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5 Quench dynamics of
fermion-parity switches in a
Josephson junction

5.1 Introduction

Superconductors connected by a Josephson junction can freely exchange
pairs of electrons, but single-electron transfer is suppressed by the
superconducting gap.171 The tunneling of an unpaired electron into
the junction is an incoherent, stochastic source of charge noise in a
Cooper pair transistor.41 In contrast to this undesirable “quasiparticle
poisoning”, a controlled phase-coherent way to exchange single quasi-
particles with a superconductor would be a desirable tool, that would
complement existing single-electron sources in normal metals and semi-
conductors.30,31,52,64,121,136

Here we propose to exploit the phenomenon of a fermion-parity switch
to transfer, phase coherently and on demand, a single quasiparticle of
adjustable charge Q from a Josephson junction to a metal probe (see
Fig. 5.1a). A fermion-parity switch is a topological phase transition
(zero-dimensional class D in the “ten-fold way” classification9,150) where
the superconducting condensate can lower its ground-state energy by in-
corporating an unpaired electron and changing the number of electrons
in the ground state from νF even to νF odd,17 leaving behind as “defects”
an odd number of quasiparticle excitations above the ground state.

In the quasiparticle excitation spectrum, the switch in the ground-
state fermion parity is signaled by the crossing of a pair of bound states
(Andreev levels) at E = 0 (the Fermi level). There may be an even
number of switches when the phase difference φ across the Josephson
junction is incremented by 2π — if there is an odd number of switches
(as in Fig. 5.1b) the superconductor is topologically nontrivial. The two
lowest Andreev levels ±E0(φ) of a nontrivial Josephson junction have a
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5 Quench dynamics of fermion-parity switches in a Josephson junction

Figure 5.1: (a) Josephson junction formed by a superconducting ring interrupted by a nanowire.
The junction contains two Majorana zero-modes, separated by a tunnel barrier (height V0). A time-
dependent flux Φ(t) through the ring drives the phase φ(t) = Φ(t)× 2e/~ through a fermion-parity
switch, at which a quasiparticle is injected as a current I(t) into the grounded metal probe. (b) Pair of
phase-dependent Andreev levels ±E0(φ) in the closed Josephson junction (uncoupled from the metal).
The switch in the ground-state fermion parity νF is signaled by a level crossing.

cos(φ/2) phase dependence,96

E0(φ)=∆0
√

T0 cos(φ/2). (5.1)

The superconducting gap is ∆0 and T0 ∈ (0,1) is the transmission proba-
bility through the junction. For small T0 this describes a pair of bound
states at nearly zero energy, consisting of an equal-weight superposition
of electron and hole excitations. Such a charge-neutral quasiparticle
is called a “Majorana fermion” (or Majorana zero-mode) because of the
identity of particle and antiparticle. These objects have unusual non-
Abelian statistics (see Refs. 24,45,113,177 for recent reviews), but here
it is only their charge-neutrality that matters.

Fermion-parity switches are actively studied, theoretically and ex-
perimentally,* for the connection to topological superconductivity and
Majorana fermions.8,23,75,143 The dynamics of the transition is what con-
cerns us here, in particular the quench dynamics, where φ(t) is driven
rapidly through the switch from even to odd ground-state fermion parity.

The geometry of Fig. 5.1 that we consider is modeled after existing
experiments (e.g., Ref. 38), where a mesoscopic Josephson junction is
formed by a semiconductor nanowire connecting two arms of a supercon-
ducting ring. A time-dependent flux Φ(t) enclosed by the ring imposes a

*For recent theoretical work, see Refs. 21,42,92,153,173,183. For expiremental work,
see Refs. 38,111,112
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5.2 Microscopic model

time dependence on the phase difference φ(t)=Φ(t)×2e/~ across the junc-
tion. When the Josephson junction is quenched through a fermion-parity
switch there will appear a current pulse I(t) from the superconductor (S)
into the metal (N). We seek the quasiparticle content of that pulse. How
many quasiparticles are transferred? What is the transferred charge?
In particular, we wish to establish the conditions under which a single
quasiparticle is transferred with vanishing charge expectation value.

We find that the quench dynamics transfers one single quasiparticle
from the superconductor to the metal, as a wave packet that is a coherent
superposition of electron and hole states near the Fermi level. A nearly
charge-neutral equal-weight superposition is produced in a topologically
nontrivial superconductor, if the metal probe couples predominantly to
one of the two spatially separated Majorana zero-modes. More generally,
for two arbitrary coupling constants γ1,γ2 we derive that the quantum
quench injects a charge

Qquench = 2e
p
γ1γ2/(γ1 +γ2) (5.2)

into a single-channel point contact. For a multi-channel point contact
the injected charge is reduced further by a factor R determined by the
peak height Gpeak = (4e2/h)(1−R2) of the point contact conductance at
resonance.

