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3
Triaxial orbit-based modelling of the

Milky Way nuclear star cluster

We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarz-
schild’s orbit superposition technique. We fit the stellar kinematic maps presented in Feld-
meier et al. (2014). The models are used to constrain the supermassive black hole mass M•,
dynamical mass-to-light ratio Υ, and the intrinsic shape of the cluster. Our best-fitting model
has M• = (3.0+1.1

−1.3 )×106 M�, Υ = (0.90+0.76
−0.08 ) M�/L�,4.5µm, and a compression of the cluster

along the line-of-sight. Our results are in agreement with the direct measurement of the su-
permassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light
ratio is on the high-end of stellar population studies of other galaxies in the mid-infrared. It
is possible that we underestimate M• and overestimate the cluster’s triaxiality due to obser-
vational effects. The spatially semi-resolved kinematic data and extinction within the nuclear
star cluster bias the observations to the near side of the cluster, and may appear as a compres-
sion of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for
the Milky Way nuclear star cluster of MMWNSC = (3.1+2.6

−0.3 )× 107 M� within a radius of r =

2 × reff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 2 pc of
the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to
recover complex kinematic substructures in the velocity map.

A. Feldmeier-Krause, L. Zhu, N. Neumayer, G. van de Ven, P. T. de Zeeuw, R. Schödel

submitted to MNRAS on July 22, 2016

53



Chapter 3. Triaxial orbit-based modelling

3.1 Introduction

The Milky Way nuclear star cluster is the ideal object to study the dynamics of a stellar
system around a supermassive black hole. At a distance of 8 kpc it is close enough to resolve
the individual stars, and measure discrete velocities in three dimensions. Modelling the stellar
kinematics can constrain the mass distribution of the star cluster, and reveal the presence of
a central dark massive object. In the special case of our own Galaxy, it it possible to observe
Keplerian orbits of stars around a dark, point-mass-like object in the Galactic centre. These
observations constrain this dark object to be a supermassive black hole with a mass of (4.1
± 0.6)×106 M� (Ghez et al. 2008), (4.3 ± 0.39)×106 M� (Gillessen et al. 2009b), or (4.02 ±
0.20)×106 M� (Boehle et al. 2016). Unfortunately, similar high-resolution observations are
not yet possible in other galaxies.

Already in the 1970s the requirement of a central supermassive black hole in the Galactic
centre was discussed to explain observational data (e.g. Oort 1977). Several studies used
stellar radial velocities to constrain the mass distribution in the Galactic centre (e.g. Rieke &
Rieke 1988; McGinn et al. 1989; Sellgren et al. 1990; Haller et al. 1996; Genzel et al. 1996).
Also stellar proper motions were used to study the Galactic centre mass distribution (Schödel
et al. 2009). Several studies combined radial velocity and proper motion data (Trippe et al.
2008; Do et al. 2013b; Fritz et al. 2016). The mass distribution was derived using the spherical
Jeans (1922) equations or the projected mass estimators of Bahcall & Tremaine (1981) for
spherical systems. These studies found that a central dark mass of 2−5× 106 M� is required
to explain the observations.

Together with the increase of observational data, also the modelling became more ad-
vanced. Trippe et al. (2008) included the rotation of the nuclear star cluster in the modelling,
although the rotation velocity of their data was too high (Schödel et al. 2009; Feldmeier et al.
2014). Feldmeier et al. (2014) and Chatzopoulos et al. (2015a) studied the Milky Way nu-
clear star cluster using axisymmetric Jeans models. Chatzopoulos et al. (2015a) showed the
advantages of axisymmetric models over spherical Jeans models, which cannot explain the
observed asymmetry of the velocity dispersion of proper motions parallel and perpendicular
to the Galactic plane. The nuclear star cluster appears to be flattened in its light distribution
(Schödel et al. 2014a) as well as in the kinematics (Chatzopoulos et al. 2015a). Most studies
showed that the nuclear star cluster kinematics is in agreement with isotropy (Schödel et al.
2009; Do et al. 2013b; Chatzopoulos et al. 2015a), although the uncertainties are quite large
(e.g. Do et al. 2013b). All these models assumed a constant mass-to-light ratio for the light
distribution of the cluster.

In this study we relax the assumption of axisymmetry and use triaxial orbit-based Schwarz-
schild (1979) models. Orbit-based models make no assumptions on the velocity anisotropy
of the stellar motions, as Jeans models do. Further, the higher moments of the kinematics can
also be included (Rix et al. 1997), which is important to break the degeneracy of mass and
anisotropy in dynamical models.

Orbit-based models are commonly used to analyse line-of-sight velocity data of other
galaxies (e.g. van der Marel et al. 1998; Gebhardt et al. 2000; Valluri et al. 2005; van den
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3.2. Description of the data

Bosch et al. 2008), and are an excellent tool to detect and measure the masses of supermassive
black holes and dark matter halos. For extragalactic systems, the data are usually obtained
from integrated light observations. Each data point contains the accumulated kinematics of
many stars, weighted by their respective brightness. However, modelling the dynamics of
integrated light data may be prone to systematic uncertainties, and bias the results of the
central black hole mass. Therefore, it is interesting to test dynamical models on systems
for which we know the central black hole mass from other independent measurements. The
Milky Way nuclear star cluster is a good object for this kind of test. Also megamaser disc
galaxies are useful to validate stellar dynamical black hole measurements. Black hole mass
measurements from megamasers are very precise with uncertainties of only about 10 per cent.
However, there is currently only one megamaser disc galaxy with a stellar dynamical black
hole mass measurement (van den Bosch et al. 2016), NGC 4258. Different dynamical studies
found either a 15 per cent lower or a 25 per cent higher black hole mass than the maser
measurement (Siopis et al. 2009; Drehmer et al. 2015).

We use the triaxial orbit-based code by van den Bosch et al. (2008) to model the light
distribution and line-of-sight kinematics of the Milky Way nuclear star cluster. We use the
spectroscopic data cube constructed by Feldmeier et al. (2014) for the kinematic data, and
derive a surface brightness distribution using Spitzer 4.5 µm and NACO H−band images. We
assume a galactocentric distance of 8 kpc (Malkin 2012) and a position angle 31.◦40 East of
North (J2000.0 coordinates, Reid & Brunthaler 2004) with respect to the Galactic plane. This
chapter is organised as follows: We describe the kinematic and photometric data in Section
3.2. The dynamical models are introduced in Section 3.3. Section 3.4 discusses the results,
and Section 3.5 summarizes the main conclusions.

