0.043 0.276 0.106

follows, using the permutation distributions from one permutation study as
an illustration (see Figure 4.3). In the PermD condition, the permuted data
set will have a random structure. In such a structure, variables may some-
times by chance obtain a relatively high component loading. Therefore, the
permutation distributions for the variables will show quite some spread. Con-
sequently, the observed VAF values will sometimes be close to or even within
the range of the permutation distribution, and may therefore less frequently
be marked significant. Thus, the proportion of Type I error will be quite small,
but the proportion of Type II error will be large. In Figure 4.3, examples of
the permutation distributions for the VAF of one variable (V2) in a particular
simulated data set are shown. Panel a contains the distribution obtained by
PermD. The original VAF values are displayed by stars. The distribution for
PermD is quite widely spread, and the observed VAF value lies within the
permutation distribution, with a corresponding p-value of 0.199, which is not
significant.

If, alternatively, the PermV strategy is used, where only one variable is
permuted, the permuted data set will still have a principal components struc-
ture as determined by the other C1 variables. The chance that the permuted
variable will obtain a permutation distribution containing relatively large VAF
values is very small. In other words, the permutation distribution for the VAF
for that variable will show relatively low values with a small spread, and the
observed value will be farther from the center of the distribution. This is illus-
trated in panel b of Figure 4.3, in which the permutation distribution for V2
is displayed as obtained with the PermV strategy. This permutation distrib-
ution is much more narrow than that for PermD in panel a of Figure 4.3, and
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Figure 4.3: Examples of permutation distributions of the VAF in variable V2
of a particular Monte Carlo data set, after permutation of the entire data set
(PermD) and after permutation of separate variables (PermV). Results for a
moderately structured data set with 20 variables and 100 objects. The original
VAF in V2 is indicated by the star.

the original VAF (indicated by a star) is close to the tail of the distribution,
with a p-value of 0.006, which is significant.

Thus, with the PermV strategy, the proportion of Type I error will be
larger compared to the PermD strategy, whereas the proportion of Type II
error will be smaller. In exploratory research, Type II error is often considered
more serious than Type I error, because in such research it is important to find
any effect that might be present in the data. When an effect is discovered in
an exploratory study, new studies might be conducted to confirm this result.
However, when an exploratory study fails to find an effect that is present
in the population (i.e., a Type II error is made), new studies on this effect
might never be conducted. This emphasis on avoiding Type II error implies
the higher suitability of PermV in exploratory contexts. In addition, from
the sum of the error proportions in Table 4.1, we conclude that the total
proportion of errors is always smaller for PermV, which also indicates PermV
as the most favorable strategy of the two.

4.4.2 Permutation strategies combined with different
confidence level conditions

In this section, we combine the two permutation strategies with the three
different confidence level conditions: the uncorrected condition (UNC) with
5% significance level, the BF corrected, and the FDR corrected condition.
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Table 4.2: Proportions of Type I and Type II error based on 1500 replications
(with PermD as well as PermV) on data sets with strong, moderately strong,
or no distinct principal components structure. m=20. UNC= uncorrected
5% significance level; FDR = FDR corrected significance level; BF= Bonfer-
roni corrected significance level. Type I error rates have been computed in
accordance with each type of control.

Strong structure Moderate struct. No struct.
Nr. objects Permutation Sign. Type I Type II Type I Type II Type I
100 PermD UNC 0.000 0.000 0.015 0.538 0.052

FDR 0.000 0.000 0.004 0.878 0.049
BF 0.000 0.000 0.003 0.961 0.048

PermV UNC 0.048 0.000 0.063 0.159 0.060
FDR 0.012 0.000 0.015 0.261 0.065
BF 0.008 0.000 0.017 0.624 0.058

200 PermD UNC 0.000 0.000 0.004 0.303 0.052
FDR 0.000 0.000 0.001 0.600 0.055
BF 0.000 0.000 0.001 0.907 0.055

PermV UNC 0.048 0.000 0.064 0.011 0.077
FDR 0.012 0.000 0.017 0.024 0.087
BF 0.010 0.000 0.019 0.167 0.079

300 PermD UNC 0.000 0.000 0.001 0.177 0.054
FDR 0.000 0.000 0.000 0.381 0.057
BF 0.000 0.000 0.001 0.855 0.057

PermV UNC 0.049 0.000 0.062 0.001 0.091
FDR 0.013 0.000 0.016 0.002 0.123
BF 0.009 0.000 0.018 0.035 0.110