5.2 Microscopic model

Before proceeding to the mathematical analysis of the quench dynamics,
we explore the relevant physical parameters in a microscopic model165

for an InSb nanowire (length L = 2.5µm, width W = 0.25µm, Fermi
energy EF = 1.52meV, corresponding to 4 occupied electron subbands),
coupled at both ends to a Nb superconductor (induced gap ∆0 = 0.4meV).
Spin-rotation symmetry is broken by Rashba spin-orbit coupling (char-
acteristic length lso = ~2/meffαso = 0.25µm), and time-reversal symme-
try is broken by a magnetic field parallel to the wire (Zeeman energy
VZ = 1

2 geffµBB = 0.6meV). For these parameters, the Josephson junc-
tion is in the nontrivial regime, with a pair of Majorana zero-modes at
the two ends.120,135 We tune the coupling strength of the Majoranas
by means of a tunnel barrier of width 25nm and adjustable height V0
(which might be experimentally realized by means of a gate voltage).
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The data shown in Fig. 5.2 is for V0 = 15meV. (See App. 5.A for details
of the calculation.)

The Josephson junction is coupled by a point contact to a normal-
metal probe, which plays the role of a fermion bath that can exchange
quasiparticles with the superconductor. We assume that the charging
energy of the junction is much smaller than the Josephson energy, to
ensure that the Coulomb blockade of charge transfer is not effective. The
Josephson junction is now an open system, with quasibound Andreev
states En − iΓn that acquire a finite life time ~/2Γn. The evolution of
a pair of these states through the fermion-parity switch is shown in
Fig. 5.2.71 The coupling constants γn that determine the transferred
charge can be read off from

πγn = lim
φ→π

Γn(φ). (5.3)

Particle-hole symmetry requires that the complex energies come in
pairs ±E− iΓ, symmetrically arranged around the imaginary axis. This
constraint produces a bifurcation point (pole transition138 or exceptional
point151) at which the real part is pinned to E = 0 and the decay rates Γ1,
Γ2 become distinct — resulting in widely different γ1, γ2. The unusual
extension of the level crossing over a finite interval seen in Fig. 5.2
is the key distinguishing feature of level crossings in superconducting
and non-superconducting systems, and makes the dynamical problem
considered here qualitatively different from the familiar Landau-Zener
dynamics.108

5.3 Scattering formulation
The exchange of quasiparticles across the NS interface is described by
the scattering matrix

S(t, t′)= δ(t− t′)−2πiW†G(t, t′)W . (5.4)

The coupling matrix W to the fermion bath is assumed to be time-
independent. The retarded Green’s function G(t, t′) satisfies the differ-
ential equation174

(
i∂/∂t−H[φ(t)]+ iπWW†)G(t, t′)= δ(t− t′), (5.5)
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5.3 Scattering formulation

Figure 5.2: Phase dependence of the complex energies En − iΓn of a pair of quasibound states of the
open Josephson junction (solid curves), when the energies ±E0 of the closed junction (dashed curves)
vary through the level crossing of Fig. 5.1b. At the fermion parity switch, the inverse lifetimes Γn
reach opposite extremal points πγn , n = 1,2.

where H(φ) is the Bogoliubov-De Gennes Hamiltonian of the Josephson
junction at a fixed value φ of the superconducting phase difference. (We
have set ~ ≡ 1 for ease of notation.) Fourier transform to the energy
domain is defined by

S(E,E′)=
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ eiEt−iE′ t′S(t, t′). (5.6)

In a stationary situation, with a time-independent Hamiltonian H,
the scattering matrix is diagonal in energy, S(E,E′)= 2πδ(E−E′)S0(E),
with S0 given by the Mahaux-Weidenmüller formula,122

S0(E)= 1−2πiW†(E−Heff)−1W ,

Heff = H− iπWW†.
(5.7)

The formulation of this dynamical problem in an open system in terms
of an effective non-Hermitian Hamiltonian Heff goes back to the early
days of nuclear scattering theory.63,118

For a minimal description, we take a pair of Andreev levels in the
Josephson junction coupled to a pair of electron-hole modes in a single-
channel metal probe. (The multi-channel case is addressed in Sec. 5.5.)
Both H and W are now 2×2 matrices. Particle-hole symmetry requires
that

H =−σxH∗σx, W =σxW∗σx. (5.8)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

(The Pauli matrix σx interchanges electron and hole indices.) Particle-
hole symmetry is the only symmetry constraint we impose on the system
(symmetry class D), assuming that time-reversal symmetry and spin-
rotation symmetry are both broken by magnetic field and spin-orbit
coupling in the nanowire.

Using also that H = H†, we have the general form

H = E0σz, W = eiα′σzΛeiασz , Λ=
(
λ+ λ−
λ− λ+

)
, (5.9)

with real coefficients α,α′, λ±. The eigenvalues γ1,γ2 ≥ 0 of the coupling
matrix product WW† are given by

γ1 = (λ++λ−)2, γ2 = (λ+−λ−)2. (5.10)

The eigenvalues of Heff (representing the poles of S0 in the complex
energy plane) are given by

E± =−iπγ̄±E0

√
1+ (πγ̃/E0)2 − (πγ̄/E0)2, (5.11)

in terms of the arithmetic and geometric mean

γ̄= 1
2 (γ1 +γ2), γ̃=p

γ1γ2. (5.12)

The evolution of E± through the fermion-parity switch is shown in
Fig. 5.3. The relation E+ = −E∗− required by particle-hole symmetry
produces a bifurcation point at which the two quasibound states acquire
distinct decay rates,138,151 see also Fig. 5.2.

