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The Landscape, the Swampland and the Era of Precision
Cosmology

Yashar Akrami,* Renata Kallosh,* Andrei Linde,* and Valeri Vardanyan*

We review the advanced version of the KKLT construction and pure d = 4
de Sitter supergravity, involving a nilpotent multiplet, with regard to various
conjectures that de Sitter state cannot exist in string theory. We explain why
we consider these conjectures problematic and not well motivated, and why
the recently proposed alternative string theory models of dark energy, ignoring
vacuum stabilization, are ruled out by cosmological observations at least at
the 3σ level, i.e. with more than 99.7% confidence.

1. Introduction

The observation of late-time cosmic acceleration, almost ex-
actly 20 years ago, is one of the most important cosmological
discoveries of all time. As a result of that, we now face two
extremely difficult problems at once: we have to explain why the
vacuum energy/cosmological constant � is not exactly zero but
is extremely small, about 0.7× 10−120 in d = 4 Planck units, and
why it is of the same order as the density of normal matter in the
universe, but only at the present epoch. This problem was ad-
dressed by constructing d = 4 de Sitter (dS) vacua in the context
of KKLT construction in Type IIB superstring theory.[1,2] De Sitter
vacua in noncritical string theory were studied earlier in [3,4].
The most important part of de Sitter constructions in string

theory and its various generalizations is the enormous com-
binatorial multiplicity of vacuum states in the theory[5–7] and
the possibility to tunnel from one of these states to another in
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the string theory landscape,[1,8] just as an-
ticipated in the eternal chaotic inflation
scenario.[9] The value of the cosmological
constant � originates from an incom-
plete cancellation between two contribu-
tions to energy, a negative one, VAdS < 0,
due to the Anti-de Sitter (AdS) minimum
used for moduli stabilization, and a posi-
tive one, due to an D3-brane. In different
parts (or different quantum states) of the
universe, the difference between these
two may take arbitrary values, but in the
part of the universe where we can live it
must be extremely small,[8–20]

� = VD3 − VAdS ≈ 10−120. (1)

Quantum corrections may affect vacuum energy in each of the
dS or AdS minima, but one may argue that if the total number of
possible vacua is large enough, there will be many vacua where
the cosmological constant belongs to the anthropically allowed
range |�| � 10−120, as we have depicted in Figure 1. This makes
the anthropic solution of the cosmological constant problem in
the context of the string theory landscape rather robust.
Although the basic features of the string landscape theory were

formulated long ago, the progress in this direction still continues.
Many interesting generalizations of the KKLT scenario have been
proposed, some of which are mentioned below. Simultaneously,
there have been many attempts to disprove the concept of string
theory landscape, to prove that de Sitter vacua in string theory
cannot be stable or metastable, and to provide an alternative so-
lution to the cosmological constant problem. However, despite
a significant effort during the last 15 years, no compelling alter-
native solution to the cosmological constant problem has been
found as yet.
Recently, a new attempt has been made in [21]. The authors

conjectured that stable or metastable de Sitter vacua could not ex-
ist in string theory, and suggested to return to the development of
superstring theory versions of quintessence models, simultane-
ously imposing a strong (and, in our opinion, not well motivated)
constraint on quintessence models, |∇φV |

V ≥ c ∼ 1. The list of the
currently available models of this type is given in [21], and their
cosmological consequences are studied in [22], where a confus-
ing conclusion has been drawn.
In the abstract of [22] one finds: “We study constraints im-

posed by two proposed string Swampland criteria on cosmology
... Applying these same criteria to dark energy in the present
epoch, we find that specific quintessence models can satisfy
these bounds and, at the same time, satisfy current observa-
tional constraints.” However, in Section 5 of the same paper one
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Figure 1. There are many vacua before quantum corrections, and many
vacua after quantum corrections. The ones on the right in the anthropically
allowed range may originate from the ones on the left which were at all
possible values of �. In this picture, quantum corrections may be large or
small, but there will still be some vacua in the anthropic range, after all
possible quantum corrections are made.

reads: “notably there do not exist rigorously proven examples in
hand where c is as small as 0.6, as required to satisfy current
observational constraints on dark energy.” Indeed, [22] has ar-
gued that the models with c > 0.6 are ruled out at the 3σ level,
even though in the revised version of the paper they say that
c > 0.6 is ruled out at the 2σ level. An additional uncertainty has
been introduced by Heisenberg et al.,[23] who claim that models
with c ≤ 1.35 are consistent with observations.
The first goal of the present paper is to explain that the

‘no-dS’ conjecture of [21,24,25] is based, in part, on the no-go
theorem [26], which has already been addressed in the KKLT
construction.[1,2] Important developments in the KKLT construc-
tion during the last 4 years,[27–34] including the theory of uplifting
from AdS to dS and the discovery of dS supergravity[30,31] which
addressed another no-go theorem,[35] are not even mentioned in
[21,22,24], as well as in a recent review on compactification in
string theory [25].
The second goal of our paper is to determine which of the

three conclusions of [22,23] on the observational constraints
on c is correct. We show that dark energy models with c > 1
are ruled out at the 3σ level, i.e. with 99.7% confidence. All
the models discussed in [21,22], which may be qualified as de-
rived from string theory in application to the four-dimensional
(4d) universe, require c ≥ √

2 ∼ 1.4, which is ruled out by cos-
mological observations. If one attempts to extend the conjec-
ture |∇φV |

V ≥ 1 to inflationary models (which would be even less
motivated, as discussed in Section 5), this conjecture would
be in an even stronger contradiction with the cosmological
observations.
Note that the class of string theorymodels studied in [21,22] in-

cludes neither non-perturbative effects, nor the effects related to
the KKLT uplifting due to a single D3-brane, which is described
in d = 4 supergravity by a nilpotent multiplet.[27–34] Therefore,
the KKLT model, as well as available inflationary models based
on string theory, involves elements which do not belong to the

class of models studied in [21,22]. It is therefore not very surpris-
ing that all the models of accelerated expansion of the universe
studied in [21,22] are ruled out by observational data on dark en-
ergy and inflation.
In Section 2, we briefly describe the recent progress in the

KKLT construction and dS supergravity. We describe the KKLT
scenario in the theory with a nilpotent multiplet, and its gener-
alizations with strong vacuum stabilization which are especially
suitable for cosmological applications. In Section 3, we discuss
various no-go theorems which were supposed to support the no-
dS conjecture of [21,24,25], and reply to the criticism of the KKLT
construction in these and other papers. Section 4 describes the
recent progress towards full-fledged string theory solutions de-
scribing dS vacua. Various versions of the no-dS conjecture are
described in Section 5. Cosmological constraints on the param-
eters of quintessence models relevant to the discussions of this
paper are obtained in Section 6, where the focus is on models
with single-exponential potentials. In Section 7, we present a
detailed analysis of the string theory based quintessence mod-
els proposed in [21], which, on the one hand, can qualify as de-
rived from string theory compactified to d = 4, and on the other
hand, are used to support the dark energy swampland conjecture
V,φ/V ≥ 1. This does not include models of quintessence with
d 	= 4, as well as models for which V,φ = 0 is possible. In Sec-
tion 8, we discuss general conceptual problems with models of
quintessence in string theory.
Appendix A contains a more technical discussion of no-go the-

orems and of the advanced KKLT construction and dS super-
gravity. In Appendix B, we review quintessence models in su-
percritical string theory with the total number of dimensions
D 
 26.[36] We compare in Appendix C the observational bounds
on the string theory models of quintessence discussed in Sec-
tion 6 with those provided in [22,23]. Appendix D and Appendix E
present a discussion of and observational constraints on double-
exponential quintessence potentials, which appear in some of
the string theory models of Section 7. Finally, in Appendix F we
give some examples illustrating the rapidly improving precision
of measurements of the cosmological parameters during the last
decade. It shows that even a small difference in some of the exper-
imental results can make a huge difference for the development
of theoretical cosmology. This is very different from the situation
two decades ago, when ‘order-of-magnitude’ theoretical predic-
tions could be good enough.

2. KKLT and the String Theory Landscape

The KKLT construction and its various subsequent gen-
eralizations consist of two parts. First of all, one may use
non-perturbative effects to stabilize string theory moduli, includ-
ing the volume modulus responsible for compactification, in a
supersymmetric AdS vacuum state. This can be done by several
different methods; see, e.g., [1,37,38]. The second step involves
uplifting of the AdS vacuum with negative energy density to
dS by adding a contribution of a single D3-brane. A detailed
explanation of this procedure, starting with the D3-brane action,
has been given in [2] and corresponds to Equation (1). More re-
cent string theory constructions of dS vacua, developing various
corners of the string theory landscape, have been presented in
[39–42].
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An advanced version of the KKLT uplifting has been developed
more recently in [27–34]. It is based on a manifest, nonlinearly
realized, spontaneously broken, Volkov-Akulov type supersym-
metry, discovered in 1972.[43] It was observed by John Schwarz
et al.[44] back in 1997 that the local κ-symmetry of a single D3
upon gauge-fixing becomes Volkov-Akulov supersymmetry.1 The
goldstino multiplet with a nonlinearly realized supersymmetry
has only a fermion, there is no scalar partner.
The core of the uplifting from an AdS vacuum with a negative

cosmological constant to a dS vacuum with a positive cosmologi-
cal constant is due to the tension of a single D3 represented at the
level of the effective field theory by a positive energy of the gold-
stino action. The string theory interpretation of vacuum stabiliza-
tion and uplifting, which is an important part of the advanced
KKLT construction, was supported and explained in the SUSY
2015 talk by Polchinski.[45] In the advanced version of the KKLT
construction,[27–34] the single D3-brane has been represented at
the phenomenological supergravity level by a nilpotent goldstino
multiplet; see, for example [46], and references therein.
The uplifting procedure described in the earlier version of the

KKLT construction[1,2] corresponds to an approximation of [27,29]
where the fermionic goldstino is absent. At the supergravity level,
the absence of goldstino in [1,37] corresponds to a choice of the
local supersymmetry gauge where goldstino vanishes.[47] These
facts became clear only after d = 4 pure de Sitter supergravity,
promoting the global Volkov-Akulov symmetry to the level of a
local supersymmetry, was constructed in 2015 in [30,31].
The simplest d = 4 version of the KKLT construction[27–34] is

described by the Kähler potential and superpotential

K = −3 log (
T + T̄

) + SS̄ , WKKLT = W0 + Ae−aT + μ2S ,

(2)

where T is the volumemodulus and S is a nilpotent chiral super-
field (i.e. S2 = 0). One may also use the “warped” version of the
Kähler potential K = −3 log(T + T̄ − SS̄). At μ = 0, the poten-
tial has an AdS minimum. By increasing the parameter μ2, one
can uplift this minimum to dS.
A year after the invention of the KKLT model,[1] it was recog-

nized that combining this model with inflation would effectively
lead to an additional contribution to μ2, which could destabilize
the volume modulus in the very early universe.[37] The destabi-
lization may occur at a large Hubble constant because the height
of the barrier in the KKLT scenario is proportional to the square of
W0 related to the gravitino mass and the strength of supersym-
metry breaking, which was often considered small. This prob-
lem disappears if supersymmetry breaking in this theory is suf-
ficiently high.
There are several other ways to stabilize the KKLT potential.

The simplest one, proposed in [37], is to change the superpoten-
tial to the racetrack potential with two exponents,

WKL(T, S) = W0 − Ae−aT − Be−bT + μ2S , (3)

1 Note that the nonlinearly realized supersymmetry on D-branes discov-
ered in [44] differs from the linear one. Therefore, an important pre-
diction of non-perturbative string theory is nonlinear supersymmetry.
It is supported by observational cosmology where de Sitter and near de
Sitter spaces play a fundamental role.

where

W0 = −A
(
a A
b B

) a
b−a

+ B
(
a A
b B

) b
b−a

. (4)

For μ = 0, the potential V (T ) has a stable supersymmetric
Minkowski minimum. Adding a small correction to W0 makes
this minimum AdS. For μ 	= 0, this minimum can be easily up-
lifted to dS while remaining strongly stabilized.[37,40,48] Impor-
tantly, the height of the barrier in this scenario is not related
to supersymmetry breaking and can be arbitrarily high. There-
fore, this version of the KKLT potential, sometimes called the KL
model, is especially suitable for being a part of the inflationary
theory.[49,50]

The basic idea of finding a stable supersymmetric (or near-
supersymmetric) vacuum state and then uplifting it without af-
fecting its stability can be generalized for the string theory mo-
tivated theories with many moduli. A particular example is the
STU model with

K = − log(S+ S̄)− 3 log(T + T̄ )− 3 log(U + Ū)+ X X̄ ,

W = W0 + A (S− S0)(1− c e−a T )+ B (U −U0)2 + μ2X , (5)

where X is a nilpotent multiplet. For W0 = μ = 0, the potential
has a supersymmetric Minkowski minimum at S = S0, U = U0

and T = log c
a .[40] It can be easily converted to an AdS minimum

by taking a tiny constant W0, or uplifted to dS by taking μ 	= 0.
Since the required value of uplift can be extremely small, one can
have a theory with a controllable level of supersymmetry breaking
and strong moduli stabilization.
Yet another example is an STU model with a superpotential

W = WKL(T, X)+ P (S− S0)2 + Q (U −U0)2 , (6)

where X is a nilpotent multiplet, and P and Q are some con-
stants. It has a supersymmetricMinkowski vacuumwith all mod-
uli stabilized at S = S0, U = U0 and T = 1

a−b ln(
a A
b B ), which can

be downshifted to AdS or uplifted to a strongly stabilized dS vac-
uum, as in the previous case.[40] Importantly, none of these po-
tentials is destabilized during uplifting.
Thus, we have a family of well-motivated models describing

many scalar fields with strongly stabilized string theory dS vacua.