3.2 Description of the data

3.2.1 Kinematic data

The line-of-sight velocity distribution (LOSVD) provides constraints on the dynamical struc-
ture of stellar systems. To extract this information, we used the near-infrared K−band spec-
troscopic data cube of Feldmeier et al. (2014), which has a pixel scale of 2.′′22·pixel−1. We
used the data cube that was cleaned from foreground stars and bright stars. The cleaned data
cube contains the light of the old red giant star population.

We fitted the LOSVD as in Feldmeier et al. (2014), i.e. on the stellar CO absorption lines
(2.2902−2.365 µm) with the IDL routine pPXF (Cappellari & Emsellem 2004) and the high
resolution spectra of Wallace & Hinkle (1996) as template stars. We applied the same spatial
binning as Feldmeier et al. (2014), resulting in 175 spatial bins. Feldmeier et al. (2014) fitted
only the velocity V and velocity dispersion σ. However, we fitted in addition also higher
moments of the LOSVD, in particular the Gauss-Hermite parameters h3 and h4. We added
noise to each of the 175 integrated light spectra in 100 Monte Carlo simulation runs and
obtained a distribution for each moment of the LOSVD. The mean and standard deviation of
the Monte Carlo distribution are taken as measurement and 1σ uncertainty of the kinematics.
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Figure 3.1: Kinematic data (top row) and respective uncertainties (bottom row). The columns denote
velocity V , velocity dispersion σ, Gauss-Hermite moments h3, and h4. White pixels are due to excluded
bright stars.

Since the Milky Way nuclear star cluster is at a distance of only 8 kpc, the spectroscopic
observations are spatially semi-resolved. Bright stars can be resolved individually, and con-
tribute a large fraction of the flux. For that reason we used the cleaned data cube of Feldmeier
et al. (2014), where bright stars were excluded. However, the kinematic maps still show
stochastic shot noise. As a consequence, the difference of the kinematics in adjacent bins can
be higher than their uncertainties, which causes problems when we model the kinematics.
The stochastic noise can be mistaken for signal, and this means the best fit will be achieved
by modelling the shot noise. To prevent this, we increased our kinematic uncertainties εV

such that the difference of the measurement in two adjacent bins (Vi − V j) is less than the
sum of their uncertainties (εVi + εV j ). We do this for the uncertainty of velocity, velocity
dispersion, h3, and h4, and find that it is required for about 68 per cent of the kinematic data
uncertainties. Additionally, we point-symmetrise the kinematics using the procedure of van
den Bosch & de Zeeuw (2010). The median uncertainties or V , σ, h3, and h4 are 24.6 km·s−1,
18.4 km·s−1, 0.15, and 0.17. Our resulting kinematic maps are consistent with the maps of
Feldmeier et al. (2014). We find rotation in the velocity map of approximately 50 km·s−1 and
an increase in the velocity dispersion from about 65 km·s−1 towards σmax=135 km·s−1 at the
centre. The kinematic maps are shown on the top row of Fig. 3.1, the uncertainties are shown
on the bottom row.
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3.2. Description of the data

3.2.2 Imaging data and surface brightness distribution

The light distribution of the nuclear star cluster traces the stellar density. We require the
two-dimensional light distribution of the red giant stars, which are our kinematic tracers. The
extinction is high at optical wavelengths in the Galactic centre (AV ∼ 30 mag, Scoville et al.
2003; Gao et al. 2013), therefore we used near- and mid-infrared images.

For the central 40.′′4× 40.′′4 (1.6 pc× 1.6 pc) we used the high-resolution NACO H−band
mosaic of Schödel et al. (2009), which has a spatial scale of 0.′′027·pixel−1. We preferred the
H−band over the K−band in order to avoid light from gas emission lines in the K−band (Br γ
and He I, Paumard et al. 2004). Our kinematic tracers are cool late-type stars, but there are
also more than 100 hot, young stars located in the centre of the cluster, within a projected
radius r = 0.5 pc (∼12.8′′, Paumard et al. 2006). We masked out the young stars from the
image with a 15 pixel radius. For the bright red supergiant IRS 7 we used a larger mask with
a 30 pixel radius. Beyond the central 0.5 pc, the nuclear star cluster light is dominated by
cool stars, and the contribution of young stars is negligible (Feldmeier-Krause et al. 2015).

For the large-scale light distribution, we used Spitzer IRAC images (Stolovy et al. 2006).
These images were corrected for dust extinction and PAH emission by Schödel et al. (2014a).
We used the extinction and emission corrected 4.5 µm image to measure the light distribu-
tion. The image was smoothed to a scale of 5′′·pixel−1, and extends over ∼270 pc× 200 pc.
We excluded a central circle with r = 0.6 pc (∼15.′′4) to avoid contribution from ionised gas
emission and young stars. In addition we masked out the young Quintuplet star cluster (Figer
et al. 1999), and the dark 20-km·s−1-cloud M-0.13-0.08 (García-Marín et al. 2011).

We used the MGE_FIT_SECTORS package (Cappellari 2002) to derive the surface bright-
ness distribution. The Multi-Gaussian Expansion model (Emsellem et al. 1994) has the ad-
vantage that it can be deprojected analytically. We measured the photometry of the two
images along the major axis and the minor axis. The centre is the position of Sgr A*, which
is the radio source associated with the Galactic centre supermassive black hole. We fitted
a scale factor to match the photometry of the two images in the region where they overlap
(16′′−27.′′8). Then we measured the photometry on each image along 12 angular sectors,
and converted the NACO photometry to the Spitzer flux. Assuming four-fold symmetry, the
measurements of four quadrants are averaged on elliptical annuli with constant ellipticity.
Using the photometric measurements of the two images, we fitted a set of two-dimensional
Gaussian functions, taking the point-spread-function (PSF) of the NACO image into account.

