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To detect panel disagreement, we propose the clustering around latent variables for three-way data
(CLV3W) approach which extends the clustering of variables around latent components (CLV) approach
to three-way data typically obtained from a conventional sensory profiling procedure (i.e., assessors
rating products on various descriptors). The CLV3W method groups the descriptors into Q clusters and
estimates for each cluster an associated latent sensory component such that the attributes within each
cluster are as much related (i.e., highest squared covariance) as possible with the latent component.
Simultaneously, for each latent sensory component separately, a system of weights is estimated that
yields information regarding the extent to which an assessor (dis)agrees with the rest of the panel
according to the latent sensory component under study. Our new approach is illustrated with a dataset
pertaining to Quantitative Descriptive Analysis applied to cider varieties. It is shown that CLV3W, as
opposed to related approaches, is able to detect differential panel disagreement on various latent sensory
components.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In conventional sensory profiling, a panel of assessors is used to
determine the differences among a set of products in terms of their
sensory properties. To this end, a fixed vocabulary of descriptive
terms is chosen and each assessor belonging to the panel is asked
to rate each product according to each term of this (fixed) set. Of
paramount interest in conventional sensory profiling is the asses-
sors’ reliability as it has a large impact on the interpretation of
the sensory properties of the products, which is very important
for product optimization purposes. To evaluate assessors’ reliabil-
ity, researchers try to determine for each assessor their discrim-
inability, repeatability and agreement with the (other) members
of the panel (Latreille et al., 2006). Focusing on the latter criterion,
the goal is to evaluate whether a consensus within the panel exists.
However, as pointed out by several authors (see, e.g., Dijksterhuis,
1995; Qannari, Wakeling, Courcoux, & MacFie, 2000), even for
trained panels it cannot be ruled out that individual differences
are present. This situation may, for example, occur when the attri-
butes are difficult to define or when different assessors attach a dif-
ferent meaning to the same attributes (Dijksterhuis, 1995).

In the past, many approaches have been proposed to account for
individual differences in panel performance. For example,
Dijksterhuis (1995) introduced a consonance index that was based
on Principal Component Analysis (PCA) to detect (individual) dif-
ferences in the use of each attribute. Studying the individual differ-
ences on each attribute separately has also been done by
researchers that examine the assessors � products interaction
term in an analysis of variance (Couronne, 1997). In this regard,
for example, the egg-shell plot has been proposed in order to high-
light an assessor’s agreement with the panel’s ranking (Lea,
Rødbotten, & Næs, 1995). Another example is Peron (2000) in
which an analysis of variance is performed to select discriminant
attributes and the consonance index is used to reveal assessor’s
agreement. More recently, some authors applied linear mixed
models to measure the reliability of a panel (Brockhoff, 2003;
Latreille et al., 2006). Schlich (1996) proposed a method called
Control of Assessor Performances (CAP) to study the discrimination
and the agreement of each judge, while Derks (2010) proposed
Panel Concordance Analysis (PANCA) as a tool for panel leaders
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Fig. 1. Conventional sensory profiling data structure.
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to identify disagreement between the panelists. A disadvantage of
all these methods is that they study each attribute separately,
herewith ignoring the (mutual) relationships among the attributes.

To take the mutual relationships between the attributes into
account, researchers proposed to use a multivariate approach.
Because conventional profiling data can be studied using different
viewpoints, a wide range of statistical multivariate methods to
analyze such data have been introduced in the past (Rossini,
Verdun, Cariou, Qannari, & Fogliatto, 2012). Some methods that
are associated with the RV coefficient (Schlich, 1996; Tomic,
Forde, Delahunty, & Næs, 2013) or that rely on Generalized
Procrustes Analysis (Collins, 1992; Gower, 1975; Qannari, MacFie,
& Courcoux, 1999; ten Berge, 1977) determine a global config-
uration of the products which is based on the consensus between
the assessors. To study panel disagreement, these methods calcu-
late a coefficient measuring assessors’ performance and this coeffi-
cient is used to down-weight bad performers. The rationale behind
such a strategy, which has also been adopted in Qannari and
Meyners (2001) and in Ledauphin, Hanafi, and Qannari (2006), is
to assign a unique weight to each assessor that reflects assessors’
overall agreement with the rest of the panel, herewith ignoring
that assessors may agree with the panel on one latent dimension
but that they may totally disagree on another latent dimension
(Kunert & Qannari, 1999; Tomic et al., 2013). In order to refine
the weighting scheme, Verdun, Cariou, and Qannari (2012) intro-
duced a system of weighting that allows each assessor-product-
combination to be associated with a different weight.