3. No-Go Theorems for De Sitter?

Over the last 15 years, there have been many attempts to find
another mechanism of vacuum stabilization in string theory, or
to find an alternative, better way of addressing the cosmological
constant problem. Most of these developments concentrated on
finding other mechanisms of compactification,[37,38] or develop-
ing a simplermechanismof uplifting,[27–34] but none of the efforts
challenged the basic principles of the string landscape scenario.
Another trend was to try to find problems with this construc-

tion, and then start everything anew. But starting everything
anew is not an easy task. There seems to be no unique opinion
about what are ‘controllable’ string theory models and in which
duality corner of string theory one should look for phenomeno-
logical models explaining the data. Many of the statements made
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in string theory are based on the non-perturbative theory and var-
ious conjectures about quantum gravity.
In this situation, one may try to rely on well-established no-

go theorems, which may create a certain mindset about what is
possible and what is impossible, or may point out a way towards
a breakthrough. For example, long time ago there was a no-go
theorem by Coleman andMandula[51] stating that space-time and
internal symmetries could not be combined in any but a trivial
way. This powerful no-go theorem was evaded with the discovery
of supersymmetry, supergravity and string theory.
Similarly, there is a Maldacena-Nunez no-go theorem,[26]

which does not allow a stable dS compactification of d = 10 su-
pergravity under certain conditions, including a requirement of
a nonsingular compactification manifold. A discussion of this
theorem and its various generalizations can be found, e.g., in
[21,24,25]. The theorem was discussed on the first page of the
KKLT paper,[1] where it was explained, with a reference to [52],
that the KKLT construction contained novel ingredients invalidat-
ing the no-go theorem. For example, it is well known[53] that M-
theory compactification on a manifold of G2 holonomy can give
chiral fermions in four dimensions only if the compactification
manifold is singular. Thus, this theorem can hardly be used as a
general argument against dS vacua in string theory. This would
be in parallel with requiring the absence of chiral fermions, in
contradiction to the Standard Model.
But this is not the only relevant no-go theorem. It is known for

33 years that the no-go theorem [35] prohibits pure supergravity
with de Sitter vacua in a theory with linearly realized supersym-
metry. For quite a while, this was considered to be a real obstacle
on the way towards finding dS vacua in supergravity. However,
this theorem applies only to pure supergravity without matter
multiplets. It is very easy to construct dS vacua in realistic su-
pergravity models containing scalar fields.
The new construction of local supergravity with dS vacua[30,31]

has demonstrated that one can evade the no-go theorem [35] and
construct dS vacua even in pure supergravity without scalar fields
by including a nonlinearly realized supersymmetry. This result,
closely related to the development of the advanced versions of the
KKLT construction in [27–34], was obtained 3 years ago.
Meanwhile, the latest critical discussions of string theory dS

construction in [24,25] rely on the 33-year-old no-go theorem [35],
and do not even mention the advanced versions of the KKLT con-
struction [27–34]. They miss the recent discovery that one can
evade the no-go theorem [35] by introducing a single D3-brane.
The effect of the D3-brane leads to d = 4 dS supergravity with
the nilpotent multiplet S2(x, θ ) = 0. Because of the importance
of these results, we briefly review them in Appendix A.
Yet another dS-related no-go theorem is discussed in the last

section of [21]. It generalizes the well-known result by Farhi and
Guth[54] on the impossibility of creating dS universes in a labora-
tory at the classical level. We do not discuss this no-go theorem
in our paper since it does not apply to the standard cosmological
scenario. From our perspective, the very fact that this no-go the-
orem has been described in the concluding section of [21] tells a
lot about the strength of the arguments against dS vacua in string
theory.
Many critical comments on the KKLT mechanism made in

the papers reviewed in [25] are based on the studies of back re-
action within the classical d = 10 supergravity approach. How-

ever, to study the back reaction using supergravity requires a
very large number p of D3-branes, p 
 g−1

s 
 1. As emphasized
in [32,45,55], this approach is not valid for the most important
case of p = 1, i.e. for a single D3-brane invariant under local
fermionic κ-symmetry, which is an essential part of the advanced
KKLT construction.[27–34]

Two other recent publications have been used in [21,24,25] for
the justification of the no-dS conjecture. The first one[56] is dis-
cussed in the recent paper by Kachru and Trivedi;[57] we agree
with their conclusions.
The second paper is [58]. The authors proposed a modified 4d

version of the KKLT model (2). On the basis of this modified the-
ory, they concluded that one cannot uplift the AdS vacuum to dS
in their version of the KKLT scenario. However, as shown in [59],
the nilpotency condition is not satisfied in that model for the pa-
rameters considered in [58], so the 4d model of [58] is not inter-
nally consistent. But even if one ignores this issue, assuming that
this is just a technicality, and calculates the potential V (T ) of the
4dmodel proposed in [58], one finds, contrary to the expectations
of [58], that dS uplifting can be achieved in that model for a broad
range of its parameters.[59]

Importantly, the authors of [58] admitted that their criticism
would not apply to the version of the KKLT model (3), (4) with
a strongly stabilized dS vacuum.[37] Because of the strong mod-
uli stabilization, this model, and the similar models (5) and (6)[40]

discussed in the previous section, are most suitable for cosmo-
logical applications.

4. Towards Full-Fledged String Theory Solutions
Describing dS

All the models presented in [21] based on earlier constructions
in Type II string theory are known as ‘full-fledged string theory
solutions’. They have also been more recently analyzed in [60].
These models describe classical Calabi-Yau compactifications of
Type II string theory with fluxes, D-branes and O-planes, or a
more general class of manifolds with an SU(3) structure. They
are based on d = 10 supergravity with NS-NS and R-R fluxes,
with D-branes and orientifolds, and have to satisfy the tadpole
and flux quantization conditions. The system is viewedwithoutα′

and gs string theory corrections, which requires for consistency
a large volume of compactification for the supergravity approxi-
mation to be valid, and a small string coupling.
The meaning of these conditions in string theory is explained

in detail in the review paper [61] written in 2006. A specific role
of tadpole conditions in the Type IIA theory was clarified in [62].
For Type IIB on SU(2)-structure orientifolds, the dictionary from
string theory ingredients to Kähler potential and superpotential
in standard N = 1 supergravity in d = 4 is given in [63]. The
full-fledged string theory solution for Calabi-Yau compactifica-
tion provides a dictionary between effective low-energy N = 1
supergravity with some set of chiral multiplets and the informa-
tion about the fluxes and branes and orientifolds, which corre-
spond to a specific choice of the string theory model.
These constructions allow only V = e K (|DiW|2 − 3|W|2) as

consistent supergravity potentials, where only standard chiral
multiplets are included. Several years ago, this setting was
full-fledged since this case covered the most general d = 4
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supergravity. However, dS supergravity,[30,31,47,64–69] which we dis-
cussed in Sections 2 and 3, and will discuss in more detail in
Appendix A, has a different potential, V = e K (F 2 + |DiW|2 −
3|W|2), when an D3-brane or a nilpotent multiplet is present
in the theory and there is a positive term e K F 2 absent in ‘full-
fledged string theory solutions’. The string theory realization of
the nilpotent goldstino has been proposed in [32]. One would ex-
pect that the new ‘full-fledged string theory solutions’ will take
into account these recent developments.
A significant progress in this direction is reported in [70],

which goes beyond the standard uplifting by an D3-brane. It is
found in [70] that, in general, when one adds Dp-branes to local
sources in d = 10, one finds d = 4 supergravity with a nonlinear
realization of supersymmetry, with chiral mattermultiplets inter-
acting with a nilpotent multiplet. The new uplifting contribution
to the supergravity potential due to Dp-branes is universal, for
any Dp-branes for which the supersymmetric cycles of dimen-
sion p − 3 are available.
As a result, the landscape of opportunities for dS vacua has

increased dramatically. It is necessary to study these new models
to find ‘full-fledged string theory solutions’ for stable dS vacua. As
of now, we have already found in [70] dS vacua in string inspired
supergravity models, which for the last decade suffered from the
so-called “obstinate tachyon” problem. In the new context, the
tachyon disappears, and a metastable dS vacuum emerges.[70]

5. The Swampland

An attempt to propose an alternative to the string theory land-
scape was recentlymade byOoguri, Vafa et al. in [21]. The authors
have suggested two new conjectures:

1. The first one is a no-dS conjecture, stating that a consistent
theory of quantum gravity based on string theory cannot de-
scribe stable or metastable dS spaces. This conjecture has
been based on various arguments and no-go theorems dis-
cussed in [21,24,25]. We gave a critical discussion of these
arguments in the previous section, and will return to it in
Appendix A.

2. A stronger version of this conjecture is that the scalar
field potential for all consistent theories should satisfy the
constraint

|∇φV |
V

≥ c , c ∼ 1 . (7)

Even though these two conjectures are related, they are partially
independent. In particular, the first no-dS conjecture does not re-
quire c ∼ 1. We analyze both of these conjectures in the present
paper, as well as the proposal made in [21] for replacing the cos-
mological constant by string theory quintessence.
The authors of [21] have been very careful in expressing their

own opinion on these conjectures. For example, in the beginning
of his talk at Strings 2018,2 Vafa repeated, three times, that this
was just a speculation, but argued that it would be interesting to
entertain it nevertheless, having in mind its possible cosmologi-
cal implications.

2 https://www.youtube.com/watch?v=fU8sJRCRz24&t=1904s

Themotivation for the conjecture (7) has been explained as fol-
lows: If we assume that dS states are impossible in string theory,
what could we offer as an alternative explanation for the present
stage of cosmic acceleration? An often discussed possibility is
that dark energy is represented by the potential of a quintessence
field. Its present value should be V ∼ O(10−120), which repre-
sents an enormous fine-tuning. This is one of the problems ad-
dressed in the context of the string theory landscape. In the the-
ory of quintessence, this problem remained unsolved. In fact, this
theory requires double fine-tuning: in addition to the fine-tuning
V ∼ O(10−120), one should also have |∇φV | � V ∼ O(10−120).
One could hope that it would be possible to reduce this double

fine-tuning to the single fine-tuning V ∼ O(10−120) by making a
conjecture that it is required to have |∇φV | ≥ cV with c ∼ 1. But
this conjecture does not help to explain why V ∼ O(10−120), and it
does not remove the second fine-tuning |∇φV | � V ∼ O(10−120).
Indeed, the swampland conjecture |∇φV | ≥ cV allows all val-
ues of |∇φV | greater than O(10−120), which is the opposite of the
quintessence requirement |∇φV | � V . Therefore, it seems that
the main goal of proposing (7) has been to provide some hy-
pothesis formalizing the no-dS conjecture. From this perspective,
the condition c ∼ 1 is not required, even though it is satisfied in
many string theory models discussed in [21], which is the main
reason why those models are ruled out by observations, as we
show in this paper.
We explain in Sections 6, 7 and 8 why it is very difficult to over-

come this problem, and point out some other problems that may
plague these models. Importantly, our conclusions do not rely on
the conjecture (7) with c ∼ 1. Our results follow directly from the
comparison of the predictions of the models derived from string
theory, presented in [21], with cosmological observations.
The conjecture (7) has been applied in [21] only to the fields

describing quintessence. One could extend it to include the Stan-
dardModel,[71] inflation, etc., but such generalizations would dis-
favor this conjecture evenmore strongly. For example, the expres-
sion for the tensor to scalar ratio r = 8(V,φ/V )2, which is satisfied
in the vast majority of inflationary models, in combination with
the latest observational data[72] implies that during inflation one
has |∇φV |/V < 0.09. An analysis of related issues in [22,73] gives
similar constraints on c . The constraint |∇φV |/V < 0.09 strongly
disfavors the original conjecture (7) with c � 1, if applied to in-
flation.
However, as we have already mentioned, if the main motiva-

tion for the conjecture (7) has been to give a formal representa-
tion for the no-dS conjecture and possibly reduce the degree of
fine-tuning in the quintessence theory, then there is no obvious
reason to require c � 1.
Moreover, there is no reason to apply this conjecture to infla-

tionary models. Indeed, unlike the old inflationary scenario,[74]

which assumed that inflation occurs in a metastable dS space,
all realistic inflationary models are based on the slow-roll
mechanism.[75,76] The amplitude of inflationary perturbations in
these models is inversely proportional to |∇φV |, so their pre-
dictions are well defined only sufficiently far away from the dS
regime. Inflationary perturbations are small as long as |∇φV | �
V 3/2,[77,78] and they are small enough to match the observa-
tional data if |∇φV | � 105 V 3/2.[72] This ensures that the no-dS
requirement is satisfied automatically in all slow-roll inflation-
ary models matching the observational data.[72] An additional
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unmotivated constraint on inflation of the type (7) would not
serve any obvious purpose. Therefore, in this paper we disregard
any potential implications of the conjecture (7) for inflation, or
any arguments against the swampland conjecture (7) based on
inflation, and, following [21], we concentrate on the theory of dark
energy/quintessence.

