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6 Spin-orbit interaction in
InSb nanowires

6.1 Introduction

Hybrid semiconductor nanowire-superconductor devices are a promising
platform for the study of topological superconductivity.7 Such devices
can host Majorana fermions,120,135 bound states with non-Abelian ex-
change statistics. The realization of a stable topological state requires an
energy gap that exceeds the temperature at which experiments are per-
formed (∼50 mK). The strength of the spin-orbit interaction (SOI) is the
main parameter that determines the size of this topological gap154 and
thus the potential of these devices for the study of Majorana fermions.
The identification of nanowire devices with a strong SOI is therefore
essential. This entails both performing measurements on a suitable
material and device geometry as well as establishing theory to extract
the SOI strength.

InSb nanowires are a natural candidate to create devices with a strong
SOI, since bulk InSb has a strong SOI.58,179 Nanowires have been used
in several experiments that showed the first signatures of Majorana
fermions.40,44,46,128 Nanowires are either fabricated by etching out wires
in planar heterostructures or grown bottom-up. The strong confinement
in the growth direction makes etched wires two-dimensional (2D) even
at high density. SOI has been studied in 2D InSb wires86 and in planar
InSb heterostructures,87 from which a SOI due to structural inver-
sion asymmetry,144 a Rashba SOI αR , of 0.03eVÅ has been obtained.87

Bottom-up grown nanowires are three-dimensional (3D) when the Fermi
wavelength is smaller than the wire diameter. In InSb wires of this
type SOI has been studied by performing spectroscopy on quantum
dots,129,132 giving αR = 0.16−0.22eVÅ.129 However, many (proposed)
topological nanowires devices79,80,178 contain extended conducting re-
gions, i.e. conductive regions along the nanowire much longer than the
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6 Spin-orbit interaction in InSb nanowires

a) b)

Figure 6.1: Quantum interference along time-reversed paths in 2D (a) and 3D (b) nanowires. In both
cases an inversion symmetry induces spin precession in between (boundary) scattering events.

nanowire diameter. The SOI strength in these extended regions has not
yet been determined. It is likely different from that in quantum dots,
as the difference in confinement between both geometries results in a
different effective electric field and thus different Rashba SOI. Measure-
ments of SOI strength in extended InSb nanowire regions are therefore
needed to evaluate their potential for topological devices. Having chosen
a nanowire material, further enhancement of Rashba SOI strength can
be realized by choosing a device geometry that enhances the structural
inversion asymmetry.56,133 Our approach is to use a high-k dielectric in
combination with a top gate that covers the InSb nanowire.

6.2 Magnetoconductance measurements in
3D nanowires

The standard method to extract SOI strength in extended regions is
through low-field magnetoconductance (MC) measurements.78,81 Quan-
tum interference (see Fig. 6.1) in the presence of a strong SOI results in
an increased conductance, called weak anti-localization (WAL),27 that
reduces to its classical value when a magnetic field is applied.10 From
fits of MC data to theory a spin relaxation length is extracted. If spin re-
laxation results from inversion asymmetry a spin precession length and
SOI strength can be defined. To extract SOI strength in nanowires the
theory should contain (1) the length over which the electron dephases in
the presence of a magnetic field, the magnetic dephasing length,25 and
(2) the relation between spin relaxation and spin precession length.93

The magnetic dephasing and spin relaxation length depend, besides
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6.2 Magnetoconductance measurements in 3D nanowires

magnetic field and SOI strength respectively, on dimensionality and
confinement. For instance, in nanowires, the spin relaxation length
increases when the wire diameter is smaller than the spin precession
length93,94,155. Therefore the spin relaxation length extracted from WAL
is not a direct measure of SOI strength. These effects have been studied
in 2D wires,25,93 but results for 3D wires are lacking. As geometry and
dimensionality are different (see Fig. 6.1), using 2D results for 3D wires
is unreliable. Thus, theory for 3D wires has to be developed.

In this chapter, we first theoretically study both magnetic dephasing
and spin relaxation due to Rashba SOI in 3D hexagonal nanowires.
We then use this theory to determine the spin-orbit strength from our
measurements of WAL in dual-gate InSb nanowire devices, finding a
strong Rashba SOI αR = 0.5−1eV Å.

The WAL correction to the classical conductivity can be computed in
the quasiclassical theory as25,37,106

∆G =− e2
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. (6.1)

The length scales in this expression are the nanowire length L, the mean
free path le, the phase coherence length lϕ, the magnetic dephasing
length lB, and the spin relaxation length lso. The mean free path
le = vFτe where τe is the mean time between scattering events and vF
the Fermi velocity. In addition, the remaining length scales are also
related to corresponding time scales as

lB,ϕ,so =
√

DτB,ϕ,so. (6.2)

where D = 1
d vFle the diffusion constant in d dimensions (d = 3 for

bottom-up grown nanowires).
In the quasiclassical theory, τϕ (and hence lϕ) is a phenomenological

parameter. In contrast, τB and τso are computed from a microscopic
Hamiltonian, by averaging the quantum mechanical propagator over
classical trajectories (the details of the theory are outlined in Sec. 6.3
below). τB and τso thus depend not only on microscopic parameters
(magnetic field B and SOI strength, respectively), but through the av-
erage over trajectories also on dimensionality, confinement, and le. We
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6 Spin-orbit interaction in InSb nanowires

a) b)

Figure 6.2: (a) Normalized dephasing time τB le4/τe lm4 as a function of W /le for a hexagonal
nanowire (see inset) for field parallel (black) and perpendicular (red) to the nanowire. Dots are nu-
merical data for different lm in the range 1−102.5 (10−20 points per W), solid lines a fit to Eq. (6.3).
Dashed line is the 2D wire result of Ref. 25. (b) τso/τe as a function of spin-orbit strength lR/le and
different wire diameters in a 3D hexagonal nanowire.

focus on the case where Rashba SOI due to an effective electric field in
the z-direction, perpendicular to wire and substrate, dominates. Then
the microscopic SOI Hamiltonian is αR

~ (pxσy − pyσx), where σx,y are
Pauli matrices and px,y the momentum operators. The corresponding
spin-orbit precession length, lR, equals ~2/m∗αR. In our treatment we
neglect the Zeeman splitting, EZ since we concentrate on the regime of
large Fermi wave vector, kF, such that αRkF À EZ.