The time dependent phase difference φ(t) across the Josephson junc-
tion shakes up the fermion bath in the normal metal. We assume zero
temperature, so that the unperturbed Fermi sea is the vacuum state |0〉
for excitations: a(E)|0〉 = 0 for E > 0, with a = (a1,a2) the two-component
Nambu spinor of annihilation operators for Bogoliubov quasiparticles.
The fermion-parity switch produces a superposition

|Ψ〉 = ζ0|0〉+∑∞
p=1|Ψp〉 (5.13)

of the vacuum state with p-particle excited states

|Ψp〉 =
[ ∑

E>0

∑
E′<0

a†(E)S(E,E′)a(E′)

]p

|0〉. (5.14)

(The sum
∑

E is evaluated as (2π)−1 ∫
dE.) The weight ζ0 of the unper-

turbed Fermi sea follows from the normalization 〈Ψ|Ψ〉 = 1.
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5.4 Linear sweep through the fermion-parity switch

Figure 5.3: Evolution of the complex eigenvalues E± of the effective Hamiltonian (5.7) of the open
Josephson junction (coupled to a metal probe), when the real eigenvalues ±E0 of the closed junction
vary through a level crossing. At the fermion parity switch, E0 = 0 and E± reach opposite extremal
points on the imaginary axis.

5.4 Linear sweep through the
fermion-parity switch

We now proceed to a complete solution of the dynamics of the fermion-
parity switch, to derive the result (5.2) for the charge of the transferred
quasiparticle. The non-superconducting counterpart to this problem
was studied by Keeling, Shytov, and Levitov.90 Their analysis provided
much guidance and inspiration for what follows.

We calculate the scattering matrix for a linear sweep through the
fermion parity switch: E0[φ(t)]= γ2

0t. Referring to Eq. (5.1), this linear
approximation of the spectrum is justified for rapidities γ2

0 ¿
√

T0∆0γ̄.
In the energy domain, Eqs. (5.4) and (5.5) then take the form

S(E,E′)= 2πδ(E−E′)−2πie−iασzΛG(E,E′)Λeiασz ,(
iγ2

0σz∂/∂E+E+ iπΛ2)
G(E,E′)= 2πδ(E−E′). (5.15)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The solution for the Green’s function factorizes,

G(E,E′)= 2π
iγ2

0
X (E)Θ(E−E′)σz X−1(E′)σz, (5.16)

Θ(E−E′)=
(
θ(E−E′) 0

0 θ(E′−E)

)
. (5.17)

Here θ(E) is the unit step function and the matrix X (E) solves the
homogeneous equation*

(
iγ2

0σz∂/∂E+E+ iπΛ2)
X (E)= 0. (5.18)

Because of particle-hole symmetry, X has two rather than four indepen-
dent elements,

X (E)=
(
u(E) v∗(−E)
v(E) u∗(−E)

)
, (5.19)

determined by

γ2
0u′′+ (ε2 +δ2 − i)u = 0, δv = iεu−γ0u′, (5.20)

ε= (E+ iπγ̄)/γ0, δ= 1
2π(γ1 −γ2)/γ0. (5.21)

The retarded Green’s function is specified by G → 0 in the limits
E →+∞ or E →−∞. The factor Θ in Eq. (5.16) ensures that this two-
sided decay follows from the one-sided decay u,v → 0 for E →+∞. With
this condition the solution of Eq. (5.20) reads†

u(E)= eiε2/2 U(− 1
4 iδ2, 1

2 ;−iε2),

v(E)=− 1
2δeiπ/4 eiε2/2 U( 1

2 − 1
4 iδ2, 1

2 ;−iε2),
(5.22)

where U is the confluent hypergeometric function of the second kind.1,109

The determinant of X is particularly simple (see App. 5.B)

Det X = exp(−πδ2/4), (5.23)

independent of energy.

*Since X solves a homogeneous equation, the solution is only determined up to a
multiplicative constant. This has no effect on the Green’s function, because both X and
X−1 appear in Eq. (5.16).

†To obtain v from u we used the identity (d/dz)U(a,b; z)=−az−bU(1+a−b,1−b; z).
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5.4 Linear sweep through the fermion-parity switch

The scattering matrix (5.15) results as the dyadic product of two
vectors,

Snm(E,E′)|E>E′ =−ψn(E)ψ∗
m(−E′), (5.24)

ψ(E)= (2π/γ0)eπδ
2/8e−iασzΛ

(
u(E)
v(E)

)
. (5.25)

Substitution into Eq. (5.14) gives |Ψp〉 = 0 for p ≥ 2 because of the
anticommutation of the creation operators, so that only a single-particle
excitation remains,*

|Ψ1〉 =− ∑
E>0

∑
E′<0

[ψ(E)a†(E)][ψ∗(−E′)a(E′)]|0〉. (5.26)

This absence of multi-particle excitations is a generic feature of rank-one
scattering matrices.89,90

The normalization
∑

E>0 |ψ(E)|2 = 1 can be derived directly from
Eq. (5.18). (See App. 5.B.) This implies that 〈Ψ1|Ψ1〉 = 1, hence there
is no contribution from the vacuum state [ζ0 = 0 in Eq. (5.13)]. Cor-
rections of order |eiε2 | = exp(−2πEγ̄/γ2

0) to the normalization appear
because of the finite band width E .

