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Chapter 6

ABSTRACT

Background

The genetics of fasting plasma metabolite concentrations has been extensively studied
and yielded valuable insight in underlying pathways and associated pathophysiology.
However, due to frequent food intake, humans spend the greater part of the day in
a postprandial state. We set out to examine the genetic contribution to variation in
postprandial plasma metabolite concentrations and responses to a liquid meal.

Methods

All participants in the Netherlands Epidemiology of Obesity study (N=5,705) consumed
a liquid mixed meal after an overnight fast. Metabolomic measurements were
performed in both fasting and postprandial (t=150 min) plasma samples using the
Nightingale Proton NMR platform. Genome-wide association studies (GWAS) of fasting
and postprandial metabolite concentrations were performed by linear regression. In
addition, the genetics of the metabolite responses, as calculated by both baseline-
adjusted nonlinear residuals and linear mixed models, were examined.

Results

GWAS of fasting metabolite concentrations replicated 36 out of 46 previously identified
genetic associations. In comparison to fasting results, postprandial metabolite
concentrations resulted in highly overlapping genetic signals. By using baseline-adjusted
nonlinear residuals as metabolite responses, a strong association of rs10830963:G
in the melatonin receptor 1B (MTNR1B) gene with the glucose response residual was
identified (beta (SE): -0.23 (0.03), P-value: 2.2x107%°), which was also observed using a
linear mixed model based approach (beta (SE): 0.05 (0.01), P-value: 3.6x10°).

Conclusions

The genetics of fasting and postprandial metabolite concentrations overlap substantially.
rs10830963 in the MTNR1B gene is a genetic determinant of the postprandial glucose
response. Since the ligand of the MTNR1B receptor, melatonin, plays a role in the sleep
wake cycle, this finding suggests a role for circadian rhythmicity in the plasma glucose
response to a meal.
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GWAS for circulating metabolite responses

INTRODUCTION

Metabolites are considered intermediates between genes and clinical phenotypes
(1). Recent developments in high-throughput metabolomic profiling based on mass
spectrometry (MS) (1-4) and nuclear magnetic resonance (NMR) (2; 5-9) platforms
have opened new avenues to explore gene-metabolite associations by genome-wide
association studies (GWAS). In 2014, an atlas was generated involving 145 genetic
loci associated with a broad spectrum of blood metabolites covering amino acids,
carbohydrates, lipids, and peptides (10). A subsequent 2016 study, evaluating circulating
fasting metabolites (mainly lipoprotein subclasses), observed over 60 genetic loci
that are associated with at least one metabolite (11). These studies have provided
considerable mechanistic insight into physiological pathways of diseases. However, the
predominant focus of previous studies has been on the genetics of fasting metabolite
concentrations. Here, we expand on these observations by including GWAS for
postprandial abundances and metabolite response phenotypes.

Due to irregular meal intake, humans spend the majority of their waking hours
in a non-fasting state. However, insight in the genes that affect plasma metabolites
in response to food intake is limited. It seems more than likely that cumulative and
prolonged exposure to specific plasma metabolites in response to food intake may have
pathological consequences. This has been well documented for certain lipid metabolites
(12-16), but may also be true for other metabolites. In clinical practice, an oral-glucose
tolerance test (OGTT) is commonly used for the screening of suspected diabetes and
is performed by determining glucose levels two hours after ingestion of a fixed dose of
glucose. Previous GWAS investigations have identified genetic loci that are associated
with glucose and insulin responses from the OGTT (17), which only partly overlap
with the GWAS findings on fasting glucose and insulin measures. The measurements
from the OGTT have expanded the understanding of genetics and pathophysiology
of diabetes. However, our food intake is more than sugar alone, and similar to OGTT,
meal responses reflected by metabolite profiles are likely to exhibit a large amount of
variability, part of which will be determined by genetics. A recent candidate gene study
showed that the genetics of fasting and postprandial metabolite concentrations are
overlapping (18). Here we set out to extend those initial observations.