Although many multivariate analysis methods have been pro-
posed in the past for the analysis of fixed vocabulary profiling data,
three-way methods have surprisingly been almost neglected. To
the best of our knowledge, for sensory profiling, we are only aware
of three-way methods that use a Tucker approach (Brockhoff, Hirst,
& Næs, 1996; Dahl & Næs, 2009; Romano, Brockhoff, Hersleth,
Tomic, & Næs, 2008). Three-way methods, however, may be very
useful for analyzing sensory profiling data as they allow a more
precise weighting scheme that is based on the analysis of asses-
sor-sensory dimension combinations rather than on assessor-pro-
duct combinations. The former weighting strategy appears more
suited to account for panel (dis)agreement since it aims at detect-
ing the differences between assessors in their ability to perceive
sensory dimensions. Moreover, this weighting strategy makes it
possible to highlight assessors who need more training for only a
subset of sensory descriptors (related to the problematic sensory
dimensions), which is of paramount interest for a panel leader.

To this end, we introduce in this paper a clustering of variables
(Qannari, Vigneau, Luscan, Lefebvre, & Vey, 1997) approach that
yields the sensory dimensions (i.e., one dimension for each cluster
of variables) underlying the data along with a weighting scheme
that reveals each assessors’ degree of agreement with the panel
on each sensory dimension (i.e., cluster of variables). This approach
extends Clustering of variables around latent components (CLV)
analysis (Vigneau & Qannari, 2003; Vigneau, Qannari, Sahmer, &
Ladiray, 2006), a method that already has been successfully applied
in the context of conventional sensory profiling; CLV aims at clus-
tering sensory descriptors (i.e., variables) along with summarizing
each descriptor cluster by a latent component that captures the
underlying sensory dimension. In particular, the groups and latent
variables are determined in such a way that the (observed) vari-
ables in each group are as much related (in terms of squared
covariance) to their latent variable as possible. In the context of
sensory profiling procedures, however, CLV was only proposed
for analyzing two-way data, which are usually obtained by aggre-
gating (e.g., taking the mean) the sensory data over the assessors,
resulting in the loss of information regarding the differences
between assessors which is of special interest to us. Therefore,
we propose the clustering around latent variables for three-way
data (CLV3W) approach which extends CLV to three-way profiling
data such that assessor differences in the use of the underlying
sensory dimensions can be disclosed.

The rest of the paper is organized as follows. In Section 2, we
discuss how CLV can be extended to three-way data structures
and we present an algorithm to estimate the clustering and the
underlying sensory dimensions. In Section 3, the new method is
applied to a sensory profiling data set that pertains to the sensory
evaluation of ciders. We end the paper by drawing general conclu-
sions and pointing to possible future developments.

2. The CLV3W model for three-way data (material and methods)

2.1. Conventional sensory profiling data structure

In conventional sensory profiling studies, K assessors score I
products according to a set of J attributes, stored in the I � J � K
data array X (see Fig. 1). To present the CLV3W model with a single
component, we will start from the matrix Xj (I � K), which is the jth
lateral slice of X (Kiers, 2000) and which contains the scores from
the I products on attribute j as given by the K assessors. Without
loss of generality, we assume that all Xj (j = 1, . . ., J) are column-
wise centered (i.e., a mean product score of zero for each attri-
bute-assessor combination). As such, known variations among
the assessors are accounted for by removing the assessors’ main
(or shift) effect (i.e., assessors using different levels of the rating
scale).

2.2. The CLV3W model

The goal of the CLV3W analysis is to cluster the J attributes into
Q clusters and to determine Q latent variables t1, t2, . . ., tQ along
with cluster-specific assessor weights wq such that the following
function is maximized:

g ¼
XJ

j¼1

XQ

q¼1

pjqcov2ðXjwq; tqÞ ð1Þ

with pjq indicating whether attribute j belongs (pjq = 1) or does not
belong (pjq = 0) to cluster Gq. With regard to cluster Gq, this function
implies that the sum of squared covariances between tq and the
weighted average of the scores of the assessors for attributes j
belonging to Gq is maximized. Note that the weights w1, w2, . . .,
wQ differ depending on the cluster q to which the attribute in ques-
tion belongs. As such, this is equivalent to minimize:
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f ¼
XJ

j¼1

XQ

q¼1

pjqjjXj � ajqðtqw0qÞjj
2
F ð2Þ

where ajq corresponds to the loading of the attribute j in cluster Gq

(with this loading being zero when variable j does not belong to Gq).
This latter criterion boils down to a Clusterwise Parafac model with
Q clusters and one component in each cluster (Wilderjans &
Ceulemans, 2013; see also the ParaFac with Optimally Clustered
Variables – PFOCV – model as presented in Krijnen, 1993).

It is worth noting that in the case of having only a single asses-
sor (i.e., K = 1 and Xj being reduced to a vector xj with scores from a
single assessor) or having scores obtained by computing the
(weighted) average over assessors, minimizing this criterion is
equivalent to minimizing the CLV criterion (Vigneau et al., 2006)
which is:

E ¼ 1
I

XJ

j¼1

XQ

q¼1

pjqjjxj � ajqtqjj2: ð3Þ

In this case, Vigneau et al. (2006) have shown that tq is given by
the first standardized principal component of the variables belong-
ing to group Gq.