The quasiclassical description is valid if the Fermi wave length λF ¿
le, lR, and much smaller than the transverse extent W of the nanowire,
i.e. for many occupied subbands. In particular, the quasiclassical method
remains valid even if lR < le,W .185

We evaluate τB and τso numerically by averaging over random classi-
cal paths for a given nanowire geometry. The paths consist of piece-wise
linear segments of freely moving electrons with constant speed,26,37

only scattered randomly from impurities and specularly at the boundary.
These assumptions imply a uniform electron density in the nanowire.
Specular boundary reflection is expected as our wires have no surface
roughness.181 (We extrapolate the results on InAsSb wires to InSb since
the flatness of the facets results from the introduction of Sb.)

We apply our theory to nanowires with a hexagonal cross-section
and diameter W (see inset in Fig. 6.2a) in the quasi-ballistic regime,
le & W. Fig. 6.2(a) shows the magnetic dephasing time τB (normal-
ized by τe l4

m/l4
e with lm =p

~/eB) as a function of wire diameter. Both
parallel and perpendicular field give rise to magnetic dephasing due
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6.3 Evaluation of weak (anti-)localization in the quasiclassical theory

to the three-dimensionality of the electron paths, in contrast to two-
dimensional systems where only a perpendicular field is relevant (see
Fig. 6.1). The different field directions show a different dependence on
W, with, remarkably, τB (and thus lB) independent of field-orientation
for W/le = 0.5. Our results for τso as a function of lR are shown in
Fig. 6.2b. We find an increase of τso as the wire diameter W is decreased,
indicating that confinement leads to increased spin relaxation times.

For lm,R, le &W we can fit our results reliably as

τB,so = C
l4
m,R

Wγl(4−γ)
e

. (6.3)

This is shown for τB in Fig. 6.2a where data for different lm and W
collapse to one line. In particular for τB, we find C = 34.1±0.1 and
γ= 2.590±0.002 for parallel field, C = 22.3±0.3 and γ= 3.174±0.003 for
perpendicular field. For τso C = 8.7±0.5 and γ= 3.2±0.1. Note that our
numerics is valid beyond the range where the fit (6.3) is applicable. For
example, for lR .W the numerical result deviates from the power-law
of (6.3) as seen in Fig. 6.2b; in this regime only the numerical result can
be used.

The fit (6.3) allows for a quantitative comparison of our 3D wire
results to 2D wires: Both are similar in that there is flux cancellation
(γ> 2)25 and suppressed spin relaxation due to confinement. However,
they exhibit a significantly different power-law. As an example, in
Fig. 6.2a we compare to the 2D wire result for weak fields from Ref. 25
(C = 10.8, γ= 3) that can differ by an order of magnitude from our results.
This emphasizes the need for an accurate description of geometry for a
quantitative analysis of WAL.

6.3 Evaluation of weak (anti-)localization
in the quasiclassical theory

6.3.1 The quasiclassical theory
Within the quasiclassical formalism, the weak (anti-) localization correc-
tion ∆G is given as26,37,106

∆G =−2e2

π~
D
L

∫ ∞

0
dtC(t) (1− e−t/τe ) e−t/τϕ〈MB(t)〉〈Mso(t)〉 (6.4)
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6 Spin-orbit interaction in InSb nanowires

In this expression, L is the length of the nanowire, C(t)= (4πDt)−1/2 is
the 1D return probability, D = 1

d vFle the diffusion coefficient (d = 3 for
the nanowires). 〈. . .〉 denotes an average over all classical paths that
close after time t. MB is due to the orbital effect of the magnetic field
and reads37

MB(t)= eiφ(t), with φ(t)= 2e
~

∫ x(t)

x(0)
A ·dl . (6.5)

The Hamiltonian of spin-orbit interaction (SOI) can in general be written
as

HSOI =σ ·Bso(p) (6.6)

where σ is a vector of Pauli matrices and Bso a momentum-dependent
effective magnetic field due to the SOI. In the case of Rashba SOI as
considered here we have Bso(p) = αR

~ (−py, px,0). The SOI of Eq. (6.6)
then gives rise to the modulation factor37,185

Mso(t)= 1
2

Tr
(
W(t)2

)
W(t)=T exp

[
i
~

∫ t

0
dt′σ ·Bso(p(t))

]
(6.7)

where T is the time-order operator.
When the motion along the longitudinal direction of wire is diffusive,

the modulation factors generally decay exponentially with time,37

〈MB(t)〉 = e−t/τB , and 〈Mso(t)〉 = 3
2 e−4t/3τso − 1

2 . (6.8)

Note that τB and τso depend explicitly on the magnetic field B and the
SOI strength through equations (6.5) and (6.7), respectively. However,
through the average over classical paths, 〈. . .〉 they also depend on the
geometry of the nanowire and the mean free path le.

With the exponential form of the modulation factors in Eq. (6.8) the
integral in Eq. (6.4) can be performed to give Eq. (6.1)

Requirements of the quasi-classical theory The quasiclassical descrip-
tion is valid if the Fermi wave length λF is much smaller than the
typical transverse extent of the nanowire W , i.e. for many occupied sub-
bands. It also requires that the classical paths are neither affected
by magnetic field nor SOI: The former requires that the cyclotron
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6.3 Evaluation of weak (anti-)localization in the quasiclassical theory

radius λcyc À W , le,26,37 the latter that the kinetic energy dominates
over the spin-orbit energy so that lR ÀλF .185 In particular, the quasi-
classical method is valid also for lR < le,W. Additional requirements
are τB,τso À τe, for the exponential decay of magnetic dephasing time
(length) and spin relaxation time to be valid.26,185 In addition we must
have lϕÀW to be in the quasi-one-dimensional limit, where the return
probability C(t) in Eq. (6.4) is given by the 1D return probability.

These are the fundamental requirements for the quasiclassical theory
to hold. They should not confused with the stronger requirements
lm,R,e &W needed for the validity of the fit of Eq. (6.3)

Experimental fulfillment of quasi-classical requirements The experi-
mental details validating the applicability of the quasiclassical tech-
nique follow later in this chapter. The number of occupied subbands is
discussed in Sec. 6.4.4. As shown in Fig. 6.5c below, lϕ largely exceeds
the wire diameter for a large range of conductance, thereby obeying the
requirement for a one-dimensional quantum interference model. The
range of B (up to 200mT) in the fits in Figs. 6.5 and 6.6 in general obey
τB & τe. Alternatively, fitting over a smaller B-range (up to 75−100mT,
fulfilling lm & W, τe and λcyc À W , le to a larger extent) can be per-
formed on MC traces showing WAL without WL at larger B (observed
when G ≥ 2e2/h) with fixed ∆G(B →∞), yielding the same results within
∼ 20%.