500 PermD UNC 0.000 0.000 0.000 0.067 0.057
FDR 0.000 0.000 0.000 0.149 0.070
BF 0.000 0.000 0.000 0.783 0.065

PermV UNC 0.054 0.000 0.064 0.000 0.125
FDR 0.014 0.000 0.017 0.000 0.215
BF 0.012 0.000 0.015 0.001 0.193

Table 4.2 shows the Type I error rates for data sets with 20 variables
and with three different types of structure. These error rates have been com-
puted in accordance with the rates that are supposed to be controlled (see the
paragraph above on the computation of error rates). When we compare the
two permutation strategies, for all confidence level conditions, PermD gives
smaller proportions of Type I error than PermV, showing that the conclusion
for the uncorrected confidence level in Table 4.1 also applies to the BF and
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Figure 4.4: Proportions of Type II error for data sets with a moderately strong
principal components structure, calculated after R replications of the permu-
tation test. (R = 1500 when m = 20, and R = 750 when m = 40.) Results
after PermD are indicated by dashed lines; results after PermV are indicated
by solid lines. Circles indicate results with an uncorrected 5% significance
level, downward-pointing triangles indicate results after FDR correction, and
upward-pointing triangles after BF correction.

FDR conditions.
The results considering Type II error for the moderately structured data

sets with 20 variables are also displayed in Table 4.2. (The results for data sets
with 40 variables will be discussed shortly.) To show the differences among
the confidence level conditions more clearly, we have additionally displayed
the Type II errors in Figure 4.4. Panel a shows results for data sets with 20
variables, and Panel b for data sets with 40 variables. The results are averaged
over the Monte Carlo replications (1500 for the 20 variables condition, and
750 for the 40 variables condition; the validation of this number of Monte
Carlo replications can be found in Appendix E.) Estimates for proportions of
Type II error are displayed for the UNC condition (marked with circles), the
BF condition (upward-pointing triangles), and FDR condition (downward-
pointing triangles). The dashed lines indicate the results from the PermD
strategy, and the solid lines those from the PermV strategy.

Considering the overall comparison of the two permutation strategies, the
results for Type II error are completely reversed compared to the results for
the Type I error: PermD has much larger proportions of Type II error than
PermV, specifically for the BF and the FDR condition. The proportions
of Type II error in the UNC condition are smaller than those with FDR,
which are smaller than those with BF. Over different numbers of objects, for
PermD, proportions of Type II error range from 0.07 to 0.54 for the UNC
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condition, from 0.15 to 0.88 for the FDR condition, and from 0.78 to 0.96 for
the BF condition. For PermV, these ranges are 0.00 to 0.16 (UNC), 0.00 to
0.26 (FDR), and 0.00 to 0.63 (BF). If we consider a power of .80 or higher
acceptable, the PermD strategy never gives acceptable results (except for
n = 500, with UNC and FDR), while PermV is acceptable under all conditions
(except for n = 100, with BF and FDR). For both PermD and PermV, the
Bonferroni correction leads to the highest loss of power, thus we conclude that
this correction is much too conservative.

Permutation strategies with different confidence level conditions
for different data structures

The results in Table 4.2 show that, for all confidence level conditions, the Type
I error rates are smaller when the data structure is stronger. In unstructured
data sets, the Type I error rates are much larger than for structured data sets,
which can be explained as follows. In data sets with a strong or moderately
strong principal components structure, the variables that do not contribute to
that structure (C2 variables) will have small component loadings compared
to the variables that do contribute (C1 variables). The probability that one
of the C2 variables will turn up significant in the presence of C1 variables is
small. However, when an observed (or generated) data set is unstructured (has
a random structure), C1 and C2 variables are equivalent, and each variable
may coincidentally obtain a component loading that is relatively high, which
can be compensated by relatively small loadings in other variables. If the
data set is permuted, a corresponding high VAF value may (incorrectly) be
marked significant. As a result, Type I errors are more likely to occur for
unstructured than for structured data sets.

The above reasoning applies to the traditional Type I error rate as well as
the FWE (controlled by the BF correction) and the FDR (controlled by the
FDR correction). If the data have no component structure, each significant
result is a false significant. Then, if one or more significant results are found,
both the FWE and the FDR are equal to 1 (thus, when the same correction
procedure is applied, the FDR and FWE are exactly equal). Consequently,
we would expect the average FWE and FDR over replications to also become
inflated. In the worst case for unstructured data (PermV for data sets with
20 variables and 500 objects), the FDR and FWE are around 0.20, meaning
that 20% of the data sets contained at least one significant result (which was
false because the data had no structure). However, the traditional Type I
error rates were still controlled by FDR and BF correction: The proportion of
significant results out of all significance tests performed on the unstructured
data ranged between 0.001 and 0.022 with FDR correction, and between 0.001
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and 0.012 with BF correction over all data sizes and permutation strategies.
As a comparison, in the UNC condition, the FDR and FWE were dramatically
inflated, ranging from 0.631 to 0.952. (These latter results were computed
separately, and are not displayed in the table for conciseness.) Therefore,
correction of the significance level is still worthwhile. Fortunately, data sets
without any correlational structure (except for a method effect) are not very
likely to be analyzed in practice. Therefore, it seems more sensible to focus
on Type I errors in the structured data sets.

