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CHAPTER 7

Exact Bound-Bound Gaunt Factor Values for Quantum
Levels up to n=2000

“We are stuck with technology when what we really want is just stuff that works.”
−Douglas Adams−

Comparison of observations of radio recombination lines in the interstellar medium
with theoretical models can be used to constrain electron temperature and density of
the gas. An important component of the models is spontaneous transition rates be-
tween bound levels. Calculating these rates relies on accurate bound-bound oscillator
strengths, which can be cast in terms of the Gaunt factor. The Gaunt factor contains
terminating hypergeometric functions that cannot be calculated with sufficient accuracy
for high quantum levels (n & 50) by standard machine-precision methods. Methods
to overcome the accuracy problem have been developed, which include asymptotic ex-
pansions and recursion relations. These methods, used in astrophysical models to cal-
culate oscillator strengths, can introduce errors, sometimes up to as much as ∼ 8 per
cent. Detections of radio recombination lines with the new Low Frequency Array (LO-
FAR) has prompted an examination of theoretical models of the interstellar medium.
We revisit the calculation of the Gaunt factor, employing modern arbitrary-precision
computational methods to tabulate the Gaunt factor for transitions up to quantum level
n = 2000, sufficient to model low frequency Carbon radio recombination lines. The
calculations provide a relative error of ∼ 3×10−4 when compared to more detailed cal-
culations including relativistic corrections. Our values for the Gaunt factor are provided
for download in a tabular format to be used for a wide range of applications.

Morabito,L.K., van Harten,G., Salgado,F.,
Oonk,J.B.R., Röttgering,H.J.A., Tielens,A.G.G.M.

2014, MNRAS, 441, 2855
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7.1 Introduction
Diffuse, ionized gas is one component of the interstellar medium (ISM), where
ions and free electrons recombine and produce spectral lines we call recombi-
nation lines. When these transitions occur at low quantum numbers, the recom-
bination lines appear in the optical and UV regime. Recombination lines occur
in the radio regime when the quantum numbers involved in the transitions are
above n & 50, due to the decreased energy spacing of adjacent levels. Mod-
els of radio recombination lines (RRLs) therefore have to predict accurate line
intensities for quantum levels above n & 50.

In our own Galaxy, RRLs are used to study two phases of the ISM. The
“classical” RRLs are associated with H II regions, and are usually observed at
frequencies above 1.4 GHz (e.g., Palmer, 1967; Roelfsema et al., 1987). These
RRLs trace the warm, high density (T ∼ 104 K, ne > 100 cm−3) medium. Fre-
quencies below ∼1.4 GHz are associated with the cold, low-density (T ∼ 100
K, ne . 0.05 cm−3) medium (e.g., Shaver, 1976; Payne et al., 1989; Kantharia
& Anantharamaiah, 2001) and trace the diffuse component of the ISM. Dif-
fuse Carbon RRLs with bound levels as high as n ∼ 1000 have been observed
in the direction of Cassiopeia A (Konovalenko & Sodin, 1980; Stepkin et al.,
2007; Asgekar et al., 2013). High quantum number RRLs manifest at low fre-
quencies, and provide an important method to study physical properties such
as electron temperature and density in the cold neutral medium. With recently
completed low-frequency (<300 MHz, n > 280) radio telescopes, such as the
Low Frequency Array (LOFAR; van Haarlem et al., 2013), we will be able to
study these high quantum level transitions. With its unprecedented sensitivity,
frequency resolution and coverage and multibeaming capability enabling effi-
cient surveys of the sky, LOFAR will revolutionise the field of low frequency
RRL studies as a crucial method for studying an important phase of the inter-
stellar medium that so far has eluded detailed studies. Not only will we be able
to map a large fraction of the Galaxy, but extragalactic sources of RRLs will be
accessible, providing a redshift-independent means of studying the cold, diffuse
gas content of galaxies.