6.3.2 Monte Carlo evaluation
In order to obtain the decay times in Eq. (6.8) as a function of mean free
path le, wire diameter W, and magnetic field B or Rashba spin-orbit
strength αR , we performed Monte-Carlo simulations of quasiclassical
paths in a hexagonal nanowire, as has been described before in Refs.
26,37 and 185.

Model and Boltzmannian ensemble We model the nanowire as a three-
dimensional prism of infinite length, with a regular hexagon as cross-
section.

A Boltzmannian ensemble of quasiclassical paths is created, with
each path consisting of propagation along a sequence of straight line
segments with constant velocity. For each path, after certain inter-
vals, the direction of the particles velocity is changed at random, with
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6 Spin-orbit interaction in InSb nanowires

isotropic distribution, corresponding to collision of randomly distributed
pointlike impurities. The distance of free propagation between collision
is determined at random, Poisson-distributed P(l)∝ e−l/le , so that the
mean-free path is le. On impact with one of the nanowires walls, reflec-
tion occurs in a specular fashion, by reversing the velocity component
perpendicular to the wall. The resulting ensemble will consist of paths
which are open (start and end point do not coincide).

Evaluation of MB, Mso After obtaining an ensemble of Boltzmannian
paths, for each path the integrals Eq. (6.5) or Eq. (6.7) are evaluated.
Because the paths consist of straight line segments, the evaluation is el-
ementary for each segment, and the integrals MB, Mso are the products
of these segments. For MB, these are the phase factors eiφn accumulated
along each segment, while for Mso we must multiply unitary two-by-two
matrices which describe the spin dynamics along each segment. When
calculating M at the same time as generating the path, only the last
position, velocity and accumulated product of MB,so(t) need to be kept
in memory.

Magnetic field To be more specific, for magnetic fields we choose the
field to point along the y direction, and the nanowire to lie along either
the x or y direction, so that the magnetic field is either perpendicular or
parallel to the nanowires axis. In the perpendicular case, the orientation
of the nanowire was either such that the magnetic field penetrated one
of the faces perpendicularly, or such that it was parallel to one of the
faces (the difference being a rotation by 30 degrees). It was established
that for the resulting τB there is no significant difference between these
two orientations in the relevant regime.

When choosing the gauge,

A(r)= (Bz,0,0) (6.9)

the generation of open paths is sufficient for the evaluation of MB(t)
according to Eq. (6.5), because the average 〈MB(t)〉 over open and closed
paths is then identical.25 Since open and closed paths are equivalent in
this situation, we use open paths that are easier to generate numerically
than closed paths. In our simulations, we chose an ensemble size of 214

open paths to for averaging.
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6.3 Evaluation of weak (anti-)localization in the quasiclassical theory

Spin-orbit For 〈Mso〉 an evaluation with open paths is not possible, and
we have to average over an ensemble of closed paths, which is created
as described in the following. By creating a number N of open paths of
length L/2, we can create a set of N(N −1)/2 statistically independent
open paths of length L, by pairwise concatenation of two different paths.
We restrict this much larger set of paths to those which are almost closed
(with start and end point separated not further than le), and then insert
an additional line segment that closes these paths. If the concatenated
paths are of sufficient length, we assume that the insertion of this
additional line segment with a slightly different length distribution
than the other line segments does not change the ensemble properties
appreciably. Because we thus could only use a subset of the generated
paths, we chose an ensemble size of 216 open paths in this case. (The
size of the ensemble of closed paths decreases with increasing L).

Fitting decay times Finally, after having created ensembles of open
or closed paths as described above for a set of different path lengths,
which we chose to be logarithmically spaced, tn = (1.1)nτe with n integer
and 1≤ tn/τe ≤ 106, we determined the averages 〈MB,so(t)〉 and numeri-
cally fitted the exponential decays according to Eqs. (6.8), resulting in
estimates for the decay times τB and τso.

Validating against known results: Square nanowire To validate the
results of our simulations for MB, we also simulate other geometries, in
which results have been found previously, numerically or analytically.
First, instead of considering hexagonal nanowires, we change the shape
of the nanowire to be square. If a square nanowire is placed in a
perpendicular magnetic field and has specularly reflecting walls, we
expect the result to be the same as for a 2D layer, as treated in Ref.
25. This is because reflections on the walls perpendicular to B do not
change the projection of the path along the direction of B, and thus are
ineffective.

We should thus reproduce the result of Ref. 25, which in the “clean,
weak field” limit reads

τB

τe
=12.1

l4
m

W3le
(6.10)

and should hold for W ¿ le and lm À√
Wle. In the left frame of Fig. 6.3

we show simulation results for both perpendicular and parallel field
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6 Spin-orbit interaction in InSb nanowires

Figure 6.3: Left: Comparison to the analytical expression by Beenakker and van Houten. 25 Numer-
ically obtained data points are shown for different magnetic field le < lm < 101.5 le , parallel (“par”)
and perpendicular (“perp”) to the nanowire. The fact that points for different lm collapse shows the
expected l4

m behavior. The black line “BvH” is the asymptotic expression Eq. (6.10) for W ¿ le . For
W ' le , a cross-over to the diffusive regime can be observed. Right: Comparison of the numerical
evaluation of 〈Mso〉 in a 2D strip (blue dots and line) and the diffusive result of Ref. 93 (dashed line).
In the numerics, the width of the strip is W = 10`e , so that motion is diffusive. The Cooperon-based
treatment in Ref. 93 applies for lR >W.

for a square nanowire. In perpendicular field, the data agrees to the
analytical results in the regime of its validity (the onset of cross-over to
the diffusive case can be seen). Remarkably, in parallel field, we also ob-
serve a W−3 dependence, while for hexagonal geometry, the dependence
on Wγ has two different γ for the two orientations.