Relation with a Consensus PCA model
The three-way data matrix X can be considered as a multiblock

data set consisting of multiple blocks Xj (j = 1, . . ., J) of size (I � K).
Given a partition of the variables, CLV3W with a single component
(i.e., a one-dimensional model) is closely related to Consensus PCA
(Westerhuis, Kourti, & MacGregor, 1998) in which the vector of
loadings tq is restricted to be the same for all blocks Xj belonging
to the same cluster Gq (Cariou, Hanafi, & Qannari, 2010). More
specifically, maximizing the criterion g in (1) is equivalent to maxi-

mizing the Consensus PCA criterion
PQ

q¼1

P
Xj2Gq

cov2ðXjv j; tqÞ with

the constraints that vj equals wq for all those Xj belonging to cluster
Gq(q = 1, . . ., Q); tq turns out to be the global scores over the blocks
Xj belonging to cluster Gq, whereas the block scores for each Xj cor-
respond to Xjw.

2.3. Algorithm

To fit a Q-cluster CLV3W model to a three-way data set at hand,
the following algorithm is used. First, an initial partition of the
variables is obtained. Next, the CLV3W algorithm iterates the fol-
lowing two updating steps until convergence: (1) updating the
cluster membership pjq of each variable conditional on the clus-
ter-specific parameters (i.e. tq, ajq and wq) and (2) re-estimating
the cluster-specific parameters conditional upon the cluster mem-
berships. In order to minimize the risk of the algorithm getting
stuck in a local optimal solution, a multi-start procedure is
adopted. A schematic overview of the algorithm (in terms of
pseudo-code) can be found in Appendix I. Software to perform a
CLV3W analysis has been implemented in Matlab (version 2014b)
and in R (version 3.1.0) and is available upon request from the
authors. Moreover, R code to perform a CLV3W analysis will soon
be added to the R package ClustVarLV. In the following, the initial-
ization step, the multi-start procedure and the two updating steps
will be discussed in detail.

2.3.1. Obtaining an initial variable partition
An initial variable partition with Q clusters can be determined

in a random or in a more rational way. A random partition of the
variables may be obtained by randomly assigning the J variables
to Q clusters. As random partitions may differ quite a lot from
the optimal partition, it may be better to look for an initial parti-
tion that is more close to the optimal one. One way to go, when
the user has some previous knowledge (e.g., results from an earlier
analysis) or has some expectations regarding the partition of the
variables, is to incorporate this information into the algorithmic
procedure by adding one (or more) user-specified starting parti-
tion(s). A second way out, as is often done in classical clustering,
consists of applying an Agglomerative Hierarchical Clustering
(AHC) based on criterion f in (2) using Ward’s aggregation criterion.
At the first step of the hierarchical clustering, each variable (i.e. Xj)
forms a group on its own. In this case, the f criterion in (2) is equal
to:

f 1 ¼
XJ

j¼1

jjXj � tjw0jjj
2
F ; ð4Þ

with tj being the first standardized principal component that is
associated with the largest eigenvalue of Xj and wj the associated
(standardized) vector of loadings. We recall that, in the CLV3W
case, wj represents the assessors’ weighting scheme for Xj. The
evolution of the criterion from step q to step (q + 1) corresponds
to the aggregation of two clusters (i.e., GA and GB) and can be writ-
ten as:

Df ¼ �
X
Xj2GA

jjXj � ajGA
tGA

w0GA

� �
jj2F �

X
Xj2GB

jjXj � ajGB
tGB w0GB

� �
jj2F

þ
X

X
j2 GA[

G
Bð Þ
jjXj � ajðGA[G

B Þ
½tðGA[G

B Þ
w0ðGA[G

B
Þ�jj

2
F : ð5Þ

This criterion will always be greater than zero, and it will
increase when going from one step to the subsequent step of the
hierarchy. At each step, the hierarchical strategy consists of aggre-
gating the two groups which lead to the smallest increase in Df.
This aggregating of variable groups continues until Q clusters of
variables are determined. Note that merging two clusters of vari-
ables GA and GB implies that simultaneously the restrictions (1) ta

equals tb and (2) wa is equal to wb are imposed. As such, it is guar-
anteed that the loss function f in (2) will increase (i.e., Df being
positive) as a constrained model always will fit the data worse
(or equal) than an unconstrained (or less constrained) model
(when having for both models the global optimal least-square esti-
mates of their parameters).