Considering Type II error rates, we can conclude that these rates are also
smaller for data sets with a strong structure than with a moderate struc-
ture, as (of course) the power is much higher when effect sizes are high. For
unstructured data sets, Type II errors cannot be computed.

Permutation strategies with different confidence level conditions
for different numbers of objects

For structured data sets, the Type I error rates are not dependent on the
number of objects in the data set (see Table 4.2). However, for unstructured
data sets, Type I error rates are higher for data sets containing more objects,
which reflects the fact that significant results are more easily found for larger
samples. For the unstructured data sets, this effect surfaces, because each
significant result is a false significant.

From Figure 4.4, we conclude that the proportion of Type II error de-
creases when the number of objects in the data set increases. Figure 4.4a
shows that this conclusion holds specifically for the PermV condition, where
the error drops considerably from 100 to 200 objects.

Permutation strategies with different confidence level conditions
for different numbers of variables

The results for the data sets with 40 variables are displayed in Table 4.3.
All the results described for the 20 variables condition are confirmed, and as
expected, there is an overall drop in proportion of errors compared to the 20
variables condition. In the structured data sets, for PermV with the UNC
condition, the Type I error rate is around the desired 0.05 in the whole range
of n = 100 up to n = 500; the proportions of Type I error in the FDR
condition are slightly smaller than expected (they vary slightly around 0.04);
and the Type I error rates in the BF condition are close to 0. For PermD
with structured data sets, the proportion of Type I error is always close to
zero. For the unstructured data sets, the Type I error rates are much higher,
specifically for PermV with large samples.
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Table 4.3: Proportions of Type I and Type II error based on 750 replications
(with PermD as well as PermV) on data sets with strong, moderately strong,
or no distinct principal components structure. m=40. UNC= uncorrected
5% significance level; FDR = FDR corrected significance level; BF= Bonfer-
roni corrected significance level. Type I error rates have been computed in
accordance with each type of control.

Strong structure Moderate struct. No struct.
Nr. objects Permutation Sign. Type I Type II Type I Type II Type I
100 PermD UNC 0.000 0.000 0.000 0.108 0.051

FDR 0.000 0.000 0.000 0.194 0.037
BF 0.000 0.000 0.000 0.822 0.037

PermV UNC 0.048 0.000 0.048 0.000 0.059
FDR 0.012 0.000 0.012 0.000 0.057
BF 0.004 0.000 0.007 0.042 0.057

200 PermD UNC 0.000 0.000 0.000 0.007 0.051
FDR 0.000 0.000 0.000 0.013 0.040
BF 0.000 0.000 0.000 0.552 0.040

PermV UNC 0.045 0.000 0.050 0.000 0.068
FDR 0.011 0.000 0.013 0.000 0.079
BF 0.008 0.000 0.009 0.000 0.077

300 PermD UNC 0.000 0.000 0.000 0.000 0.054
FDR 0.000 0.000 0.000 0.001 0.041
BF 0.000 0.000 0.000 0.360 0.040

PermV UNC 0.052 0.000 0.048 0.000 0.081
FDR 0.013 0.000 0.012 0.000 0.105
BF 0.012 0.000 0.019 0.000 0.101

500 PermD UNC 0.000 0.000 0.000 0.000 0.055
FDR 0.000 0.000 0.000 0.000 0.055
BF 0.000 0.000 0.000 0.158 0.055

PermV UNC 0.048 0.000 0.050 0.000 0.100
FDR 0.012 0.000 0.012 0.000 0.179
BF 0.007 0.000 0.009 0.000 0.165

The results for the proportion of Type II error are even more clear than
for the 20 variables condition: For PermD, the error proportions in the BF
condition are too large if n < 500. Results for the other conditions range from
acceptable (for n = 100) to excellent.
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In summary, the number of objects and variables in the data set is pri-
marily important for the proportion of Type II error. If the entire data set
is permuted, more objects and variables are needed to obtain enough power
compared to the permutation of one variable at a time. In addition, for small
data sets, the Bonferroni correction leads to an enormous loss of power for
both permutation strategies, especially for PermD. Considering the size of
structured data sets, acceptable results for both Type I and Type II error
rates were obtained for PermV with FDR and BF, for data sets with 20 vari-
ables and between 100 and 200 objects, or with 40 variables and at least 100
objects. With FDR correction, a higher level of power was reached than with
BF correction. For data sets without any structure, Type I error rates were
severely inflated. However, traditional Type I error rates were much smaller
with than without correction for multiple testing.

