Cover Page

The handle http://hdl.handle.net/1887/43150 holds various files of this Leiden University
dissertation.

Author: Tarasinski, B.M.
Title: On periodically driven quantum systems
Issue Date: 2016-09-20


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43150
https://openaccess.leidenuniv.nl/handle/1887/1�

4 Attractor-repeller pair of
topological zero-modes in a
nonlinear quantum walk

4.1 Introduction

A classical random walk is invariably associated with diffusive motion,
but quantum superposition and interference allow for a more varied dy-
namics. A quantum walk can explore phase space more rapidly than its
classical counterpart, 259124 a shift from diffusive to ballistic dynamics
that is at the origin of the quadratic speed-up of quantum search algo-
rithms. °1175 Diffusion is recovered for temporal disorder, while spatial
disorder can induce an Anderson quantum phase transition to localized
wave functions, 3:454,69.85,134,158

Two recent developments have further enriched the phenomenology:
One development is the discovery that quantum walks can exhibit a
topological phase transition, at which a bound state (a so-called zero-
mode) appears at a boundary or domain wall. 15-35,88,99,101,141,148,184,186 o
second development involves the introduction of nonlinearities in the dy-
namics. 197110 These have been associated with soliton structures 8130
and investigated as a means to speed up the quantum search. 126 Here
we wish to connect these two separate developments, and explore how
nonlinearities manifest themselves in a topological quantum walk.

We consider the simplest case of a one-dimensional discrete-time
quantum walk in the chiral orthogonal symmetry class (also known
as class BDI, familiar from the Su-Schrieffer-Heeger model 156). The
topological phase transition manifests itself by the appearance of a
pair of zero-modes of opposite chirality. We demonstrate that these
zero-modes may survive in the presence of nonlinearities and moreover
acquire a special role as the attractor and repeller of the nonlinear
dynamics.
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4 Attractor-repeller pair of zero-modes in a nonlinear quantum walk

4.2 Formulation of the linear quantum
walk

We study the one-dimensional dynamics of a two-level system, repre-
sented by a spin-% degree of freedom on the lattice x € Z. We employ a
stroboscopic description, so that time ¢ € Z is discretized as well as space.
The linear dynamics is obtained by repeated applications of a unitary
operator U on a spinor v,

v =) o, wi(x) = (ulx,b),v(x,1)). (4.1)

Quite generally, a single time step of such a discrete-time quantum walk
can be decomposed into two operations: A rotation Ry of the spinor and
a shift S to the left or to the right dependent on the spin component:

Roy = e_iﬂ"yu/ =(ucos?d—vsind,usind +vcos?),
S (u(x,t),v(x, 1)) = (ulx - 1,1),v(x + 1,2)). (4.2)

We can combine the two operations as SRy or RS, but we prefer to
take the symmetrized product, *

U =Ry2SRgp. (4.3)

The evolution operator (4.3) is representative of a chiral orthogonal
quantum walk, meaning that U = U* is real orthogonal (particle-hole
symmetry) and(o,U)? = 1 (chiral symmetry). This BDI symmetry class
supports a topologically protected zero-mode bound to a domain wall
where 9(x) changes sign. Its time-independent state W, (x) satisfies™

U“Iji = \Iji, Ux\Pi = i\l"i. (44)

The eigenvalue +1 of the Pauli matrix o, distinguishes the chirality of
the zero-mode."

*In addition to the zero-mode with U¥Y = ¥, the domain wall may also support a
bound state with UW = —¥. Because this state is rapidly oscillating on the scale of the
lattice constant, it plays no role in the long-wave length dynamics considered here.

TThe fact that the zero-mode is an eigenstate of o follows from U¥Y =¥ and Uo, V¥ =
Ux(axU)QU’l‘I’ =0, V. Since the zero-mode is nondegenerate, the two states ¥ and o, ¥
must be linearly related.
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4.3 Introduction of a nonlinearity

4.3 Introduction of a nonlinearity

We now introduce a nonlinearity (strength x) into the quantum walk by
inserting a w-dependent rotation at each time step,

Wi1(x) = Upp(x), (4.5a)
(x) = exp (—ik M, (x,t)o ) wi(x), (4.5b)
M (x,t) =y ()0, (%) = lulx, )1 - Jo(x, )] (4.5¢)

This nonlinear time-evolution conserves particle-hole symmetry (a real
¥ remains real), but chiral symmetry no longer applies. Still, a zero-
mode W of the linear problem (x = 0) remains a stationary state when
we switch on the nonlinearity, because M, = 0 for any eigenstate of 0.