2.3.2. Multi-start procedure
As CLV3W involves a clustering of the variables, the CLV3W

optimization problem is very hard to solve (Steinley, 2006a). As a
consequence, as is true for classical K-means (Steinley, 2003,
2006b), the CLV3W algorithm is not guaranteed to converge to
the global optimal solution and its performance strongly depends
on the initialization used. Therefore, in order to minimize the risk
of the CLV3W algorithm to get stuck in a local optimal solution, it is
advised to use a multi-start procedure (i.e., a similar advise is given
for K-means, see Steinley, 2003, 2006b). This procedure consists of
running the CLV3W algorithm (i.e., generating an initial variable
partition and performing the two updating steps until conver-
gence) multiple times, each time starting with a different initial
partition of the variables, and retaining the solution that yields
the lowest loss function value. Regarding initialization, we advise
to always use the (rationally determined) variable partition
obtained by applying the Agglomerative Hierarchical Clustering
procedure as one of the initial partitions. Further, we strongly
encourage researchers to complement this rational start with at
least 50 random starts, and, when available, with one (or more)
user-defined starting partition(s). However, when there are a large
number of variables and/or when the user wants to fit a model
with many clusters, a larger number of (random) starts is pre-
ferred. Note that, in general, determining a rational start by
means of the Agglomerative Hierarchical Clustering procedure is
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more time-consuming than generating a random (or adding a user-
specified) start, but that, in general, the rational initial partition
will be closer to the optimal one than the random initial partition.
The goal of combining different types of starts (i.e., rational, ran-
dom and user-specified) is to cover a larger part of the solution
space, resulting in a lower risk of the algorithm retaining a local
optimal solution.
2.3.3. Two updating steps
To update the cluster membership of variable j, the optimal ajq

for each cluster Gq given tq and wq is computed by means of linear
regression (for more information, see Smilde, Bro, & Geladi, 2004).

Next, the criterion f jq ¼ Xj � ajqðtqw0qÞ
2
F

is computed for each clus-
ter Gq (i.e., the extent to which variable j does not fit in cluster
Gq), and variable j is assigned to the cluster Gq for which fjq is
minimal. When two (or more) clusters Gq exist that yield the
same minimal fjq-value, which will almost never be encountered
in empirical datasets, variable j is assigned at random to one of
these clusters. After updating the cluster membership of each
variable, the cluster-specific parameters are re-estimated by fit-
ting a Parafac model (Carroll & Chang, 1970; Harshman, 1970;
Hitchcock, 1927) with one component to each Xfj2Gqg

(q = 1, . . ., Q), which is a three-way array that only consists of
the variables that belong to cluster Gq. As no closed-form expres-
sion exists for the optimal parameters of a Parafac model, the
cluster-specific parameters tq, wq and ajq for each Xfj2Gqg are esti-
mated by means of an alternating least squares algorithm (ten
Berge, 1993). In this algorithm, each set of parameters (i.e., tq,
wq or ajq) is re-estimated alternatingly, herewith keeping the
other parameters fixed; this alternating procedure boils down to
solving a series of multivariate linear regression problems (for
more information and a comparison of algorithms for Parafac,
see Bro, 1997; Faber, Bro, & Hopke, 2003; Tomaso & Bro, 2006;
for Matlab and R based software to fit Parafac models, see
Andersson & Bro, 2000; Giordani, Kiers, & Del Ferraro, 2014). It
should be noted that finding the optimal least-squares parame-
ters for a Parafac model is not a trivial task as the iterative proce-
dure described above may get stuck in a local optimal solution or
may produce a degenerate solution in which some components
are highly (negatively) correlated (for a discussion of these prob-
lems in the context of Parafac, see De Silva & Lim, 2008;
Harshman, 1970; Krijnen, Dijkstra, & Stegeman, 2008;
Kroonenberg, 2008; Mitchell & Burdick, 1994; Smilde et al.,
2004; Stegeman, 2006, 2007). It should further be noted that ajq

is computed in both updating steps and that, in general, the opti-
mal value for ajq after the first updating step will be different
from the optimal ajq-value after the second step.

After each update of all cluster memberships and all cluster-
specific parameters (i.e., after each iteration which consists of per-
forming both updating steps one time), it is checked whether there
are empty clusters (i.e., resulting in a model with less than Q clus-
ters). When empty clusters are encountered, the variable fitting its
cluster the worst is reassigned to the empty cluster and the clus-
ter-specific parameters are re-calculated (see second updating
step). This procedure is repeated until all clusters contain at least
one variable. Next, it is determined whether or not the algorithm
has been converged. This is the case when (1) after updating the
cluster memberships of all variables, the same clustering and, con-
sequently, the same cluster-specific parameters and loss function
value is obtained or (2) the decrease in the loss function value is
smaller than some pre-defined tolerance value (i.e., .0000001).
When no convergence has been obtained, the algorithm returns
to the first updating step (i.e., updating of cluster memberships;
see pseudo-code in Appendix I).
2.4. Selecting the number of clusters