√
T0∆0. Since we have assumed

γ2
0 ¿ √

T0∆0γ̄ we can ascertain that the sweep through the fermion-
parity switch will fail to produce a quasiparticle with exponentially
small probability.

The Josephson junction thus injects a single Bogoliubov quasiparticle
into the metal probe, in a pure state with wave function ψ given by
Eq. (5.25). The transfer of this quasiparticle is observable as an electrical
current pulse, with expectation value

I(t)= e
∫ ∞

0

dE
2π

∫ ∞

0

dE′

2π
ei(E′−E)tψ∗(E′)σzψ(E). (5.27)

The expectation value of the total transferred charge Q = ∫ ∞
−∞ I(t)dt is

given by

Q = 2πe
γ2

0
(λ2

+−λ2
−) eπδ

2/4
∫ ∞

0
dE

(|u(E)|2 −|v(E)|2)
. (5.28)

*Eq. (5.26) describes two equivalent copies of the single-particle excitation ψ(E), one
at E > 0 and one at E < 0. This double-counting is inherent in the Nambu representation
of superconducting quasiparticles. It plays no role in Eqs. (5.27) and (5.28), where we
restrict ourselves to E > 0. In Eq. (5.30) we correct for double-counting by replacing the
usual prefactor 1/2π by 1/4π.
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5 Quench dynamics of fermion-parity switches in a Josephson junction

Figure 5.4: Expectation value of the charge of the quasiparticle transferred between the superconduc-
tor and a single-channel metal probe, following a fermion-parity switch with rapidity γ0. The charge
Q is given as a function of the ratio γ̃/γ̄ of the geometric and arithmetic mean of the coupling energies
to the two Majorana operators involved in the transition. The curves are calculated numerically from
Eq. (5.28). The quenched and adiabatic limits are given by Eqs. (5.29) and (5.32).

For definiteness we take λ2+ ≥λ2− in what follows (otherwise the sign of
currents and charges should be inverted).

5.5 Transferred charge
Single-channel probe A single quasiparticle passes through the NS
interface irrespective of the rapidity γ0, but the transferred charge
differs. Fig. 5.4 shows results from a numerical evaluation of Eq. (5.28).
Analytical results can be obtained in the quenched limit γ0 À γ1,γ2 of a
fast fermion-parity switch and in the opposite adiabatic limit γ0 ¿ γ1,γ2
of a slow switch.

In the quenched limit we set δ→ 0 and since U(0, 1
2 ;−iε2)= 1 we have

u → exp(iε2/2), v → 0. The current and transferred charge evaluate to

Iquench(t)= 2πeγ̃exp(−2πγ̄t)θ(t), Qquench = eγ̃/γ̄. (5.29)

This is the result (5.2) stated above.
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5.5 Transferred charge

The adiabatic limit may be obtained, with some effort, from the Fourier
transform (5.27) in saddle-point approximation, or more easily by start-
ing directly from the general scattering formula16,19,29,34

Iadiabatic(t)=
ie
4π

TrS†
F(0, t)σz

∂

∂t
SF(0, t). (5.30)

(A self-contained derivation of this formula is given in App. 5.C.) The
adiabatic charge transfer is described by the “frozen” scattering matrix

SF(E, t)= S0(E)|φ≡φ(t), (5.31)

with S0 from Eq. (5.7) evaluated for a fixed value φ(t) of the phase across
the Josephson junction. The result is

Iadiabatic(t)=
epγ1γ2

π2γ1γ2/γ2
0 +γ2

0t2
, Qadiabatic = e. (5.32)

The exponential versus Lorentzian current profiles (5.29) and (5.32)
have the same form as in the non-superconducting problem of Ref. 90,
but there the transferred quasiparticle was an electron of charge e. Here
what is transferred is a Bogoliubov quasiparticle, which is not in an
eigenstate of charge. In the quenched limit Q can vary between 0 and e,
depending on the ratio of the geometric and arithmetic mean of the two
coupling energies γ1, γ2 of the metal probe to the Majorana operators of
the zero-mode. A nearly charge-neutral quasiparticle is transferred if
γ1 ¿ γ2, when Q = 2e

√
γ1/γ2 in the quenched limit.