In the current study, we aimed to use GWAS to 1) identify novel and evaluate
previously reported genetic contributions to variation in fasting metabolite
concentrations, 2) discover genetic contributions to variation in postprandial metabolite
concentrations, and 3) investigate the genetic basis of individual metabolite responses
(the change from fasting state to postprandial state after a liquid mixed meal) in a large
(N=5,705) population-based cohort study, the Netherlands Epidemiology of Obesity
(NEO) study.
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MATERIALS AND METHODS

Study design and study population

This study was performed in a population-based prospective cohort, the Netherlands
Epidemiology of Obesity (NEO) study (19). All 6,671 participants gave written informed
consent and the Medical Ethical Committee of the Leiden University Medical Center
(LUMC) approved the study design. Initiated in 2008, the NEO study was designed to
study pathways that lead to obesity-related diseases. Detailed information about the
study design and data collection has been described elsewhere (19). Briefly, men and
women aged between 45 and 65 years with a self-reported body mass index (BMI) of
27 kg/m? or higher living in the greater area of Leiden (in the west of the Netherlands)
were eligible to participate in the NEO study. In addition, all inhabitants aged between
45 and 65 years from one municipality (Leiderdorp) were invited irrespective of their
BMI. Participants were invited for a baseline visit at the NEO study center in the LUMC
after an overnight fast. Prior to their visits, participants completed a questionnaire at
home with demographic, lifestyle and clinical data. At the baseline visit, fasting blood
samples were drawn. Within the next five minutes after the fasting blood draw, a liquid
mixed meal (400mL with 600 kcal, with 16 percent of energy (En%) derived from protein,
50 En% carbohydrates, and 34 En% fat) was consumed and subsequent blood samples
were drawn 30 and 150 minutes after the liquid mixed meal. Individuals were excluded
from the analyses (Figure 1) when 1) taking any lipid-lowering medication, 2) violating
overnight fasting, 3) violating liquid meal challenge protocol.

Genotyping and imputation

DNA was extracted from 6,671 venous blood samples obtained from the antecubital
vein. Genotyping was performed in the Centre National de Génotypage (Evry Cedex,
France), using lllumina HumanCoreExome-24 BeadChip (lllumina Inc., San Diego,
California, United States of America). The detailed quality control process has been
described previously (20). Genotypes were further imputed to the Haplotype Reference
Consortium (HRC) release 1.1 (21). All genetic variants with an imputation quality below
0.4 or aminor allele frequency (MAF) below 0.01 were not considered for the analyses in
the present study. As such a total of 5,705 individuals with genotype data for 7,701,731
variants were used in our association analysis.

NMR spectroscopy-based plasma metabolite quantification

Metabolomic measurements were performed in both fasting and postprandial (t=150
minutes after the liquid meal) plasma samples using the Nightingale high-throughput
NMR metabolomics platform (22). No metabolomic measurements at the 30 minute
sampling interval were measured. The metabolomics platform provides 148 metabolites
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(Supplemental Table S1) from eleven substance classes: lipoprotein subclasses (n=98),
lipoprotein particle sizes (n=3), apolipoproteins (n=2), fatty acids and saturation (n=11),
cholesterol (n=9), glycerides and phospholipids (n=9), amino acids (n=8), ketone bodies
(n=2), inflammation (n=1), glycolysis related metabolites (n=3), and fluid balance (n=2).
The NMR-based metabolomics platform and the experimental procedure have been
described in details previously (23).
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FIGURE 1. Analysis workflow.

Metabolite quality control and transformations

To remove samples with low quality and measurement errors, individuals were excluded
when 1) metabolite concentrations deviated more than 10 standard deviation of
the mean values derived from the entire NEO population and 2) more than 30% of
missingness on all 148 metabolite concentrations under either fasting or postprandial
states (Figure 1). Metabolite concentrations were inverse rank normal transformed
(24) using an edited version of the rntransform() function from the GenABEL package
(25), which randomly ranks tied values. When analysing metabolites in the fasting or
postprandial states alone each state was transformed independently of each other.
However, when analysing or deriving the response phenotype the data from the two
states were merged prior to data transformation. As it was previously observed that
sampling date (a compound variable composed of blood sampling year-month) has an
appreciable effect on metabolite concentration in this data set, we included this variable
as a covariate prior to / during linear regression (26).
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FIGURE 2. Miami plot of 148 fasting and postprandial metabolites.

Defining metabolite response to a liquid mixed meal

Metabolite response, or the change in metabolite concentration between a fasting and
postprandial state was analysed in two manners. First and foremost, for each metabolite,
we derived a response phenotype defined as the residuals of an orthogonal nonlinear
least squares (OrNLS, Supplemental Materials) regression where the postprandial state
was set as the dependent variable and the fasting state is the independent variable
in a univariate analysis. Response could have been defined as a simple estimation of
change or a delta between postprandial and fasting states. However, we observed that
for 30 of the 148 metabolites analysed the data were best explained by a non-linear
curve as opposed to a linear one, possibly because a physiological plateauing effect for
some metabolites (Supplemental Figure 1). As such, a simple delta estimates of change
or residuals derived from simple linear regressions between the two states would not
accurately capture the variation of response, or metabolite change.