To determine the optimal number of clusters, one performs
multiple CLV3W analyses with increasing numbers of clusters
(e.g., one, two, three, etc.). Subsequently, one selects a solution that
has the best balance between model fit (i.e., sum of squared differ-
ence between data and predicted data by the model) and model
complexity (i.e., number of clusters). To this end, one may rely
on the scree test of Cattell (1966) or a generalized version thereof
(Ceulemans & Kiers, 2006, 2009; Wilderjans, Ceulemans, & Meers,
2013). Applied to CLV3W, a scree test consists of plotting the loss
function value (2) against the number of clusters and retaining
the solution that lies at the sharpest elbow in the plot. This solution
nicely balances fit and model complexity as retaining a less com-
plex model will result in a substantial drop in model fit, whereas
adding an extra cluster only yields a small gain in the fit of the
model. In order to determine the sharpest elbow in the plot in a
more automated way (instead of visually eyeballing), one may
make use of the CHull method which looks for the model that
yields the largest scree-ratio among the models that are located
on the convex hull of the plot of model complexity versus model
(mis)fit (see Ceulemans & Kiers, 2006; Wilderjans et al., 2013). It
should be noted that the optimal number of clusters can also be
determined by detecting an elbow in the scree diagram which
depicts the evolution of the aggregation ratio associated with the
dendrogram of the Agglomerative Hierarchical Clustering (i.e.,
stepsize criterion) procedure. One should, however, acknowledge
that the optimal Q-cluster partition can be quite different from
the clustering obtained by cutting the dendrogram at Q clusters,
and, as a consequence, that the evolution of the aggregation ratio
and the evolution of the sum of squared prediction errors can give
a different view on which number of clusters to retain. When
selecting a good model, one, of course, should not blindly rely on
some automated model selection procedure but always should also
take the interpretability and stability of the solution into account.
3. Application

3.1. Ciders data set

In order to illustrate the use of the CLV3W method, we consider
a case study pertaining to Quantitative Descriptive Analysis (QDA)
applied to ten varieties of cider. The sensory panel consists of seven
trained assessors who were asked to rate ten varieties of cider
using a list of ten sensory attributes, namely: sweet, acid, bitter,
astringency, odor strength, pungent, alcohol, perfume, intensity,
and fruity (Verdun et al., 2012).
3.2. Pre-processing and analyzing the data

The data associated with each assessor can be presented as an
(I � J) matrix, which will be denoted by Xk (k = 1, . . ., K). The rows
of this matrix refer to the products and the columns to the attri-
butes. Before analyzing, in order to deal with some known varia-
tions among the assessors, each matrix is column-wise centered
to remove the assessors’ main (or shift) effect (i.e., assessors using
different levels of the rating scale). Further, to control for assessors
using different ranges of the scoring scales, isotropic scaling factors
were applied to each Xk (Kunert & Qannari, 1999). In particular, to
shrink the configuration of assessors using larger scale ranges and
expand the configuration of assessors adopting relatively narrow
ranges of the scales, we multiplied the data of each assessor Xk

(k = 1, . . ., K) by a scaling factor ck that is computed as follows:
(1) calculate the total variance In(Xk) of dataset Xk as the sum of
the variances of the columns of Xk; (2) compute It as the average
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of In(Xk) (k = 1, . . ., K); (3) calculate ck ¼ It
InðXkÞ

. Note that using the

isotropic scaling procedure results in each Xk having the same total
variance (i.e., It). Next, we analyzed the pre-processed data with
CLV3W using one to seven clusters. We adopted a multi-start pro-
cedure consisting of one rational starting partition (i.e., the parti-
tion obtained with the Agglomerative Hierarchical Clustering
procedure, see Section 2.3) and 50 random initial variable parti-
tions and retained the solution that yielded the lowest loss func-
tion value f in (2).
3.3. Results and discussion

3.3.1. Determining the number of clusters
In Fig. 2, which displays the scree plot (only considering the

best run among the 50 multi-starts and the rational starting
Fig. 2. Scree-plot with number of clusters plotted against the sum of squared
residuals for the CLV3W solutions with different numbers of clusters for the cider
data.

Fig. 3. Descriptor configuration (‘loadings’) for the two-cluster CLV3W sol
partition) for the cider data with the number of clusters ranging
from one to seven, one can see that the solution with two clusters
lies at the sharpest elbow, suggesting that the solution with two
clusters should be retained. Note that this solution has been
obtained both from several random initial partitions and from
the rational Agglomerative Hierarchical one (see further). When
inspecting the scree ratios (see Section 2.4), the solution with
two clusters should be preferred as this solution has the largest
ratio (i.e., the scree ratio is 2.98, 1.12, 1.26 and .82 for the solution
with two, three, four and five clusters, respectively).
3.3.2. Results
For the CLV3W solution with two clusters, the obtained cluster-

ing of the descriptors along with their component loadings are
plotted in Fig. 3a, whereas the product scores (resp. assessor
weights) for each cluster are depicted in Fig. 4a (resp. Fig. 4b).
Note that in Figs. 3a and 4a, the two axes D1 and D2 correspond
to the two clusters (i.e., the component loadings and the product
scores for the first and second cluster are presented on D1 and
D2, respectively).