A comparison with the surface brightness profile of Fritz et al. (2016, their Fig. 2) showed
that our profile is steeper in the central ∼30′′. A possible reason is the small overlap region
of the Spitzer and NACO images, and that the Spitzer flux could be too high at the centre.
Maybe the PAH emission correction of the Spitzer image was too low. The mid-infrared dust
emission is significant out to almost 1′. Fritz et al. (2016) used NACO H− and KS−band
images in the central r = 20′′. Out to 1 000′′ (∼39 pc) they used Hubble Space Telescope
WFC3 data (M127 and M153 filters) and public VISTA Variables in the Via Lactea Survey
images (H− and KS−bands, Saito et al. 2012). We lowered the intensities of the central
Gaussians by scaling our averaged profile to the one-dimensional flux density profile of Fritz
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Chapter 3. Triaxial orbit-based modelling

Table 3.1: The Multi-Gaussian Expansion (MGE) fit parameters for the 4.5 µm Spitzer/IRAC dust
extinction and PAH emission corrected image in combination with the NACO H-band mosaic scaled
to Spitzer flux. Iscaled is the peak surface brightness used in the dynamical modelling, σMGE is the
standard deviation, and q is the axial ratio of the Gaussian components. Iunscaled is the peak surface
brightness before scaling to Fritz et al. (2016).

Iscaled σMGE q Iunscaled[
104 L�,4.5µm pc−2

]
[arcsec]

[
104 L�,4.5µm pc−2

]
0.86 1.7 0.30 312
32.4 10.4 0.34 164
89.8 15.0 0.82 257
18.5 52.1 0.95 30.0
17.0 98 0.36 29.3
7.1 154 0.95 7.4
4.8 637 0.36 4.9
3.2 2020 0.30 3.2
1.3 4590 0.81 1.3

et al. (2016). As a result the amplitudes of the inner Gaussians become smaller, but the
outer Gaussians (σMGE>100′′∼4 pc) are nearly unchanged. We list the components of the
Multi-Gaussian Expansion in Table 3.1 and plot the profile in Fig. 3.2.

We note that there are three main differences with the surface brightness distribution
derived by Feldmeier et al. (2014): (1) We used an H-band instead of a KS -band NACO
image to avoid ionised gas emission; (2) We masked young stars in the NACO image to match
the distribution of stars used as kinematic tracers; and (3) We scaled the central photometry
to the flux density data of Fritz et al. (2016) to avoid a possible overestimation of the central
flux when scaled to the Spitzer image. All three changes influence only the central part of the
surface brightness distribution, as ionised gas emission and light from young stars are only
important in the central parsec.

3.3 Dynamical models of the Milky Way nuclear star clus-
ter

3.3.1 Schwarzschild’s method

Orbit-based models or Schwarzschild models are a useful tool to model the dynamics of stel-
lar systems by orbit superposition. The first step of Schwarzschild’s method is to integrate
the equations of motion for a representative library of stellar orbits in a gravitational potential
Φ. Then the observables for each orbit are computed, considering projection, PSF convolu-
tion and pixel binning. The next step is to find orbital weights to combine the orbits such
that they reproduce the observed data. Schwarzschild models are a powerful tool to recover
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Figure 3.2: Surface brightness profile derived from a dust extinction and PAH emission corrected
Spitzer/IRAC 4.5 µm image and NACO H-band mosaic for the centre, scaled to the measurements of
Fritz et al. (2016, blue crosses). The black full line denotes the MGE fit along the major axis, and the
red dashed line along the minor axis.

the intrinsic kinematical structure and the underlying gravitational potential (Schwarzschild
1979; van de Ven et al. 2008; van den Bosch & van de Ven 2009). We refer the reader for
further details to van den Bosch et al. (2008) for implementation and van de Ven et al. (2008)
for verification of the triaxial Schwarzschild code.

3.3.1.1 Mass model

We calculated orbits in the combined gravitational potential of a supermassive black hole Φ•
and the star cluster Φ?, inferred from the imaging data. As we run triaxial models, there are
three intrinsic shape parameters, p, q, and u, for the cluster. The shape parameters charac-
terise the axis ratios for the long, intermediate and short axes x, y, and z. They are defined
as p = y/x, q = z/x, and u = x′/x, where x′ is the length of the longest axis x projected
on the sky. Thus, u represents the compression of x due to projection on the sky. Each set
of axis ratios refers to a set of viewing angles (θ, φ, ψ). The surface brightness distribution
is deprojected given the intrinsic shape parameters p, q, u, and multiplied with the dynamical
mass-to-light ratio Υ to get the intrinsic stellar mass density %?. From Poisson’s equation
∇2Φ? = 4πG%? one calculates the gravitational potential. We do this for different values of
the black hole mass M•, dynamical mass-to-light ratio Υ, and different shape parameters. In
total our model has five free parameters, M•, Υ, p, q, and u.

Besides the considered stellar population and the supermassive black hole, there are other
components within the nuclear star cluster, which we neglected. We measure a dynamical
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Chapter 3. Triaxial orbit-based modelling

mass-to-light-ratio, which combines the stellar mass-to-light-ratio with other components.
These components are the young stars, ionised gas, neutral gas, and dark matter. The young
stars are at a distance of about 0.5 pc from the supermassive black hole. The lower limit of
the total mass of young stars is 12 000 M� (Feldmeier-Krause et al. 2015). However, the total
enclosed stellar mass in the same region is ∼106 M� (Oh et al. 2009; Feldmeier et al. 2014),
and the mass of the supermassive black hole is 4× 106 M�. The mass of the young stars is
therefore probably negligible. The hot ionised gas has a mass of only a few 100 M� (Ferrière
2012), and cannot influence the stellar dynamics significantly. The neutral gas in the circum-
nuclear disc may contribute more mass, estimates range from 104 M� (Etxaluze et al. 2011;
Requena-Torres et al. 2012) to 106 M� (Christopher et al. 2005), though this is probably the
upper limit (Genzel et al. 2010). The circum-nuclear disc extends over a distance of about
1 pc to more than 5 pc from the centre. At 5 pc the total enclosed stellar mass is ∼107 M�
(McGinn et al. 1989; Feldmeier et al. 2014). We decided to neglect the mass distribution of
the circum-nuclear disc in our dynamical models, since it is very uncertain, and makes up
only 0.1 to 10 per cent of the stellar mass. The contribution of dark matter to the nuclear
star cluster mass is also neglected. Linden (2014) show that the fraction of dark matter in the
central 100 pc of the Milky Way is about 6.6 per cent, assuming the traditional dark matter
profile of Navarro et al. (1996).