Alternatively, and only for genotype-phenotype associations discovered in the
fasting or postprandial state, we also evaluate response via linear mixed models
(LMM) that included an interaction term between dietary state and genotype alongside
individual random effects. We reasoned that genotype-phenotype associations
identified in either the fasting or postprandial state would be good candidates for
response or variability in genotypic effects across the two states. Under this framework
we simultaneous measure the effect of dietary state, genotype, and the interaction of
state and genotype on metabolite concentration. Here, the interaction term provides
a measurement of genotype on response, or specifically a differential effect across the
two states. Given the computational expense of the LMM, we choose not to implement
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this second procedure genome-wide but rather only on those associations with any
previous evidence of effect on metabolite concentration, thereby also reducing our
testing burden.

20

-logio(p)

Chromosome

FIGURE 3. Manhattan plot of 148 metabolite response measured by OrNLSr nonlinear residuals.

Genome-wide association analyses of metabolites under different prandial states
Three unique GWAS, fasting, postprandial, and response were performed on 148
metabolites across 4734, 4348, and 4292 individuals, respectively (Figure 1), and
7,701,731 genetic variants across the 22 autosomal chromosomes. Linear regression
analyses, assuming an additive genetic model, were performed with SNPTESTV2 (27)
on the residuals of inverse rank normal transformed metabolite concentrations after
adjusting for age, sex, the first ten principal components and the batch effect variable
sampling date (a compound variable composed of blood sampling year-month).
SNP-metabolite associations that reached genome-wide significance (i.e., P-value
<5x10°®) in either the fasting or postprandial state GWAS were further evaluated in a
LMM framework to test for response, or an interaction between genotype and dietary
state. The linear mixed model was applied using the function Imer in the R package
“Ime4"” (28), fitted using restricted maximum likelihood (REML), and P-values of LMM
significance were derived by Satterthwaite approximations, to control for type 1 error
rates (29). A significant association from LMMs was determined by controlling the false
discovery rate at 5%, i.e. controlling the expected proportion of false discoveries among
the rejected hypotheses less than 5%, by R function “p.adjust(method="fdr")".
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To identify independent loci in each GWAS and LMM tested signals, we first
identified linkage disequilibrium (LD)-independent blocks by clumping all variants
with a standard GWAS significance level of P-value<5x10¢ in PLINK (30). All genetic
variants with a P-value below the threshold (-clump-p1’) were set as “index” SNPs, and
all the other SNPs were clustered into different clumps or LD blocks based on their
linkage disequilibrium (LD) and physical proximity to the “index” SNPs controlled by
‘clump-r2’ and ‘clump-kb’ separately in the command (4). In the current analyses, the
following parameters were adopted: --clump-p1’ 5.0x108, --clump-r2’' 0.5, --clump-kb’
1000. Linkage disequilibrium patterns were based on the 1000 Genome v3 20101123
reference set of Utah Residents (CEPH) with Northern and Western European Ancestry
(CEU) population (37).

Secondary signals were subsequently identified through step-wise conditional
analyses using the genome-wide complex trait analysis (GCTA) tool version 1.24.4
(32), with a parameter of minor allele frequency (MAF) >0.01. A conditional P-value
<5x10® was considered to be genome-wide significant. The NMR-based platform used
here focuses heavily on lipoprotein subclasses that exhibit strong intercorrelations
(Supplemental Figure 2). To account for these intercorrelations in FDR based multiple
test corrections, we applied the variance decomposition method proposed by Li et al
(33). This resulted in 39/38/44 independent components underlying 148 metabolites
in the fasting state, the postprandial state, and the response as determined by OrNLS
respectively. Accordingly, metabolome-wide significance was set to 1.28x10°, 1.32x10-
%, 1.14x10° for fasting, postprandial and nonlinear residual metabolite response
GWAS, respectively, where the standard GWAS significance level (5x108) was divided
by the number of independent components underlying 148 metabolites in each
state determined by variance decomposition (33). The analysis workflow is shown in
Figure 1. The associations with P-value <5x10% were defined as suggestive signals
and considered for identifying LD-independent blocks and secondary signals. For the
associations reached metabolome-wide significance, they were called the lead signals
and reported in the Results.

Estimates of heritability

The narrow-sense SNP-based heritability for each metabolite under fasting, postprandial
and OrNLS derived response states was estimated by restricted maximum likelihood
(GREML) under the framework of genome-wide complex trait analysis (GCTA). Genetic
variants (both genotyped and imputed genotype data) with a minor allele frequency
(MAF) >1% were retained for the analysis (32).
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FIGURE 4. Volcano plot of all signals reached genome-wide association threshold (P-value<5x10°¢)
on different fasting status. The horizontal dash line corresponds to p-value = 5x10°¢.