Looking at the solution with two clusters, it appears that the
two main dimensions of this dataset are clearly disclosed: the first
cluster mainly contains descriptors that refer to taste with fruity
and sweet on the one hand (i.e., positive loading) and bitter and
acid (i.e., negative loading) on the other hand. The second cluster
contains the descriptors pungent (with a positive loading), odor
strength and intensity (with a negative loading). When inspecting
the product scores (see Fig. 4a), one can see that the latent variable
associated with the first cluster (i.e., D1 axis) clearly separates
ciders 2/5–7 (with a negative score) from ciders 3/4/8/10 (with a
positive score), whereas the second latent variable (i.e., D2 axis)
mainly distinguishes between cider 1–3 (positive score) on the
one hand and cider 9 (negative score) on the other hand. The asses-
sor weights (see Fig. 4b), which may differ across latent dimen-
sions and assessors, indicate the importance of each latent
dimension for each assessor when discriminating between the
products. As a consequence, the assessor weights can be used to
detect panel (dis)agreement by comparing for each dimension
the weights across assessors. In Fig. 4b, one can see that there is
a large consensus regarding the descriptors that are associated
with the first latent dimension. For the second dimension, how-
ever, clear differences between assessors emerge. In particular,
compared to the average panel member, assessor 1 and 5 attach
ution (a) and two-component Parafac solution (b) for the cider data.



Fig. 4. Configuration of the products (a) and assessor weights (b) for the two-cluster CLV3W solution for the cider data; the two axes D1 and D2 in (a) pertain to the two
clusters.

Table 1
Overview of different final partitions encountered across 50 random multi-starts of
the CLV3W algorithm with two clusters for the cider data.

Cluster 1 Cluster 2 nSol* Loss ARI+

d1, d6, d7 d2, d3, d4, d5, d8, d9,
d10

5 428.66 1

d2, d3, d5, d7, d8, d9, d10 d1, d4, d6 7 433.10 .29
d1, d6 d2, d3, d4, d5, d7, d8,

d9, d10
1 435.71 .59

d2, d3, d7, d8, d10 d1, d4, d5, d6, d9 4 456.41 �.06
d2, d3, d5, d7, d8, d10 d1, d4, d6, d9 7 456.56 .07
d1, d7, d10 d2, d3, d4, d5, d6, d8,

d9
9 467.22 .29

d1, d4, d5, d6, d8, d9 d2, d3, d7, d10 3 470.29 -.11
d3, d4, d5, d6, d8, d9 d1, d2, d7, d10 4 472.02 .07
d1, d7, d8, d10 d2, d3, d4, d5, d6, d9 2 474.64 .07
d1, d2, d7, d8 d3, d4, d5, d6, d9, d10 3 479.67 .07
d1, d2, d4, d5, d7, d8 d3, d6, d9, d10 1 481.63 �.11
d1, d2, d3, d4, d5, d6, d7,

d9, d10
d8 2 482.13 �.11

d1, d2, d3, d5, d8 d4, d6, d7, d9, d10 2 483.85 �.06

d1: intensity; d2: sweet; d3: acid; d4: bitter; d5: astringency; d6: odor strength;
d7: pungent; d8: alcohol; d9: perfume; d10: fruity.

* nSol equals the number of multi-starts that ended in the same final partition.
+ ARI equals the Adjusted Rand Index between the optimal final partition and the

final partition under consideration (with ARI being equal to one for the first final
partition which is the optimal one).
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a lower importance and assessor 3 and 6 a higher importance to
this dimension. It can be concluded that the panel disagrees on
the second dimension but not regarding the first dimension.

We also inspected CLV3W solutions with a larger number of
clusters. It appears that the obtained partitions are nested and that
they mostly correspond to the Agglomerative Hierarchical
Clustering solutions. In the three cluster solution, for example,
the largest cluster of the two cluster solution is split into two smal-
ler ones. Note that CLV3W does not necessarily yield nested clus-
ters (i.e., the observed nesting structure is a feature of the cider
data, not of the CLV3W method). We also looked at the variation
in two-cluster partitions that has been encountered across the 50
multi-starts. From Table 1, one can see that 13 different final parti-
tions were obtained, with 12 of them being solutions that are only
locally optimal. It further appears that only 5 out of the 50 random
starts yielded the same optimal partition and that the partitions
from locally optimal solutions are quite different from the optimal
partition in terms of Adjusted Rand Index (Hubert & Arabie, 1985).
However, when comparing the partitions for the three best solu-
tions, which have loss function values that are quite close to each
other, it can be concluded that the final partition is stable as only
for bitter (d4) and pungent (d7) some uncertainty exists regarding
the cluster to which these attributes belong. Finally, each random
run took, on average, 8.14 s to arrive at a final partition, while the
run with the Agglomerative Hierarchical Clustering rational initial-
ization, which directly converged to the optimal solution, only
needed 6.83 s.