4.5 Conclusions and Discussion

The main conclusion from this study is that for assessing the significance of
the contribution of the variables to the PCA solution, permuting one variable
while keeping the others fixed, combined with FDR correction of the signif-
icance level, yields the most favorable combination of proportions of Type I
and Type II error. The strategy of permuting the entire data set leads to an
excessive loss of power, especially when the size of the data sets is small. Per-
mutation of separate variables gives higher, but still acceptable, proportions
of Type I error for structured data sets. The Bonferroni correction is much
too conservative and leads to a huge loss of power. Regarding the number
of objects, we can conclude that permutation studies should preferably be
applied to data sets with more than 100 objects. For smaller data sets, the
power of the permutation test is somewhat low. This results from the fact
that a principal components structure is less manifest when n ≤ 100.

Based on these results, we can give researchers who wish to apply permu-
tation tests to PCA for assessing the significance of the VAF per variable the
following advice: Permute one variable at a time, while keeping the others
fixed (PermV). For small samples (with n ≤ 100), do not apply the Bonfer-
roni correction. If, with such small samples, Type I error is considered more
serious than Type II error (which in exploratory research is not very likely),
apply the FDR correction, otherwise use an uncorrected significance level. For
larger samples (n > 100), FDR correction is recommended, not only because
it implies higher power than the Bonferroni correction, but also because it
theoretically fits the objective of exploratory data analysis (Keselman et al.,
1999).
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In the structured data sets in this study, the Type I error rates with Bon-
ferroni and FDR correction were lower than we would expect (< 0.05). In
these structured data sets, the relative number of true alternative hypotheses
(corresponding to variables in C1) compared to the true null hypotheses (cor-
responding to variables in C2) was high: the ratio was 3:1. For other ratios of
true alternatives (TA’s) and true null (TN’s), we may expect other FWE and
FDR values. As an illustration, imagine a data set on which 20 hypotheses
are tested, resulting in one false significant result. If the data set contained
10 TA’s and 10 TN’s, the FDR may range from 1/11 (0.09) to 1/1 (1.00);
if the data set contained 1 TA and 19 TN’s, the FDR may range from 1/2
(0.50) to 1/1 (1.00). Thus, when the relative number of TA’s decreases, the
FDR becomes high more easily. The dependency of the FDR on the relative
number of TA’s compared to TN’s is not surprising and also not specific for
data analyzed by PCA. With the simulation program by Verhoeven et al.
(2005) which randomly simulates p-values for true null hypotheses from a
uniform distribution, and z-values for true alternative hypotheses from the
normal distribution (with added effect size), high FDR is obtained more eas-
ily for data containing relatively few TA’s. In such cases, the FWE will also
become inflated, because the probability of finding a false significant result
is higher when relatively few true significant results exist. This overall effect
concurs with logic: If we search for a very rare phenomenon (for instance a
rare disease), the chance of obtaining a false positive when doing a test on a
random individual is large, even when we use a reliable instrument. Based
on these results, we (obviously) advise researchers to perform permutation
tests on the VAF of variables only if the data are theoretically founded, and
are thus expected to be structured. Otherwise, the FDR and BF correction
do not control the error rates they are supposed to control. However, both
correction methods still keep the traditional proportion of Type I error within
the total number of tests performed on a data set quite small (far below 0.05).

For comparing the performance of the permutation strategies in this study,
we mainly focused on the VAF of the variables across components, as this VAF
measure remains constant over all possible rotations of the solution. However,
for interpretation purposes, it could be more interesting to look at the VAF of
the variables per component. In the next chapter, we will apply the strategy
of permuting the variables independently and sequentially (PermV) to an
empirical data set, and also pay attention to the VAF of the variables for each
component separately.
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The simulation studies were performed using Matlab code, and took quite
some computation time. The smallest study, for PermD with 1500 Monte
Carlo replications, each involving 999 permutations of data sets with 100
objects and 20 variables, took about 3 hours. The largest study, for PermV
with 750 Monte Carlo replications with samples containing 500 objects and 40
variables – each replication involving 999× 40 permutations – took almost 50
hours. In practice, of course, a researcher will only apply one permutation test
(for example, with 999 permutations) to establish the statistical significance
for the variables. Such a single test on a data set (comparable in size to the
data in our simulation study) will take less than a minute for permutation of
the entire data set, and about four minutes for permutation of single variables
(Pentium 4, 3.00 GHz).