RESULTS

Description of metabolomics data under different prandial states

Postprandial metabolite concentrations were correlated with their fasting levels
(median absolute Pearson’s r = 0.29, interquartile range [0.12, 0.59]). Moreover, for
30 metabolites, these associations were non-linear (Supplemental Figure 1). When
determining a meal response parameter for a metabolite conditional on the fasting
level, the fasting and postprandial associations should be taken into account. For
this, we adopted orthogonal nonlinear least squares (OrNLS) regressions to estimate
the metabolite responses to a liquid meal. Interestingly, the metabolite response as
determined by OrNLS showed low correlations to either fasting (median absolute
Pearson’sr =0.088, interquartile range [0.043, 0.14]) or postprandial (median absolute
Pearson's r =0.11, interquartile range [0.047, 0.19]) state measures.

Fasting GWAS

In total 32,212 SNP-fasting metabolite concentration associations were discovered at a
P-value less than 5x10® across 144 of the 148 tested metabolites (Supplementary Table
3), which were further identified LD-independent blocks by clumping. These variants
map to 2249 unique loci, where variants were clustered into 348 linkage disequilibrium
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blocks given a linkage disequilibrium r2 greater than 0.5 (Supplementary Table 4).
In addition, 759 secondary signals were identified using joint conditional analysis
(Supplementary Table 5). Among the 62 associations previously reported by Kettunen
et al. (11) between SNPs and fasting metabolites, 46 could be tested in the current
fasting metabolite GWAS (the other 16 associations could not be evaluated due to our
quality control: SNP MAF<0.01 or imputation quality <0.4). Among these 46 identified
associations, 36 were successfully replicated (FDR corrected P-value <0.05) in the NEO
study (Supplemental Table 2).
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FIGURE 5. Combinatorial plot of glucose response signals identified from GWAS. (a). Regional plot
for the lead signal rs7936247; (b). Regional plot for the lead signal rs10830963; (c). Glucose levels
at fasting, 30 minutes and 150 minutes after a liquid mixed meal in the NEO cohort, stratified by
rs10830963 genotype; (d). The -log10(p-values) of associations between rs10830963 and several
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IDI: Insulin disposition index; HOMA-B: the Homeostasis Model Assessment (HOMA) estimates steady
state beta cell function (%B).
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Postprandial GWAS

At a P-value less than 5x10%, the postprandial metabolite GWAS identified 30,747
genotype-metabolite concentration associations (Supplementary Table 6), mapping to
286 LD-independent autosomal regions (Figure 2, Supplementary Table 7). In addition
689 unique secondary signals were identified (Supplementary Table 8). Among the
30,747 associations, 26,419 of them were also identified in the fasting state, largely
mirroring the observations of fasting level metabolites (Figure 4 and Supplemental
Figure 3). Another 4328 associations are unique in the postprandial state. In addition,
effect estimates are stronger in the postprandial state (Wilcoxon rank sum test of
abs(beta) estimates P-value<2.2x107°) relative to the fasting state (Figure 4).

Response GWAS by orthogonal nonlinear least squares regression (OrNLSr)

In this genome-wide analysis, we identified 234 genetic variants that contributed to
variation in metabolite response to a meal (P-value <5x10%, Supplementary Table 9),
mapping to 16 LD-independent genomic regions across 23 metabolites (Table 2). In
addition, 23 secondary associations were also identified (Supplementary Table 10).
Only two of the LD-independent associations (rs10830963:fasting glucose levels;
rs7936247:fasting glucose levels) were also observed in either fasting or postprandial
states (Supplemental Figure 3 and Figure 4).

Two regions, one on chromosome 5 and a second on chromosome 11 harboured
the strongest associations for metabolite response (Figure 3). Association signals
are attributed to four LD-independent loci. Two signals, rs10830963 (MAF: 0.26, beta
(SE): 0.19 (0.02), P-value: 2.2x107"%) and rs7936247 (MAF: 0.32, beta (SE): 0.14 (0.02),
P-value: 2.4x10"), on chromosome 11 are located at the MTNR1B locus (rs10830963
and rs7936247; LD r2 = 0.49; Figure 5a-b and Table 2) and are associated with glucose
response. Another signal rs458741 located on chromosome 5 was associated with
extremely large VLDL total cholesterol levels (XXLVLDLC) (MAF: 0.23, beta (SE):
-0.02 (0.03), P-value: 2.76x10°) and extremely large VLDL cholesterol esters levels
(XXLVLDLCE) (MAF: 0.23, beta (SE): -0.03 (0.03), P-value: 9.74x10719), respectively.