3.4. Comparison with other methods

In this section, we will compare the CLV3W results for the cider
data with the results obtained with related methods applied to the
same data set. In particular, we will compare the CLV3W results
with the results of (1) a Weighted Partial Least Squares-
Discriminant Analysis (PLS-DA), (2) a Parafac analysis with two com-
ponents (without a clustering of the variables) and (3) a CLV on the
data averaged over the assessors. For the PLS-DA we used Matlab
(version 2014b), for Parafac the R package ThreeWay (Giordani
et al., 2014) and for CLV the R package ClustVarLV.

3.4.1. Weighted PLS-DA
Weighted Partial Least Squares-Discriminant Analysis (PLS-DA) has

been proposed as a robust analysis method for conventional
sensory profiling data (Verdun et al., 2012). In the context of con-
ventional sensory profiling, a weighted PLS-DA consists of two steps.
First, for each combination of an assessor and a product, a weight is
determined that reflects the (dis)agreement of the assessor with the
rest of the panel with respect to the product in question. Second, the
data are averaged over the assessors, using the weights determined
in the first step, and the PLS discriminant components are com-
puted (on the weighted data). When analyzing conventional sen-
sory profiling data, PLS-DA is applied to the (product by attribute)
datasets Xk (k = 1, . . ., K) concatenated vertically and the product
memberships (i.e., to which product each row belongs) are used
as the dependent variable (Rossini et al., 2012). When comparing
the Weighted PLS-DA results for the cider data (as presented in
Verdun et al., 2012) with our results, it appears that the obtained
CLV3W partition shows a strong similarity with the first two
Weighted PLS-DA components: the sweet-bitter cluster corresponds
to the first component and the descriptors of the second cluster are
closely related to the second Weighted PLS-DA component.
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However, whereas Verdun et al. (2012) emphasize the possible dis-
agreement between products (e.g., focusing on ciders 7 and 9),
CLV3W clearly identifies the sensory descriptors, and naturally the
associated underlying sensory dimension, that are problematic. In
particular, with regard to the second cluster (including intensity,
odor strength and pungent), assessors 1 and 5 are down-weighted,
suggesting that they have difficulties with using the associated
descriptors when judging the products. The down-weighting of
assessors 1 and 5 was also suggested by Verdun et al. (2012),
whereas Ledauphin et al. (2006) only identified assessor 5 as a
bad performer. Moreover, besides detecting bad performers,
CLV3W, which is a multivariate approach instead of a univariate
one, makes it also possible to detect which (kind of) attributes are
badly rated. As such, we can clearly distinguish the attributes which
seem to be more difficult to evaluate (for all or some of the asses-
sors) from those that yield a large consensus within the panel (i.e.
sensory descriptors belonging to the first cluster).
Fig. 5. Configuration of the products (a) and assessor weights (b) fo

Fig. 6. Dendrogram of variables obtained from (a) CLV on aggregated pre-processed data
data.
3.4.2. Two component Parafac
In order to compare our approach with an alternative three-way

weighting strategy, we also performed a two component Parafac on
the pre-processed data (see Section 3.2). One can see in Fig. 3b that
the first Parafac component is quite similar to the latent dimension
of the first CLV3W cluster in that it mainly opposes sweet, perfume
and fruity to alcohol attributes. The second Parafac component
clearly distinguishes intensity and fruity from pungent, which dif-
fers from the second CLV3W dimension. When inspecting the pro-
duct scores which are depicted in Fig. 5a for the Parafac solution,
no substantial differences are encountered compared to the pro-
duct scores of the CLV3W solution (in Fig. 4a). Fig. 5b displays
the assessor weights from the two component Parafac solution.
Looking at the first Parafac component, the weights associated to
the assessors are nearly identical and vary from .30 to .43. With
regard to the second component, as is the case for CLV3W (see
Fig. 4b), assessor 5 is down-weighted compared to the others.
r the Parafac solution with two components for the cider data.

, (b) CLV3W with the Agglomerative Hierarchical Clustering procedure for the cider
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Unlike CLV3W, however, assessor 1 is not down-weighted in the
second component of the Parafac solution.