Validating against known results: Spin-orbit coupling in 2D strip To
check the calculations of Mso, we compare our simulations to the expres-
sion for τso for two-dimensional diffusive wires (le ¿W) with Rashba
spin-orbit interaction from Kettemann.93

When comparing τso between different sources it is important to note
that different conventions for τso exist (such as choosing a factor 4/3
in Eq. (6.8)). For consistency it is thus important to compare physical
observables. For weak antilocalization this is the conductance correction.
In order to describe the case of diffusive wires (le ¿W) we need to take
the limit le → 0 in Eq. (6.1):

∆G =− e2

h

p
D

L

[
3

( 1
τϕ

+ 4
3τso

+ 1
τB

)− 1
2−

( 1
τϕ

+ 1
τB

)− 1
2 ]

. (6.11)
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Kettemann uses a Green’s function based approach and arrives at:93

∆G =− e2

h

p
D

L

[
2

(
1
τϕ

+ 1
2τ∗so

+ 1
τB

)− 1
2 +

(
1
τϕ

+ 1
τ∗so

+ 1
τB

)− 1
2 −

(
1
τϕ

+ 1
τB

)− 1
2
]

,

(6.12)
where τ∗so refers to the “τso” used in Ref. 93. In the limit of small spin-
orbit splitting, 1/τso → 0, both expressions become equal if we identify

τso = 2τ∗so. (6.13)

Hence we need to take this factor of 2 into account when comparing our
results to Kettemann’s. Taking this factor into account, the expressions
(6.11) and (6.12) not only agree for weak spin-orbit, but also never differ
by more than 5% for all τso.

The right frame in Fig. 6.3 shows the comparison between the expres-
sion given in Ref. 93, which after conversion to the quantities used in
this chapter is

τso/τe = 3l4
R /W2, (6.14)

and numerical results we obtained for a diffusive 2D strip for different
spin-orbit strengths.

6.4 Experiments
The experiments described below were performed in the QuTech lab and
the Kavli Institute for Nanoscience in Delft, without direct involvement
of the author of this thesis.

InSb nanowires139 with diameter W ≈ 100nm are deposited onto a
substrate with a global back gate. A large (≥ 2µm) contact separation
ensures sufficient scattering between source and drain. After contact
deposition a HfO2 dielectric layer is deposited and the device is then
covered by metal, creating an Ω-shaped top gate (Fig. 6.4a and insets
of Fig. 6.4c-d). Nanowire conductance is controlled with top and back
gate voltage, reaching a conductance up to ∼ 5e2/h (Fig. 6.4b). The
device design leads to a strong top gate coupling (Fig. 6.4c), while back
gate coupling is weaker (Fig. 6.4d). From a field-effect mobility of ∼
11,000cm2/Vs a ratio of mean free path to wire diameter le/W = 1−2 is
estimated140, see Sec. 6.4.2.
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Figure 6.4: (a) False color scanning electron microscopy image of device I. Contact spacing is 2µm.
Device fabrication is described in Sec. 6.4.1 (b) Conductance G, as a function of top gate voltage, VTG ,
and back gate voltage, VBG . Arrows and dashed lines indicate cross sections shown in panels (c)
and (d). Dots indicate voltages (VBG ,VTG ) at which traces in Fig. 6.5a were taken (same dot color
corresponds to same G). Data taken with 10 mV voltage bias at a temperature of 4.2K. (c) G as a
function of VTG at VBG = 0V. Inset: radial cross section of the device. The blue layer is HfO2. (d) G
as a function of VBG at VTG =−0.15V. Inset: axial cross section of the device. (e) Conductance, as a
function of magnetic field at several values of device conductance controlled by VTG , VBG = 0V. Data
taken with AC excitation VAC = 100µVRMS .
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le/W=2 
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c) 

Figure 6.5: (a) Magnetoconductance (MC) obtained after averaging MC traces taken at the same
G. For G = 3.5,1.3 and 0.3e2/h the voltages at which these MC traces were taken are indicated in
Fig. 6.4b. Averaged MC traces have been centered to ∆G = 0 at B = 0T. G (B = 1T) is indicated on the
right. Red curves are fits to the data assuming le

W = 1. (b) Spin relaxation length lso obtained from

the fits of panel (a) ( le
W = 1, blue points) and obtained from fits with le

W = 2 (red points). Standard
deviation of the fit outcomes is indicated. The distribution around the blue and red points (green and
gray bands, respectively) is given by the spin-orbit lengths obtained from fits with an effective width
15nm smaller (resulting in longer lso) or larger (resulting in shorter lso) than the expected wire width
W = 90nm. (c) Phase coherence length, lϕ and (d) spin precession length lR as a function of device
conductance. Figure formatting is as in panel (b).

At large G the magnetoconductance, measured with conductance
controlled by the top gate at a temperature T = 4.2K and with B per-
pendicular to the nanowire and substrate plane, shows an increase of
conductance of ∼ 0.2 to ∼ 0.3 e2/h around B = 0 (Fig. 6.4e). G(B) is, apart
from reproducible conducantance fluctuations, flat at B > 200 mT, which
is further evidence of specular boundary scattering.26 On reducing con-
ductance below ∼ 1.5 e2/h WAL becomes less pronounced and a crossover
to WL is seen.

Reproducible conductance fluctuations, most clearly seen at larger B
(Fig. 6.4e), affect the WAL peak shape. To suppress these fluctuations
several (7−11) MC traces are taken at the same device conductance
(see Fig. 6.4b). After averaging these traces WAL remains while the
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6 Spin-orbit interaction in InSb nanowires

conductance fluctuations are greatly suppressed (Fig. 6.5a). Also here
on reduction of conductance a crossover from WAL to WL is seen. Very
similar results are obtained when averaging MC traces obtained as a
function of top gate voltage with VBG = 0V. We expect that several (∼ 10)
subbands are occupied at device conductance G & 2 e2/h (see estimation
in Sec. 6.4.4). Hence, our quasiclassical approach is valid and we fit
the averaged MC traces to Eq. (6.1) with lso, lϕ and the conductance at
large magnetic field ∆G(B →∞) as fit parameters. lB is extracted from
Eq. (6.3). Wire diameter and mean free path are fixed in each fit, but we
extract fit results for a wire diameter deviating from its expected value
and for both le

W = 1 and le
W = 2. We find good agreement between data

and fits (see Fig. 6.5a). While showing fit results covering the full range
of G, we base our conclusions on results obtained in the quasiclassical
transport regime G & 2e2/h.