Given the observed association between rs10830963 and glucose response,
glucose as measured by a clinical chemistry laboratory at fasting state, 30 minutes and
150 minutes after a liquid mixed meal were examined in the NEO cohort by stratifying
on rs10830963 genotype. The postprandial glucose excursions, defined as the change
in glucose concentrations from before to after a meal, showed a significant difference
(fasting status and genotype interaction p-value: 7.6x10-) (Figure 5¢). rs10830963 has
been linked to several glycaemic traits in previous large-scale GWAS meta-analysis, with
the strongest signals on fasting glucose (Figure 5d), followed by HOMA-.
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Chapter 6

Testing for response effects by linear mixed model

To further determine whether genetic variants associated with fasting or postprandial
metabolite concentrations affect response, we performed a targeted linear mixed model
analysis for response on these genotype-to-metabolites associations. In total 36541
genotype-metabolite associations were tested, 204 of which exhibited a response effect
(genotype-by-dietary state interaction) at an FDR of 5% (Supplemental Table 11). These
associations map to 17 genomic regions across 19 metabolites (Table 2). The strongest
effect was observed for glucose levels and maps to rs10830963 in the intron of MTNRTB
gene (genotype-by-dietary state interaction: beta (SE): 0.05(0.01), P-value: 3.64x107),
which is consistent with the finding by OrNLSr.
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FIGURE 6. Heritability of 148 metabolites on different fasting status
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Heritability

To understand the proportion of postprandial metabolite concentrations as well as
metabolite responses attributable to genetics, narrow-sense heritability was estimated
from genome-wide SNPs in the NEO population. On average, the SNP heritability was
31% for fasting metabolites, which was higher than the average SNP heritability for
postprandial metabolites concentrations and response measures (27% and 12%,
respectively). Heritability for fasting state metabolites was higher than the counterpart
postprandial measures (paired one-sided Wilcoxon-Rank test, p-value=2.2x10"").
Overall, the heritability of metabolite responses was much smaller than either fasting
or postprandial state measures. However, the response measures of the amino acids
(except for histidine), XXLVLDL, XLVLDL and XLHDL have a heritability estimate of around
25% (Figure 6).

DISCUSSION

To increase our understanding of the genetics of postprandial metabolite concentrations
as well as metabolite responses to a liquid meal, we performed GWAS on metabolites
measured before and after a liquid mixed meal and on the response itself. We
replicated the majority of the fasting metabolite-SNP associations reported previously.
Subsequently, we observed highly overlapping genetic association signals between 148
fasting and postprandial metabolite measures. By using baseline-adjusted nonlinear
residuals to determine the meal response, rs10830963 located in the intron of MTNR1B
gene was associated with glucose response, which was also found using a linear mixed
model based approach. Since the ligand of the MTNR1B receptor, melatonin, plays a
role in the sleep wake cycle, this association suggests a role of circadian rhythmicity in
the glucose response after a meal.

When the genetics of metabolite responses after a meal are assessed, it is important
to realize that these responses are likely to be affected by their fasting baseline
concentrations. This could be addressed by adjustment for baseline measures. However,
this may result in collider bias (34) and lead to spurious associations from inflated type
1 error. Baseline adjustment has been extensively addressed in the literature with both
empirical simulation studies and theoretical analyses using directed acyclic graphs
(DAGS) (34; 35). Linear mixed models, which control for a modelled baseline, were
proposed to reduce potential bias introduced by baseline adjustment (36). Here, we
exploited two approaches to investigate the genetics of metabolite responses. We firstly
adopted an orthogonal nonlinear least squares regression (OrNLSr) model to derive
measures of postprandial responses that are statistically independent from baseline
levels. In addition, we ran linear mixed models for the candidate significant associations
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that were identified in either fasting or postprandial metabolite GWAS. With both of
the response modelling approaches, rs10830963-G located in the intron of MTNR1B
gene exhibited the strongest signal associated with the glucose response. Therefore,
this finding is not likely due to bias from baseline adjustment.