The ability to calculate accurate bound-bound spontaneous transition rates in
recombining ions has a wide range of applications, from predictions and mea-
surements in the laboratory to extracting information from observations of a
variety of astronomical phenomena. The transition rates depend on the atomic
oscillator strengths, which are used to calculate the spontaneous and stimulated
transition rates for non-relativistic electrons. The oscillator strength is easily
described in terms either of the Gaunt factor or line strength. For low quantum
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number states, analytical formulae for oscillator strengths are easy to compute.
However, direct calculation of higher n transitions is impossible due to round-
off errors and limitations on standard machine representation of numbers.

Predicting line intensities requires determining the LTE level populations of
excited states, or levels, in an atom. There is a quantum level beyond which
the electron will no longer be bound to the atom, and theoretical models must
include all quantum levels up to this cut-off level in order to ensure correct cal-
culations of the LTE level populations. For the low temperature, low density
phase of the ISM from which we expect Carbon RRLs to originate, we have
found a cut-off level of n = 2000 is sufficient to ensure this condition and there-
fore provide accurate line intensities (Salgado et. al, in prep.).

Here we revisit the calculation of the bound-bound Gaunt factor for quan-
tum levels up to n = 2000, using arbitrary-precision operations to compute and
tabulate exact values of the Gaunt factor for easy use. In this paper we com-
pare different methods of calculation, and provide a downloadable FITS table1

for general use. In section 2 we review the analytical form for the Gaunt factor
and its relation to oscillator strength. In section 3 we discuss different meth-
ods to calculate oscillator strengths. Section 4 presents our arbitrary-precision
method followed in Section 5 by a comparison of various methods. Conclusions
are given in section 6, and a link to the downloadable data can be found in the
Supporting Information section.

7.2 Oscillator Strength and the Gaunt Factor
The Gaunt factor is used to calculate spontaneous and stimulated transition rates
of electrons between quantum levels. The spontaneous transition rates, Ann′ , can
be expressed directly in terms of oscillator strength,

Ann′ = ωn′

ωn

8πe2ν2µ

me c3
gnn′ f ′

nn′ , (7.1)

where ωn (ωn′) is the statistical weight of level n (n′), e and me are the charge
and mass of an electron, ν is the frequency of the transition between level n
and n′, c is the speed of light, µ is the reduced mass, and fnn′ is the oscillator
strength, which can be expressed in terms of the Gaunt factor, fnn′ = gnn′ f ′

nn′ .
The factor f ′

nn′ is calculated from the statistical weight and quantum numbers,

1Available via the Strasbourg astronomical Data Center, http://cdsweb.u-strasbg.fr/
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giving a total oscillator strength of:

f ′
nn′ = 26

3
p

3π

1

ωn′

1(
1

n′2 − 1
n2

)3

∣∣∣∣ 1

n3n′3

∣∣∣∣ . (7.2)

This can be substituted into Equation 7.1, expressing the transition rate in terms
directly dependent on the Gaunt factor. Alternatively, total oscillator strength
can be expressed in terms of radial dipole matrix elements, R(nlm,n′l ′m′) =
〈ψnlm(r)|r|ψn′l ′m′(r)〉, where ψ is the hydrogenic wave function, and r is the
electron position vector. Equation 7.1 still holds, but now the oscillator strength
is defined:

fnn′ = 1

3ωn

(
1

n2
− 1

n′2

)
Snn′

e2a2
0

(7.3)

where Snn′ is the line strength, dependent on the radial dipole matrix elements.
The Gaunt factor for bound-bound transitions between discrete quantum lev-

els n and n′ have the following form (Menzel & Pekeris, 1935), and are the same
whether the transition is in absorption or emission, i.e. g (n → n′) = g (n′ → n):

gnn′ =πp3

∣∣∣∣∣ [(n −n′)/(n +n′)]2n+2n′
nn′∆(n,n′)

n −n′

∣∣∣∣∣ . (7.4)

The factor ∆(n,n′) is defined as:

∆(n,n′) ≡
[

F (−n +1,−n′,1,− 4nn′

(n −n′)2

]2

(7.5)

−
[

F (−n′+1,−n,1,− 4nn′

(n −n′)2

]2

where F (a,b;c; z) is the hypergeometric function:

F (a,b;c; z) =
∞∑

n=0

Γ(a +n)Γ(b +n)Γ(c)