3.3.1.2 Orbit library

The orbit library should be as general as possible and representative for the potential. We as-
sume that the orbits are regular and that three integrals of motion, E, I2, and I3, are conserved.
The orbit families consist of box orbits, which can cross the centre and have an average an-
gular momentum of zero, and three types of tube orbits, which avoid the centre. The tube
orbits are divided in short-axis-tube orbits, which have non-zero mean angular momentum
〈Lz〉 around the short axis, outer and inner long-axis-tube orbits, which have non-zero mean
angular momentum 〈Lx〉 around the long axis. The orbit grid should sample the entire phase
space. It has to be dense enough to suppress discreteness noise, but integration has to be done
in a reasonable amount of computing time.

We followed van den Bosch et al. (2008) and sample the orbit energy E using a logarith-
mic grid in radius. Each energy E is linked to the radius Rc by calculating the potential at
(x, y, z) = (Rc, 0, 0). We sample NE = 35 energies calculated from Rc in logarithmic steps
ranging from Rc = 100.5 to Rc = 104.2, i.e. 3.′′16 to 4.◦4 or 0.12 pc to 616.5 pc. We note that the
outer radius is about 3.5 times the outermost Gaussian σMGE of the MGE fit. We tested lower
values of the inner radius but found consistent results. For each energy, the starting point of
an orbit is selected from a linear grid over 14 values each. For details on the orbit sampling
we refer to van den Bosch et al. (2008). In total, we have NE × NI2 × NI3 = 35 × 14 × 14
= 6860 orbits. Each orbit is integrated over 200 periods, and sampled on 100 000 points per
orbit. For each orbit we store the intrinsic and projected properties. The projected orbits are
stored in a (x′, y′, vz) grid, with PSF convolution and pixel size of the observed data taken
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3.3. Dynamical models of the Milky Way nuclear star cluster

into account. The velocities are stored in 183 bins between −7.4 σmax and +7.4 σmax. These
numbers guarantee a proper sampling of the observed velocity profiles (Cretton et al. 1999).

3.3.1.3 Solving the orbital weight distribution

The model has to fit the kinematic data, the intrinsic, and the projected mass distribution. The
fit is done by finding a linear combination of the orbits, and solving for orbital weights γi.
Each orbital weight corresponds to a mass on the respective orbit i, and the weights γi are
therefore non-negative. We used the non-negative least-squares (NNLS) logarithm of Lawson
& Hanson (1974), which was also used by Rix et al. (1997), van der Marel et al. (1998), and
Cretton et al. (1999). One of the fitting constraints is to make sure that the model is self-
consistent. It is required that the orbit superposition reproduces the intrinsic and projected
aperture masses within two per cent, which is the typical accuracy of the observed surface
brightness (van den Bosch et al. 2008).

3.3.2 Constraining the input parameters

We ran 4899 models with different parameter combinations of M•, Υ, q, p, u. The black
hole mass M• was sampled in logarithmic steps of 0.2 from 5.5 to 7.5, starting with 6.3 (i.e.
M• ≈ 2× 106 M�). The mass-to-light ratio Υ was linearly sampled between 0.1 and 2.0 with
steps of 0.04, with a starting value of 0.6 (in units of M�/L�,4.5µm). The starting model had
(p, q, u) = (0.84, 0.29, 0.99). We sampled different combinations of (p, q, u) in steps of (0.02,
0.01, 0.01), with 0.40 <p <0.99, 0.05 <q <0.29, and 0.70 <u ≤ 0.99. We found the best fit of
the five parameters by calculating the χ2 from the kinematic measurements. The number of
observables is the number of kinematic bins times the number of kinematic moments, in our
case N = 175 × 4 = 700.

3.3.3 Modelling results

3.3.3.1 The best-fitting model

Our best-fitting parameters are M• = 3.0×106 M�, Υ = 0.90, q = 0.28, p = 0.64, u = 0.99.
This corresponds to best-fitting viewing angles ϑ = 80◦, ϕ = 79◦, ψ = 91◦. We show the
surface brightness map and the symmetrised kinematic maps in Fig. 3.3. The upper row
are the data, the lower row are the maps of the best-fitting model. The misalignment of
the kinematic rotation axis with respect to the photometry, and the perpendicular rotating
substructure at ∼20′′ (∼0.8 pc) found by Feldmeier et al. (2014) are well reproduced in the
model velocity map. The surface brightness map is reproduced within one per cent. The best
fit has χ2 = 290. With M = 5 fitted parameters and N = 700 observational constraints, this
means χ2

red = 0.42. That χ2
red is less than one is partially due to the large uncertainties of the

kinematics, and the fact that the kinematic measurements are correlated.
We illustrate the distribution of χ2 for the 4899 models in Fig. 3.4. We plot each com-

bination of parameters. Red colours denote low χ2, bluer, smaller symbols denote high χ2.
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Figure 3.3: Comparison of the observed stellar surface brightness and kinematics (top row) and the
best-fitting Schwarzschild model. The columns denote surface brightness, velocity V , velocity disper-
sion σ, Gauss-Hermite moments h3, and h4.

The black cross denotes the best-fitting model. The value of q is constrained by the surface
brightness profile. As the lowest value of qMGE is 0.30, the deprojected q cannot be higher.
Likewise, the value of u = 0.99 is the boundary value of the grid. The values of q, p, and u are
averaged over the entire system, i.e. the nuclear stellar disc and the embedded nuclear star
cluster. The upper left panel of Fig. 3.4 shows that for each value of u, the best-fitting Υ is
near to 0.90. A similar behaviour is found with p and q. There is only a slight increase of the
best-fitting Υ with higher values of p. At the same time, the best-fitting values of M• do not
vary strongly with q, p, or u (second row). The intrinsic shape parameters do not influence
our best fit for M•, as this measurement is mostly made from the inner bins and the outer bins
contribute little. The outer bins certainly contribute to the intrinsic shape fit. The supermas-
sive black hole mass and the dynamical mass-to-light ratio are correlated. For higher values
of Υ, a lower M• fits the data.

We show how χ2 depends on the different parameters in Fig. 3.5. The best-fitting model,
which has the lowest χ2, is marked as blue asterisk symbol. The blue lines denote the 1σ, 2σ,
and 3σ confidence limits, corresponding to ∆χ2 = 5.9, 11.3, and 18.2. The red line illustrates
the standard deviation of χ2 itself, i.e.