Multi-channel probe So far we have assumed that the metal probe
supports a single electron-hole channel. More generally, the coupling
between the superconductor and the metal would involve N electron-
hole channels, where N would include both orbital and spin degrees of
freedom. This multi-channel generalization is worked out in App. 5.D.
A single quasiparticle is injected, as before, with a reduced charge
QN =RQ1. The reduction factor R ∈ [0,1] is independent of the rapidity
γ0. It is determined entirely by the point contact conductance, which at
the fermion parity switch has a resonant peak of height

Gpeak = 4e2

h
(1−R2). (5.33)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

5.6 Conclusion

In conclusion, we have investigated the phase-coherent, deterministic
counterpart of incoherent, stochastic quasiparticle poisoning: A fermion-
parity switch in a Josephson junction transfers a single quasiparticle
into a metal contact, on demand and in a pure state. The quasiparticle is
a coherent superposition of electron and hole, with a charge expectation
value that can be adjusted between 0 and e. A nearly charge-neutral
quasiparticle is produced in the quenched limit of a fast parity switch,
if the metal couples predominantly to a single Majorana operator in
the Josephson junction. This device could be used for superconducting
analogues of single-electron collision experiments,30,31,52,64,121,136 such
as the Hanbury-Brown-Twiss or Hong-Ou-Mandel interferometer for
Majorana fermions.22,62

Experimentally, one can determine the value of Q by sweeping up
and down through the fermion-parity switch and measuring the shot
noise power Pshot. In each period τ a charge {0,+e,−e} is transferred
with probability {1−2p(1− p), p(1− p), p(1− p)}, where Q/e = |1−2p| is
the average charge transferred during a sweep up or down. The full
distribution of the transferred charge is trinomial. The first moment
vanishes and the second moment is given by

Pshot = 2p(1− p)(e2/τ)= 1
2τ

−1(e2 −Q2). (5.34)

Referring to the model calculation of Fig. 5.2, a band width of
p

T0∆0 '
10GHz at a driving frequency of 1/τ' 0.1GHz would imply a rapidity
γ0 ' 1GHz (so that γ2

0τ '
p

T0∆0). The escape rate γ̄ could then vary
between, say, 0.2GHz and 2GHz to vary between the adiabatic and the
quenched regime. These frequencies should all lie above the decoherence
rate of the Bogoliubov quasiparticle due to charge noise, which could be
below 1MHz.156

An alternative way to measure the transferred charge is to apply
a voltage V between the two superconductors. The phase will then
advance with constant rate dφ/dt = 2eV /~, producing a current I =
Q×2eV /h (assuming a single level crossing in a 2π phase interval).
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5.A Model Hamiltonian

5.A Model Hamiltonian
The model Hamiltonian for the nanowire Josephson junction of Fig. 5.5
has the Bogoliubov-De Gennes form

H =
(
H0(p) ∆

∆∗ −σyH∗
0 (−p)σy

)
, (5.35a)

H0 = p2

2meff
−EF + αso

~
(σx py −σy px)+ 1

2 geffµBBσx

+V0 [Θ(x−WB/2)−Θ(x−WB/2)]. (5.35b)

Electrons and holes are coupled by the induced s-wave pair potential ∆
at the superconducting contacts, with a phase difference φ. The single-
particle Hamiltonian H0 contains Rashba spin-orbit coupling and the
Zeeman energy of a magnetic field parallel to the nanowire. A potential
barrier of strength V0 and width WB is located at the center of the
junction.

The Hamiltonian H is discretized on a square lattice, to obtain a
tight-binding model.71 For the parameters indicated in the figure, the
Josephson junction is in the nontrivial regime,120,135 with a pair of
Majorana zero-modes at the normal-superconducting (NS) interface,
weakly coupled via the potential barrier. A normal-metal lead is attached
perpendicular to the nanowire, coupling predominantly to one of the two
zero-modes.

To obtain the complex energies of the quasibound states, the imaginary
part of the lead self-energy is added to the tight-binding Hamiltonian of
the junction. Diagonalization of this non-Hermitian Hamiltonian yields
the complex eigenvalues En(φ)− iΓn(φ) plotted in Fig. 5.2.

5.B Details of the calculation of the Green’s
function

5.B.1 Evaluation of the determinant
Since the expression (5.16) for the Green’s function contains both the
matrix X (E) and its inverse, we need to evaluate the determinant of
this 2×2 matrix. As a first step we will show that Det X is energy inde-
pendent. This can be done directly from the differential equation (5.18)
for X .
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5 Quench dynamics of fermion-parity switches in a Josephson junction

Figure 5.5: Nanowire Josephson junction modeled by the Hamiltonian (5.35), discretized on a square
lattice (lattice constant a = 25nm). The InSb nanowire is grey, with a tunnel barrier (width 25nm) in
black, the superconducting contacts are yellow, the normal-metal probe (width 100nm) is blue. There
are 4 electron subbands in the nanowire and 8 in the probe, counting spin. The peak conductance at
the fermion-parity switch is indicated.