On increasing conductance, the spin relaxation length first decreases
to lso ≈ 100−200nm, then increases again to lso ≈ 200−400nm when
G ≥ 2.5e2/h (Fig. 6.5b). The phase coherence length (Fig. 6.5c) shows
a monotonous increase with device conductance. This increase can be
explained by the density dependence of either the diffusion constant
or the electron-electron interaction strength,115 often reported as the
dominant source of dephasing in nanowires.86,114

Spin relaxation180 in our device can possibly occur via the Elliot-
Yafet55,182 or the D’yakonov-Perel’ mechanism,53 corresponding to spin
randomization at or in between scattering events, respectively. The
Elliot-Yafet contribution can be estimated as39

lso,EY =
√

3
8

EG

EF
le

(EG +∆SO)(3EG +2∆SO)
∆SO(2EG +∆SO)

≥ 300−600nm, (6.15)

with band gap EG = 0.24eV, Fermi energy EF ≤ 100meV, spin-orbit gap
∆SO = 0.8eV and le

W = 1−2. For the D’yakonov-Perel’ mechanism, we
note that our nanowires have a zinc-blende crystal structure, grown
in the [111] direction, where Dresselhaus SOI is absent for momen-
tum along the nanowire.* We therefore expect that Rashba SOI is the
dominant source of spin relaxation, in agreement with previous exper-
iments.129 As found in our theoretical analysis, it is then crucial to

*Furthermore, even for [100] nanowires Dresselhaus SOI is weak: In this case the
maximum linear Dresselhaus SOI strength is γk2

F (with γ the cubic Dresselhaus SOI

strength), yielding a spin-orbit length lD = ~2/m∗γk2
F . With γ= 437eV Å3 58 and EF ≤

100meV we estimate lD > 300nm.
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Figure 6.6: (a) Magnetoconductance (MC) at T = 0.4K. Each MC trace is obtained after averaging 21
MC traces taken along the top-gate controlled pinch-off trace shown in Fig. 6.4c (VBG = 0V). Black
(blue) trace is the average of traces taken between VTG = 0.34V and VTG = 0.14V (VTG = 0.12V and
VTG = −0.08V) with steps of 20mV. The voltage excitation VAC was 10µVRMS . G(B = 0.5T) is
indicated on the right. Phase coherence and spin relaxation length obtained from fits (in red) to the
traces is 1078±32 (1174±39)nm and of 95±18(205±16)nm respectively for le

W = 1 (2). Values obtained
at G = 2.6e2/h are given below. (b) False color scanning electron microscope image of device II with
different magnetic field orientations indicated by the arrows. Scale bar is 1µm. (c) MC obtained
with B parallel to the nanowire (in-plane angle w.r.t. nanowire θ ≈ 5◦, black), B perpendicular to
the nanowire in the plane of the substrate (θ ≈ 95◦, red) and B perpendicular to the substrate plane
(blue). VTG = 0.2V, VBG = 0V. Smaller ∆G compared to the preceding data is due to a larger contact
resistance (∼ 10kΩ) of this device for which no correction was made.

capture confinement effects accurately. Our lso correspond to τso
τe

= 2−15
that are captured well by our simulations.*

Given that W ≈ lR, we extract the lR corresponding to our τso
τe

directly
from Fig. 6.2b. We extract spin precession lengths lR of 50−100nm,
shown in Fig. 6.5d, corresponding to αR = 0.5−1.0eV Å. MC measure-
ments on a second device show very similar lR, see Fig. 6.15.

To confirm the interpretation of our MC measurements we extract
MC at a lower temperature T = 0.4K (Fig. 6.6a). We find larger WAL
amplitudes of up to ∆G ∼ 0.5e2/h, while the width of the WAL peak
remains approximately the same as at T = 4.2K, corresponding to a
longer lϕ at lower temperature, with approximately constant lso. A
longer lϕ is expected at lower temperature, as the rate of inelastic
scattering, responsible for loss of phase coherence, is reduced in this
regime.

Our theoretical analysis found similar dephasing times for magnetic
fields perpendicular and parallel to the nanowire for our estimated

*Exceptions are the smallest values of lso at G = 2.4 and 2.8 e2/h: When assuming a
wire width larger than the expected value (W = 105nm) we find τso

τe
∼ 1. In this case the

lR corresponding to the lowest simulated value of τso
τe

have been chosen as a lower bound.
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mean free paths, le/W = 1−2. Indeed, we observe virtually identical
WAL for fields parallel and perpendicular to the nanowire in our second
device (see Figs. 6.6b-c). WAL in the first device is also very similar for
both field directions, see Fig. 6.13. This is in striking contrast to MC
measurements in two-dimensional systems where only a perpendicular
magnetic field gives strong dephasing due to orbital effects. It also
provides strong support for the assumptions made in our theory, and
emphasizes the importance of including the three-dimensional nature
of nanowires to understand their MC properties. In contrast, WL is
anisotropic, which we attribute to a different density distribution at low
conductance compared to the high conductance at which WAL is seen.

Relevant to Majorana fermion experiments is the spin-orbit energy,

ESO = mα2
R

2~2 , that is 0.25−1meV in our devices. These values compare fa-
vorably to InAs nanowires that yield αInAs

R = 0.1−0.3eV Å47,57,73,114,147

and corresponding EInAs
SO = 15− 135µeV. EInSb

SO is similar or slightly
larger than reported spin-orbit energies in Ge/Si core-shell nanowires
(EGe/Si

SO = 90−600µeV74,77), while αInSb
R is larger than αGe/Si

R = 0.07−
0.18eV Å. Note that the device geometries and expressions for αR(lso)
used by different authors vary and that often only lso, not lR is evalu-
ated. With our ESO we then find, following the analysis of Ref. 154, a
topological gap of ∼ 0.1−1K (details in Sec 6.4.5) even for our moderate
mobilities of order 10000cm2/Vs. This gap largely exceeds the tempera-
ture and previous estimates. Hence, our findings underline the potential
of InSb nanowires in the study of Majorana fermions.