√
2(N −M) = 37.3, where N = 700, and M = 5. This

value was used as confidence limit by van den Bosch & van de Ven (2009). In Table 3.2 we
list the 1σ and 3σ uncertainties.

3.3.3.2 Mass profile

We show the enclosed total mass as a function of the projected radius in Fig. 3.6, grey shaded
contours are the 3σ uncertainty. The mass was computed within ellipses. We also plot the
results of various other studies. Most studies assumed spherical symmetry, Feldmeier et al.
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Figure 3.4: Illustration of the fitted parameter space. Each symbol denotes a model, the coloured
symbols are models with ∆χ2 < σχ2 = 37.3, black diamonds are models with ∆χ2 > σχ2 . The 1σ, 2σ,
and 3σ colours corresponding to ∆χ2 = 5.9, 11.3 and 18.2, are denoted. The black cross denotes the
best-fitting model.

Table 3.2: The best-fitting model results and the 1σ and 3σ uncertainties, corresponding to ∆χ2 = 5.9
and 18.2.

parameter best fit 1σ 3σ unit

M• 3.0 +1.1
−1.3

+2.4
−2.3 ×106 M�

Υ 0.90 +0.76
−0.08

+1.12
−0.32 M�/L�,4.5µm

q 0.28 +0.0
−0.02

+0.0
−0.06

p 0.64 +0.18
−0.06

+0.30
−0.22

u 0.99 +0.0
−0.01

+0.0
−0.05
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Figure 3.5: The χ2 values plotted against the five free parameters (M•, Υ, q, p, u). The best-fitting
model is denoted as blue asterisk, the 1σ, 2σ, and 3σ confidence level, corresponding to ∆χ2 = 5.9,
11.3, and 18.2, are denoted as blue lines. The red line denotes σ2

χ = 37.3.

(2014) and Chatzopoulos et al. (2015a) assumed axisymmetry. Some of the studies used also
different Galactocentric distances, so we scaled the masses to R0 = 8.0 kpc. Our results are in
agreement with other studies in the central 100′′. At larger radii r ≈ 400′′ (∼15.5 pc) beyond
the reach of our kinematic data, we obtained a higher mass than Lindqvist et al. (1992a).
Their data extend to larger radii, but their assumption of spherical symmetry does no longer
hold at such large radii. Launhardt et al. (2002) took the flattening of the nuclear stellar disc
into account and obtained M? = (8.0 ± 2)×108 M� within 120 pc, and in addition MMWNSC =

(3 ±1.5)×107 M� for the nuclear star cluster. Our best-fitting model has a total enclosed mass
M? = (8.8+7.4

−0.8 )×108 M� inside an ellipse with semi-major axis distance 120 pc, which is in
agreement with Launhardt et al. (2002). The enclosed stellar mass at r = 8.4 pc, i.e. about
two times the effective radius of the nuclear star cluster, is MMWNSC = (3.1+2.8

−0.3 )× 107 M�.
The uncertainty comes from the 1σ uncertainty of the mass-to-light ratio Υ.

The black hole influences the stellar kinematics only at the centre of the nuclear star
cluster. Out to r = 33′′ (∼1.3 pc), the best-fitting mass of the black hole (M• = 3.0×106 M�)
is higher than the enclosed stellar mass of our best-fitting model. Assuming M• = 4×106 M�,
this radius increases to 41′′ (∼1.6 pc). Merritt (2004) defined the radius of influence of a black
hole as the radius where the enclosed stellar mass equals two times the black hole mass. With
this definition and a black hole mass of 4×106 M�, we obtain rinfl = 71′′ (∼2.8 pc). This value
of rinfl is higher than the result of Feldmeier et al. (2014, (60+55

−17 )′′), as our model has less
stellar mass in the centre. We have excellent agreement with Alexander (2005), who found
rinfl = 3 pc. The kinematic measurements at larger radii have little influence on the black
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Figure 3.6: Enclosed total mass within a distance of 0.′′3 to 50′ along the mean radius of the ellipses
in units of M� and in logarithmic scaling. The black line denotes the enclosed mass with Υ = 0.90 and
M• = 3.0×106 M�, the grey shaded contours are for Υ = 0.90 +1.12

−0.32 and M• = (3.0 +2.4
−2.3 )×106 M�. The

horizontal line denotes a supermassive black hole with the mass M• = 4×106 M�. The vertical, dotted
line denotes the outer edge of the kinematic data, the vertical, solid line denotes the effective radius. We
also plot the results for the enclosed mass from previous studies. We scaled the masses to R0 = 8.0 kpc
if the study assumed a different Galactocentric distance: McGinn et al. (1989, diamonds, assumed R0 =

8.5 kpc), Lindqvist et al. (1992a, upward triangles, R0 = 8.5 kpc), Deguchi et al. (2004, squares), Trippe
et al. (2008, x-symbol), Oh et al. (2009, leftfacing triangles), Schödel et al. (2014a, asterisk), Feldmeier
et al. (2014, blue dashed line), Chatzopoulos et al. (2015a, rightfacing triangle, R0 = 8.3 kpc), and Fritz
et al. (2016, downward triangle, R0 = 8.2 kpc).

hole mass measurement, but are important to constrain the orbital structure and dynamical
mass-to-light ratio.

3.3.3.3 Internal dynamics

The best-fitting model has tangential anisotropy in the centre of the cluster. The value of
the anisotropy β = 1 −σ2

t /σ2
r is negative, where σt is the tangential velocity dispersion and

σr is the radial velocity dispersion. We show the anisotropy β as a function of radius in
Fig. 3.7, top panel. We plot the mean anisotropy of the models within the 1σ uncertainty
limit. The uncertainty of β is given by the standard deviation and is about 0.1. The plot
extends to the outer edge of the kinematic data at 150′′. The vertical, solid line denotes the
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photometric effective radius reff = 4.2 pc, the dashed line denotes the radius of influence rinfl

= 71′′ (∼2.8 pc). The cluster kinematics becomes nearly isotropic at radii r >70′′.
We show the angular momentum distribution of the orbits in Fig. 3.8. The colours denote

the density of orbits passing radius r with mean angular momentum 〈λz〉 (left panel) or 〈λx〉