Γ(a)Γ(b)Γ(c +n)

zn

n!
. (7.6)

Expanding the series into terms provides:

F (a,b;c; z) = 1+ ab

c
z + a(a +1)b(b +1)

c(c +1)

z2

2
+ . . . . (7.7)

The series will terminate, i.e. have a finite number of terms, if either a or b is
zero or a negative integer (e.g., Whittaker & Watson, 1963; Gradshteyn et al.,
2007). The magnitude of each term in the series is greater than that of the
previous term, with alternating signs.
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7.3 Methods of Calculation
Arithmetic operations involving very large or very small numbers on comput-
ers can result in round-off errors, and the error increases with the number of
operations (for a more detailed discussion see e.g., Press et al., 1986). When
calculating the value of Equation 7.5, the round-off errors (loss in accuracy)
quickly start to add up, and once the standard floating-point limit of a machine
is reached, fail to provide real, non-infinite values. This has been remarked upon
by various authors (e.g., Gounand & Petitjean, 1984; Delone et al., 1994; Flan-
nery & Vrinceanu, 2002) and Dewangan (2012) point out that the exact value of
n for which these calculations start to break down depends on the variety of al-
gorithms and methods used. The round-off errors and limitations of the standard
floating-point machine representation of numbers have driven other methods of
calculation for oscillator strengths. We outline three prevalent methods in this
section, and provide a summary of their accuracy and range of quantum numbers
for which they are valid in Table 7.1. These methods rely on numerous devices
which do not involve direct calculation from the analytical formulae (given in
the previous section).

7.3.1 Asymptotic Expansion
Asymptotic expansions are powerful approximations (e.g., Wright, 1935; Men-
zel & Pekeris, 1935; Omidvar & McAllister, 1995) that have long been used for
calculations involving the Gaunt factor for quantum levels above n & 50. These
expansions are still widely used in astrophysical models (e.g., Shaver, 1975a;
Salem & Brocklehurst, 1979; Kraus et al., 2000; Bergemann et al., 2010).

A commonly cited form of the asymptotic expansion is that of Menzel &
Pekeris (1935), as corrected by Burgess (1958), which is obtained by the method
of steepest descent (e.g., Whittaker & Watson, 1963). The first three terms are
reproduced here in Equation 7.8. This expansion is valid when the difference
between the levels is large (n′/n ¿ 1).

gnn′ ' 1− 0.1728(1+ (n′/n)2)

(n′(1− (n′/n)2))2/3
(7.8)

− 0.0496(1− 4
3 (n′/n)2 + (n′/n)4)

(n′(1− (n′/n)2))4/3
+·· ·

This formula is easy to compute, and allows for approximations of the Gaunt
factor for quantum levels that are not calculable from Equation 7.4 using stan-
dard machine precision. These approximations have errors of ∼ 0.5−8 per cent
(Table 1; Burgess, 1958). Omidvar & McAllister (1995) showed that the error
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in the Menzel & Pekeris (1935) expansion can be reduced by an order of magni-
tude by keeping eight terms instead of five in the expansion. They additionally
provide their own asymptotic expansion that has errors not in excess of 0.5 per
cent.

7.3.2 Recursion Relations

Another way to calculate oscillator strength is via stable recursion relations (e.g.,
Dy, 2009; Storey & Hummer, 1991; Infeld & Hull, 1951). In this method, the
line strength Snn′ in Equation 7.3 is equated to the radial dipole matrix elements:

Snn′ ∼∑
l ,l ′

|R(nl ,n′l ′)|2. (7.9)

The calculation of R, the radial dipole matrix elements, also contains the hyper-
geometric function. However, the matrix elements between subsequent states
can be linked through recursion relations (e.g., Infeld & Hull, 1951). Given a
starting point, higher quantum number states can be calculated through these
relations. The total n → n′ transition rate comes from summing over l levels.
Storey & Hummer (1991) use these relations to calculate values of R(nl ,n′l ′) for
up to n = 500, and provide FORTRAN code (reference given in Storey & Hum-
mer, 1991) to perform these calculations. Dy (2009) also provide a FORTRAN
code that makes use of recursion relations, to calculate values up to n = 1000.
Both programs were not optimized to handle calculations above these ranges,
and are therefore not sufficient for use in our theoretical models of low fre-
quency RRLs, which require calculations up to n = 2000.