Melatonin receptors (MTNR) belong to the G protein-coupled receptor (GPCR)
family, with two common subtypes being found in humans (37), i.e., G-protein coupled
receptors MT1T (MTNR1A) and MT2 (MTNR1B). MTNR1A is primarily associated with sleep
promotion, whereas MTNR1B is associated with the regulation of the internal circadian
clock to accommodate diurnal rhythms (38). rs10830963-G, located in the middle of the
single intron of the MTNR1B gene, was found to be associated with fasting glucose levels
and the type 2 diabetes risk in GWAS studies nearly a decade ago (39; 40). Concurrently,
this variant was shown to be associated with decreased early-phase insulin secretion (41;
42), which is normally considered as the earliest detectable abnormality in individuals
that are prone to type 2 diabetes (43). In line with this, G-allele carriers were observed
to have a 20% increased risk to develop pre-diabetes (hazard ratio [HR] (95% confidence
interval [95%CI]: 1.20 [1.15, 1.27]), whereas no additional risk was observed for the
progression to type 2 diabetes from an impaired fasting glucose state (HR [95%Cl]:
0.98 [0.89, 1.07]). In the current study, the glucose response was induced by a liquid
meal, which more closely resembles regular meal intake. We observed a strong effect
of rs10830963-G risk allele on plasma glucose levels at 30 minutes after a meal. This
translates to a life-long accumulative effect from this genotype on glucose exposure
after meals and likely plays an important role in the development of glucose intolerance
and insulin resistance.

The plasma melatonin concentration fluctuates across the day following a diurnal
pattern, with high levels during the night and being nearly undetectable in the early
morning (44). All the blood samples in the NEO study were collected between 8 am
and 12 pm, which is at the trough of plasma melatonin levels. This would imply that
melatonin is thus unlikely to mediate the circadian effect of rs10830963-G on glucose
response in our study. A previous small intervention study addressed the effect of
exogenous melatonin administration on glucose intolerance. This was determined
by the oral glucose tolerant test (OGTT, 75g) and individuals were stratified on the
rs10830963-G genotype and measured both in the morning and evening (45). In contrast
to expectation, the results suggested an interaction effect between the rs10830963-G
genotype and exogenous melatonin administration on glucose intolerance, which was
only observed in the morning, but not in the evening, when endogenous melatonin
levels are elevated. This implies variability in glucose response after a meal in carriers
of the rs10830963-G genotype, which remains to be determined.
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Several methodological aspects should be considered. The main strength of this
study is the liquid meal that was provided to all the NEO participants, which more
closely resembles normal meal consumption during the day than a glucose tolerance
test, to assess glucose metabolism after a meal. We generated novel insight in the
genetic basis for fasting and postprandial metabolite concentrations in a general
population. Moreover, to assess metabolite responses, we used two different methods
to account for the potential bias introduced by baseline adjustment. Nonetheless, the
sample size of the genome-wide association study was relatively small to identify genetic
variants with low-frequency and rare variants. In addition, it is still unclear whether the
association between rs10830963-G genotype and glucose response is generalizable
at different time periods during a day.

CONCLUSION

The genetics of fasting and postprandial metabolite concentrations after a liquid meal
are highly overlapping. rs10830963 in the MTNR1B gene is a genetic determinant of the
postprandial glucose response after a liquid meal, which implies a role for circadian
rhythmicity in the plasma glucose response to a meal.
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SUPPLEMENTARY INFORMATION

SUPPLEMENTAL TABLE 1. List of measured metabolites on the platform, clustered into eleven
subclasses.

Short name Full name Remark

Lipoprotein subclasses

Chylomicrons and extremely large VLDL particles: with an average particle diameter
over 75 nm

XXLVLDLP Particle concentration (mmol/I)

XXLVLDLL Total lipids (mmol/I)

XXLVLDLPL  Phospholipids (mmol/I)

XXLVLDLC Total cholesterol (mmol/l)

XXLVLDLCE Cholesterol esters (mmol/l)

XXLVLDLFC Free cholesterol (mmol/I)

XXLVLDLTG  Triglycerides (mmol/I)

Very large VLDL particles: with an average particle diameter of 64 nm

XLVLDLP Particle concentration (mmol/l)
XLVLDLL Total lipids (mmol/I)

XLVLDLPL Phospholipids (mmol/I)
XLVLDLC Total cholesterol (mmol/I)

XLVLDLCE Cholesterol esters (mmol/l)

XLVLDLFC Free cholesterol (mmol/I)

XLVLDLTG Triglycerides (mmol/I)

Large VLDL particles: with an average particle diameter of 53.6 nm

LVLDLP Particle concentration (mmol/I)
LVLDLL Total lipids (mmol/I)

LVLDLPL Phospholipids (mmol/I)
LVLDLC Total cholesterol (mmol/I)
LVLDLCE Cholesterol esters (mmol/l)
LVLDLFC Free cholesterol (mmol/l)
LVLDLTG Triglycerides (mmol/I)

Medium VLDL particles: with an average particle diameter of 44.5 nm
MVLDLP Particle concentration (mmol/I)
MVLDLL Total lipids (mmol/I)

MVLDLPL Phospholipids (mmol/l)
MVLDLC Total cholesterol (mmol/I)

MVLDLCE Cholesterol esters (mmol/l)
MVLDLFC Free cholesterol (mmol/I)
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SUPPLEMENTAL TABLE 1. Continued.