We write the determinant in the form

Det X (E)=
(
u∗(−E)
v∗(−E)

)T

σz

(
u(E)
v(E)

)
, (5.36)

and take the derivative with respect to E. The functions u,v solve

(
iγ2

0σzd/dE+E+ iπΛ2)(u
v

)
= 0. (5.37)

This allows us to express the derivatives

d
dE

(
u(E)
v(E)

)
= i
γ2

0
σz(E+ iπΛ2)

(
u(E)
v(E)

)
, (5.38)

d
dE

(
u∗(−E)
v∗(−E)

)
= − i

γ2
0
σz(E+ iπΛ∗2)

(
u∗(−E)
v∗(−E)

)
. (5.39)

Since Λ is a real and symmetric matrix, it follows that

d
dE

Det X = i
γ2

0

(
u∗(−E)
v∗(−E)

)T

[(E+ iπΛ2)

− (E+ iπΛ∗2)
T

]
(
u(E)
v(E)

)
= 0, (5.40)

so Det X is independent of E.
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5.B Details of the calculation of the Green’s function

From Eq. (5.22) we have an explicit expression for the determinant of
X :

Det X =U(− 1
4 iδ2, 1

2 ;−iε2)U( 1
4 iδ2, 1

2 ; iε2)

− 1
4δ

2U( 1
2 − 1

4 iδ2, 1
2 ;−iε2)U( 1

2 + 1
4 iδ2, 1

2 ; iε2). (5.41)

This is an analytic function of ε= (E+ iπγ̄)/γ0, which is independent of
E and hence independent of ε. At ε= 0 we may evaluate it by means of
the identities1

U(a, 1
2 ,0)=

p
π

Γ( 1
2 +a)

, (5.42)

Γ( 1
2 + ia)Γ( 1

2 − ia)= π

coshπa
,

Γ(1+ ia)Γ(1− ia)= πa
sinhπa

. (5.43)

Substitution into Eq. (5.41) at ε= 0 gives

Det X = exp(−πδ2/4), (5.44)

as in Eq. (5.23).

5.B.2 Normalization of the excited state
We wish to demonstrate that the wave function (5.25) of the single-
particle excited state is normalized to unity. For that purpose we need
to evaluate the integral

N ≡ 〈ψ|ψ〉 =
∫ ∞

0

2πdE
γ2

0 Det X

(
u∗(E)
v∗(E)

)T

Λ2
(
u(E)
v(E)

)
. (5.45)

We again use the fact that u,v solve Eq. (5.37). Substitution into
Eq. (5.45) gives (denoting u′ = du/dE)

N = −2
Det X

∫ ∞

0
dE

[
u∗u′−v∗v′− iEγ−2

0 (uu∗+vv∗)
]

= 2
Det X

(|u(0)|2 −|v(0)|2)
+ 2

Det X

∫ ∞

0
dE

[
uu∗′−vv∗′+ iEγ−2

0 (uu∗+vv∗)
]

= 2−N ∗, (5.46)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

and because N is real, we indeed have N = 1. Notice that 〈ψ|ψ〉 = 1
also implies 〈Ψ1|Ψ1〉 = 1 in Eq. (5.26).

5.C Scattering formula for the charge
transfer in the adiabatic regime

The current passing through the NS interface in the adiabatic regime
γ0 ¿ γ1,γ2 of a slow fermion-parity switch can be evaluated most easily
from the scattering formula (5.30), which is the analogue for Bogoliubov
quasiparticles of a well-known formula for normal electrons.16,19,29,34

For completeness we give a derivation of Eq. (5.30).
One subtlety in this derivation is that Fourier transforms of quasi-

particle annihilation operators a(E) to the time domain need to include
both positive and negative energies in order to produce a complete basis
set. This results in a double counting of the quasiparticle excitations, be-
cause of the relation a(−E)=σxa†(E). To correct for the double counting
we include a factor 1/2 in the definition of the current operator,22

I (t)= 1
2 ea†

out(t)σzaout(t),

aout(t)=
∫ ∞

−∞
dE
2π

e−iEtaout(E).
(5.47)

The outgoing and incoming operators are related by the scattering
matrix,

aout(E)=
∫ ∞

−∞
dE′

2π
S(E,E′)ain(E′), (5.48)

which satisfies the unitarity condition∫ ∞

−∞
dE′

2π

∑
n′

Snn′ (E1,E′)S∗
mn′ (E2,E′)

= 2πδnmδ(E1 −E2).
(5.49)

The incoming operators have the equilibrium expectation value

〈a†
n(E)am(E′)〉 = 2πδ(E−E′)δnm f (E), (5.50)

with f (E)= (1+ e(E/kT)−1
the Fermi function at temperature T. We seek
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5.C Scattering formula for the charge transfer in the adiabatic regime

the current expectation value I(t)≡ 〈I (t)〉, given by

I(t)= 1
2 e

∫ ∞

−∞
dE
2π

∫ ∞

−∞
dE′

2π

∫ ∞

−∞
dω
2π

eiωt

× f (E′)TrS†(E+ω,E′)σzS(E,E′). (5.51)

Because of the unitarity condition (5.49), the integral over E′ without
the factor f (E′) vanishes,∫ ∞

−∞
dE′

2π
TrS†(E+ω,E′)σzS(E,E′)= 2πδ(ω)Trσz

= 0. (5.52)