A robust method developed by Dewangan (2002, see also Dewangan 2012)
exploits recursion relations in Jacobi polynomials. Standard mathematical texts
transform the hypergeometric function to Jacobi polynomials, which have well
known properties, including recursion relations and asymptotic expansions (e.g.,
Gradshteyn et al., 2007; Abramowitz & Stegun, 1972). The recursion relations
make it possible to directly calculate the Jacobi polynomials necessary, as De-
wangan (2002) demonstrated for a sampling of levels up to n ∼ 1000 using ex-
tended (quadruple) precision. The author also discusses the usefulness of the
asymptotic expression of the Jacobi polynomial to examine the behaviour at
large n, which provides results in good agreement with the analytical values
for a large range of parameters. This method is discussed in far more detail in
Dewangan (2012), and the interested reader is referred there for further details.
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7.3.3 OPACITY Project
The National Institute of Standards and Technology (NIST) Atomic Spectra
Database2 (Kramida et al., 2012) is widely used by the scientific community.
This database contains, among other information, values for spontaneous transi-
tion rates that are the product of extensive calculations of the OPACITY project
(The Opactiy Project Team, 1995). The OPACITY team extended the close-
coupling method, in which wavefunctions are expanded in terms of the product
of functions describing the N -electron states and functions describing the (N+1)
electron. The entire electron system is divided into an inner and an outer region,
with boundary conditions set between the two regions. An iterative process
finds solutions for the outer region, and matching the boundary conditions to the
inner region then provides an eigenvalue problem which can be solved to find
the bound energy states. In the newest update to the NIST database (Wiese &
Fuhr, 2007), the team used sophisticated multi-configuration Hartree-Fock cal-
culations that include relativistic effects to account for both fine and hyperfine
structure. These values were checked against the few available experimental re-
sults, and the discrepancies between the theoretical and experimental values are
less than about 2 per cent Wiese & Fuhr (2007). For a more in depth discussion
of this method, we refer the reader to Wiese & Fuhr (2007); Seaton (1985), and
references therein.

7.4 Arbitrary-Precision Calculations
Although the Gaunt factor (Equation 7.4) is of order unity, it is composed of
factors that can be extremely large or small. For example, for the n = 2000 to
n′ = 1999 transition, the value of the hypergeometric functions is of the order
1028,000, while the multiplicative factor in front of it is of the order 10−28,000,
yielding a value close to 1. To calculate values as large as ∼ 10±28,000, it is nec-
essary to increase the precision of the calculation. MATHEMATICA (Wolfram
Research, Inc., 2010) allows the user to specify the required precision of the fi-
nal calculation, and uses a $MaxExtraPrecision variable to control the precision of
intermediate calculations. We requested a final precision of 10 digits, and the de-
fault value of 50 for $MaxExtraPrecision. MATHEMATICA will keep track of the
resulting precision at each intermediate step, and if the precision becomes worse
than the desired precision for the final answer, $MaxExtraPrecision will return an
error. Calculating the bound-bound Gaunt factor for transitions up to n = 2000
took approximately 5 hours in MATHEMATICA using one 2.53GHz core with

2http://physics.nist.gov/asd
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4GB of available RAM. We only performed the calculations for n → n′, since
the value for the inverse transition is the same. The precision in these calcula-
tions is set by the lack of relativistic corrections, and is therefore of the order
10−4. Our values therefore have a precision of ≈ 0.01 per cent.

