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Chapter 1

General Introduction
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2 CHAPTER 1. GENERAL INTRODUCTION

1.1 Categorical Data Analysis in the Social and
Behavioral Sciences

During the period of time I have been analyzing data from the social and
behavioral sciences, I have noticed that these data sets contain a mixture of
different types of variables, quite some of which are measured in ordered or
unordered categories. For example, many background variables, such as the
subject’s gender, religion, profession, and hobbies, but also analysis variables
like attachment of a child to its caregivers (Ainsworth & Bell, 1970; Bowlby,
1969) or the clinical diagnosis of psychological disorders, are measured in un-
ordered categories. Variables akin to level of education, ratings on observation
scales (for instance, quality of child care, ranging from “very poor” to “very
high”), or a person’s opinion on a specific subject (for example, assessed using
Likert-type scales) are measured in ordered categories. And finally, data sets
contain variables with numeric values, like age, length, income, heart rate,
IQ, and so on. These different types of variables call for different treatment
when analyzing the data, which is not always as self-evident as it may seem.
In addition, these data sets often contain variables that are or may be nonlin-
early related to each other, which should also be accounted for in the analysis
results. Thus, data sets in the social and behavioral sciences cannot always
be analyzed as straightforwardly as many researchers would wish. This thesis
offers a solution to some of the questions that may be raised in this context,
making use of an analysis technique that is part of a tradition referred to
as Nonlinear or Categorical Multivariate Data Analysis. The thesis aims to
aid applied researchers in performing a particular categorical data analysis
method that in some cases will do more justice to their data than the tradi-
tional approaches they standardly use. It also offers some simple and easily
implementable tools to strengthen the conclusions drawn from this analysis
method.

Usually, a distinction is made between categorical variables on the one
hand, and numeric variables on the other. The term categorical either refers
to nominal and ordinal variables, or to nominal variables alone. Nominal
variables are measured in unordered categories and use category labels to
define specific groups of subjects. Variables that use labels with a specific
ascending or descending order are referred to as ordinal variables. Numeric
variables have values with actual numeric properties and can be measured on
interval or ratio scales, with interval scales containing values with a specific
order, and having equal distances between subsequent values; ratio scales
additionally include a clear definition of the value 0.0: if this value occurs,
the measured quantity is completely absent.
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This distinction between categorical and numeric variables should not lead
to the misconception that Categorical Multivariate Data Analysis is focused
only on the analysis of categorical variables in this strict sense. Alternatively,
all types of variables mentioned above can be seen as categorical variables, with
each observed value or label indicating a category. For instance, the variable
age, with observed values 4, 5, 8, 10, and 11 years old, can be perceived as a
categorical variable with five categories. Consistent with that line of thought,
all types of variables (and not just nominal and ordinal) can be analyzed
by the type of categorical (or nonlinear) analysis technique described in this
thesis.

There is an important difference between variables with and without real
numeric values: Variables with real numeric properties (interval and ratio
variables) can be used in standard calculations, and thus, for example, their
mean and standard deviation can be computed without difficulty. For nomi-
nal and ordinal variables, however, the category labels cannot be interpreted
as numbers. Therefore, such common calculations do not lead to sensible
conclusions, inducing the following problem: Nominal and ordinal variables
are measured frequently, but researchers often have problems analyzing them
properly. The possibility of the existence of nonlinear relationships between
variables further complicates that situation.

Many different methods have been described to deal with the analysis of
variables without real numeric properties, among which are methods using
dummy variables. In such methods, a categorical variable is split up into
marker variables for each category, where for each such dummy variable, a
value ‘1’ indicates that a person scored that particular category, and a ‘0’
indicates that the person did not. These dummy variables are then used as
numeric variables in the analysis of interest. Such methods, however, are often
quite intensive, especially when variables have many categories. Alternatively,
specific methods – for example, nonlinear equivalents of regression and prin-
cipal components analysis – have been developed for the analysis of mixed
categorical (nominal, ordinal, and numeric) data, using optimal scaling (or
optimal quantification) (see Gifi, 1990). Such techniques quantify category
labels in an optimal way, maximizing the relationship between the quantified
variables.