With permutation tests, p-values are calculated as p = (q + 1)/(P + 1),
with q the number of values as extreme as or more extreme than the observed
value, and P the number of permutations. Thus, p-values have a lower bound
of 1/(P + 1). When applying permutation tests, one should realize that the
number of permutations has an effect on the minimum p-value that can be
obtained. If too few permutations are used, the minimum p-value will be
relatively large. Buja and Eyuboglu (1992) suggested using either 99 or 499
permutations, which would lead to minimum p-values of p = (0+1)/(99+1) =
0.01 and p = (0 + 1)/(499 + 1) = 0.002, respectively. In the current study,
we used 999 permutations (with a minimum p-value of 0.001), which leads to
satisfactory results.

In this study, we focused on the contribution of single variables to the PCA
solution. It may be conceived that in other studies, the contribution of pairs
or sets of variables might be of interest. In that case, two or more variables
might be permuted at a time, keeping the other variables fixed, such that
the significance of the sum of the variances accounted for by these permuted
variables on top of the structure of the others may be assessed. In the most
extreme case, all variables would be permuted at the same time for assessing
the significance of their total VAF, indicated by the eigenvalues, which equals
the Buja and Eyuboglu strategy.
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When generating the data, we explicitly decided to make the signal vari-
ables independent of the noise variables (the correlations between the data
blocks C1 and C2 were zero). If we allow for correlations between these two
types of variables, it becomes much harder to distinguish method effects from
the actual signal. One could argue that assuming all correlations to be zero
may not be considered very realistic. An alternative would then be to allow
for small correlations between subsets of the signal variables and the noise
variables, instead of between all variables in the data set. However, the con-
clusions of the current study should not be considered particularly limited, as
the correlations between signal and noise variables were only zero in the pop-
ulation, while they were unequal to zero in the data sets analyzed, due to the
sampling effect induced by imposing a very weak one-dimensional structure on
the variables in C2, and by replacing the orthonormal matrix B with the ma-
trix B̃ when creating data matrices from correlation matrices (see Appendix
D).

In the literature, there has been an ongoing discussion about the valid-
ity of null hypothesis significance testing (NHST) in the traditional sense,
as proposed by Fisher. The main point brought forward by opponents of
NHST is that it is not valid to use the probability of observed data given
that the null hypothesis is true as an answer to the reversed question, that is,
what is the probability of the null hypothesis given the observed data (Cohen,
1994; Gliner, Leech, & Morgan, 2002; Killeen, 2005, 2006). Consistent with
that line of thought, an alternative to the traditional p-value, called prep has
been proposed (Killeen, 2005), which gives the probability that the direction
of a certain effect (positive or negative) can be replicated in another study,
under the same circumstances. Prep can be calculated within a parametric
framework, under the assumption that the data are normally distributed. In
addition, it can be calculated nonparametrically by doing a bootstrap study,
and calculating the proportion of bootstrap values for a specific outcome value
that point in the same direction as the observed result (Killeen, 2005). This
latter approach may also be used in the PCA context.

Buja and Eyuboglu (1992) noted that significance of loadings should not
be mistaken for sampling stability. Significance means that loadings of a
certain magnitude are unlikely to be due to chance alone. Sampling stability
refers to the question of whether the solution of an analysis would be the
same if the analysis was performed on a slightly different data set. Stability
can be established by resampling techniques, like the bootstrap, but not by
permutation tests. In theory, statistically significant loadings can be unstable,
whereas insignificant loadings might be quite stable. A stability study on the
PCA solution has been reported in Chapter 3.
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Nonlinear PCA is an alternative for linear PCA that is useful for data
sets that contain variables of different measurement levels (numeric as well as
categorical) that may be nonlinearly related to each other (for example, see
Chapter 2 of this thesis, and Meulman, Van der Kooij, and Heiser (2004)).
There are no standard provisions for establishing inferential statistics for non-
linear PCA, like stability measures and p-values. In Chapter 3, the stability
of the nonlinear PCA solution was established, and compared to that of the
linear PCA solution. The permutation strategy proposed in the current study
may be used in the context of nonlinear PCA as well. Doing so can be consid-
ered worthwhile for the application of multivariate categorical data analysis
methods in the social and behavioral sciences.