6. Dark Energy and the Cosmological Data

Before we continue with the implications of the swampland con-
jecture (7) in the context of dark energy, let us investigate the
current observational constraints on dark energymodels relevant
for our discussions. Particularly, in this section we focus on the
‘vanilla’ exponential quintessence model with a potential of the
form

V (φ) = V0 eλφ, (8)

where λ > 0 is a dimensionless constant. By changing the sign
of φ (i.e. φ → −φ), one can equivalently represent this potential
as V0 e−λφ .
This potential is interesting for two reasons. Firstly, as we see

in the next sections, all the string theory based models that we
consider in this paper predict a simple exponential potential or
a combination of two exponentials. Additionally, as discussed in
[22], this exponential potential with a constant λ is the least con-
strained form of a quintessence potential, and by constraining it
we automatically constrain more sophisticated potentials with φ-
dependent λ. It is also interesting to note that a constant λ is the
solution to V,φ/V = c (with c = λ); cf. the swampland conjec-
ture (7) for a single field φ. Even though in string theory construc-
tions this λ is derived from the first principles, in this section we
treat it as a free parameter and study the late-time observational
constraints imposed on it. The exponential potential (8) is a clas-
sic example of the quintessence scenario, and has beenmotivated
and studied from the points of view of both string theory/particle
physics and phenomenological approaches to dark energy; see,
e.g., [79–95].
Our discussion in this section is restricted to the study of the

background cosmological evolution, and we make use only of
purely geometrical tests of the background expansion. In general,
in every beyond-�CDM scenario, one expects interesting observ-
able effects not only at the background level, but also at the level of
the cosmological perturbations. As an example, in the presence of
a nonminimal coupling of the scalar field to thematter sector one
expects an enhancement of the gravitational attraction, hence a
more intensive structure formation in the universe. Moreover, in
many such scenarios the gravitational attraction even becomes a
function of the spatial and/or temporal scales. Finally, an interest-
ing feature of many such scenarios is that the gravitational lens-
ing is modified, and the weak lensing measurements of galax-
ies can strongly constrain the models. However, in more conven-
tional scenarios where gravity is standard and the scalar field is
minimally coupled to gravity and matter, including the models
we study in this paper, such modifications do not occur, hence
the galaxy clustering and weak lensing measurements are not ex-
pected to introduce additional strong constraints. An important
observation to make later, however, is that the constraints purely

on the background dynamics of our models are so strong that
they rule out all themodels of interest studied in the next section,
with more than 3σ confidence, even without adding extra con-
straints. This means that even if the additional observational data
sets would introduce relevant constraints, they would not change
our general conclusions here; in contrary, our conclusions would
only be strengthened.
The cosmological data sets used in our analysis consist of the

Pantheon compilation of ∼ 1050 Type Ia supernovae (SNe Ia),[96]

the latest geometrical constraints imposed by the cosmic mi-
crowave background (CMB)[97] and the baryon acoustic oscilla-
tions (BAO),[98] and the local measurements of H0, the present
value of the Hubble function.[99] For the SNe Ia data, we make
use of its equivalent, compressed form provided in [100], where
the information of all the Pantheon supernovae is encoded into
constraints on the function E (z) ≡ H(z)/H(z = 0) at 6 different
redshifts; this data set contains information from 15 additional
SNe Ia at redshift z > 1. Throughout our analysis we assume a
flat universe, which is also the assumption made in the analysis
of [100]. We should point out that although our data sets are the
latest available ones, we do not include, for example, the full CMB
information provided by the Planck temperature and polarization
power spectra as has been used, for instance, in [96] in order to
obtain the tightest current constraints on various parametriza-
tions of dark energy when all available cosmological data sets are
combined. For that reason, the constraints we find in this work
are somewhat conservative, and our bounds on, for example, the
λ parameter would be even tighter if the full CMBdata were used.
As we see, however, the bounds we find are already quite tight,
and sufficient for excluding all the string theory based models
studied in the next section.
We perform a Markov Chain Monte Carlo (MCMC) analysis

of the parameter space of our exponential model (8), and de-
rive the Bayesian constraints on the model parameters. For ev-
ery point in the Markov chain we exactly solve the scalar field
equation ofmotion together with the Friedmann equation, given,
respectively, by

φ′′ + (3− ε)φ′ + 1
H2

dV (φ)
dφ

= 0 , (9)

H2 = V (φ)+ 3H2
0 
Me−3N + 3H2

0 
Re−4N

3− 1
2φ

′2 , (10)

where a prime denotes a derivative with respect to the number of
e -foldings N ≡ ln a (with a being the scale factor), and the slow-
roll parameter ε is given by

ε ≡ −H′

H
= 1

2
φ′2 + 1

2
H2
0

H2

(
3
Me−3N + 4
Re−4N)

. (11)

As usual, 
M and 
R are the present-day fractional energy den-
sities of matter and radiation, respectively, and H ≡ ȧ/a is the
Hubble expansion rate with the value of H0 today.
The scalar field (dark energy) equation of state is given by

wDE =
1
2φ

′2H2 − V (φ)
1
2φ

′2H2 + V (φ)
, (12)
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Figure 2. Two-dimensional, marginalized constraints on λ versus 
M (left panel) and λ versus φ0 (right panel) for the quintessence model with the
exponential potential V (φ) = V0eλφ . The contours show 68%, 95% and 99.7% confidence levels. Here, we have fixed the parameter V0 to 0.7(3H2

0 ) and
varied the other parameters of the model, i.e. λ and φ0, as well as 
M. The one-dimensional, marginalized upper bounds on λ are ∼ 0.13, ∼ 0.54 and
∼ 0.87, with 68%, 95% and 99.7% confidence, respectively.

while the effective (or total) equation of state weff is given by

weff = −1+ 2
3
ε . (13)

During the radiation and matter domination epochs, weff is 1/3
and 0, respectively, corresponding to ε = 2 and ε = 3/2.
Our cosmological model contains five free parameters, V0, λ,

φ0, 
M and 
R (as far as the cosmological background dynam-
ics are concerned). Here φ0 is the initial value of the scalar field,
which we set at a time well inside the radiation domination epoch
(N ∼ −15). We also assume that the field is initially at rest, i.e.
φ′
0 = 0. It is important to note that the structure of the model im-
plies one of the two parameters V0 and φ0 to be redundant, and
by assuming a sufficiently wide scanning range for one of them,
we can fix the other to any specific value.
Figure 2 shows the results of our MCMC scan for the case in

which V0 has been fixed to 0.7(3H2
0 ), where 3H

2
0 ∼ 10−120 is the

critical density today, and we have scanned over the rest of the pa-
rameter space, including φ0. Here, flat priors have been imposed
on the free parameters. The plots show the two-dimensional 68%,
95% and 99.7% confidence regions in the λ − 
M and λ − φ0

planes. Marginalizing the full posterior probability density func-
tion over all the parameters except λ, we obtain the upper bounds
of∼ 0.13,∼ 0.54 and∼ 0.87 on λwith 68%, 95% and 99.7% con-
fidence, respectively. An interesting observation from the right
panel of Figure 2 is the rapid drop of λ by increasing |φ0|. The
contours peak at φ0 ∼ 0.4 and then quickly decrease when φ0 de-
viates from the peak value.
Even though, as we mentioned above, one of the two parame-

ters V0 and φ0 is redundant, and we have therefore fixed V0 and
varied φ0, this redundancy holds only when λ is strictly nonzero.
This exceptional case corresponds to a constant dark energy, i.e.
a cosmological constant with� = V0, independently of the value
of φ0. Since we have chosen V0 to be 0.7(3H2

0 ), the only �CDM
case that we have in our parameter space is with 
� = 0.7. Even
though this value is consistent with themeasured value of
� for
�CDM, the observational uncertainties have not been taken into

account, and our results are, statistically speaking, not complete
for the �CDM corner of the parameter space. This may slightly
bias the constraints on λ.
For this reason, we have also performed a statistical analysis

when V0 has been allowed to vary as well. Our results show that
the bounds on λ do not change significantly, as long as the al-
lowed range of φ0 is not too large. Enlarging the range of φ0

increases the volume of the parameter space (mostly) around
λ = 0, and therefore increases the probability of the model to
give a �CDM-like cosmology (which provides a good fit to the
data). This in turn biases our results towards �CDM (i.e. small
λ) and affects the marginalized upper bound on λ by lowering
it to smaller and smaller values, as confirmed by our statistical
results; this is a consequence of our Bayesian framework, where
priors may play an important role in situations like ours here.
The weakest bound on λ is therefore expected when φ0 is fixed to
a specific value and V0 is varied.3 We show in Figure 3 the two-
dimensional contour plot in the λ − 
M plane for a scan with
φ0 having been fixed to 0.4 The figure shows a slight increase in
the bounds on λ. The marginalized, one-dimensional 68%, 95%
and 99.7% upper bounds on λ in this case are ∼ 0.49, ∼ 0.80
and ∼ 1.02, respectively. In spite of these small changes of the
bounds depending onwhich exact priors and ranges one imposes
on the parameters, our results show that one never obtains a 3σ
bound on λ larger than ∼ 1.5 By trying to be as ignorant and

3 Note that we can still explore the entire parameter space with this
parametrization, while the effects of priors related to the range of φ0
are minimized.

4 It is important to note that there is additionally some small dependence
of the λ bounds on the effective priors imposed upon the parameters in
the MCMC process. Since λ and φ0 sit in the exponent of the potential,
flat priors on these parameters impose an effective non-flat prior on
the combination V0eλφ0 , which then translates into an effective non-
flat weighting of the λ parameter itself. Our tests show that this prior
effect is larger when φ0 is fixed to a nonzero value, as expected. We
therefore fix φ0 to zero in order to minimize this additional prior effect
on λ as well.

5 In order to directly see that this λ � 1 is the least tight 3σ constraint
on λ, we additionally performed a profile likelihood analysis of the
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Figure 3. The same as in Figure 2, but whenφ0 is fixed to 0 and V0 is varied.
The marginalized, one-dimensional 68%, 95% and 99.7% upper bounds
on λ in this case are∼ 0.49,∼ 0.80 and∼ 1.02, respectively. These results
are in excellent agreement with our findings based on a frequentist, profile
likelihood analysis, demonstrating that they are the least prior-dependent
results we can obtain from an MCMC-based, Bayesian analysis, and pro-
vide the weakest possible bounds on λ.

unprejudiced as possible about the values of the parameters be-
fore comparing the model to the data through enlarging the
ranges of the parameters in our MCMC scans, especially for the
initial value φ0, this bound on λ does become even tighter. We
see in the next section that this 3σ upper bound of ∼ 1 rules out
all the models considered in [21].
It is important to note that the statistical constraints on λ ob-

tained above ignore the issue of the probability to begin the last
stage of the cosmological evolution in an immediate vicinity of
the point φ0 very close to the very narrow peak at φ0 ∼ 0.4 shown
in the right panel of Figure 2. For any other initial conditions, the
probability to describe the present state of the universe inmodels
with λ ∼ 1 is vanishingly small.
Bounds on λ for the same single-exponential potential (8)

have been provided also in the two recent papers [22,23] on
the swampland conjectures. The results of these papers are not
based on a rigorous statistical analysis of the model, and our
findings are in strong disagreement with the work of Heisen-
berg et al. [23]. For that reason, we dedicate Appendix C to a de-
tailed comparison of our results and methodology with those
of [22,23].
The case of double-exponential potentials: As we see in the

next section, there are string theory basedmodels of quintessence

parameter space; see, e.g., [101–103] and references therein. This is
a frequentist approach, where the statistical results are independent of
priors and ranges. The contours and the upper bounds on λ that we
obtained through the profile likelihood analysis were almost identical
to what we have found in our Bayesian analysis of Figure 3, demon-
strating that they are the least prior-dependent results we can get from
an MCMC-based Bayesian analysis. It also confirms that λ cannot be
larger than ∼ 1 under any circumstances, with more than 3σ confi-
dence.

with potentials that are of the form

V (φ) = V1eλ1φ + V2eλ2φ . (14)

We study these double-exponential models and compare them
with the cosmological data in Appendix D. One important result
of this investigation is that the constraint on the smallest of the
two exponent coefficients λ1 and λ2 is nearly identical to the con-
straint on the single exponent coefficient λ studied above. A sim-
ilar conclusion is valid for the models V (φ) = V1e−λ1φ + V2e−λ2φ ,
since they are equivalent to the models (14) when φ → −φ.

7. Accelerating Universe According to the
Swampland Conjectures

In this section, we discuss the string theory models of acceler-
ating universe described in [21,22]. Our investigation of these
models does not require any use of the no-dS conjecture and the
constraint (7). This discussion can be applied to both dark en-
ergy/quintessence and inflation described by such models, with
some caveats.
Inflation is a stage of quasi-exponential expansion in the early

universe, with a Hubble rate H which can be of the order of 10−5

in Planck units, whereas at the present stage of the acceleration
of the universe one has H ∼ 10−60. The difference in scales is
colossal, but many of our conclusions depend only on the scale-
independent ratio |∇φV |

V . On the other hand, in the discussion of
dark energy the main emphasis is on whether the acceleration
may occur now, rather than how it may end. Meanwhile in the
discussion of inflation, we must also study how exactly it ends,
how the universe reheats after that, etc. Observational constraints
on inflation are much more stringent than those on dark energy.
Therefore, the general expectation is that if themodels we discuss
here cannot describe dark energy, they cannot describe inflation
either. We will return to this comment later on.
There are models in [21] where the value of the constant c in

Equation (7) is given for spaces with dimensions (after compacti-
fication) different from d = 4, in particular for d = 10 and d = 5.
However, comparing theoreticalmodels with observationsmakes
sense only for d = 4. Therefore, here we consider only the cases
where the value of c has been given for d = 4.