6.4.1 Device fabrication

The nanowire is deposited onto a p++-doped Si substrate covered by
285nm SiO2 (depicted in black in Fig. 6.4a). Contacts to the nanowire
(green) are made by a lift-off process using electron beam lithogra-
phy. Contact material is Ti/Au (25/125nm). After passivation of the
nanowire with a diluted ammoniumpolysulfur solution (concentration
(NH4)SX:H2O 1:200) the chip is covered with HfO2 (30nm), deposited
by atomic layer deposition. The dielectric is removed at the bonding
pads by the writing of an etch mask (PMMA) followed by an HF etch.
A top gate (brown) is deposited using a lift-off process with electron
beam lithography. Top gate is defined using Ti/Au (25/175nm). Lastly,
an additional layer of Ti/Pt (5/50nm) is deposited on the bond pads to
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reduce the chance of leakage to the global back gate. Devices were only
imaged optically during device fabrication. SEM imaging was performed
only after the measurements.

6.4.2 Estimation of mobility, mean free path and le
W

Nanowire mobility, µ, is obtained from pinch-off traces using the method
described in section 3 of the Supplementary Material of Ref. 140. In
short, mobility is obtained from the change of current, or conductance,
with gate voltage. We thus extract field-effect mobility, whereby we rely
on a fit of the gate trace to an expression for gate-induced transport.
This expression includes a fixed resistance in series with the gated
nanowire. To extract mobility and series resistances from device I
(data shown in Fig. 6.4–6.6a as well as Fig. 6.7, Fig. 6.11, Fig. 6.12,
Fig. 6.13, Fig. 6.14) in this way, a gate trace from pinch-off to saturation
is needed. However, I(VBG ,VTG = 0V) obtained from Fig. 6.7a covers
only an intermediate range (see 6.7b). Therefore traces at I(VBG , VTG =
−0.15,V) and I(VBG , VTG = 0.15V), shown in Fig. 6.7b are also used. The
three traces then together form a full pinch-off trace (see Fig. 6.7c) that is
well approximated by Eq. (11) in Ref. 140, for which here an equivalent
expression for current I instead of conductance G was used. Here the
capacitance between back gate and nanowire CBG = 22aF, the series
resistance RS = 10kΩ, the mobility µ= 12,500cm2/Vs and the threshold
voltage VTG =−16.5V (see Fig. 6.7c). Other inputs are source-drain bias
VSD = 10mV and contact spacing L = 2µm. The capacitance has been
obtained from electrostatic simulations in which the hexagonal shape
of the nanowire has been taken into account. The series resistance RS
consists of instrumental resistances (RC-filters and ammeter impedance,
together 8kΩ) and a contact resistance RC . The experimental pinch-off
traces are best approximated by RC = 2kΩ. Expressions for I(VBG)
with RC = 1kΩ and RC = 3kΩ, also shown in Fig. 6.7c, deviate from
the measured pinch-off traces. Mobility is also estimated from a linear
fit to the top gate pinch-off trace shown in Fig. 6.7d. Prior to this fit
instrumental and series resistances have been subtracted. From the
fit µ ∼ 9,000cm2/Vs is obtained, using CTG = 1440aF, obtained from
electrostatic simulations, and L = 2µm. Similarly, mobility in device III
(see Fig. 6.7e, magnetoconductance data shown in Fig. 6.15 is extracted
from a fit to the top gate pinch-off trace, giving µ∼ 10000cm2/Vs using
CTG = 1660aF and L = 2.3µm. These mobilities are similar to those
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Figure 6.7: (a) Current, I, in device I as a function of top gate voltage, VTG , and back gate voltage,
VBG . Cross sections corresponding to the I(VBG ) traces in panel b are indicated with arrows. Data
taken with source-drain voltage VSD = 10mV. (b) I(VBG ) at VTG = 0.15V, VTG = 0V and VTG =
−0.15V . (c) Traces at I(VBG ,VTG = −0.15V) (blue) and I(VBG ,VTG = 0.15V) (green) are displaced
by ∆VBG = −8V and ∆VBG = 8V, respectively, chosen such that their current is similar to that of
the I(VBG ,VTG = 0V) trace (red). Data is well approximated by I(VBG ) (see text) with mobility µ ∼
12,500cm2/Vs and contact resistance RC = 2kΩ (black). Traces with larger (3kΩ, pink) or smaller
(1kΩ, cyan) contact resistance are also shown. (d) G(VTG ) in device I with VBG = 0V (blue). A linear fit
of the pinch-off traces (red) gives a slope dG

dVTG
= 8.5(e2/h)/V. (e) G(VTG ) in device III with VBG = 0V.

A linear fit of the pinch-off traces (red) gives a slope dG
dVTG

= 7.9(e2/h)/V.

obtained in InSb nanowires that are gated using only a global back
gate.140 Mean free path, le, is estimated as le = vFτe, with vF the Fermi
velocity and τe the scattering time. τe = µm∗

e , with e electron charge
and m∗ the effective electron mass in InSb. Assuming a 3D density

of states vF = ~
m∗ (3π2n)

1
3 with ~ the reduced Planck constant and n

electron density, n is estimated from pinch off traces using n = C(VG−VTH )
eAL

with A the nanowire cross section, VG top or back gate voltage and
VTH the threshold (pinch-off) voltage. In this way in device I n up to
∼ 4 ·1017cm−3 are obtained, giving le up to ∼ 160nm. This estimate of n
agrees reasonably with densities obtained from a Schrödinger-Poisson
solver (see Subsec. 6.4.4). In device III n up to ∼ 4 ·1017cm−3 gives
le ∼ 150nm. Together with the facet-to-facet width W (described in
Fig. 6.8) these mean free paths yield a ratio le

W = 1−2.
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6.4.3 Nanowire width

Nanowires were not imaged with scanning electron microscope prior to
device fabrication to avoid damage due to electron irradiation. The wire
diameter is estimated from a comparison of the nanowire width after
fabrication to the nanowire diameter obtained from a number of wires
from the same growth batch deposited on a substrate as described in
Fig. 6.8.

6.4.4 Estimation of the number of occupied
subbands

An estimate of the number of occupied subbands is calculated in two
ways:

1. A self-consistent Schrodinger-Poisson calculation yields that 17
subbands contribute to transport at higher device conductance
(density profile shown in the inset of Fig. 6.9). As contact screening
has been neglected in these two-dimensional calculations the ac-
tual number of subbands may be slightly lower, but likely several
(∼ 10) modes contribute at high device conductance.