Short name Full name Remark
MVLDLTG Triglycerides (mmol/I)
Small VLDL particles: with an average particle diameter of 36.8 nm

SVLDLP Particle concentration (mmol/I)

SVLDLL Total lipids (mmol/I)

SVLDLPL Phospholipids (mmol/I)

SVLDLC Total cholesterol (mmol/I)

SVLDLCE Cholesterol esters (mmol/l)

SVLDLFC Free cholesterol (mmol/l)

SVLDLTG Triglycerides (mmol/I)

Very small VLDL particles: with an average particle diameter of 31.3 nm
XSVLDLP Particle concentration (mmol/I)

XSVLDLL Total lipids (mmol/I)

XSVLDLPL Phospholipids (mmol/l)
XSVLDLC Total cholesterol (mmol/I)
XSVLDLCE Cholesterol esters (mmol/l)
XSVLDLFC Free cholesterol (mmol/l)
XSVLDLTG Triglycerides (mmol/I)

IDL particles: intermediate-density lipoprotein particles with an average particle
diameter of 28.6 nm

IDLP Particle concentration (mmol/I)
IDLL Total lipids (mmol/I)

IDLPL Phospholipids (mmol/l)

IDLC Total cholesterol (mmol/I)
IDLCE Cholesterol esters (mmol/l)
IDLFC Free cholesterol (mmol/l)
IDLTG Triglycerides (mmol/I)

Large LDL particles: low-density lipoprotein particles with an average particle
diameter of 25.5 nm

LLDLP Particle concentration (mmol/I)
LLDLL Total lipids (mmol/I)

LLDLPL Phospholipids (mmol/l)

LLDLC Total cholesterol (mmol/I)
LLDLCE Cholesterol esters (mmol/l)
LLDLFC Free cholesterol (mmol/I)
LLDLTG Triglycerides (mmol/I)

Medium LDL particles: low-density lipoprotein particles with an average particle
diameter of 23.0 nm
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SUPPLEMENTAL TABLE 1. Continued.

Short name Full name Remark
MLDLP Particle concentration (mmol/l)

MLDLL Total lipids (mmol/I)

MLDLPL Phospholipids (mmol/I)

MLDLC Total cholesterol (mmol/I)

MLDLCE Cholesterol esters (mmol/l)

MLDLFC Free cholesterol (mmol/I)

MLDLTG Triglycerides (mmol/I)

Small LDL particles: low-density lipoprotein particles with an average particle
diameter of 18.7 nm

SLDLP Particle concentration (mmol/l)
SLDLL Total lipids (mmol/I)

SLDLPL Phospholipids (mmol/I)

SLDLC Total cholesterol (mmol/I)
SLDLCE Cholesterol esters (mmol/l)
SLDLFC Free cholesterol (mmol/I)
SLDLTG Triglycerides (mmol/I)

Very large HDL particles: high-density lipoprotein particles with an average particle
diameter of 14.3 nm

XLHDLP Particle concentration (mmol/l)
XLHDLL Total lipids (mmol/I)

XLHDLPL Phospholipids (mmol/I)
XLHDLC Total cholesterol (mmol/I)
XLHDLCE Cholesterol esters (mmol/l)
XLHDLFC Free cholesterol (mmol/I)

XLHDLTG Triglycerides (mmol/I)

Large HDL particles: high-density lipoprotein particles with an average particle
diameter of 12.1 nm

LHDLP Particle concentration (mmol/l)
LHDLL Total lipids (mmol/I)

LHDLPL Phospholipids (mmol/I)

LHDLC Total cholesterol (mmol/I)
LHDLCE Cholesterol esters (mmol/l)
LHDLFC Free cholesterol (mmol/I)

LHDLTG Triglycerides (mmol/I)

Medium HDL particles: high-density lipoprotein particles with an average particle
diameter of 10.9 nm

MHDLP Particle concentration (mmol/l)
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SUPPLEMENTAL TABLE 1. Continued.