To appreciate the new features introduced by the nonlinearity, it is
helpful to look at a uniform 9 and a real initial state ¢ = (cosa,sina)
without any spatial dependence. In one time step the angle « is mapped
to @ + 9+ xcos2a. This map is invertible if |x| < 1/2, but it is not area
preserving. The phase space contracts around one of two attractive fixed
points, defined by cos2a. = —9/x, sin2a, > 0. Note that this relaxation
does not involve any loss of particles: Y ,(lu|? +|v|?) is conserved by the
nonlinear dynamics.

As we will now show, for a spatially dependent 9(x) the zero-mode at
a domain wall becomes an attractive or repulsive fixed point, depending
on its chirality. We first present numerical evidence and then give the
analytical solution in the continuum limit.

4.4 Collapse onto a zero-mode

We take a lattice of length L with periodic boundary conditions, —L/2 <
x < L/2. The profile of 9(x) consists of two domains, with domain walls
of width A < L at x, = +L/4:

dotanh(x/A —L/4A)  for0<x<L/2,
9(x) = (4.6)
—Hptanh(x/A + L/4A) for —L/2<x<0,

see Fig. 4.1. As initial condition for the numerics we take a real Gaussian
wave packet centered at x =0,

wo = (o, u0), uo@)=20vm 2 exp(—x2/20), 4.7
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Figure 4.1: Solid curve: Position-dependent rotation angle 9(x) with a pair of domain walls at which
the angle changes sign. Plotted is the profile (4.6) with L =500, A = 10, 99 = 0.4 used in the numerical
simulations. Dashed curves: The two (unnormalized) spinor components of the zero-modes bound to
the two domain walls, calculated from Eq. (4.9). The state ¥ is an eigenvector of o with eigenvalue
+1.

normalized to unity, [ U’Z)Wo dx =1. Fig. 4.2 shows how this state col-
lapses onto one of the two domain walls, depending on the sign of «.

For the analytics we take the continuum limit of the discrete-time
quantum walk, obtained from Eq. (4.5) under the assumption that the
change 6v in one time step 0¢ is infinitesimal. The state-dependent
rotation contributes a term —id#(9 + KwTazw)ayw to 6w, while the state-
dependent shift contributes —6§to,0y/0x, resulting in the Dirac equa-
tion 124 5 5

ia—‘t” = —iaz% + (0 + vyt ow)o . 4.8)

For large L the two domain walls may be considered separately. The
zero-mode bound to the domain wall at x. = +L/4 is given by

0
W, o (U, tus), uilx)=exp (if ﬁ(x')dx'). (4.9)

The time-independent state W is an eigenvector of g, with eigenvalue
+1, selected by the sign of 9'(x) at the domain wall.

We now perform a linear stability analysis for a real perturbation
w(x,t) =¥ .(x)+n(x,t) of the zero-mode. To linear order in  we have

on

9 .
= —UZ—Z — 9)ioyn — 2t (X)(En — oy, (4.10)

0
We focus on perturbations 7 = e?**1(t) of the zero-mode with wave num-
ber & 2 1/A, so we may neglect the spatial dependence of 9(x) and u +(x).
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4.4 Collapse onto a zero-mode

—250

0 10000 20000 time

Figure 4.2: Time-evolution of the density w:wt, starting from a real Gaussian wave packet g =
(ug,ug) (given by Eq. (4.7) with 02 = 50), for the quantum walk with rotation angle profile of Fig. 4.1.
The three panels show the result for the linear quantum walk (panel a, x = 0) and for the nonlinear
quantum walk (panels b and ¢, x = £1.4). Depending on the sign of the nonlinearity, the state collapses
onto the zero-mode ¥+ or ¥_.
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The resulting ordinary differential equation,

d
d_Z =T, T=iko, +i90, +2ku(x1-0y), (4.11)

has relaxation matrix I with eigenvalues 1, ua given by

p1= i21<u_2l +A, po= iQKu_i —-A,

(4.12)
A = a1Put — k% - 92,

We conclude that for « > 0 the zero-mode V¥, is an attractor (Re uq, ug >
0) and ¥_ is a repeller (Repu,us < 0), while for x < 0 the roles are
interchanged.