In the remaining part of this introduction, a brief explanation of optimal
scaling methods will be given, focusing on nonlinear principal components
analysis (nonlinear PCA). In addition, the emphasis will be on how such
methods can be taken beyond their exploratory basis by assessing inferential
measures in a nonparametric way.
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1.1.1 Optimal quantification

Optimal quantification, also referred to as optimal scaling, transforms cate-
gory labels into numeric values (which is called quantification), such that the
strength of the relationships between the quantified variables is optimized. In
other words, the variance-accounted-for (VAF) among the quantified variables
is maximized. At the same time, a standard (numeric and linear) analysis
technique is performed on the quantified data. This idea is founded in the
work of several different authors. For example, Horst (1935), Fisher (1938,
1940), and Guttman (1941) provided important work on the quantification
of nominal variables, and Shepard (1962b, 1962a) and Kruskal (1964) were
pioneers in the area of quantification of ordinal data. Many followers of these
authors have used optimal scaling in a number of different contexts (for exam-
ple, see Kruskal, 1965; Kruskal & Shepard, 1974; Nishisato, 1980, 1994; Ram-
say, 1988; Roskam, 1968; Shepard, 1966; Van der Burg & De Leeuw, 1983;
Winsberg & Ramsay, 1983; Young, 1981; Young, de Leeuw, & Takane, 1976;
Young, Takane, & de Leeuw, 1978). Gifi (1990) gives a historical overview,
and a discussion of the techniques using optimal quantification. This the-
sis will be focused on nonlinear principal components analysis using optimal
quantification. An extensive description of the objectives and procedure of
optimal quantification will be given in Chapter 2.

1.1.2 Nonlinear PCA as an exploratory technique

When researchers have collected a data set, and wish to explore the corre-
lational structure among the variables (i.e., without starting from a specific
theory), principal components analysis (PCA) or exploratory factor analysis
(EFA) may be the method of choice. When the goal of a study is to model
the structure in the observed data set, incorporating the relationships between
the variables (common variance) as well as the unique contribution of sepa-
rate variables (unique variance), EFA is the most appropriate method. When
the goal is data reduction, that is, reducing a large number of observed vari-
ables to a smaller number of composite variables, without considering each
variable’s unique contribution, PCA is more suitable (see Fabrigar, Wegener,
MacCallum, & Strahan, 1999). This thesis will be focused on PCA, the most
popular of the two approaches (Fabrigar et al., 1999).

In many cases, PCA matches the goal of a study, but the assumptions
of PCA are not met by the observed data. Specifically, the assumptions
that variables have at least an interval measurement scale and are linearly
related to each other are often violated. Sometimes, especially when the
variables selected for the analysis are measured on an ordinal scale, researchers
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simply ignore these violations, and perform PCA regardlessly. This decision
may or may not lead to substantial problems, depending on whether these
variables are approximately linearly related to each other. If PCA is performed
without checking its assumptions, one can never be sure whether the results
are trustworthy.

In such situations, nonlinear (or categorical) PCA with optimal quantifi-
cation is a helpful alternative; it pursues the same objectives as linear PCA,
but incorporates nominal and ordinal as well as numeric variables, and can
help discover and deal with possible nonlinear relationships among these vari-
ables. The method can analyze variables at their measurement level, but when
nonlinear relations between variables exist, other analysis levels can also be
specified so these relations can be handled most effectively.

Nonlinear PCA generalizes some more specific analysis methods by its
ability to handle data of different analysis levels simultaneously. When all
variables are at a numeric analysis level, nonlinear PCA equals linear PCA.
With all variables at a multiple nominal level (this level is explained in Chap-
ter 2), nonlinear PCA is equivalent to multiple correspondence analysis (for
example, see Greenacre, 1984), dual scaling (Nishisato, 1980, 1994), or homo-
geneity analysis (Gifi, 1990). Nonlinear PCA is described more extensively in
Chapter 2.

1.2 Inference in Principal Components Analysis

The primary goal of this thesis is to move beyond the exploratory status of
nonlinear PCA by introducing nonparametric inferential measures, based on
the observed data instead of preassumed population distributions. In general,
the gap between exploratory and confirmatory analysis methods often seems
wider than it should. Exploratory techniques are not as unregulated as ad-
vocates of confirmatory techniques may suggest, and confirmatory methods
contain descriptive properties just as well as exploratory methods. In addi-
tion, confirmatory analysis of complicated multivariate models should not be
idealized, because the framework in which hypotheses are tested – including,
for example, the assumption of multivariate normal distributions – is generally
implausible in practice (De Leeuw, 1988). In this thesis, we use methods of
establishing inferential measures for exploratory techniques that do not rely
on such assumptions.
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1.2.1 Methods for nonparametric inference

In traditional inferential methods, certain known distributions (for instance,
the normal distribution) are assumed to represent the population distribution.
Without making additional assumptions, however, the properties of the popu-
lation distributions of the outcomes of exploratory methods, such as PCA, are
unknown. Therefore, for such analysis methods, a nonparametric approach
where the observed data itself instead of the (unknown) population distribu-
tions are used as a basis for inferential measures, seems more appropriate.

A first aspect of inference that we will focus on in this thesis is stability.
In line with Gifi (1990), we define stability as the degree of sensitivity of an
analysis technique to changes in the data, where small changes should lead
to only small changes in the output of the analysis. Stability should not be
mistaken for estimation accuracy: A sample estimate can be very close to the
population value (i.e., it can be accurate, or unbiased), but still have large
confidence intervals, and the reverse (inaccurate or biased estimates that are
very stable) is also possible.