(right panel). The plot of 〈λz〉 denotes rotation about the short z-axis. Orbits with 〈λz〉 , 0 are
contributed by short-axis-tube orbits, while long-axis-tube orbits have 〈λz〉 = 0. On the other
hand, 〈λx〉 denotes rotation about the long x-axis (bottom panel), and orbits with 〈λx〉 , 0 are
contributed by long-axis-tube orbits. Short-axis-tube orbits have 〈λx〉 = 0. Long-axis-tube
orbits are most important in the central 20–60′′ and at larger radii r & 80′′. Short-axis-tube
orbits, which contribute in total more mass than long-axis-tube orbits, are most important at
r = 60–140′′. We illustrate the distribution of the stellar mass on the different orbit types also
in Fig. 3.7 (bottom panel) as a function of radius. Most stars (>50 per cent) are on short-axis-
tube orbits, i.e. they orbit the minor axis. Long-axis-tube orbits contribute about 40 per cent
in the central 30′′. They produce the perpendicular rotating substructure at r≈ 20′′ (∼0.8 pc)
found by Feldmeier et al. (2014). At larger radii, long-axis-tube orbits contribute only about
30 per cent to the stellar mass. Box orbits contribute little mass in the centre (<10 per cent),
but their fraction increases towards larger radii. At r = 150′′ (∼5.8 pc), they contribute 20 per
cent.

3.4 Discussion

3.4.1 Difference of the resulting black hole mass

The currently best black hole mass estimate is (4.1 ± 0.6)×106 M� (Ghez et al. 2008), (4.3
± 0.39)×106 M� (Gillessen et al. 2009b) or (4.02 ± 0.20)×106 M� (Boehle et al. 2016), de-
rived from Keplerian stellar orbits around the supermassive black hole. Using axisymmetric
Jeans models and the same spectroscopic data as this study, Feldmeier et al. (2014) found a
lower value of M• = (1.7+1.4

−1.1 )×106 M�. The best fit using triaxial Schwarzschild models is
(3.0 +1.1

−1.3 )×106 M�. This measurement is consistent with the direct measurements of Ghez
et al. (2008), Gillessen et al. (2009b), and Boehle et al. (2016) within the 1σ uncertainty
limit. The result is also in agreement with the lower black hole mass of Feldmeier et al.
(2014). We derived a 3σ lower limit for the black hole of 0.7×106 M�, and an upper limit
of 5.4×106 M�. We briefly discuss the model degeneracies, possible reasons for the different
black hole mass measurements, and why our results are closer to the direct measurement than
the black hole mass derived by Feldmeier et al. (2014).

3.4.1.1 Model degeneracies

Some model parameters seem to be correlated. This becomes clear when looking at Fig. 3.4.
The best-fitting value of p apparently increases with increasing dynamical mass-to-light ratio
Υ (second column of the first row). However, the value of p has little effect on M•, as can
be seen in the second column of the second row in Fig. 3.4 . With a lower value of p, the
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Figure 3.8: Orbit density with angular momentum λz (left), i.e. rotation around the short axis, and λx

(right), i.e. rotation around the long axis. Dark, blue colour indicates higher orbit density. The vertical,
dashed line denotes reff = 4.2 pc (Schödel et al. 2014a).

best-fitting M• decreases only slightly. At larger p, the χ2-contours of M• and Υ broaden.
This means that for a more oblate axisymmetric cluster with p closer to one, M• and Υ are
not as well constrained as with smaller values of p.

The dynamical mass-to-light ratio Υ is inversely correlated with the black hole mass
(fourth column of the first row in Fig. 3.4). The higher Υ, i.e. the more massive the cluster,
the less massive is the black hole. This degeneracy is often obtained in dynamical models.
Valluri et al. (2004) found that the degeneracy of M• depends on how well the black hole’s
sphere of influence is resolved, whereas the measurement of Υ is better constrained when the
data extend to larger radii. We have several kinematic data bins within the radius of influence
of the supermassive black hole, and our data extend to one effective radius. This may not be
sufficient to put strong constraints on Υ. To get agreement with the measurement of (4.1 ±
0.6)×106 M� (Ghez et al. 2008), (4.3 ± 0.39)×106 M� (Gillessen et al. 2009b), and (4.02 ±
0.20)×106 M� (Boehle et al. 2016), we would require a lower value of Υ≈ 0.75.

3.4.1.2 Influence of the surface brightness profile

The shape of the surface brightness profile is important to estimate the mass of the supermas-
sive black hole. The surface brightness profile has to represent the density of the kinematic
tracer. We excluded young stars and ionised gas from the surface brightness profile, as these
components contribute little mass compared to the cool, old stars we used as kinematic trac-
ers. Excluding these components results in a lower surface brightness and stellar mass in the
centre compared to Feldmeier et al. (2014). The stellar mass we obtain at r = 32′′ (∼1.2 pc)
is 1×106 M� less. Our black hole mass is therefore higher, and closer to the direct measure-
ment of M• ≈ 4×106 M�. We ran the same axisymmetric models (Cappellari 2008), using
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the same kinematic data as Feldmeier et al. (2014), but our surface brightness distribution
from Table 3.1. The best fit is obtained with M• = (2.8+1.3

−0.8 )×106 M�, Υ = 0.89 +0.12
−0.19 , and a

constant anisotropy of β = −0.3. This result is in agreement with the triaxial Schwarzschild
models, and confirms that the surface brightness profile has a strong influence on the results
of the black hole mass and dynamical mass-to-light ratio.

3.4.1.3 Spatially varying mass-to-light ratio

We assumed a constant dynamical mass-to-light-ratio Υ for the Schwarzschild models. We
obtained Υ = 0.90 +0.76

−0.08 (1σ uncertainty). The dynamical mass-to-light-ratio combines the
stellar mass-to-light-ratio with other components, it is sensitive to the presence of gas or dark
matter.

Our best-fitting value of Υ = 0.9 is higher than expected from stellar-population studies
at 3.6 µm, which found Υ = 0.4 − 0.75 (McGaugh & Schombert 2013; Meidt et al. 2014). At
4.5 µm, Υ is rather less than at 3.6 µm (Oh et al. 2008). Our measurement of Υ is averaged
over the entire field of the kinematic data. We cannot exclude that the stellar age or metallicity
changes over the range of the kinematic data. Stellar population studies of the red giant
population were mostly confined to the central 1 pc. Our knowledge of the stellar population
at the outer region of our field is based on only a few bright stars (e.g. Blum et al. 2003;
Feldmeier et al. 2014). But these stars are brighter and probably younger than our kinematic
tracer stars. However, the mass-to-light ratio for old stars in the mid-infrared varies modestly
with age and metallicity in comparison to the optical mass-to-light ratio (Meidt et al. 2014).
Therefore we do not expect a change of Υ by more than ∼0.3 within the cluster. Should Υ
vary with radius, our mass profile (Fig. 3.6) could have a different shape. For example, if Υ
was lower in the centre than outside, this would increase M•, and there would be less mass in
the stellar component.