Short name Full name Remark
MHDLL Total lipids (mmol/I)

MHDLPL Phospholipids (mmol/l)

MHDLC Total cholesterol (mmol/I)

MHDLCE Cholesterol esters (mmol/l)
MHDLFC Free cholesterol (mmol/I)
MHDLTG Triglycerides (mmol/I)
Small HDL particles

SHDLP Particle concentration (mmol/I)
SHDLL Total lipids (mmol/I)

SHDLPL Phospholipids (mmol/l)

SHDLC Total cholesterol (mmol/I)
SHDLCE Cholesterol esters (mmol/l)
SHDLFC Free cholesterol (mmol/l)

SHDLTG Triglycerides (mmol/I)
Lipoprotein particle sizes

VLDLD Mean diameter of VLDL particles (nm) calculated as the particle
concentration weighted
average of the XXL-, XL, L,
M-, S, and XS-VLDL subclass
diameters

LDLD Mean diameter of LDL particles (nm) calculated as the particle
concentration weighted
average of all the LDL and
the IDL subclass diameters

HDLD Mean diameter of HDL particles (nm) calculated as the particle
concentration weighted
average of all the HDL
subclass diameters

Cholesterol
SerumC Serum total cholesterol (mmol/I)
VLDLC Total cholesterol in VLDL(mmol/I)

RemnantC  Remnant cholesterol (non-HDL, non-LDL-
cholesterol) (mmol/I)

LDLC Total cholesterol in LDL (mmol/I)

HDLC Total cholesterol in HDL (mmol/I)

HDL2C Total cholesterol in HDL2 (mmol/I) HDL particles within the
density range of 1.063-1.125
g/mL
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SUPPLEMENTAL TABLE 1. Continued.

Short name Full name Remark

HDL3C Total cholesterol in HDL3 (mmol/l) HDL particles within the
density range of 1.125-1.210
g/mL

EstC Esterified cholesterol (mmol/I)

FreeC Free cholesterol (mmol/I)

Glycerides & phospholipids

SerumTG Serum total triglycerides (mmol/I)

VLDLTG Triglycerides in VLDL (mmol/I)

LDLTG Triglycerides in LDL (mmol/I)

HDLTG Triglycerides in HDL(mmol/l)

DAG Diacylglycerol (mmol/l)

TotPG Total phosphoglycerides (mmol/I)

pC Phosphatidylcholine and other cholines (mmol/I)
SM Sphingomyelins (mmol/I)

TotCho Total cholines (mmol/l)

Apolipoproteins

ApOAT Apolipoprotein A-1 (g/l)

ApoB Apolipoprotein B (g/I)

Fatty acids (FA) & saturation

TotFA Total fatty acids (mmol/I)

FALen Estimated description of fatty acid chain length,
not actual carbon number

UnSat Estimated degree of unsaturation

DHA 22:6, docosahexaenoic acid (mmol/l)

LA 18:2, linoleic acid (mmol/l)

CLA Conjugated linoleic acid - mmol/I

FAW3 Omega-3 fatty acids (mmol/I)

FAW6 Omega-6 fatty acids (mmol/I)

PUFA Polyunsaturated fatty acids (mmol/I)

MUFA Monounsaturated fatty acids; 16:1, 18:1 (mmol/I)

SFA Saturated fatty acids (mmol/l)

Glycolysis related metabolites

Glc Glucose (mmol/l)

Lac Lactate (mmol/I)

Cit Citrate (mmol/I)

Amino acids

Ala Alanine (mmol/I)
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SUPPLEMENTAL TABLE 1. Continued.

Short name Full name Remark
GIn Glutamine (mmol/l)

His Histidine (mmol/I)

lle Isoleucine (mmol/l)

Leu Leucine (mmol/I)

Val Valine (mmol/I)

Phe Phenylalanine (mmol/I)

Tyr Tyrosine (mmol/I)

Ketone bodies

Ace Acetate (mmol/l)
bOHBut 3-hydroxybutyrate (mmol/I)

Fluid balance

Crea Creatinine (mmol/I)

Alb Albumin

Inflammation

Gp Glycoprotein acetyls, mainly a1-acid glycoprotein
(mmol/I)
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GWAS for circulating metabolite responses
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SUPPLEMENTAL FIGURE 1. Metabolite concentrations (N=30) between fasting and postprandial
states with non-linear associations.

157



Chapter 6

SUPPLEMENTAL FIGURE 2. Intra- and inter-state Pearson correlations between 444 metabolites
(148x3) under fasting, postprandial and response.
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GWAS for circulating metabolite responses
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SUPPLEMENTAL FIGURE 3. Overall of all the identified signals from GWAS on different fasting
status.
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