7.1. M-Theory Compactifications

The first example in [21], based on the hyperbolic compactifica-
tion of 11-dimensional supergravity/M-theory with fluxes, has a
potential depending on two exponential functions of the canoni-
cal scalar field φ,6

V = VRe−
√

18
7 φ + VGe−

√
50
7 φ . (15)

6 Note again that by taking φ → −φ one can equivalently work with a
term of the form V0 e−λφ in the potential instead of V0 eλφ , with the
same λ > 0. Even though we chose the convention of writing the po-
tentials as V0 eλφ in Section 6, Appendix D and many other places in
the present paper, we use the opposite convention of V0 e−λφ in this
section in order to be consistent with the notations adopted in [21].

Fortschr. Phys. 2019, 67, 1800075 1800075 (8 of 25) C© 2018 The Authors. Fortschritte der Physik Published by Wiley-VCH Verlag GmbH & Co. KGaA.

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

The first term is due to a negative curvature of the compactified

space, and the origin of the coefficient
√

18
7 in the first exponent

is7

λ2 = 6√
(d − 2)(dcr − d)

∣∣∣
d=4,dcr=11

=
√
18
7

≈ 1.6 . (16)

The second term is due to fluxes. In fact, an M-theory model of
accelerating universe with a very similar potential,

V = VRe−
√

18
7 φ + ṼGe−√

14φ , (17)

was already studied 15 years ago in [104,105]. In bothmodels, the

flux-type exponential with λ1 =
√

50
7 or λ1 = √

14 is too steep for
describing dark energy at late times. Therefore, the only possibil-
ity to have a reasonable late-time cosmology is in a regime with
large φ, where the second exponential is small. In this regime,
which is equivalent to a negligible 4-form field contribution, the
model (15) coincides with the model (17) studied in [104,105].
The exponential potential of dark energy today, neglecting fluxes,
is therefore of the form

VDE ≈ VRe−
√

18
7 φ ∼ 10−120. (18)

This model was marginally consistent with the dark energy data
in 2003, when λ2 ∼ 1.7 was still in agreement with the data, but
required some fine-tuned initial conditions.[104,105]

However, taking into account the bounds on λ for single-
exponential potentials obtained in the previous section based on
the current constraints on dark energy, we can conclude that this
model with λ2 ≈ 1.6 is inconsistent with the current observations
with more than 99.7% confidence. In Appendix D, we have pro-
vided for interested readers a more general approach to double-
exponential potentials, including a detailed statistical analysis of
their parameter space. The results of Appendix D show explicitly
that the models (15) and (17) are both ruled out; see Figure 8
Before we look into the other models proposed in [21], it is

instructive to discuss some issues with models of accelerating
universe, which are present here, independently of the statistical
disagreement with the data. This will strengthen our general con-
clusion that the models of accelerating cosmology in [21] tend to
be in conflict with d = 4 general relativity.
In [104], the value of VR was computed via the curvature of an

internal compact space, Rab = −6gab 1
r 2c
, and found to be VR =

−2R = 21
r 2c
, so that

VDE ≈ 21
r 2c

e−cφ ∼ 10−120. (19)

It was found there, see also [105,106], that the model had extra
light Kaluza-Klein (KK) modes with the Compton wavelength of
the same order as the size of the observable part of the universe,

mKK = O(e−cφ/2/rc ) ∼
√
VDE ∼ HDE ∼ 10−60 . (20)

7 Here, we denote the larger coefficient by λ1 and the smaller one by λ2,
in order to be consistent with the notations of Appendix D.

In other words, in the absence of moduli stabilization, the com-
pactified space may effectively decompactify. This is still an open
problem and remains to be solved, and therefore, the effective
M-theory dark energy models of accelerating universe have prac-
tically been abandoned; see, e.g., a discussion of this model on
page 40 of the dark energy review [90]. As we see in the next sub-
section, the second model discussed in [21] faces a similar prob-
lem. Of course, thismay not be very important since both of these
models are ruled out by observations anyway, as we find c ∼ 1.6
in both cases. Nevertheless, this issue requires careful consider-
ation as it might be systemic in models with non-stabilized extra
dimensions.

7.2. O(16) × O(16) Heterotic String

This is a non-supersymmetric model without tachyons in d =
10, which was invented in 1986.[107,108] The dark energy potential
in this model has two exponential terms, which depend on the
dilaton and the volume modulus, both evolving. In terms of the
two canonical fields ρ̂ and τ̂ , the dark energy potential is

VDE = VRe
− 2√

dcr−4 ρ̂e
√
2τ̂ + V�e

√
dcr−4ρ̂e2

√
2τ̂ . (21)

Using dcr = 10, one finds

VDE|dcr=10 = VRe−
√

2
3 ρ̂e

√
2τ̂ + V�e

√
6ρ̂e2

√
2τ̂ . (22)

The values of VR and V� are unspecified, but somehow related to
the geometry of the internal manifold and d = 10 cosmological
constant. Today, the fields have to take values such that VDE ∼
10−120. The volume of the compactified manifold is proportional
to e6ρ̂ .
Since both fields are evolving, the cosmological evolution of

dark energy is complicated. We have studied the time evolution
in this model and found that independently of the initial values
of the fields ρ̂ and τ̂ , the cosmological evolution eventually ap-
proaches the regime with the smallest value of |∇φV |/V ; see
Figure 4. In this regime

τ̂ = − 4ρ̂√
3

+ 1√
2
log

VR

18V�

. (23)

This corresponds to the smallest effective value of c ≈ 1.6 in this
model, which is similar to the result obtained in [21]. Based on
our analysis of Section 6 we can conclude that the evolution along
this shallowest direction is ruled out by the data. We study more
general evolution scenarios in Appendix E and conclude that this
model does not exhibit cosmologically viable solutions.
Nevertheless, it makes sense to study this model more atten-

tively. Using the relations obtained above, one can show that if the
universe evolves along the stable attractor trajectory (23) from the
Planck density V = O(1) to the present density∼ 10−120, the size
of the compactified space during that period grows approximately
1029 times, and the volume of the compactified space increases
by the factor of 10176. This tremendous growth of the volume of
the compactified space during the cosmological evolution may
strongly affect physics in the d = 4 universe.
This was the second model in the class of dark energy

models discussed in [21]. We encountered a problem with
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Figure 4. In the left panel we show how the two-field system of Section 7.2 with the scalar field potential (22) evolves in time, starting with different
initial conditions in the ρ̂ − τ̂ plane. In the right panel we present a longer time evolution, where the system evolves in the shallowest direction (depicted
by a green line). For simplicity, the evolution is shown in the absence of matter and for VR = 18V�, in which case the shallowest direction is given by
τ̂ = − 4ρ̂√

3
; see Equation (23).

decompactification in the first model discussed in the previous
subsection,[104,105] and now see that this second model suffers
from a very similar problem. This suggests that such problems
may be quite generic for models without moduli stabilization.
We do not explore this issue any further in this paper, simply

because all the models proposed in [21] are inconsistent with ob-
servational data anyway.

7.3. Type II String Theory Models

The potentials discussed for the Type II string theory models of
[21] depend on two moduli, dilaton and volume. They had been
studied in detail in the earlier papers.[63,109–112] There is a lower
bound on c in the IIA case of these models, which has been de-
rived in [109],

c � 2 . (24)

It is, however, explained in [109] that it is possible to evade the
no-go theorem in this case, for example by considering curved
compactification manifolds, instead of the flat ones, for which
the bound (24) is valid.
Table 1 in [21] summarizes constraints on c in Type IIA/B com-

pactifications to 4 dimensions with arbitrary R-R and NS-NS flux
and Oq -planes and Dq -branes with fixed q . All the cases in that
table require c � 2, and had been studied before in [63,109–112].
In the IIB case discussed in [63], there is an example in a twisted
tori class of models for which

c �
√
2 , (25)

and is therefore also excluded by the data.

There are two other cases with c =
√

2
3 ≈ 0.8 and c > 1, which

belong to the “indeterminate” models of Table 1 in [21]. These
models are in the class studied in [110,111] and the consequent
papers, where it is hard to avoid the situation with V,φ = 0. For
example, in Table 1 of [112] a no-go case is presented with ε =
1
2 c

2 ≥ 1
3 , which means c ≈ 0.8. However, in the next columns of

that paper one can see that adding F0 or F2 fluxes removes the
no-go case and allows to find V,φ = 0. Although it may not be a
stable minimum, it disproves the conjecture (7). The second case
in the group of “indeterminate” models is presented in Appendix
B of [21], and requires c > 1. The authors of [21] notice, how-
ever, that this bound is not necessarily realized since there is no
string theory construction supporting such a c . To claim that the
model is derived from string theorymeans that one has to present
ingredients which satisfy consistency conditions. These include
the tadpole condition, flux quantization, large volume and small
string coupling requirements. No models with c <

√
2 satisfying

all these requirements are presented in [21].

7.4. NEC Bound

One more example in Section 2.4 of [21] is based on the null en-
ergy condition (NEC) bound,

c = λNEC =
√
2(d − 4)
(d − 2)

. (26)

For M-theory with d = 11, we find λNEC =
√

2(d−4)
(d−2) = √

14/9 ≈
1.25. For superstring theory with d = 10, we find λNEC =
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√
2(d−4)
(d−2) = √

3/2 ≈ 1.22. Since thesemodels are not supported by

any known string theory constructions, and are ruled out obser-
vationally anyway, we do not discuss them here.
In conclusion, all string theory examples which correspond to

the specific string theory constructions of [21] require c �
√
2,

and all of them are therefore ruled out by the cosmological data,
independently of the additional conceptual issues associated with
many of these models.

7.5. More Examples

In [22], seven more references, [30-36], have been added as mod-
els which ‘made an attempt to embed quintessence in string the-
ory’. We discuss those models here for completeness. Two of the
references from 2001-2003 study string theory and quintessence
with examples of exponential potentials. It is concluded that

c >
√
6, (27)

which means that the models are ruled out by the data and there
is no need to discuss them here.
Let us look more carefully at the other five models, dating

from 1999 to 2012, where inflation models were converted into
quintessence models. These are natural inflation models, axion
monodromy models and poly-instanton inflation models, con-
sistent with the data on inflation. They all have exit from infla-
tion, which means a minimum of the potential with V,φ = 0, and
therefore they do not support the conjecture (7) in [21].
Themodel in [113] is the early string theory axion quintessence

model of 1999, where the axion is a partner of the volume mod-
ulus. The volume modulus is stabilized by some supergravity
type stabilizationmechanism which was known at that time. The
model can be viewed as one of the possible axion inflation mod-
els, namely, natural inflation, converted into quintessence. The
second model in [114] follows an analogous pattern. It takes the
axion monodromy inflationary model with a linear potential[115]

and converts it into a quintessence. It is important here to
note that the axion monodromy inflationary model with a lin-
ear potential[115] involves KKLT or KL stabilization for consis-
tency. Finally, the third model in [116] is also based on a partic-
ular string theory inflationary model known as ‘poly-instanton’
inflation. This model is based on Large Volume Compactifica-
tion and also gives an example of a string inflation model con-
verted into quintessencemodels. All three classes of string theory
quintessence models in [113,114,116] do not support the swamp-
land conjecture (7) since they are based on various constructions
of moduli stabilization.

8. Conceptual Problems with String Theory
Quintessence

8.1. Quantum Corrections

In the previous sections, we studied string theory models of
quintessence and compared them to the cosmological data as-
suming an exponential potential V ∼ eλφ as a proxy for models
supporting the V,φ/V ∼ c conjecture for λ = c . We compared the

V ∼ eλφ quintessence model to the data, and our conclusion was
that models with c � 1.02 were ruled out by the data at the 99.7%
confidence level.
An obvious question here is the following. Once the model

V ∼ eλφ with a given λ = c is viewed as a legitimate string the-
ory model, one may wonder what will happen with this model
when possible quantum corrections of various kinds are taken
into account. And since the scale of the potential is 10−120, one
would expect that quantum corrections, for example from the
Standard Model, may change the model in a way which cannot
be predicted. It is stressed in [36] that this limitation is another
reason why it is not possible, based on our current knowledge,
to make a robust prediction for w in string theory. On the other
hand, the idea of the string landscape, as depicted in Figure 1, is
that after taking into account quantum corrections many values
of a small cosmological constant are possible. This is opposite to
an attempt to protect any givenmodel from quantum corrections
of any kind, string theory or Standard Model corrections.

8.2. Decompactification

In the absence of moduli stabilization, one should always check
whether a model really describes compactification. As we already
mentioned, the first model proposed in [21] practically coincides
with the model studied long time ago in [104,105]. It was found
there that it did not really describe compactification. This issue is
discussed in Section 7.1. Similarly, in Section 7.2 we found that
in the second class of models studied in [21], the volume of the
compactified manifold grows by a factor of ∼ 10175 during the
cosmological evolution. Thus, this may be a systemic problem of
the models without moduli stabilization.
One may try to solve these problems, or even use them con-

structively for providing an anthropic solution to the cosmo-
logical constant problem. This speculative possibility had been
proposed in [104], but so far there has been no progress in this di-
rection. This is not surprising though, especially having in mind
that all string quintessence models studied so far are ruled out
by observational data.