The nonparametric bootstrap (Efron & Tibshirani, 1993) procedure can
be used to establish the stability (robustness) of analysis results, and can
provide an estimate of the shape, spread and bias of the sampling distribution
of a specific statistic. In this thesis, the focus will be mainly on the former
use. The bootstrap procedure involves treating the observed sample as if it
were the population, and drawing, with replacement, a large number of new
samples from it, keeping the rows of the observed data set intact. Each new
sample contains as many cases (rows) as the observed data set, but some cases
may appear several times, whereas others may not appear at all. For each
bootstrap sample, the statistic of interest is computed, and the results form
a bootstrap distribution, which can be viewed as an approximation of the
sampling distribution of that statistic. Confidence intervals for the statistic
can be computed from the bootstrap distribution. If the solution is stable,
these confidence intervals will be small. In addition, if there is little bias
(i.e., only a small difference between the center of the bootstrap distribution
and the observed statistic) and if the bootstrap distribution is approximately
normal, these confidence intervals will cover the population parameter with a
pre-specified probability (for instance 95%).1

A second aspect of inference is the statistical significance of analysis re-
sults. Statistical significance is essentially different from sampling stability:
Whereas stability refers to whether an observed statistic would vary much

1Bootstrap procedures are available in statistical packages, such as JACKBOOT in SAS
and macros in SPSS; SYSTAT specifically provides bootstrap results for linear PCA, as well
as the asymptotics when appropriate.
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over different samples, statistical significance refers to whether the magnitude
of that statistic could be attributed to chance (also see Buja & Eyuboglu,
1992). A significant statistic may be unstable, and a stable statistic is not
necessarily significant.

Statistical significance can be established nonparametrically by use of per-
mutation tests. With permutation tests, as with the bootstrap, a large number
of new samples are drawn from the observed data, but independently for each
variable, and without replacement. In other words, the correlational structure
of the observed data set is destroyed by permuting the order of the persons
independently for each variable in the data set. The resulting permuted sam-
ples have a random correlational structure, with the univariate distributions
equal to those of the observed variables. The analysis results from the per-
muted data sets form permutation distributions for each outcome value of
interest. Using these permutation distributions, p-values are computed for
each observed statistic. If the original sample result takes an extreme value
in its permutation distribution, it obtains a small p-value, and is marked sig-
nificant.

In summary, the bootstrap and permutation tests are used to achieve
clearly different objectives, in a similar nonparametric framework based on
the data at hand. With the bootstrap procedure, the bootstrap results are
favorable if they differ only slightly from the results for the observed sample,
whereas with permutation tests, the results for the observed sample should
differ substantially from the (center of the) permutation distribution.

1.2.2 Linear PCA

Over time, attention has been paid to parametric inference in the context of
linear PCA under the assumption of multivariate normal distributions. For
instance, Girshick (1939) and Anderson (1963) have established asymptotic
distributions of component loadings derived from the covariance matrix (also
see Anderson, 1984). Ogasawara (2004) has derived asymptotic standard
errors for component loadings derived from the correlation matrix. However,
the multivariate normality assumption made by such approaches may not
apply in practice.

Alternatively, different versions of the bootstrap (parametric and non-
parametric) have been used to establish the stability of the linear PCA or
exploratory factor analysis results (for example, see Efron & Tibshirani, 1993;
Lambert, Wildt, & Durand, 1991; Milan & Whittaker, 1995). Timmerman,
Kiers, and Smilde (in press) compared the asymptotic approach to the boot-
strap approach, and found that the bootstrap is more flexible and under most
conditions more accurate than the asymptotic approach.
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To establish statistical significance of linear PCA results, permutation
tests have been applied (Buja & Eyuboglu, 1992; Landgrebe, Wurst, & Welzl,
2002). Buja and Eyuboglu used the same permutation approach, that is,
permuting the variables independently and concurrently, to establish the sig-
nificance of the eigenvalues as well as the component loadings. We believe that
an alternative approach to establish the significance of the contribution of the
variables to the PCA solution by permuting the variables independently and
sequentially might be more appropriate. Chapter 4 of this thesis is focused
on comparing these two permutation strategies.

1.2.3 Nonlinear PCA

For linear PCA, inferential measures may be established under the assumption
of multivariate normality. For nonlinear PCA, considering the fact that it does
not make distributional assumptions, it seems natural to use a nonparametric
approach, such as the bootstrap procedure and permutation tests.