7.5 Comparison of Other Methods of Calculation
7.5.1 Comparison with Asymptotic Expansion
We start with a direct comparison of the Gaunt factor from the Menzel & Pekeris
(1935) asymptotic expansion and arbitrary-precision values in Fig. 7.1. The top
left panel shows the analytical values calculated with finite-precision. Starting
around n & 50, standard finite-precision can no longer represent the values of the
hypergeometric series terms in the Gaunt factor, and therefore most of the plot is
empty. A zoom-in of the first 300 quantum levels is shown to further clarify the
behaviour on the boundary of the region where values can still be represented by
standard finite-precision calculations. The location of this boundary is set by the
amount of bits available for double-precision calculations on a machine, and to
a smaller extent the algorithms and methods used. When round-off errors start
to be large, the Gaunt factor values near the boundary fluctuate. The top right
panel demonstrates that Gaunt factor values calculated using the asymptotic ex-
pansion are at least able to fill the entire parameter space, giving real values near
unity for all ∆n transitions. The bottom left panel shows the analytical values for
the Gaunt factor calculated using arbitrary-precision. The plot looks remarkably
similar to that of the asymptotic expansion, so we plot the difference between
the arbitrary-precision and asymptotic expansion values in Fig. 7.2. The differ-
ence between the arbitrary-precision and asymptotic expansion values is almost
always less than the accuracy in the arbitrary-precision values, but it is precisely
in the region of interest, ∆n ∼ 1 (adjacent levels), that the difference is largest.
The maximum difference is 0.03, which means the asymptotic expansion is up
to 3 per cent too large or small compared to the analytical values.

7.5.2 Relative Differences Between Methods
To compare with methods that calculate line strength rather than the Gaunt fac-
tor, we use the final value for spontaneous transition rates. The comparison
is made using spontaneous transition rates for Hydrogen, with a reduced mass
of µ = 0.99945568. The NIST values include relativistic corrections and are
therefore more complete and precise than other methods, so we compare the
relative difference between the various methods and the NIST transition rates,
|An,n′,NIST − An,n′ |/An,n′,NIST. We are only able to make a comparison for those
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Figure 7.2: The absolute difference in values of the Gaunt factor as calculated
by the Menzel & Pekeris (1935) asymptotic expansion and the analytic expres-
sion using arbitrary-precision. In the top panel, the darkest colors represent the
largest differences. In the bottom panel, we plot the value of the difference
against quantum number for several different values of ∆n = n −n′. It is clear
that the largest difference occurs for transitions between nearby (n − n′ ≈ 1)
quantum levels.
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levels available in NIST, and this comparison is shown in Fig. 7.3. The values
from Storey & Hummer (1991) are the closest to the NIST values for these low
levels, with larger scatter towards smaller changes in n. Although the relative
difference is larger than that of Storey & Hummer (1991), the arbitrary-precision
calculations presented here only have a relative difference of only ∼ 3× 10−4

from the NIST values. Therefore the arbitrary-precision values will introduce
less than a tenth of per cent error into any final calculations we use them in. The
scatter in the relative difference of the arbitrary-precision values of this work
when compared to NIST values is of the order 10−5, indicating that our results
are also stable (i.e. differences in values of n → n′ have only a very small effect
on the relative difference from NIST values) and predictable. The asymptotic
expansions by Malik et al. (1991) and Menzel & Pekeris (1935) are also fairly
stable, with relative differences of 1×10−3 and 6×10−3, respectively.

7.6 Conclusions
We have presented arbitrary-precision calculations of the Gaunt factor for transi-
tions up to quantum level n = 2000, and shown that the improvement in accuracy
is always at least an order of magnitude greater than the asymptotic expansions,
when compared to the more complete simulations of NIST. The results of the
calculations are stable and are at most only 0.03 per cent different from calcula-
tions that include relativistic corrections. The results are available for download
as a FITS table. The Gaunt factor can be used for any atom to calculate sponta-
neous transition rates, and are therefore suitable for use by anyone working with
recombination line spectra. In particular, these values fold linearly into our mod-
els of the cold neutral medium, proportionately propagating the improvement in
spontaneous and stimulated transition rates.

The data is available as a FITS table from:
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/MNRAS/441/2855.
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Figure 7.3: A comparison of the relative difference in two different methods and
our arbitrary-precision Gaunt factor. The relative differences are calculated from
values for spontaneous transition rates from NIST. These rates are linearly pro-
portional to the Gaunt factor. Malik et al. (1991) use an asymptotic expansion,
and Storey & Hummer (1991) use a recursion relation method.