8.3. The Fifth Force

The light quintessence scalar fields have a Compton wavelength
comparable to the size of the cosmological horizon. Since they
are extremely light and have a geometric origin, they may lead to
a fifth force violating the equivalence principle, which has been
tested with ever increasing precision. For example, the MICRO-
SCOPE satellite mission has already confirmed the equivalence
principle with an accuracy better than 10−14,[117,118] and the plan
is to reach the level of 10−15. The Galileo Galilei (GG) proposal
aims at increasing the precision to 10−17 [119].
From the point of view of those who believe in the weak gravity

conjecture, this precision may not be even needed. This conjec-
ture states that all forces must be either stronger than gravity,
or vanish. The tests of the equivalence principle imply that the
fifth force must be many orders of magnitude weaker than grav-
ity. Meanwhile, the weak gravity conjecture insists that there are
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no interactions weaker than gravity. Therefore, the weak gravity
conjecture suggests that the fifth force due to quintessence fields
acting on particles from the Standard Model must completely
vanish.[22,24] In supergravity, one can impose certain conditions
on the Kähler potential and superpotential which may lead to
the strong suppression or even vanishing of the fifth force.[120,121]

Constructing realisticmodels of this type in string theory without
vacuum stabilization is a very challenging task.

8.4. Contribution of Matter to the Dark Energy Potential

The easiest way (for us) to explain yet another issue is to remind
the readers of what happens when we consider inflation in the-
ories with the KKLT construction,[1] where the ‘uplift’ from AdS
to dS is provided by an D3-brane. In the language of a 4d effec-
tive action, this scenario can be described by the theory with the
Kähler potential and superpotential (2),

K = −3 log (
T + T̄

) + SS̄ ,

W = W0 + Ae−aT + μ2S , (28)

where T is the volumemodulus and S is a nilpotent chiral super-
field.
If we ignore the field S in thismodel, themodel would describe

a theory with a potential having a minimum corresponding to a
stable AdS vacuumwith a negative cosmological constant. On the
other hand, if we ignore the field T , the theory would describe a
dS space with the cosmological constant � = μ4 provided by an
D3-brane.
One could expect that when we combine these two ingredients

into the KKLTmodel (28), the cosmological constant� = μ4 will
be added to the AdS vacuum energy of the theory describing the
field T , thus providing the required uplifting. However, the situ-
ation is more complicated: At the moment when we unify these
two theories, the uplifting term μ4 becomes multiplied by e K ,
where the total Kähler potential K now includes the Kähler po-
tential of the volume modulus −3 log(T + T̄ ). This produces the
uplifting term proportional to μ4

(T+T̄ )3 . In terms of a canonically
normalized volume modulus field φ, this term is not a constant,
but a steep exponential potential ∼ e−√

6φ , rapidly falling at large
values of the volume modulus.
If this term is small, it leads, as expected, to a gradual uplift-

ing of the AdS vacuum to a metastable dS vacuum. But if the
constant μ2 is too large, this new term destabilizes the volume
modulus, and the field starts moving down in a steep exponential
potential.[37] The main lesson is that if we try to add a cosmolog-
ical constant in d = 10, then in d = 4 it acts as an exponential
potential, which tries to decompactify extra dimensions.
A similar effect may occur if one adds dark matter, or hot

ultra-relativistic gas. That is why even after the KKLT poten-
tial stabilizes the volume modulus T , it is necessary to make
sure that the contribution of other fields, including the inflation-
ary potential,[37] radiation[122] and dark matter, does not destabi-
lize it. The simplest method to do that has been proposed in
[37,48–50,123].

Similar exponential terms may appear in the non-stabilized
dark energy models based on string theory[21] when one takes
into account the contribution of dark matter and radiation to the
volume modulus potential. This effect is well known to those
who study inflation in string theory, and has been discussed in
the quintessence literature as well, in the context of “coupled
quintessence” or “interacting dark energy”.[124,125] We did not in-
clude it in our analysis of the observational constraints on the
exponential potential, simply because we should first learn how
to addmatter to quintessencemodels in string theory without be-
ing in conflict with the fifth force problem discussed above. We
believe that the possible contribution of dark matter and radia-
tion to the exponential potential of the volume modulus can only
result in strengthening our constraints on the parameters of such
models.

8.5. Quintessence and the Bound on Field Excursions

Suppose for amoment that the quintessence potential is given by
a single exponential V ∼ eλφ , and the cosmological evolution be-
gan at the Planck density with V ∼ eλφ0 = O(1). Eventually dark
energy becomes small, with V ∼ eλφ = 10−120 ∼ e−276.
For definiteness, let us take λ ∼ 0.7, which barely allows this

model not to be ruled out by the cosmological data at the 95%
confidence level. Then, during the period from the beginning of
the cosmological evolution to the present time the field φ changes
by φ ∼ 400, which is a dramatic violation of the weak gravity
conjecture advocated in [24].
A way to address this problem has been proposed in [22]. The

authors suggest that in the early universe the potential is dom-
inated by a term eC(φ)φ with C(φ) = O(100). Then the field falls
from V = O(1) to V ∼ 10−120 within φ = O(1), and it then en-
ters the slow-roll quintessence regime with λ < 1. An example of
a potential with the required properties would be

V = eλφ + A e100φ , (29)

where A is some constant. Onemight try to relate the large coeffi-
cient in the second exponent 102 to 1/MGUT,[22] but it is not quite
clear how this suggestion can be implemented. As we have seen
already, in the class of models considered in [21] it is very difficult
to find an exponent coefficient λ <

√
2. But it is equally difficult

to find λ ∼ 100. Indeed, in all the models that we were able to
check, the exponent coefficients appeared as a result of simple al-
gebraic manipulations with numbers like

√
D − d , with D = 10

or 11, and d = 4, so all of these exponent coefficients were of
O(1).
Of course we may not need to know the dark energy potential

all the way to the Planck density, but if wemake amodest require-
ment that we want to know it at the nuclear density ρ ∼ 2× 1014

g/cm3, then the required excursion taking the potential V ∼ eλφ

with λ < 0.7 down to V ∼ 0.7× 10−120 would be φ > 140. If
we further require only that the potential is given by V ∼ eλφ at
a density smaller than the density of water, then the required ex-
cursion would be φ > 90.
Finally, if we want to ensure the validity of the quintessence po-

tential in the ultimatelymodest range of 10−121 < V0 eλφ < 10−119
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for λ = 0.7, this would require that the theory should remain re-
liable in the super-Planckian range φ ∼ 6.5.
Thus, according to the weak gravity conjecture, the potential

V ∼ eλφ can be used only in the immediate vicinity of the present
value of the cosmological constant. Of course, the weak gravity
conjecture is just a conjecture, but it is interesting that applying
it to the string theory models of quintessence may lead to such
an unexpected and somewhat disappointing conclusion.

9. Discussion and Conclusions

Dark energy was discovered 20 years ago.[126,127] This discovery
created a turmoil in theoretical physics, and in string theory in
particular. At first, there was a hope that the discovery would
go away, but this did not happen. The first attempts to describe
dark energy/quintessence in theories based on supersymmetry
and supergravity were made in [128–130], and in M-theory in
[104,131,132]. The serious conceptual issues with quintessence
in M-theory and supergravity were revealed soon, and no consis-
tent string theory models of quintessence were found in d = 10
superstring theory.
The situation changed with the invention of the KKLT

scenario[1,2] and its various generalizations, such as KL[37] and
LVS,[38] which suggested a multitude of possibilities to describe
the present value of the cosmological constant in the context of
the string theory landscape.[5–8] This theory is extremely compli-
cated, and is far from being complete, but we have the proof of
concept. Due to the extreme multiplicity of the vacua, this sce-
nario is very robust with respect to even very large quantum cor-
rections, as illustrated in Figure 1.
That is, of course, assuming that there are no no-go theorems

proving that this whole set of ideas is internally inconsistent, and
dS states are simply impossible in string theory. Here we stress
that we are discussing no-go theorems, not the arguments in the
spirit of the Wilsonian EFT, naturalness, weak or strong versions
of the weak gravity conjecture, or the possibility that radiative cor-
rections strongly affect dS vacua and reshuffle them as shown in
Figure 1. We are discussing real no-go theorems, which would
state that all of the 10500 or more dS vacua in string theory can-
not exist. Despite many attempts of many authors to prove such
no-go theorems during the last 15 years, no such proofs are avail-
able.
In this paper, we have explained in detail that all the known

no-go theorems of this kind can be evaded. Here in this last sec-
tion, we first summarize our statements concerning the no-dS
conjecture made in [21]. Their conjecture that dS vacua in string
theory are not possible originates from their use of the original
versions of the major no-go theorems. For the case of the
Maldacena-Nunez no-go theorem,[26] they assume nonsingular
compactification manifolds. As it is known for two decades, such
manifolds fail to describe chiral fermions in d = 4.[53] Therefore,
one should not require using nonsingular compactificationman-
ifolds for describing de Sitter geometries. It is known that one can
evade theMaldacena-Nunez theorem taking into account higher-
order curvature corrections and negative tension O-planes,[3,52] as
stressed in [1,2].
With regard to the no-go theorem of [35] on dS and super-

symmetry, in pure dS supergravity one can evade the theorem

by involving a nonlinearly realized supersymmetry, as it follows
from the D-brane construction.[30,31,44] It is this construction that
was used for the manifestly supersymmetric version of the KKLT
construction in [27–34]. Moreover, dS supergravity in d = 4 is
now derived in the context of string theory compactification from
d = 10.[70]

The most recent criticism of the KKLT construction has been
presented in [56] and [58]. A critical discussion of [56] is given in
[57], and a critical discussion of [58] is given in [59], as well as in
Sections 2 and 3 of this paper. Thus at the moment we do not see
any no-go theorems that would disprove the main principles of
the string theory landscape.
Of course, one can ignore this fact and simply speculate

that stable or metastable dS vacua are impossible in a consis-
tent quantum gravity theory, discard all models of dS space in
a hope to make string theory great again, and then see what
happens.[21,24,25] This no-dS conjecture takes us back to the sit-
uation we encountered 20 years ago, when we did not have any
consistent description of the observational data in the context of
string theory. This does not mean that any success in this direc-
tion is impossible, which is why we studied it, despite the fact
that the motivation for the no-dS conjecture in [21,24,25] does
not seem convincing to us.
Returning to the discussion of the swampland, in [22] the anal-

ysis of quintessence is mixed with an early universe inflation.
Here we stress that the basic no-dS conjecture is satisfied in all
slow-roll inflationary models automatically. Indeed, the deviation
from dS is the most important feature of all slow-roll inflationary
models: the amplitude of inflationary perturbations blows up for
V,φ > V 3/2. Therefore, there is no obvious reason to impose addi-
tional unmotivated constraints of the type of (7) on thesemodels.
On the other hand, if one insists that the strong form of the no-

dS conjecture (7) should apply to inflationarymodels, it will be yet
another argument against this conjecture. It is known from the
latest Planck data release[72] that r � 0.064 during the stage of in-
flation responsible for structure formation and CMB anisotropy
in our part of the universe. This means that

ε = 1
2

(V,φ

V

)2
= 1

2
c2 � 0.004 ⇒ c � 0.09 . (30)

An analysis of related issues in [22,73] gives similar constraints.
Therefore, if we would assume that the constraint (7) with c ∼ 1
applies to inflation, we would conclude that the conjecture (7)
strongly contradicts the observational data.
In the case of dS versus quintessence for the late universe,

things are more subtle and may need more attention since dur-
ing the next decademajor new cosmological data on the equation
of state w = p/ρ will be available. In this paper, we have asked
the question ‘is the proposal (7), which is consistent with string
theory, compatible with the present data?’
We have performed a statistical analysis of the quintessence

exponential potential V0eλφ with regard to the currently available
cosmological data on the background expansion of the universe;
see Section 6. In view of the controversy about the data in [22,23]
a due diligence was required. Namely, in [22] only a 2σ bound is
proposed in the form λ = c < 0.6 (in the first version of the paper
c < 0.6was called a 3σ bound). In [23] it is suggested that their 1σ
bound reproduces the 2σ bound in [22], while their 3σ bound is
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proposed in the form c < 1.35. This way, the paper byHeisenberg
et al.[23] has introduced an uncertainty which was necessary to re-
solve before we study string theory quintessence models. Our re-
sults, in the case of an analysis I, where we fixed the parameter
V0 to 0.7(3H2

0 ) and varied the other parameters of the model, i.e.
λ and φ0, as well as
M, provided the one-dimensional, marginal-
ized upper bounds on c ,

c � 0.13, c � 0.54, c � 0.87, (31)

for 1σ , 2σ and 3σ confidence levels, respectively; see Figure 2.
In an analysis II, we performed a statistical exploration of the
parameter space when V0 was allowed to vary as well, in order
to take care of some statistical subtleties around λ = 0. In that
case, depending on the prior on φ0, i.e. the range over which φ0

was allowed to vary, the upper bounds on c varied: the broader
the range of φ0, the lower the upper bounds on c . We fixed φ0

to zero (i.e. we set the φ0 range to zero) in order to obtain the
largest upper bounds on c . The marginalized, one-dimensional
upper bounds on c in this case are

c � 0.49, c � 0.80, c � 1.02, (32)

for 1σ , 2σ and 3σ confidence levels, respectively; see Figure 3.
An additional profile likelihood analysis of the parameter space
in a frequentist approach (as opposed to our main Bayesian
marginal posterior analysis) provided bounds very close to (32).
This demonstrated that (32) were indeed the weakest and most
prior-independent bounds on λ that one could obtain with the
cosmological data used in this paper. By including additional in-
formation beyond the purely geometrical tests of the background
expansion as we have employed in our paper, e.g. by adding
the perturbative information from the Planck CMB temperature
and polarization data, we expect these bounds to be even tighter.
Thus, if we would like to be as tolerant to theoretical cosmological
models as possible with regard to the data, we can say that mod-
els with c � 1.02 can be looked at more carefully since they are
not immediately ruled out by the data. But, one should keep in
mind that this is a last resort, as all models with c � 1.02 should
be dismissed without hesitation.
On the theoretical side, we went through the list in [21] with

an update provided in [60] to make sure that the models in d = 4
which we confront with the data were viewed as string construc-
tions, beyond speculations. In particular, we have noticed that all
the models with c <