We can point out that although Parafac also exhibits the group
of sensory descriptors including sweet, perfume, fruity and alcohol,
the descriptor loadings of the Parafac model (see Fig. 3b) are more
difficult to interpret. This is especially the case for the second
Parafac component which mainly highlights the attributes pungent
and alcohol. Note that for attributes from the first cluster their
CLV3W loading almost equals their loading on the first Parafac
component, whereas this is less the case for attributes from the
second cluster as their CLV3W loading may differ quite a lot from
their loading on the second Parafac component. If we compare
the Parafac and CLV3W descriptor loadings (i.e., compare
Fig. 3a and b), CLV3W appears as a kind of oblique rotation of the
Parafac axes, making the interpretation of the loadings easier
because loadings associated with descriptors from a different clus-
ter are set to zero. Note, however, that rotating a (optimal) Parafac
solution, in general, results in a worse fitting model (i.e. Parafac has
no rotational freedom).
3.4.3. CLV
Finally, we also compared CLV3W with a CLV analysis on the

(pre-processed) data averaged across the assessors, which implies
a weighting strategy in which each assessor is weighted equally
(for all dimensions). To get more insight into the differences
between both methods, we will look at the dendrogram that is
obtained during the rational initialization phase of both algo-
rithms. The resulting CLV dendrogram is displayed in Fig. 6 (left
panel) along with the CLV3W dendrogram (right panel). As for
CLV3W, a partition with two clusters is retained. Note that for both
CLV and CLV3W this partition into two clusters is also the final par-
tition optimizing the CLV and CLV3W loss functions. While some
attributes are grouped together in both solutions (e.g., intensity
and odor strength or fruity and sweet), other attributes are clus-
tered together in one solution but not in the other one (and vice
versa). To our point of view, these differences mainly arise because
of the disagreement among assessors regarding these (dimensions
of) attributes (e.g., pungent). Indeed, while CLV3W accounts for the
differences between raters in the use/importance of the various
latent dimensions (i.e., assessor weights), CLV does not because
averaging the data across assessors removes important informa-
tion regarding assessor differences.
4. Conclusion

In the context of a clustering around latent variables approach,
we introduced CLV3W as a new method that extends the CLV pro-
cedure of Vigneau and Qannari (2003) and Vigneau et al. (2006) to
three-way data. Dealing with conventional profiling data, this
approach makes it possible to simultaneously (1) exhibit clusters
of sensory descriptors along with their latent sensory dimensions
and (2) associate to each assessor a system of weights that indicate
the importance of each dimension for each assessor. In particular,
for each cluster, the associated latent sensory component is deter-
mined such that attributes within each cluster are as much related
(i.e., highest squared covariance) as possible with the latent com-
ponent. Moreover, a weight is assigned to each combination of
an assessor and a cluster of sensory descriptors indicating the
degree to which each assessor agrees with the panel regarding
the corresponding sensory dimension. This feature of the CLV3W
method, which is not present in other multivariate sensory profil-
ing approaches, helps the analyst both in identifying assessors who
need more training, and at the same time in determining which
sensory dimensions are problematic to rate. Compared to Parafac,
CLV3W yields a solution that is easier to interpret because it
clusters sensory attributes such that the main sensory dimensions
are exhibited. Finally, the CLV3W optimization criterion appears to
be equivalent to a Clusterwise Parafac criterion (Wilderjans &
Ceulemans, 2013) given a one component Parafac model within
each cluster.

More research is needed to further explore the properties of this
analysis method and to extend it to other three-way structures
which are often encountered in consumer research. Indeed, such
three-way structures are more and more collected by food compa-
nies who need detailed information about how consumers perceive
their products according to several aspects (e.g., odor, taste, tex-
ture, global liking) or who want to find out which emotions are
activated during the evaluation of their products. As demonstrated
here in the special case of conventional sensory profiling data, a
strategy which consists in first aggregating the data across asses-
sors before applying a standard two-way or multi-block approach
leads to a loss of information regarding the individual differences
between assessors (or alternatively between consumers). In the
same vein, more research is needed to extend this approach to L-
shaped data in the context of consumer preference analysis.
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Appendix I. Schematic overview of the CLV3W algorithm

Input: a dataset X, the number of cluster Q
Initialization

� Obtain W starting partitions Pstart
w (w = 1, . . ., W) by combining

the following methods (and obtain the cluster-specific parame-
ters - see second updating step – associated with each Pstart

w )
o Rational: perform the Agglomerative Hierarchical Clustering

procedure on X and cut the dendrogram at Q clusters
o Random: obtain a (multiple) random starting partition(s)

with Q clusters
o User-specified: specify a (multiple) partition(s) with Q clus-

ters based on previous knowledge or expected group
memberships

Optimization/iteration

� For each obtained (rational, random or user-specified) starting
partition Pstart

w (w = 1, . . ., W)
s Run until convergence the following steps
j Update the clustering (see first updating step)
j Update the cluster-specific parameters (see second

updating step)
j Check for empty clusters
j Check for convergence

s Store the converged solution and associated loss value
fw(w = 1, . . ., W)

� Retain the solution associated with min(f1, f2, . . ., fW)

Output: an optimal partition and associated cluster-specific
parameters
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