2. The conductance, G, of a disordered quantum wire relates to the
number of subbands, N, as20

G = NG0

1+ L
le

, (6.16)

which, using L
le
≈ 10−20 (obtained from the estimate of le above)

yields N ≥ 25.

6.4.5 Topological gap as a function of mobility and
spin-orbit strength

We follow the theoretical analysis of Ref. 154 to compute the maximum
topological gap that can be achieved at a given mobility µ and spin-orbit
strength αR. One should only be careful to note that the definition of
ESO in Ref. 154 differs by a factor of 4 from ours. Whenever we refer to
ESO here, we use our definition given in Sec. 6.4.
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Figure 6.8: (a) Cross-sectional view of hexagonal nanowires with indicated widths WC and WF . A
top view of these nanowires (such as a scanning electron microscope image) shows the width from
corner to corner, WC . In our simulations of electron interference in hexagonal nanowires the facet-to-
facet width, WF , is used. The two widths are related by WF = cos( π6 )WC . (b) Distribution of nanowire
diameters obtained from scanning electron microscope images of nanowires lying on a substrate. The
imaged nanowires are from the same growth batch as the ones used in the experiment. The nanowire
diameter is the width of the nanowire when lying on a substrate and thus corresponds to WC in panel
a plus twice the native oxide thickness. Four imaged wires are shown in panel d. Average diameter
is 110nm, standard deviation is 15nm. (c) Distribution of the apparent nanowire diameter after
device fabrication. The distribution has been obtained from scanning electron microscope images of
devices made in the same fabrication run (and thus with the same fabrication recipe) as the ones
measured. The apparent diameter increases due to HfO2 and top gate metal deposition. Average
apparent diameter is 197nm. Device I had an apparent diameter after fabrication of 200nm, close
to the average apparent nanowire device diameter, and therefore its wire diameter is estimated as
110nm, the average the distribution of wire diameters in panel c. Device III has a diameter after
fabrication of 180nm, which is 17nm below average. Wire diameter is therefore estimated as 110−17=
93nm. Wires are covered by a native oxide of ∼ 2.5nm, giving an InSb diameter WC ≈ 105nm and
WC ≈ 88nm for device I and device III respectively. Facet-to-facet diameter WF , simply denoted by
W in the previous sections, is therefore W ≈ 90nm (device I) and WF = W ≈ 75nm (device III). The
standard deviation of wire diameter of 15nm in panel b is used to define a range of wire diameters,
W ±15nm, for which spin relaxation length, spin precession length and phase coherence length are
obtained in Fig. 6.5. (d) Scanning electron microscope image of four of the nanowires used to obtain
the histogram of nanowire diameters of panel b. (e)Scanning electron microscope image of four of the
devices imaged to obtain the apparent nanowire diameter after fabrication of panel c. The arrows in
the upper left image indicate the apparent nanowire diameter.

In Fig. 6.10a we show the topological gap as a function of mobility
for the spin-orbit energies estimated in the main text, with parameters
suitable for the Majorana experiments in Ref. 128 We observe a nearly
linear dependence of the topological gap on mobility for these parameters.
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Figure 6.9: Electron density as a function of the nanowire cross section. Density is obtained from
self-consistent Schrodinger-Poisson calculations with VTG = 0.5V and VBG = 0V. TG (BG) denotes top
(back) gate.

Figure 6.10: (a) Topological gap as a function of mobility for different values of Eso. (b) Topologi-
cal gap as a function of Eso for a fixed mobility of 10000cm2/Vs. The remaining parameters were
chosen to be suitable for InSb nanowires in proximity to NbTiN: effective mass m∗ = 0.014me and
superconducting gap ∆= 30K.
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6 Spin-orbit interaction in InSb nanowires

The topological gap can be rather sizable, and we find gaps of order 1K
for a moderate mobility of µ = 10,000cm2/Vs for Eso = 1meV. From
the figure it is also apparent that the topological gap depends rather
strongly on Eso.

We investigate the Eso-dependence of the topological gap in Fig. 6.10b.
At a mobility of 10,000cm2/Vs the topological gap depends roughly
quadratically on Eso up to Eso ∼ 1meV, i.e. the topological gap increases
as α4

R . This is in stark contrast to the clean case where the topological
gap depends linearly on αR .

The different dependences of the topological gap on mobility (linear)
and spin-orbit strength (to the fourth power) indicates that for current
devices it may be more efficient to attempt to improve spin-orbit strength
rather than mobility.

6.5 Supplementary experimental data
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Figure 6.11: Magnetoconductance traces at constant conductance. (a) Conductance G, as a
function of top gate voltage, VTG , and back gate voltage, VBG as shown in Fig. 6.4b. Dots indicate
voltages (VBG ,VTG ) at which traces in Fig. 6.5a were taken (same dot color corresponds to same
G). The letters at the dots at G = 3.5e2/h refer to the magnetoconductance traces shown in panels b
and c. Data obtained with 10 mV voltage bias at a temperature of 4.2 K. (b) Magnetoconductance
traces taken at the points at G = 3.5e2/h shown in panel b. Data taken with AC excitation VAC =
100µVRMS . The difference between the conductance of the dots in panel a and the conductance
of the corresponding magnetoconductance traces in panel b is likely due to the difference in source-
drain bias between both measurements. Also at other conductances (for instance at the green and
orange dots in panel a) magnetoconductance traces generally show a conductance lower than those
obtained in the gate-gate plot of panel a by a similar amount. For each of these traces the conductance
denoted on the vertical axis of Fig. 4a and that on the horizontal axis of Fig. 4b-d is the conductance
of the equiconductance points of Fig. 6.4b. (c) Magnetoconductance traces of panel b normalized to
∆G(B = 0)= 0. By averaging over these traces the blue trace of Fig. 6.5a (G = 3.5e2/h) is obtained.
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Figure 6.12: Spin relaxation and phase coherence length obtained from top gate averaging
in device I (a) Magnetoconductance traces obtained after taking MC traces with top gate voltage
spacing ∆VTG = 20mV between VTG = 0.34V and VTG = −0.42V and averaging 9 subsequent traces.
VBG = 0V. Averaged MC traces have been centered to ∆G = 0 at B = 0T. G(B = 0.5T) is indicated on
the right. Red curves are fits to Eq. (6.1), wherein Eqs. (6.2) and (6.3) have been used to obtain lB ,
using le /W = 2 and W = 90nm. (b) Spin relaxation length, lso , obtained from the fits of panel a ( le

W = 2,

red points) and obtained from fits with le
W = 1 (blue points). Standard deviation of the fit outcomes are

indicated. The distribution around the blue and red points (in green and gray, respectively) is given
by the spin-orbit lengths obtained from fits with an effective width 15nm smaller or larger than the
expected wire width W = 90nm. (c) Phase coherence length, lϕ, obtained from fits of panel a. Figure
formatting (colors, standard deviation and wire diameter dependence) is the same as in panel b.