We may therefore equivalently write

I(t)= 1
2 e

∫ ∞

−∞
dE
2π

∫ ∞

−∞
dE′

2π

∫ ∞

−∞
dω
2π

eiωt

× [ f (E′)− f (E)]TrS†(E+ω,E′)σzS(E,E′). (5.53)

It is convenient to introduce the Wigner transform

SW(E, t)=
∫ ∞

−∞
dE′

2π
e−iE′ tS(E+ 1

2 E′,E− 1
2 E′), (5.54)

because it becomes the frozen scattering matrix SF(E, t) from Eq. (5.31)
in the adiabatic limit.174 More precisely,

SW(E+δE, t)= SF(E, t)+O (γ0/Ec)+O (δE/Ec), (5.55)

with Ec =min(γ1,γ2) the width of the quasi-bound state.
Fourier transformation of the time variable gives

SW(E,ω)=
∫ ∞

−∞
dt eiωtSW(E, t)= S(E+ 1

2ω,E− 1
2ω). (5.56)

In terms of SW(E,ω) the expression (5.53) for the current reads

I(t)= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω′

2π

∫ ∞

−∞
dω
2π

eiωt

× [
f (Ē− 1

2ω
′)− f (Ē+ 1

2ω
′)
]

×TrS†
W(Ē+ 1

2ω,ω+ω′)σzSW(Ē,ω′), (5.57)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

with the definitions Ē = 1
2 (E+E′), ω′ = E−E′.

The integrals over ω and ω′ contribute over the range −γ0 .ω,ω′ . γ0.
To leading order in γ0 we therefore have

TrS†
W(Ē+ 1

2ω,ω+ω′)σzSW(Ē,ω′)=
TrS†

F(Ē,ω+ω′)σzSF(Ē,ω′)+O (γ0/Ec), (5.58)

in view of Eq. (5.55). Substitution into Eq. (5.57), with a change of
variables ω′′ =ω+ω′, results in

I(t)= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω′

2π

∫ ∞

−∞
dω′′

2π
ei(ω′′−ω′)t

× [
f (Ē− 1

2ω
′)− f (Ē+ 1

2ω
′)
]

×TrS†
F(Ē,ω′′)σzSF(Ē,ω′)[1+O (γ0/Ec)]

= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω
2π

e−iωt

× [
f (Ē− 1

2ω)− f (Ē+ 1
2ω)

]
×TrS†

F(Ē, t)σzSF(Ē,ω)[1+O (γ0/Ec)]. (5.59)

Since we do not wish to assume that γ0 is small compared to kT, we
expand the difference of Fermi functions in square brackets to all order
in ω,

[ f (Ē− 1
2ω)− f (Ē+ 1

2ω)]e−iωt =

=−2
∞∑

p=0

(ω/2)2p+1

(2p+1)!
∂2p

∂Ē2p
f ′(Ē)e−iωt

=−
( ∞∑

p=0

(i/2)2p

(2p+1)!
∂2p

∂Ē2p
∂2p

∂t2p

)
f ′(Ē)ωe−iωt.

(5.60)

Upon partial integration, the sum over p contributes to the integral (5.59)
terms of order

∂2p

∂Ē2p
∂2p

∂t2p SF(Ē, t)=O (γ0/Ec)2p, (5.61)

so only the p = 0 term needs to be retained to leading order.
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5.D Multi-channel probe

We thus arrive at

I(t)= − 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω
2π

f ′(Ē)ωe−iωt

×TrS†
F(Ē, t)σzSF(Ē,ω)[1+O (γ0/Ec)]

= − 1
2 ie

∫ ∞

−∞
dĒ
2π

f ′(Ē)

×TrS†
F(Ē, t)σz

∂

∂t
SF(Ē, t)[1+O (γ0/Ec)]. (5.62)

At zero temperature, when − f ′(E)→ δ(E), we recover Eq. (5.30),

Iadiabatic(t)=
ie
4π

TrS†
F(0, t)σz

∂

∂t
SF(0, t). (5.63)

5.D Multi-channel probe

5.D.1 Coupling matrix
In the main text we assumed that the pair of Andreev levels near the
level crossing is coupled to a single pair of electron-hole modes in the
normal-metal probe. This coupling is described by the 2×2 coupling
matrix W defined in Eq. (5.9). More generally, a multi-channel probe
has a 2×2N coupling matrix of the form

W = (W1,W2, . . .WN ), Wn =
(
αn β∗

n
βn α∗

n

)
, (5.64)

constrained by particle-hole symmetry: W = σxW∗σx. We collect the
complex coefficients αn,βn in a pair of vectors,

α= (α1,α2, . . .αN ), β= (β1,β2, . . .βN ), (5.65)

and define the inner products

〈α|α〉 =
N∑

n=1
|αn|2, 〈β|β〉 =

N∑
n=1

|βn|2,

〈α|β〉 =
N∑

n=1
α∗

nβn.