In a not very widely known study by Markus (1994), the effectiveness of the
nonparametric bootstrap in establishing the stability of homogeneity analysis
(which can be viewed as a special case of nonlinear PCA with only nomi-
nal variables) has been examined. She also examined the stability of some
nonlinear PCA results with ordinal variables. In this study, 100 bootstrap
studies were performed on 100 different samples from the same known popu-
lation. Coverage percentages – the proportion of times the population value
lay within the bootstrap estimated confidence interval – were satisfactory.
Also, the standard deviations for category quantifications from homogeneity
analysis from some bootstrap samples were compared to corresponding as-
ymptotic standard deviations, assessed by the so-called “delta method” (Gifi,
1990; Meulman, 1984; Van der Burg & De Leeuw, 1988). The bootstrap and
asymptotic results were quite similar, but the bootstrap was more accurate in
estimating the standard deviations in the population, and more conservative
in estimating the variability of the category quantifications. These results are
in line with the conclusions from Timmerman et al. (in press) for linear PCA.
Markus’s study is described more extensively in Chapter 3.

Permutation tests can be applied to assess the statistical significance of
the nonlinear PCA results just as they are to linear PCA. In fact, permuta-
tion tests have been applied to several other forms of nonlinear multivariate
data analysis that use optimal scaling (for example, see De Leeuw & Van der
Burg, 1986; Dijksterhuis & Heiser, 1995; Heiser & Meulman, 1994; Meulman,
1992, 1993, 1996). When applying permutation tests to nonlinear PCA, it is
important to think about at what point during the permutation process the
optimal quantification should take place. If one is interested in the signifi-
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cance of the VAF by the nonlinear PCA solution as a whole, as expressed in
the eigenvalues, it may be appropriate to permute the variables independently
and concurrently (see Buja & Eyuboglu, 1992). In that case, the permuted
data sets have no particular correlational structure, and therefore it does not
seem sensible to perform optimal quantification on each of these data sets.
Instead, optimal quantification may be performed on the observed data, and
the quantified data may be subjected to a permutation study. If however, the
variables are permuted independently and sequentially, only one variable is
permuted at a time while keeping the others fixed. Then, a permuted data set
still has a structure, and it makes sense to perform optimal quantification on
each permuted data set. These and related issues are addressed in Chapter 5.

1.3 Outline

This thesis is a collection of four individual papers. As these papers will
be published separately, some overlap between the chapters is inevitable, es-
pecially considering the description of the method. However, the primary
content for each chapter can clearly be distinguished:

• Chapter 2 offers an elaborate didactic description of the method of non-
linear PCA. Optimal quantification and analysis levels are explained,
and the decisions to be made when applying the method are clarified.
Also, the strengths and limitations of the method are discussed. An ex-
tensive example, applying the nonlinear PCA program CATPCA (Meul-
man, Heiser, & SPSS, 2004) to an empirical data set is provided.

• In Chapter 3, the stability of the nonlinear PCA solution is established
using the nonparametric bootstrap procedure. First, the definition of
stability used in this thesis is clarified, and the validity of the bootstrap
procedure to assess this type of stability for nonlinear PCA is discussed.
Then, confidence intervals for the quantified variables, and confidence
ellipses for the eigenvalues, component loadings, and person scores are
established. The balanced bootstrap, bias estimation, rotation, and
category merging are discussed. To provide a benchmark to judge the
stability of the nonlinear PCA solution, the same procedure is applied
to linear PCA.

• Chapter 4 focuses on statistical significance of standard linear PCA re-
sults. The statistical significance of the contribution of the variables to
the PCA solution is assessed nonparametrically by permutation tests,
using two different strategies: (1) independently and concurrently per-
muting all columns (variables) of the data set, and (2) independently
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and sequentially permuting the columns, that is, permuting one variable
at a time, while keeping the other variables fixed. A simulation study
is conducted, varying the component structure and the size of the gen-
erated data sets. The statistical significance of the results is judged by
an uncorrected 5% significance level as well as two types of significance
levels corrected for multiple testing: the Bonferroni correction, and the
less well-known control of the false discovery rate (FDR) (Benjamini &
Hochberg, 1995). A large number of replications of permutation studies
is used to assess proportions of Type I and Type II error for the two
permutation strategies.

• In Chapter 5, the permutation strategy that performed the most satis-
factorily in Chapter 4 is applied to nonlinear PCA. Optimal scaling is
performed for each permuted data set. The data from Chapters 2 and
3 are used again to illustrate the performance of permutation tests in
assessing the significance of the variables in nonlinear PCA. In addition,
a measure for effect size is proposed. Finally, the results from the per-
mutation test are compared to the bootstrap results from Chapter 3,
considering statistical significance of the contribution of the variables to
the nonlinear PCA solution.

• Chapter 6 starts with an overall summary and discussion of the results
described in Chapters 2 to 5, and then focuses on some suggestions for
further research. At the end of the chapter, we give a discussion of the
implementation of the methods described in this thesis.