4.5 Initial states without particle-hole
symmetry

Particle-hole symmetry ensures that a real y remains real, but we

might start with an initially complex state and ask for the stability of

the zero-mode under complex perturbations. Substitution into Eq. (4.8)

of y =¥, +n+i, with real ¥.,n,{, shows that to first order in 7,{ the
nonlinear term contains only the real perturbation:

0 i 0 . . .
a(,7 +il)= — gza(q +10) - Nx)ioy(n+if)

—2xuZ (X)(£n — o). (4.13)

The relaxation matrix for the real perturbation is as in Eq. (4.11),
with eigenvalues pi, us given by Eq. (4.12). But the relaxation matrix
for the imaginary perturbation,

dg¢

7 -T'o(, T'g=iko, +idoy,, (4.14)

has purely imaginary eigenvalues,
Us=iVE2+92, uy=—-iVE2+92, (4.15)

More generally, a perturbation of a complex zero-mode

V.o (x)=eP(us,uy) (4.16)
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Figure 4.3: Same as Fig. 4.2b, but with a complex initial state o = (zq,iug).
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Figure 4.4: Decomposition of the state ¢ = ei‘p(n +i{) at a late time (¢t = 8- 104), starting from the
complex state wq = (ug,uqg +iug), with ug the Gaussian wave packet (4.7) (x = 1.4, other parameters
as in Fig. 4.1). The spinor 1 = (n1,72) is in-phase with the zero-mode ¥, the spinor { = ({1,{g) is
out-of-phase.

has (for x > 0) a decaying in-phase component e’?n and a nondecaying
out-of-phase component ie!?{ [with real spinors n = (1,1n2),{ = ((1,{2)].
Figs. 4.3 and 4.4 illustrate the resulting localized peak on the extended
background.

4.6 Discussion

Fig. 4.2 summarizes our key finding: While the linear quantum walk is
only slightly perturbed by the emergence of zero-modes at a topological
phase transition, once we turn on the nonlinearity the wave packet is
steered towards a domain wall and trapped in a zero-mode of definite chi-
rality. This striking dynamics follows from a specific model calculation.
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Figure 4.5: Optical Galton board consisting of an array of beam splitters with an adjustable trans-
mission, conditioned on the output of a pair of photodetectors. The left panel shows a single element
of the array, the right panel shows their combination.

How generic is it, and how might it be realized in an experiment?

For the experimental connection, we recall that quantum walks can
be realized with true quantum mechanical elements 23 (jon traps, cold
atoms, quantum dots) — or they can be simulated with classical waves,
as in the optical Galton board3250:82.102.160 gych a simulated quantum
walk combines linear optical elements to mimic the quantum evolu-
tion of a spin-1/2 degree of freedom. Nonlinearities can be introduced
via nonlinear optics, %4 or while staying within linear optics by intro-
ducing a feed-forward element conditioned on the output of a photode-
tector. 163 A scheme of the latter type® is illustrated in Fig. 4.5. This
optical Galton board simulates a quantum walk with evolution operator
SRgexp(-ixM,o0,), which differs from Egs. (4.3) and (4.5) by the order
of the operators (SR instead of Rg5SRg/2). In the continuum limit of
Eq. (4.8) this order is irrelevant, and we have checked numerically that
the dynamics is essentially the same as in Fig. 4.2.

Concerning the generality of the result, we have two necessary condi-
tions for the nonlinearity: it should preserve the zero-mode as a fixed
point of the dynamics and it should contract phase space, breaking

*In the implementation of an optical Galton board shown in Fig. 4.5, the photon
polarization plays no role and the spin-1/2 degree of freedom of the quantum walk is fully
orbital. 1% The adjustable beam splitter combines the rotation and shift operators Ry and
S in a single step. Alternative split-step implementations can use adjustable polarizers
for Ry, followed by polarizing beam splitters®® or birefringent displacers?? for S.
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the area-preservation of the linear dynamics. Both conditions hold if
Eq. (4.5) is replaced by

Yer1 = Uy, Wy = exp(—ikRMA-6)yy, (4.17)
M =yl Gh-6)y,

with 6 = (04,0y,0;) and two unit vectors 2 = (0,n,,n,) and 2 = (0,m,,m,),
satisfying m x A # 0 (otherwise the map would be area preserving).
Particle-hole symmetry is broken for n, # 0, but the zero-mode V. is pre-
served. A complex perturbation di has relaxation matrix déy = -6y
with eigenvalues fi,, n =1,2,3,4, given by Eqgs. (4.12) and (4.15), upon
the replacement x — &(7 x r2)-&. The attractor-repeller pair is preserved,
demonstrating the generality of our findings.

We finally note that discrete-time quantum walks have been used as
a design principle for quantum algorithms. For instance, the search
algorithms of Refs. 11,162 can be understood in terms of bound states
in effectively one-dimensional quantum walks. The key observations in
this chapter, namely the convergence towards certain bound states from
arbitrary initial states, as well as the accelerated escape from unwanted
bound states, thus may have promising implications for quantum algo-
rithms. This is in line with several other recent results on continuous
time quantum walks, where nonlinearities are observed to speed up
quantum algorithms. 126
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