√
2 suggested in [21] do not really belong to

string theory or M-theory constructions. Meanwhile, the data can
only tolerate c � 1.02 at most, as we have explained in Section 6,
and therefore the models that the authors of [21] are left with,
requiring c � 1.4, are all ruled out. The additional quintessence
models added in [22] are either ruled out by the data, or repre-
sent inflationary models with moduli stabilization converted to
models of quintessence. All of them contradict the condition (7).
But this is not the only problem with the string theory mod-

els of quintessence. There are many general conceptual issues
discussed in Section 8 that must be addressed: decompactifica-
tion, fifth force, quantum corrections, consistent embedding of
dark matter, the problem of initial conditions, etc. On top of that,
our analysis brings some surprising news to those who believe in
the weak gravity conjecture: The potential V ∼ eλφ , or any other

similar potential which can be used for describing quintessence
in terms of a canonically normalized scalar field φ, is well defined
only in the tiny range of values of the potential in the immediate
vicinity of the present value of the cosmological constant.
This suggests that if a consistent theory of quintessence can be

constructed in the context of string theory, it will not replace the
string theory landscape scenario, but will rather enhance it, by
adding to the many dS minima, which are shown in Figure 1, a
collection of segments of the potential, which should be very flat,
with |∇φV |

V < 1. Note that the last requirement is directly opposite
to the strong form of the no-dS conjecture (7).
In preparation for potential deviations of the dark energy

data from a cosmological constant provided by upcoming or fu-
ture surveys, we have already constructed quintessential inflation
models in string theory motivated versions of supergravity,[121]

which might fit such future data. However, a majority of super-
gravity models compatible with the early universe inflation end
up in dSminima and explain dark energy via a cosmological con-
stant taking values in the landscape.
Recent cosmological observations have attracted attention to

specific ideas/aspects of non-perturbative superstring theory,
which are helpful in building models compatible with the data.
The D3-brane is a source of nonlinearly realized supersymme-
try and positive contribution to energy, which is a characteris-
tic property of the KKLT uplifting procedure. In phenomeno-
logical model building, the corresponding nilpotent multiplet,
in addition to providing positive energy, plays the role of a
stabilizer superfield, which allows an advanced version of α-
attractor models;[133] we called them geometric inflation.[134,135]

These models provide a good fit to the Planck 2018 data;[72] see
Figure 10.
Thus, the ideas originating in string theorywith dS vacua influ-

enced the construction of phenomenological d = 4 supergravity
models of inflation compatible with the cosmological data. These
are the corners of string theory where better understanding and
more developments may be useful since they are already in the
sweet spot of the data, i.e. in the blue area of the r − ns plane in
Figure 10.

Appendix A: What was the Problem with De Sitter
Supergravity in the Past?

The no-go theorem for dS vacua in supergravity [35] was pro-
posed and proven in 1985 in the context of pure supergravity, i.e.
in supergravity without matter multiplets. For quite a while, this
theoremwas considered to be a real obstacle preventing dS vacua
in supergravity. Later on, with the development of phenomeno-
logical supergravity including chiral supermultiplets with scalar
fields Z as their first component, the situation changed dramati-
cally.
The F-term part of the scalar field potential in supergravity can

be represented by the well-known expression

V (Zi , Z̄ī ) = e K
(
|DiW|2 − 3|W|2

)
, (33)

where W(Z) is the superpotential, K (Z, Z̄) is the Kähler poten-
tial, and supersymmetry breaking is controlled by the value of
DiW. As the simplest example, consider the model with the
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minimal Kähler potential K = ZZ̄ and the linear superpoten-
tial W(Z) = m2(Z+ β). This is the famous Polónyi model[136] of
1977, described in most textbooks on supergravity. One can rep-
resent the complex field Z as a sum of two canonically normal-
ized fields φ and χ , Z = (φ + iχ )/

√
2. One can show that the

minimum of the effective potential occurs at χ = 0, so one can
restrict themselves to the investigation of V (φ), where

V (φ) = m4 e
φ2
2

[(
1+ φ√

2

( φ√
2

+ β
))2

− 3
( φ√

2
+ β

)2]
. (34)

For β = 2− √
3, this potential has a stable minimum at V = 0,

but if one slightly decreases β, this minimum becomes a stable
dS minimum at V > 0; see Figure 8 in [130].
Thus, despite the no-go theorem [35], one can easily find dS

vacua in realistic supergravity models including matter fields.
Why was this theorem then discussed in [24,25] as a part of the
general no-dS argument, and what is the way to evade this theo-
rem altogether?[27–34]

The mindset of the string theory community about supersym-
metry and de Sitter space can be traced back to the lectures on
dS/CFT correspondence by Strominger et al.[137]. An interpreta-
tion of the results of [35] was proposed there in an attempt to for-
mulate dS/CFT correspondence. It was explained in [137], with
reference to [35], that de Sitter space was inconsistent with the
existence of the supergroup that includes isometries of de Sit-
ter space and has unitary representations. That helped to explain
why the CFT in dS/CFT had non-unitary representations. Indeed,
in extended N > 1 supersymmetry in d = 4 the superalgebra
withN generators Qi

α is available, it has no problem with Jacobi
identities differently from the N = 1 case, but the representa-
tions of the superalgebra are non-unitary.
Meanwhile, in N = 1 there are no supergroups that would in-

clude isometries of de Sitter space. This fact has nothing to do with
non-unitarity. Let us look more carefully at the no-go theorem of
[35] for the case of d = 4 and N = 1, which is interesting for
observational cosmology. The bosonic algebra for either de Sitter
SO(4, 1) space or anti-de Sitter SO(3, 2) space is

[Pμ, Pν ] = ± 1
4L 2

Mμν . (35)

Here, the upper sign is for dS and the lower sign is for AdS. To
include a supersymmetry generator Q, one has to add additional
elements to make it a superalgebra,

[Pμ, Qα ] = 1
4L

(γμQ)α , (36)

{Qα, Qβ} = −1
2
γ

μ

αβ Pμ − 1
8L

γ
μν

αβ Mμν.

One finds, using Jacobi identities, that the N = 1 superalgebra in
(35)–(36) is consistent only for the lower sign in (35), i.e. for the
AdS case. This explains why pure AdS supergravity (supergravity
without matter multiplets) with a negative cosmological constant
and unbroken supersymmetry is known for 4 decades.[138] Mean-
while, pure dS supergravity with a positive cosmological constant
was constructed only in 2015.

When pure N = 1 de Sitter supergravity was constructed in
[30,31], it was important to clarify how it would evade the no-go
theorem of [35], and why dS vacua could exist even in the absence
of any scalar fields. This happens because the no-go theorem [35]
is valid only for theories where there is a supersymmetry genera-
tor which flips a one-bosonic state into a one-fermionic one, and
vice versa.Meanwhile, in the Volkov-Akulov nonlinear supersym-
metry case, the goldstino multiplet has only a fermion state. The
partner of a single fermion state is a two-fermion state, and su-
persymmetry is spontaneously broken. Physical states in such a
theory are not representations of the superalgebra, which is why
dS supergravity with a positive cosmological constant evades the
no-go theorem of [35].
This is very much like in the Coleman-Mandula case. It is true

that space-time and internal symmetries cannot be combined in
any but a trivial way in theories where only Poincaré algebra de-
fines the representations of the states in the theory. However,
if one adds supersymmetry generators, a new theory is created,
where space-time and internal symmetries are combined in a
nontrivial way.
Linearly realized d = 4 global supersymmetry was discovered

in 1971–1974.[139,140] A local, linearly realized supersymmetry (su-
pergravity) was discovered in 1976.[141,142] AdS vacua in pure su-
pergravity were discovered in 1977,[138] one year after the discov-
ery of supergravity with a vanishing cosmological constant.
Nonlinearly realized supersymmetry was discovered by Volkov

and Akulov in 1972,[43] and then in D-brane physics by John
Schwarz et al. in 1997,[44,143] and finally its local version, pure su-
pergravity with dS vacua, was constructed in [30,31], 43 years after
[43].
This result plays a crucial role in the advanced version of the

KKLT construction.[27–34] Importantly, it applies only to the mod-
els with a single D3-brane, which was the case in the original
KKLT construction.[1,2] The local fermionic κ-symmetry of a sin-
gle D3-brane[44] leads to a nonlinear realization of supersymme-
try. When a nonlinear realization of supersymmetry originating
from a single D3-brane is taken into account, see [44,143,144],
and [27,29] for details, one finds a universal source of the posi-
tive energy of space-time,

LD3 = −T 3
∫

d4σ
√

− detGμν

= −T 3
∫
det E = −T 3

∫
E 0 ∧ E 1 ∧ E 2 ∧ E 3 = LVA ,

(37)

where the supersymmetric 1-form Ea depends on the Volkov-
Akulov fermion goldstino θ (σ ),

Ea = dσμeaμ(θ (σ )) = dσ a + θ�adθ . (38)

The positive vacuum energy at θ = 0 is

HD3|θ=0 = −LD3|θ=0 = T 3
∫
det E |θ=0 = T 3 > 0 . (39)

The nilpotent multiplet representing an D3-brane can play an
important role not only in the KKLT uplifting, but also in the
effective supergravity models describing inflation. The nilpotent
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multiplet facilitates the stabilization of othermoduli, leaving only
one light inflaton. The geometric inflation models proposed in
[134] can be interpreted as associated with the geometry of the
D3-brane in the moduli space background. The geometry of the
nilpotentmultipletGSS̄ carries all the information about inflation
in these models. This framework helps to develop broad classes
of α-attractor models in [133], which fit the data very well; see Fig-
ure 10 describing the status of various inflationary models after
the Planck 2018 data release.[121]

The effective d = 4 dS supergravity, which includes interaction
with any number of chiral multiplets, in addition to a nilpotent
multiplet with S2(x, θ ) = 0, has been described in [47,64–69]. The
potential in these models is

V (Zi , Z̄ī ; S, S̄) = e K
(
F 2 + |DiW|2 − 3|W|2

)
, (40)

where F is a necessarily non-vanishing value of the auxiliary
field of the nilpotent multiplet. The chiral nilpotent multiplet
has components ( χ2

2F , χ, F ), where χ is the fermionic goldstino
and the first component is a bilinear in goldstino. There are no
scalars, and the consistency of this scalar-less multiplet requires
F 	= 0. De Sitter vacua at V,φ = 0 are present under the condi-
tion |F 2| − 3|W|2 > 0. This explains the origin of Equation (1)
with VD3 = e K F 2.
It is instructive to compare this mechanism to the dS uplift-

ing in the Polónyi model (34). This model is very simple, and it
was routinely used in supergravity phenomenology for nearly 4
decades. However, it was difficult to find a string theory interpre-
tation of the Polónyi field. In dS supergravity, uplifting is achieved
due to the nilpotent multiplet, without introducing extra scalars.
Thismechanismdoes have a string theory interpretation in terms
of the D3-brane contribution to the energy density in the KKLT
construction.[27–34]

Appendix B: Accelerating Universe According to
Supercritical String Theory

One may wonder whether the negative conclusions of our inves-
tigation in Section 7 are generic or there are exceptions. In partic-
ular, is it possible to modify a theory and find models with small
c?
The models of accelerating universe based on supercritical

bosonic string theory have been studied in [36] for the space
Rd−1,1 × Tn. To compare with the data, we consider only com-
pactifications to d = 4. The total number of dimensions is D =
4+ n 
 26. This number is supposed to be much greater than
the critical dimension of the bosonic string theory, Dcr = 26.
There are three classes of highly elaborated string theory mod-
els derived in [36]. In the limit of small V (large φ), the potentials
are reduced, after the stabilization of extra moduli, to a single ex-
ponential for a canonical field such that

VDE ∼ e−λφ , λ2 = 2
K

. (41)

It has been explained in [36] that the models of accelerating uni-
verse derived in string theory may still be subject to Standard
Model corrections, and should not be viewed as realistic. We use
them here just for illustrative purposes of comparison with the

improved data on dark energy, since the Standard Model correc-
tions are not easy to evaluate.
The first class of models given in Equation (2.42) of [36] has

the minimal value λ � 1.2. Another class of models given in
Equations (3.9) and (3.10) of [36] requires λ ≈ 1.34. Both mod-
els are ruled out by the data. Finally, a class of models described
by Equation (2.57) in [36] gives

K = 4k + 1
64k2 − 28k − 1

, (42)

where k is an arbitrary even integer, k ≥ 2. Here λ2 ∼ 1
2k , and

therefore, one can have

λ � 0.5 . (43)

With this value of λ, the model can be used for quintessence.
However, this requires an internal space with dimension

n = D − 4 = (64k2 − 28k − 1)(32k − 6) ≥ 11542 . (44)

Potential conceptual issues related to quantum corrections, pos-
sible light KK modes, and growth of volume of the compactified
multi-dimensional space in the supercritical bosonic string the-
ory have to be studied.