However, the stellar mass-to-light ratio may also increase towards the central r = 0.5 pc, as
massive stellar remnants may migrate to the centre. The mass and distribution of dark stellar
remnants, i.e. stellar mass black holes and neutron stars, in the central parsec of the nuclear
star cluster is uncertain. For a top-heavy initial mass function, there could be >1×106 M� in
dark remnants (Morris 1993), though Löckmann et al. (2010) found a lower mass of about
1× 105 M� for a canonical initial mass function.

In our models we neglected the mass of molecular gas in the circum-nuclear disc. The
molecular gas may contribute 104 − 106 M�. The gas disc extends from r ≈ 1−7 pc along the
Galactic plane, but only to r ≈ 3 pc along the minor axis (Ferrière 2012). Thus, the molecular
gas is located in the central part of our spectroscopic field, but absent in the North. If the gas
contributes significantly to the cluster mass, our assumption of spatially constant Υ would
be violated. Further, our result of Υ would be higher than expected from stellar population
studies. When we assume the maximum gas mass of 106 M�, the value of a constant Υ
decreases to about 0.85, which is within our 1σ uncertainty limit.

The spatial distribution of dark matter in the Galactic centre is uncertain. A classical
cuspy Navarro et al. (1996) dark matter profile results in a dark matter fraction of about 6.6
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per cent in the central 100 pc (Linden 2014). However, black hole accretion, dark matter
annihilation, and scattering alter the shape of the dark matter distribution in the Galactic
centre. Vasiliev & Zelnikov (2008) found that these effects produce a shallower dark matter
profile in the central 2 pc than further out. The dark matter mass inferred from the classical
cusp is reduced by up to 50 per cent in the central 2 pc. The contribution of dark matter to the
nuclear star cluster mass should therefore be negligible. Although the dark matter distribution
may be different from the luminous baryonic matter, and the dynamical mass-to-light ratio
for that reason not spatially constant, the effect on the cluster mass distribution should be only
minor.

3.4.2 Triaxial cluster shape

Our best-fitting model has axis ratios of p = y/x = 0.64 +0.18
−0.06 , q = z/x = 0.28 +0.0

−0.02, and u =

x′/x = 0.99 +0.0
−0.01. These axis ratios correspond to viewing angles ϑ = 80◦, ϕ = 79◦, and ψ =

91◦. The angle ϑ denotes the polar viewing angle, ϕ the azimuthal viewing angle, and ψ is
the misalignment angle between photometric major axis and the projected intrinsic long axis
(van den Bosch et al. 2008; van den Bosch & van de Ven 2009). For the best-fitting model
the angle α between the cluster’s major axis and the line-of-sight is about 79◦. The cluster’s
shape is strongly triaxial, with a triaxiality parameter T = (1 − p2)/(1 − q2) = 0.64. An
oblate axisymmetric system has T = 0, a prolate axisymmetric system has T = 1.

Also the Milky Way’s bulge is triaxial, the axis ratios are p = 0.63 and q = 0.26 (Wegg
& Gerhard 2013). The shape was derived from the density of red clump stars in the central
800 pc of the bulge. The Milky Way bulge is much larger than the nuclear star cluster, and
extends out to about 2.5 kpc. Intriguingly, the intrinsic shape parameters p and q of the
Galactic bulge agree with our best-fit results for the nuclear star cluster within the error bars.
The bulge has a peanut or X-shape (Nataf et al. 2010; McWilliam & Zoccali 2010). The
angle α between the bulge major axis and the line-of-sight to the Galactic centre is about 27◦

(Rattenbury et al. 2007; Wegg & Gerhard 2013), while we obtained 79◦ for the nuclear star
cluster.

One possible scenario for nuclear star cluster formation is that massive star clusters (105–
107 M�) formed in the galactic disc, migrated to the galaxy’s centre and merged (Neumayer
et al. 2011; Guillard et al. 2016). Simulations of multiple star cluster mergers and of star
cluster accretion on a nuclear stellar component can produce triaxial nuclear star clusters
(Bekki et al. 2004; Hartmann et al. 2011; Perets & Mastrobuono-Battisti 2014). However, so
far no systematical observational study was able to constrain the triaxial shape of nuclear star
clusters in general. Hartmann et al. (2011) constrained the shape of two nuclear star clusters
and found agreement with an axisymmetric shape.

70



3.4. Discussion

3.4.3 Caveats and considerations

3.4.3.1 Regime of semi-resolved populations

We used integrated light spectroscopy to measure the stellar kinematics. This is the common
approach for extragalactic systems, which have a distance of several Mpc. The measured
kinematics are weighted by the respective luminosities of different stars. As the Milky Way
nuclear star cluster is only 8 kpc distant, we are in the regime of semi-resolved populations.
The brightest stars can be resolved individually, and these stars contribute a large fraction
of the flux. A consequence of this is that individual spatial bins can be dominated by a
single star. Instead of measuring the spectrum of an ensemble of stars, one measures a spec-
trum in which a large percentage of the flux is contributed by one single star. This causes
shot noise, and high differences between neighbouring spatial bins. We accounted for this
problem by excluding the brightest stars from the spectroscopic map. This method helps to
significantly reduce the intrinsic scatter of the velocity dispersion (Lützgendorf et al. 2011;
Bianchini et al. 2015). We further increased the kinematic uncertainties such that the data in
two neighbouring bins have consistent values within their uncertainties. This helps to prevent
that the models fit only stochastic shot noise. Due to the large kinematic uncertainties, the
intrinsic shape parameters p, q, u, and the dynamical mass-to-light ratio Υ are not very well
constrained, and have large error margins.