(5.66)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The decay rates γ1, γ2 of the pair of quasibound Andreev levels are
the eigenvalues of the 2×2 matrix

WW† =
N∑

n=1
WnW†

n

=
(〈α|α〉+〈β|β〉 2〈α|β〉∗

2〈α|β〉 〈α|α〉+〈β|β〉
)
, (5.67)

⇒
{
γ1 = 〈α|α〉+〈β|β〉+2|〈α|β〉|,
γ2 = 〈α|α〉+〈β|β〉−2|〈α|β〉|. (5.68)

As before, we define the arithmetic and geometric averages,

γ̄= 1
2 (γ1 +γ2), γ̃=p

γ1γ2. (5.69)

For later use, we also note that

WσzW† =
N∑

n=1
WnσzW†

n = (〈α|α〉−〈β|β〉)σz. (5.70)

5.D.2 Scattering matrix

Carrying through the same steps as in the single-channel case, we have
the following expression for the 2N ×2N scattering matrix S in terms
of the 2×2 Green’s function G:

S(E,E′)= 2πδ(E−E′)−2πiW†G(E,E′)W ,(
iγ2

0σz
∂

∂E
+E+ iπWW†

)
G(E,E′)= 2πδ(E−E′). (5.71)

The solution for G has the factorized form (5.16), in terms of the 2×2
matrix

X (E)=
(
u(E) v∗(−E)
v(E) u∗(−E)

)
(5.72)

that solves the homogeneous equation(
iγ2

0σz
∂

∂E
+E+ iπWW†

)
X (E)= 0. (5.73)
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5.D Multi-channel probe

The functions u and v are determined by

γ2
0u′′+ (ε2 +δ2 − i)u = 0, ζv = iεu−γ0u′, (5.74)

ε= (E+ iπγ̄)/γ0, ζ= (2π/γ0)〈α|β〉∗, (5.75)

δ= |ζ| = 1
2 (π/γ0)(γ1 −γ2). (5.76)

The solution is

u(E)= eiε2/2 U(− 1
4 iδ2, 1

2 ;−iε2), (5.77)

ζv(E)=− 1
2δ

2eiπ/4 eiε2/2 U( 1
2 − 1

4 iδ2, 1
2 ;−iε2). (5.78)

Finally, the scattering matrix has the dyadic form

Snm(E,E′)|E>E′ =−ψn(E)ψ∗
m(−E′), (5.79)

ψ(E)= (2π/γ0)eπδ
2/8W†

(
u(E)
v(E)

)
. (5.80)

5.D.3 Transferred charge
Because the scattering matrix is still of rank-one, a single quasiparticle
is transferred as a result of the fermion-parity switch, irrespective of
the number of channels N in the metal probe. The charge expectation
value of this quasiparticle is given by

Q = e
∫ ∞

0

dE
2π

ψ∗(E)σzψ(E)

= 2πe
γ2

0
eπδ

2/4
∫ ∞

0
dE

(
u∗(E)
v∗(E)

)
WσzW†

(
u(E)
v(E)

)
= 2πe

γ2
0

eπδ
2/4(〈α|α〉−〈β|β〉)

∫ ∞

0
dE

(|u(E)|2 −|v(E)|2)
. (5.81)

Comparison with Eq. (5.28) shows that the transferred charge for a
multi-channel contact differs from that in the single-channel case by a
reduction factor

R = 〈α|α〉−〈β|β〉
γ̃

= 〈α|α〉−〈β|β〉√
(〈α|α〉+〈β|β〉)2 −4|〈α|β〉|2

∈ [0,1], (5.82)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

independent of the rapidity γ0 of the fermion-parity switch.
As a check, we can directly compute the transferred charge in the

adiabatic limit from Eq. (5.30). Substitution of the frozen scattering
matrix at the Fermi level,

S0 = 1+2πiW†(E0σz − iπWW†)
−1

W , (5.83)

gives the charge

Qadiabatic =
ie
4π

∫ ∞

−∞
dE0 TrS†

0σz
∂S0

∂E0

= e
2

∫ ∞

−∞
dE0 Tr(E0σz + iπWW†)

−1
WσzW†(E0σz − iπWW†)

−1
σz

= e
(〈α|α〉−〈β|β〉)∫ ∞

−∞
dE0 (E2

0 +π2γ̃2)
−1

= eR. (5.84)

5.D.4 Relation of the reduction factor to the
Andreev conductance

The charge reduction factor R from Eq. (5.82) is a property of the cou-
pling matrix of the normal-metal probe to the Josephson junction. It
can be expressed in terms of an independently measurable quantity, the
Andreev conductance.

When the normal-metal probe is biased at a voltage V , a current I
is driven into the grounded superconductor by the process of Andreev
reflection. The Andreev conductance GA = limV→0 dI/dV is related to
the scattering matrix S0 at the Fermi level by

GA = e2

2h
Tr(1−S0σzS0

†σz). (5.85)

Near the level crossing a resonant peak appears in GA as a function
of E0, with the Lorentzian line shape

GA = 4e2

h
π2γ̃2

E2
0 +π2γ̃2

(
1−R2)

. (5.86)

The resonant peak height of (4e2/h)(1−R2) directly determines the
charge reduction factor.
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