Appendix C: Comparison to Previous Bounds on λ

In this appendix, we compare the bounds we found on λ in
Section 6 with the ones presented in the recent literature, i.e.
in [22,23]. The authors of these papers have not performed a
detailed statistical analysis of the exponential model V0eλφ , and
have based their studies on a simple inference based on the con-
straints provided in [96] on the Chevallier-Polarski-Linder (CPL)
parametrization[145,146] of dark energy. The CPL parameterization
approximates the dark energy equation of state wDE by

wDE(z) = w0 + waz/(1+ z), (45)

where w0 and wa are constants and z is the redshift. This
parametrization is a valid approximation to the evolution of dark
energy equation of state for an arbitrary dark energy model as
long as one stays close to z = 0, i.e. to the present time. Before
we compare our results with the results of [22,23], let us try to fol-
low the recipe given in those papers and reproduce the bounds
provided there. This is important and instructive, and shows how
one may obtain different results without performing a rigorous
statistical analysis of a cosmological model. This also explains
the differences between our methodology and the ones used in
[22,23].
We start with digitizing the perimeter of the 95% confidence

region provided in Figure 21 of [96] (the outer yellow contour),
which contains all the viable combinations of the CPL parameters
w0 andwa . This contour has been obtained by combining the con-
straints from the Pantheon supernovae data with the ones from
the CMB, BAO and the local measurements of H0. We then plot
wDE(z) for all the sampled points according to Equation (45). This
provides us with the set of gray curves shown in the left panel of
Figure 5. Comparing these curves to the bound provided in Fig-
ure 1 of [22], we immediately realize that the upper envelope of
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Figure 5. Left panel: Reconstruction of the bound on the evolution of dark energy equation of statewDE provided by Agrawal et al. in Figure 1 of [22]. The
gray curves depict viable CPL-based wDE(z) corresponding to the 95% contour in the w0 − wa plane given in Figure 21 of [96]. The upper envelope of
these curves (thick, black curve) agrees with the exclusion curve provided in Figure 1 of [22]. The blue curves show solely the curves which do not cross
the phantom divide at any redshift z < 1. Right panel: The thick, blue curve shows the 95% exclusion bound on wDE obtained through the procedure of
the left panel (corresponding to the upper envelope of blue curves). The orange curve shows the predicted exclusion bound inferred from the forecast
analysis of [147] for the upcoming large-scale structure surveys Euclid and the SKA, in combination with the CMB constraints from Planck. The red
curves show the exact, numerically calculated wDE(z) for three values of λ = 0.2, 0.6, 0.9, while the dashed, black curves depict the corresponding CPL
approximation according to Equation (45). For comparison, we have also shown (in green) the 95% exclusion curve provided by Heisenberg et al. in [23].
See the text for a discussion of why this curve does not agree with the blue curve, although the analysis of [23] is a Fisher-matrix based approximation
to the procedure illustrated in the left panel of this figure.

our curves (depicted by a thick, black curve) agrees perfectly with
what is referred to by Agrawal et al. in [22] as the 2σ bound.
This bound, however, includes dark energy evolutions which

become phantom (i.e. with wDE(z) < −1) for some periods dur-
ing the history of the universe. Since quintessence models like
our exponential potential cannot produce phantom behavior and
do not cross the phantom divide, we can remove all the curves
which crosswDE = −1 at some point. Excluding first all the cases
with w0 < −1, we are left with the red curves in the figure. Re-
stricting ourselves next to z < 1 (where the CPL approximation
holds), by applying the no-phantom condition to all times we can
further remove some of the red curves; this yields the blue curves.
By comparing the upper envelope of the remaining blue curves
(the thick, blue curve) with that of the original gray curves, we
see that our 95% exclusion curve is now different from the bound
presented by Agrawal et al. in [22], where the phantom solutions
have not been removed. This is however not important for im-
posing bounds on λ through this procedure, since the exclusion
comes solely from the valley of the envelope, which is the same
independently of including or excluding the phantom evolutions.
By comparing the solutions for wDE corresponding to different
values of λ, we see that the wDE curve for λ ≈ 0.65 touches the
bottom of the 95% exclusion curve, and therefore one may infer
the upper bound of λ < 0.65 with 95% confidence.
Even though this inferred bound fully agrees with the finding

of [22], we again emphasize that one is required to perform a con-
sistent statistical analysis of the model, as we have done in Sec-
tion 6, in order to correctly constrain λ. It is true that any viable
point in the parameter space must produce a wDE curve below

the bound found through the procedure of Figure 5 (assuming
that the CPL parametrization is a good approximation to the ex-
act solution), but the opposite may not be correct. The curves in
Figure 5 capture only the properties of the dark energy equation
of state, and they do not contain information on the density of
dark energy, which is crucial for the viability of the model. Partic-
ularly, these curves have been obtained by fixing the value of V0
(and φ0), as well as
M, and they do not include the observational
uncertainties on these quantities.
In the right panel of Figure 5, we show three exclusion curves

derived based on the CPL approximation described above. The
blue curve is identical to the 95% exclusion curve obtained in the
left panel of the figure, which is in agreement with the bound
found by Agrawal et al. in [22]. We have shown the evolution
curve corresponding to λ = 0.6 for comparison. The solid, red
curve shows the numerically calculated wDE(z), and the dashed,
black curve close to it shows the corresponding CPL approxima-
tion according to Equation (45). This demonstrates that the CPL
approximation, although not being identical to the exact solution,
is not very far from it. The exclusion plot and the value of λ agree
with Figure 1 of [22].
We have also shown in the same plot the exclusion curve pre-

sented byHeisenberg et al. in [23] as a 2σ bound (green exclusion
curve in the right panel of Figure 5), as well as the evolution curve
corresponding to λ = 0.9 reported in [23] as the 2σ upper bound
on λ. Even though the authors of [23] seem to have found this
curve through an analysis of the same 95% contour of [96] (the
outer yellow contour in Figure 21), their exclusion curve is clearly
very different from what we have found from the exact same
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contour (the blue curve in Figure 5). Although the CPL-based
method presented in [23] is slightly different from our CPL-based
procedure here, and is based on a Fisher matrix and elliptical
approximation to the confidence contours, we do not expect it
to give significantly different bounds if the ellipses well approxi-
mate the actual contours. We tried to reproduce the results of [23]
by repeating the same procedure as described by the authors, but
failed to obtain their curve. This gave us an exclusion curve which
resembledmore the blue curve in the right panel of Figure 5 than
the curve presented in [23], as expected. The authors of [23] also
report a 99.7% (3σ ) upper bound of 1.35 on λ, which is in strong
disagreement with our statistical results, as the largest 3σ upper
bound we found for λ through our rigorous statistical analysis
was λ ∼ 1.02, which is robust and reliable.8

Finally, we have shown in the right panel of Figure 5 also an
exclusion curve obtained through the same CPL procedure de-
scribed above, but for the upcoming Stage IV large-scale struc-
ture surveys (orange curve). This curve is based on the 95%
forecast contour constructed in [147] for the combination of
Euclid[148] and the Square Kilometre Array (SKA)[149] data sets,
where the constraints from Planck[150] are also added. This exclu-
sion curve shows that the upcoming cosmological surveys should
be able to constrain λ to values as low as ∼ 0.15 (with 95% con-
fidence). We, however, emphasize that this bound is based on a
simple CPL-based forecast, which should be considered only as a
rough estimate. Our intention here has solely been to verify the
similar CPL-based forecast of [23]. Our results seem to imply that
by combining the information from several Stage IV surveys, one
can constrain λ more strongly than is predicted in [23], which is
based on Euclid alone. Nevertheless, in order to correctly estimate
the future bounds one is required to perform a proper and de-
tailed forecast analysis, which is beyond the scope of the present
work.

Note added after the appearance of [151]: In a recent
note,[151] which appeared after an earlier version of the present pa-
per, the authors of [23] have commented on our discussion above,
and on the differences between the results of their analysis and
those we have provided in the present paper.
Let us first mention that even if one takes the value quoted

by [23] as the current 3σ bound on the parameter λ, our gen-
eral conclusions in this paper will not be altered. Indeed, as we
have showen in Section 7, all string theory examples correspond-
ing to the specific string theory constructions of [21] require
λ = c �

√
2, and all of them are therefore ruled out by the cos-

mological data with more than 99.7% confidence. Therefore, the
difference between 1 and 1.35 does not change this main result.
Nevertheless, it is important to understand why the constraints
on λ obtained by Heisenberg et al.[23] are much weaker than the
constraints obtained by Agrawal et al. in [22] (confirmed in Fig-
ure 5) and the ones found in Section 6 of the present work.

8 It is important to note that the data sets used in our analysis did not
include all the information used in [96] to obtain their confidence con-
tours on dark energy (adopted by Heisenberg et al. in [23]). We there-
fore expect the bound on λ to become even tighter than ∼ 1 when the
observational information applied in [96] is fully used. Therefore, the
disagreement between our results and the approximate ones provided
in [23] is expected to become even stronger if we use the same data sets
as those used in the analysis of [23].

Our approach in this work has been based on the stan-
dard Bayesian parameter estimation framework and a rigorous
MCMC data analysis (verified by an independent, frequentist,
profile likelihood analysis), which is widely employed in cosmol-
ogy, while the analysis of [23] is based on approximating the ex-
isting constraints on the CPL parameters by a multivariate Gaus-
sian distribution, which is not suitable for performing a reliable
parameter estimation. It is clear that our approach does not suf-
fer from the same methodological issues that exist in the type
of analysis presented in [23]. Therefore, we cannot agree with the
authors of [151] in that their results, contradicting our results and
the results of [22], are “more realistic.”
From a technical point of view, we would like to mention again

that if one approximates the 1σ contour of [96] by an ellipse cen-
tered at the best-fit point given in [96], adjusts the principal com-
ponents and the orientation of the ellipse with those of the actual
contour, and repeats the procedure as described in [23], then one
obtains a 2σ curve which resembles the blue curve in the right
panel of Figure 5 (though, of course, not matching exactly, be-
cause it is still only an approximation to the actual CPL contour),
which is in agreement with [22] but not with [23].
The authors of [23] have not provided information about the

exact centers of the ellipses and their widths and orientations,
and for that reason, it was not clear to us why their procedure
gave results in disagreement with our Figure 5 and the results of
[22]. However, in their recent note,[151] the authors state that their
“bounds on λ are very sensitive to the precise values of the best-
fitting parameters as well as on the principal values and the orien-
tation of the principal axes of the inverse Fishermatrix.” Based on
this statement, and in an attempt to understand the source of the
mismatch between their curve and those in Figure 5 and in [22],
we noticed that by particularly centering the ellipse at the point
with w0 = −1 and wa = 0 (corresponding to �CDM), one could
reproduce the 2σ bound of [23] quite closely. Let us state, how-
ever, that such an arbitrary choice of the center is incorrect and
unjustified. In the process of parameter estimation, we should
use the real data, not our expectations; in our MCMC data anal-
ysis, this is done automatically. In the approximate data analysis
performed in [23], one should place the centers of the ellipses in
such a way that they approximate the real data distribution given
in [96], for which the centers differ from w0 = −1 and wa = 0.
In summary, if we use the approximate method of [23] prop-

erly, we can closely reproduce the results of Agrawal et al. in [22],
but we fail to obtain the results of Heisenberg et al. in [23], unless
we use an incorrect procedure and place the center of the ellipses
at �CDM instead of the center of the distribution obtained from
the actual data.
Moreover, the authors of [151] state: “...giving the 3-σ bound

λ � 1.3 required us (as it would require anybody else) to extrapo-
late from the 1- and 2-σ contours. This can of course only be taken
as an approximation to the inverse Fisher matrix. Doing so, we
estimated an upper bound at the 3-σ level, which should not be
confused with a rigorous determination.” Thus, they admit that
their bound λ < 1.35 is not reliable. This problem does not ex-
ist in the consistent MCMC data analysis framework employed
in the present work. In conclusion, we believe that extrapolating
the existing 1σ and 2σ contours from current constraints to a 3σ
one using the procedure of [23] is not correct, and one is instead
required to perform a proper statistical analysis, by applying it
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either (ideally) directly to the quintessence models, as we have
done here, or at least to a CPL parametrization of dark energy if
one wants to follow a CPL-based, approximate procedure.
Concerning the future bounds on λ, let us stress here that the

objective of the present paper has not been to perform a forecast
analysis. Our main intention was to point out that the forcast of
[23] has been restricted to the prospective constraints on the CPL
parameters provided by the Euclid Red Book,[148] while a combi-
nation of constraints fromEuclid, Planck and the SKA is expected
to provide stronger bounds; see [147], particularly their Figure 11.
Moreover, the forecast analysis in [147] is not based on the Fisher
formalism, but on a Bayesian MCMC forecast technique, which
is, in general, more accurate and more reliable. However, in or-
der to rigorously estimate the future bounds on the cosmolog-
ical models investigated here, one needs to perform either an
MCMC-based forecast or a Fisher forecast directly on these mod-
els. This is in principle interesting, but is beyond the scope of the
present paper.
Finally, it is also stated in [151] that “from the string theory

point of view, the exact value of λ is unknown, since only an or-
der of magnitude O(1) can be given.” We disagree with this state-
ment, as we have shown in Section 7 that various string theory
models predict specific values of λ, which allow one to rule out
the models using existing cosmological observations, as done in
this paper. Precise bounds on λ can be reliably found, and we
believe that knowing such bounds is relevant, at least for the pur-
poses of the present paper. In conclusion, even though we agree
that whether one uses the upper bound λ < 1 or λ < 1.35, the
conclusions in this paper do not change in application to the par-
ticular string theory quintessence models discussed in [21,22],
we disagree with the authors of [151] in that their O(1) estimates
are sufficient. We believe that in the era of precision cosmology,
small differences in constraints on models do matter, either for
the existing theories or, sooner or later, for the theories to come;
cf. Appendix F.9

Appendix D: The Case of Double-Exponential
Potentials

Here we observationally constrain models of quintessence with
potentials of the form