At a distance of only 8 kpc, also the relative distances of the stars become more important.
A star located on the near side of the nuclear star cluster, at a distance d = 7.9 kpc, contributes
1.05 times more flux than a star with the same absolute magnitude at the far side of the cluster,
at d = 8.1 kpc. In an extragalactic system, the distance of a star at the near side and the
distance of a star at the far side with respect to the observer are approximately the same, as
the system is farther away. For a galaxy at d = 5 Mpc, a relative difference of 200 pc changes
the flux only by a factor 1.00008. Even foreground stars that belong to the outer parts of
the stellar system contribute roughly the same flux as a star with the same magnitude that is
located in the galactic nucleus.

3.4.3.2 Interstellar extinction

Another observational complication is interstellar extinction in the Galactic centre, which
varies on arcsecond scales (Schödel et al. 2010). In particular, the field of view of the kine-
matic data contains the so-called 20-km·s−1-cloud (M-0.13-0.08, e.g. García-Marín et al.
2011) in the Galactic southwest. It lies at a projected distance of about 70′′ (∼3 pc) from the
centre, and probably about 5 pc in front of Sgr A* (Ferrière 2012). This cloud blocks the light
from stars of the nuclear star cluster. We cannot access the kinematics of stars behind this
cloud. There is also interstellar dust within a projected distance of 20′′ (∼0.8 pc) from the
centre, i.e. within the radius of influence of the black hole. This dust causes extinction within
the nuclear star cluster by up to 0.8 mag (Chatzopoulos et al. 2015b). As a consequence, the
two effects of dimming by distance and by extinction add up and stars that lie on the far side
of the nuclear star cluster appear even more faint than the stars on the near side.
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3.4.3.3 Implications

Both the semi-resolved stellar population and the inter-cluster extinction cause that our obser-
vations are biased to the near side of the nuclear star cluster. As a consequence we measured
a lower limit of the velocity dispersion. Feldmeier et al. (2014) found that the velocity disper-
sion in the projected radial range 6′′ < r < 20′′ is smaller compared to the velocity dispersion
computed from proper motion data of Schödel et al. (2009), which is based on resolved stars.
For resolved stars, the velocity dispersion is not weighted by the flux of the stars. An under-
estimated velocity dispersion means that the black hole mass measurement is biased to lower
values.

This observational bias also influences the measurements of V , h3 and h4. In particular,
the cluster may appear compressed along the line-of-sight, and thus the value of p = y/x =

0.64+0.18
−0.06 may be too low. As a consequence, Υ = 0.90+0.76

−0.08 would be underestimated (see
second column of the first row in Fig. 3.4). However, our best-fitting result of Υ is already
higher than what we expect from stellar population studies (McGaugh & Schombert 2013;
Meidt et al. 2014), and also higher than the result of Feldmeier et al. (2014), who found Υ =

0.56+0.22
−0.26 . They assumed axisymmetry with p = 1, and thus y = x, i.e. the intermediate and

long axis have the same length. With p < 1, the system extends less along the intermediate
axis than in the oblate axisymmetric case.

3.4.3.4 Influence of figure rotation

The Galaxy rotates, and with it the nuclear star cluster. In a non-axisymmetric rotating sys-
tem, centrifugal and Coriolis forces play a role. However, figure rotation and the resulting
forces were not included in our triaxial models. Figure rotation influences the stellar orbits,
and the progratde and retrograde tube orbits no longer fill the same volumes, while the box
orbits acquire net mean angular momentum (e.g. Heisler et al. 1982; Schwarzschild 1982;
Sellwood & Wilkinson 1993; Skokos et al. 2002). As a result, orbit-based tumbling triaxial
models are computationally expensive. Other than an early attempt by Zhao (1996) no such
models have been constructed that take into account kinematic data. It is difficult to predict
how our results would change in a rotating model. The inferred orbital structure will be af-
fected (depending on the tumbling speed of the nuclear star cluster), but our results on the
mass distribution are likely to be fairly robust, as the assumption of a constant mass-to-light
ratio is probably more important.

3.5 Summary and outlook

We constructed for the first time triaxial orbit-based Schwarzschild models of the Milky Way
nuclear star cluster. We used the spectroscopic integrated light maps by Feldmeier et al.
(2014) to measure the cluster kinematics of the central 60 pc2 of the Milky Way. As photom-
etry we used Spitzer 4.5µm and NACO H−band images, and measured a two-dimensional
surface brightness distribution. We excluded young stars, avoided gas emission and dark
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clouds. Our triaxial models were based on the code by van den Bosch et al. (2008). Our best-
fitting model contains a black hole of mass M• = (3.0+1.1

−1.3 )×106 M�, a dynamical mass-to-
light ratio of Υ = (0.90+0.76

−0.08 ) M�/L�,4.5µm, and shape parameters p = 0.64+0.18
−0.06 , q = 0.28+0.0

−0.02,
and u = 0.99+0.0

−0.01. Our black hole mass measurement is in agreement with the direct mea-
surement of M• = (4.1 ± 0.6)×106 M� (Ghez et al. 2008), (4.3 ± 0.39)×106 M� (Gillessen
et al. 2009b), and (4.02 ± 0.20)×106 M� (Boehle et al. 2016). We obtain a cluster mass
MMWNSC = (3.1+2.8

−0.3 )× 107 M� within r = 2× reff = 8.4 pc. The best-fitting model is tangen-
tially anisotropic in the central r = 2 pc of the nuclear star cluster, but is close to isotropic
at larger radii. The model is able to recover the long-axis rotation in the central r = 0.8 pc
found by Feldmeier et al. (2014), and the misalignment of the kinematic rotation axis from
the photometric minor axis.

There are several possible ways to extend the dynamical models in the future. One way
is to include a component for the neutral gas disc inside the nuclear star cluster. If the gas
mass is close to the upper limit of 106 M�, the dynamical mass-to-light ratio would proba-
bly decrease slightly, and in return would slightly increase the black hole mass. Modelling
a spatially varying mass-to-light ratio may provide a better representation of the cluster’s
intrinsic properties. Further, proper motions can be included in combination with discrete
line-of-sight velocities, as shown by van de Ven et al. (2006) and van den Bosch et al. (2006)
for axisymmetric Schwarzschild models. Watkins et al. (2013) extended axisymmetric Jeans
models and implemented discrete kinematic data without binning. Using discrete data means
that the stars are not weighted by their luminosities. This prevents the previously discussed
bias towards the near side of the cluster.
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