(e2/h) le
W lso (nm) lϕ (nm)

3.9 1 95 ± 18 1078 ± 32
2 205 ± 16 1174 ± 39

2.6 1 171 ± 26 805 ± 52
2 380 ± 29 937 ± 60

Table 6.1: Phase coherence and spin relaxation length at T = 0.4K . Spin relaxation length, lso ,
and phase coherence length, lϕ, obtained from fits to the traces in Fig. 6.5a. le

W denotes the ratio of
mean free path, le , to wire width, W.
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Figure 6.13: Magnetoconductance in parallel and perpendicular field in device I. (a) MC
with parallel and perpendicular magnetic field orientation. Out-of-plane, ⊥, (in-plane, ∥,) denotes an
orientation of the magnetic field (parallel) perpendicular to the substrate plane. θ denotes the in-
plane angle of the magnetic field w.r.t. the nanowire. As the uncertainty in orientation of the in-plane
magnetic field is 20◦ three parallel magnetoconductance traces with |θ| ≤20◦ are shown. Each MC
trace is an average of 7 traces taken at the same conductance G = 3.5 e2/h by varying top and back gate
voltage similar to the MC data of Fig. 6.2. No systematic change of MC along these equiconductance
points was observed. As in device II (Fig. 6.6c) also here WAL in parallel and perpendicular magnetic
field are very similar. Red curves are fits to Eq. (6.1) (in which Eqs. (6.2) and (6.3) have been used
for lB , with values of C corresponding to parallel or perpendicular magnetic field orientation), using
le
W = 1 and W = 90nm. (b) Spin relaxation length (red) and phase coherence length (black) obtained

from fits of the MC traces in panel a using le
W = 2. B orientation numbers correspond to the traces

numbered 1 to 5 in panel a. (c) Spin-orbit length (red) and phase coherence length (black) obtained
from fits of the MC traces in a using le

W = 1. The slightly wider WAL peak in parallel magnetic field

yields better agreement with le
W = 1 as spin-orbit lengths and phase coherence lengths obtained in

parallel and perpendicular field with le
W = 1 are more similar than when assuming le

W = 2.
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Figure 6.14: Magnetoconductance for other angles of magnetic field in device I. (a) MC as a
function of out-of-plane angle, φ, with in-plane angle w.r.t. the nanowire θ = −55±20◦. Angles θ and
φ are shown in the schematic drawing in the inset of panel c. Out-of-plane (in-plane) denotes an ori-
entation of the magnetic field (parallel) perpendicular to the substrate plane. φ= 0◦ (90◦) is magnetic
field perpendicular to (parallel to) the substrate plane. (b) MC as a function of out-of-plane angle φ

with in-plane angle w.r.t. nanowire θ = 35±20◦. While weak anti-localization is (nearly) independent
of magnetic field orientation, here we find that the suppression of weak localization by the magnetic
field becomes less effective when rotating the field from perpendicular to parallel to the substrate
plane. (c) MC as a function of in-plane angle θ. Although the suppression of weak localization by
magnetic field is much less effective for all magnetic fields oriented parallel to the substrate plane,
a closer inspection shows that the magnetic field dependence is weakest when the magnetic field is
approximately aligned with the nanowire. We suggest that the difference in dependence on magnetic
field orientation between WAL and WL is due to a difference in charge distribution: while at the
larger device conductance at which weak anti-localization is observed many subbands all across the
nanowire cross section contribute to transport (see the inset of Fig. 6.2d), at low conductance, when
weak localization is seen, transport takes place only a few modes, confined to a small region of the
nanowire cross section. The low conductance situation may resemble a two-dimensional system, in
which only the magnetic field component perpendicular to the substrate leads to a suppression of WL.
This would lead to the reduction of positive MC when rotating the magnetic field from out-of-plane to
in-plane. In all panels VTG =−0.36V, VBG = 0V. The difference in G(B = 0T) between panels a-b and
c is due to a slight device instability at low conductance or due to hysteresis when sweeping VTG .
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Figure 6.15: Device III: Reproducibility of extracted spin relaxation and phase coherence
length. (a) False color scanning electron microscope image of device III. A voltage bias, VAC , is
applied across the outer contacts, after which simultaneously the current, I, through the device and
the voltage across the inner contacts, V , is measured. Subsequently conductance G = I

V is determined.
(b) Averaged MC traces obtained after taking MC traces with top gate voltage spacing ∆VTG = 20mV
between VTG = 0.3V and VTG =−0.22V and averaging 7 subsequent traces. VBG = 0V. G(|B| = 0.5T)
is indicated. Red curves are fits to Eq. (6.1), wherein Eqs. (6.2) and (6.3) have been used to obtain lB ,
using le /W = 1 and W = 75nm. (c) Spin relaxation length, lso , obtained from the fits of panel b ( le

W = 1,

blue points) and obtained from fits with le
W = 2 (red points). Standard deviation of the fit outcomes is

indicated. The distribution around the blue and red points (in green and gray, respectively) is given
by the spin-orbit lengths obtained from fits with an effective width 15nm smaller or larger than the
expected wire width W = 75nm. (d) Phase coherence length, lϕ, obtained from the fits of panel b
( le

W = 1, blue points) and obtained from fits with le
W = 2 (red points). Figure formatting is the same

as in panel c. (e) Spin precession length, lR , as a function of device conductance, G, extracted from
the spin relaxation lengths of panel c. Figure formatting is the same as in panel c. When assuming
W = 90nm the τso

τe corresponding to the lso at G = 2.3e2/h are below the simulation range. In this
case the lR corresponding to the lowest simulated value of τso

τe has been chosen.
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