V (φ) = V1eλ1φ + V2eλ2φ . (46)

This is important, as some of the string theory based models of
quintessence discussed in Section 7 are of this form. Double-
exponential quintessence models have already been studied in
the literature; see, e.g., [88,90,92]. From the phenomenological
point of view, the study of such potentials has been supported
by the observation that they can exhibit a cosmologically viable
scaling solution in an early epoch of the history of the universe,

9 In addition to the technical comments in [151] on the present paper,
which we believe we have addressed here, there is one additional com-
ment stating that we have claimed in this paper that [23] has proposed
“string theorymodels of dark energy which are already ruled out by cos-
mological observations.” We would like to state here that nowhere in
the present paper has this claimbeenmade. In fact we believe that none
of the string theory quintessence models discussed in [21,22] were pro-
posed by the authors of [23].

during which the energy density of the scalar field decreases pro-
portionally to the energy density ofmatter or radiation, whichever
is dominant.
In fact, scaling fixed points exist already in the phase space of

the single-exponential quintessence model. As shown in [83,84,
86–88,90], for λ2 > 3(wB + 1), withwB being the equation of state
for the background fluid in each epoch, the universe undergoes a
scaling regime where the scalar field mimics the evolution of the
barotropic fluid, with wDE = wB; the dark energy density param-
eter takes the form 
DE = 3(wB + 1)/λ2. This scaling property is
illustrated in Figure 6 for a sufficiently large value of λ (chosen to
be

√
750 in this example). The left panel shows the equation of

state for dark energy (in orange) and the effective equation of state
for a universe dominated first by radiation (with wB = 1/3) and
then by matter (with wB = 0). The figure shows that the scalar
field, after some oscillations, quickly follows the background and
one can achieve a scaling solution during matter domination in
this example. By choosing a larger value of λ one can push the be-
ginning of this scaling period to earlier times, i.e. all the way to
radiation domination. Such scaling solutions are interesting es-
pecially since they may provide a solution to the coincidence prob-
lem, i.e. why dark energy has an energy density close to that of
matter at the present time; this is illustrated in the right panel of
Figure 6, where we have shown the evolution of the quintessence
energy density compared to that of matter. Even though these
are very interesting features, the obvious problem, of course, is
that a single-exponential potential has a constant slope, and there-
fore, once the scaling regime is switched on it never ends, hence
there is no dark energy domination. This is consistent with the
bound we found in Section 6 on λ through our comparison of the
single-exponential model with the data. The overall 3σ bound of
∼ 1 <

√
3 on λ shows that none of the scaling solutions survive

the observational constraints.
The phenomenologicalmerit of the double exponentials is that

under certain conditions the scaling solution can gracefully exit
to the desired accelerating phase at late times, as demonstrated
in [88,90,92]. This transition can be obtained if λ21 > 3(wB + 1)
and λ22 < 3(wB + 1) in the potential (46).10 At early times, the po-
tential is dominated by the eλ1φ term, for which the scalar field
follows the equation of state of radiation and/or matter, hence
scaling solutions. Later in the evolution of the universe, the eλ2φ

term dominates, for which the evolution is not of the scaling
form and the late-time attractor is the scalar field dominated
solution (with 
DE = 1). In this scenario, the asymptotic value
of the dark energy equation of state is wDE = −1+ λ22/3, pro-
viding viable cosmologies, just as for the single exponential (8)
with λ2 < 3(wB + 1). Figure 7 shows an example of this so-called
scaling freezing scenario with the double-exponential potentials,
where the transition from the scaling evolution to the scalar field
dominated evolution has been depicted. The blue curve in the left
panel of the figure shows how one can recover the three required
epochs of radiation, matter and dark energy domination with a
double-exponential potential, which was not possible through a
single exponential with the scaling condition satisfied.

10 Interestingly, the string theory examples with double-exponential po-
tentials considered in Section 7 satisfy these conditions for both radia-
tion and matter dominated epochs.
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Figure 6. An example of scaling solutions obtained through a single-exponential potential V (φ) = V0eλφ with λ2 > 3(wB + 1). Left panel: The orange
and blue curves show, respectively, the dark energy equation of state wDE and the effective (total) equation of state weff as functions of N ≡ ln a (N = 0
corresponds to today). Right panel: The ratio of the dark energy density ρDE to that of matter ρM as a function of N.

Figure 7. The same as in Figure 6 but for an example of scaling freezing solutions obtained through a double-exponential potential V (φ) = V1eλ1φ +
V2eλ2φ with λ21 > 3(wB + 1) and λ22 < 3(wB + 1).

We now constrain the double-exponential quintessence mod-
els by performing an MCMC scan in the same way as we did in
Section 6 for the single-exponential case. The parameter space
is now considerably more complex than the single-exponential
model, as it contains different types of viable solutions depend-
ing on the values of λ1 and λ2. Since here we are not interested
in particular classes of solutions and would only like to know the
overall constraints on λ1 and λ2, we freely scan the parameter
space of the model, i.e. over the parameters V0 (where we have
assumed V1 = V2 ≡ V0), λ1, λ2 and φ0, as well as 
M. As argued
in [88,90,92], in principle one needs to also take into account con-
straints from early times, in particular the big bang nucleosyn-
thesis bounds on 
DE. This consideration requires λ1 > 5.5,[88]

or even a tighter constraint of λ1 > 9.4,[92] for the scaling freez-
ing cases (assuming λ1 > λ2). We however do not impose this
prior on our parameters in the MCMC scans.
Figure 8 shows the constraints in the λ1 − λ2 plane as the re-

sult of our MCMC scan. As expected, the contours are symmet-

ric in terms of the exchange of λ1 and λ2. Placing overall one-
dimensional constraints on these two parameters is not useful,
as depending on the value of one of them the constraint on the
other changes. We can however recognize two general classes
of viable solutions by looking at the two-dimensional contours
of Figure 8: 1) λ21 > 3(wB + 1) and λ22 < 3(wB + 1), or the oppo-
site, where the universe starts with a scaling evolution and then
transitions into a dark energy dominated epoch at late times, and
2) λ21, λ

2
2 < 3(wB + 1) where the universe never enters a scaling

phase.
The two (red and orange) points in Figure 8 correspond to the

two double-exponential models discussed in Section 7.1; we see
again that these models are ruled out as their parameters are lo-
cated far outside the 99.7% confidence region. It is however im-
portant to note that these models can be ruled out even without
comparing them with the full, statistical results of Figure 8. The
reason is that for both models one of the two λ in the exponents
is larger than

√
3(wB + 1)1/2 and the other one is smaller, which
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Figure 8. Two-dimensional, marginalized constraints on λ1 versus λ2
for quintessence models with double-exponential potentials V (φ) =
V1eλ1φ + V2eλ2φ . The contours show 68%, 95% and 99.7% confidence lev-
els. The two red and orange points on the plot correspond, respectively,
to the two string theory based double-exponential models (15) and (17)
discussed in Section 7.1.

means that the models are of the scaling freezing type (if both
VR and VG (or ṼG) are nonzero). As we mentioned above, there
are lower bounds on the larger λ in these scaling freezing scenar-
ios from big bang nucleosynthesis, which immediately rule out
both models. One possibility of course is that one of the quanti-
ties VR and VG (or ṼG) vanishes. In this case, the models become
of the single-exponential form, which are also ruled out since all

the given values of λ (i.e.
√

18
7 ,

√
50
7 and

√
14) are above the 3σ

upper bound we found in Section 6 for single exponentials. This
is in line with our simple argument in Section 7.1 for why these
models are ruled out.

Appendix E: More on the Two-Field Model of
Section 7.2

In this appendix, we study the late-time dynamics of the two-field
model of Section 7.2, given by the potential

V (ρ̂, τ̂ ) = VRe−
√

2
3 ρ̂e

√
2τ̂ + V�e

√
6ρ̂e2

√
2τ̂ , (47)

for the canonical fields ρ̂ and τ̂ .
As explained in Section 7.2, the shallowest direction of this po-

tential can effectively be described as a single-field exponential
potential with a constant slope of λsh ≈ 1.6. The late-time cosmo-
logical evolution along this direction is ruled out based on the re-
sults of Section 6. However, due to the field-space evolution from
one steep direction to another, one might expect the appearance
of some transient behavior which can potentially be viable. Here,
we show that in practice this cannot be achieved, hence there are
no viable cosmologies for this two-field model.

In the left panel of Figure 9, we show the field trajectories in
the field space, when the dark matter and radiation components
are present. As in Figure 4, here too the initial conditions for the
fields are such that they are at rest initially.
In the right panel of Figure 9, we show the evolution of the

effective equation of state corresponding to the trajectories in
the left panel. In particular, the black curves in the right panel
correspond to the black trajectories in the left plane, while the
red ones correspond to the red trajectories. We have verified that
the gradient of the potential along the red trajectories is suf-
ficiently small to maintain thawing-type evolution, while most
of the black trajectories (the ones starting far enough from the
green dashed line) evolve in a very steep region above the green
line, and therefore, resemble the scaling regime discussed in Ap-
pendix D, which explains the wiggly behavior of the correspond-
ing equation of state. From this figure it is clear that this potential
cannot give cosmologically viable evolutions. Indeed, we see that
both the red and black trajectories asymptotically reach the value
corresponding to the shallowest direction (the horizontal dashed
line), which in this case does not even give an accelerating uni-
verse (the horizontal solid line corresponds to weff = −1/3). We
see, additionally, that there is a transient regime for all the tra-
jectories, during which the equation of state is smaller than the
asymptotic value given by −1+ λ2sh/3. This transient regime, in
case of the red trajectories, gives accelerated expansion, which,
however, is not rapid enough (the minimum of weff reaches only
values of∼ −0.4). For the case of black trajectories, the transient
regime barely gives accelerated expansion, and therefore, those
trajectories are also ruled out.
Even though the particular potential studied in this appendix

is not viable, this two-field model exhibits phenomenologically in-
teresting features. Somewhat similar characteristics have been
studied in the context of assisted inflation and assisted dark en-
ergy scenarios.[152,153] Similarly to the idea of double-exponential
models of Section D, where a scaling regime is achieved by the
steep exponential followed by an acceleration regime when the
shallower exponential dominates the dynamics, here the two-
component field can roll along a steep direction and enter a
scaling-type regime, and then continue rolling along a shallow
direction, resulting in an accelerated universe.

Appendix F: Evolution of Precision in Inflationary
and Dark Energy Parameters

The current observational constraints on inflation by the
CMB data, reconstructed in Figure 10, tell us that many
favorite models of inflation, like the polynomial inflation-
ary models of φk with k = 2, 1, 2/3, are now disfavored.
For polynomial models, ns = 1− 2+k

2N and r = 4k
N , where N

is the number of e -foldings (between 50 and 60), while F-
term and D-term models of inflation predict ns = 0.98, and
racetrack inflation requires ns = 0.95. All these models were in-
side the 95% sweet spot of the data in 2009 provided by the
WMAP collaboration,[154] as one can see in Figure 10. However,
the figure shows that all the polynomial models, including φ2/3,
are now either outside or close to the boundary of the 95% con-
fidence region of the Planck 2018 data. Similarly, the F-term and
D-term inflationary models with ns = 0.98 or racetrack inflation
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Figure 9. In the left panel we show how the two-field system with the potential (47) evolves in time. The difference with the left panel of Figure 4 is that
here dark matter and radiation are present. The evolution is shown for VR = 18V�. In the right panel we show the evolution of the effective equation
of state corresponding to the trajectories in the left panel (the black curves correspond to the black trajectories in the left plane, while the red ones
correspond to the red trajectories). The horizontal dashed line corresponds to −1 + λ2sh/3.

Figure 10. Evolution of precision in inflationary parameters over a decade, from WMAP[154] to Planck.[72] The reconstructed Planck constraints corre-
spond to the combination TT,TE,EE+lensing+BK14+BAO provided in [72]. One can look, for example, at the area between ns = 0.95 and ns = 0.98.
Although both of these values were inside the 68% contour back in 2009, they are now strongly disfavored with more than 95% confidence.

with ns = 0.95 are now practically ruled out, and natural inflation
is disfavored.
The improvement in the data came from two sources. The

new Planck 2018 bound[72] on the primordial gravity waves, when
combined with the BICEP2/Keck Array (BK14) constraints,[155]

is r < 0.064 at the 2σ level. Another factor is the reduced er-
ror on ns , which is now 0.004, down from 0.006 back in 2015.
Many inflationary models which were consistent with the data in
2007-2009 are now either totally ruled out, or have become only
marginally acceptable. This means that in the theoretical analy-
sis of the data, it is no longer possible to perform a parametric,
order of magnitude analysis as it was normal in the past, especially

in string theory. The same concerns such expressions as ‘para-
metrically small’, or ‘parametrically large’. We can see examples
in Figure 10 showing that reducing the bound on r from ∼ 0.08
to ∼ 0.04 has made various theoretical ideas either supported or
ruled out by the precision data in cosmology.
Similarly, the constraints on the equation of state of dark en-

ergy becomemore andmore precise. 15 years ago, the constraints
on the parameter c , or λ in the exponent of e±λφ , allowed c =
λ = 1.6.[130,156] Meanwhile, in the discussion of the quintessence
models described in [21] it was necessary to pay full attention
to a small difference between numbers such as c < 1 and c <

1.4. Indeed, models with 1 < c are ruled out by cosmological
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observations at least at the 3σ level, i.e. with more than 99.7%
confidence, whereas the condition c < 1 is not satisfied by the
string theory models of [21].
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