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2 Scattering theory of
topological phases in
discrete-time quantum
walks

2.1 Introduction
The last decade has seen a systematic exploration of topological phases
in band insulators and the protected low energy states that emerge
at their boundaries.75,143 From Majorana bound states at the ends of
topological superconducting wires to the unique metallic surface state
of three-dimensional topological insulators, a variety of boundary states
can arise in this way. Their potential applications range from spintronics
to topological quantum computation. As there are few real-life materials
that are topological insulators,12 there is an intense search for model
systems that simulate topological insulators in the laboratory.5,104,167

Discrete-time quantum walks (DTQW)175 are quantum generaliza-
tions of the random walk, with a quantum speedup that could be em-
ployed for fast quantum search28 or even for general quantum computa-
tion.119 They have been realized in many experimental setups, including
atoms in optical lattices,68,88 trapped ions,157,184 and light in optical
setups.33,83,137,152,160,161 DTQWs are known to simulate topological insu-
lators,101 this was recently experimentally confirmed by the observation
of edge states in an inhomogeneous quantum walk with photons.99

Beyond realizing entries in the periodic table of topological insula-
tors,150 DTQWs possess a richer structure of topological phases which
is subject of ongoing research. The role of energy is taken over by
quasienergy ε, that is 2π-periodic in natural units, where ~= 1 and the
unit of time is one timestep of the walk. This is a feature that quan-
tum walks share with periodically driven lattice Hamiltonians,36,116 for
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2 Scattering theory of topological phases in discrete-time quantum walks

which unique topological invariants have been found.98 For both types of
systems, topologically protected states may appear both at quasienergy
ε= 0 and ε=π,84 and states may be topologically protected even when
all bands are topologically trivial.97,149

In this work we characterize topological phases of one dimensional
DTQWs using a scattering matrix approach. This constitutes a general-
ization of methods developed for time-independent systems.6,43,66 For
DTQWs with gaps in the quasienergy spectrum at both ε= 0 and ε=π,
we obtain the topological invariants as simple functions of the scattering
matrix at these quasienergies. For unbalanced quantum walks, where
there is an unequal number of left- and rightward shifts in a period, we
find an integer number of perfectly transmitting unidirectional modes,
that is equal to the quasienergy winding.98 Our approach is particularly
suitable to calculate the topological invariants of disordered quantum
walks, as we demonstrate in an example.

This chapter is structured as follows. After defining our notation for
one-dimensional discrete-time quantum walks in the next section, we
adapt the concept of a scattering matrix for DTQWs in Sec. 2.3. In
Sec. 2.4 we discuss the influence of particle-hole, time-reversal and
chiral symmetry on the scattering matrix. The central result of this
chapter, the topological invariants of DTQWs, are shown in Sections 2.5
and 2.6. We illustrate our approach in Sec. 2.7 with concrete examples.
Finally, Sec. 2.8 discusses how the topological invariants can be directly
measured in a quantum walk experiment.

2.2 Discrete-time quantum walks

We consider a particle (walker) with N internal states (coin states) on a
one-dimensional lattice, whose wave function can be written as

|Ψ〉 = ∑
x∈Z

N∑
n=1

Ψ(x,n) |x,n〉 . (2.1)

Here x denotes the discrete position and n the internal state of the
walker.

The walker is subjected to a periodic sequence of two different types of
operations: shifts and rotations. Measuring time τ in units of the period,
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2.2 Discrete-time quantum walks

the dynamics are given by

|Ψ(τ+1)〉 =F |Ψ(τ)〉 , (2.2)

F = RM+1SMRM . . .S1R1. (2.3)

The time-evolution operator over one period, a.k.a. Floquet operator F ,
consists of shift operators S j and rotation operators R j.

Each shift operation S j, shifts a chosen internal state n j by one lattice
site, either to the right (+) or to the left (−). In formulas S j = S±

n j
, with

S±
n = ∑

x∈Z

[
|x±1,n〉〈x,n|+ ∑

n′ 6=n
|x,n′〉〈x,n′|

]
. (2.4)

For each internal state n, we fix a direction sn ∈ {+1,−1,0} throughout
the protocol. We require that the operators S j are compatible with each
other, i.e. no state is shifted to the left by some S j and to the right by
others. Accordingly, there are three sets of internal states: those shifted
to the right, n ∈ M+, those shifted to the left, n ∈ M−, and those not
shifted at all, n ∈ M0. For each internal state n, we use dn to denote the
number of shift operators S in a period that shift the state,

dn =
M∑
j=1

δn j ,n. (2.5)

Rotations mix the internal degrees of freedom, but are local in real
space,

R j =
∑
x∈Z

|x〉〈x|⊗R j(x). (2.6)

Each R j(x) is a U(N) operation. For translation invariant quantum
walks, R j(x) is independent of x.

The time evolution (2.3) is a stroboscopic simulation of an effective,
time-independent Hamiltonian

Heff ≡ i logF . (2.7)

For definiteness, the branch cut of the logarithm is chosen such that
all quasienergies, the eigenvalues of Heff, are restricted to ε ∈ [−π,π].
In the presence of translational symmetry, quantum walks thus have a
band structure, just like time-independent systems.
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2 Scattering theory of topological phases in discrete-time quantum walks

Figure 2.1: Left: Propagation of a particle in the simple quantum walk, initialized in spin-up state
on a single site. Right: band structure of the simple quantum walk for different values of the rotation
angle θ. Generically the spectrum is gapped around quasienergies ε= 0,π except for the special cases
θ = 0,π.

As an example, Fig. 2.1 illustrates the protocol and the quasienergy
band structure of the simple quantum walk,

F = S−
↓ S+

↑ R(θ). (2.8)

The walker here has only two internal states, which we label by ↑ for
n = 1 and ↓ for n = 2, and refer to as spin. First the spinor is rotated by
an angle θ on the Bloch sphere,

R(θ)=∑
x
|x〉〈x|⊗ e−iθσy . (2.9)

Subsequently S+
↑ shifts the spin-up component of the state to the right

and S−
↓ the spin-down component to the left.

Note that the Floquet operator is not unique for a given quantum
walk protocol. For example we could just as well choose

F = S+
↑ R(θ)S−

↓ , (2.10)

for the Floquet operator of the simple quantum walk, since it produces
the same protocol of operations (. . .S+

↑ R(θ)S−
↓ S+

↑ R(θ)S−
↓ . . .). Describing

a quantum walk by a specific Floquet operator amounts to fixing a
starting time, or time frame,14 for the period of the walk. Changing the
starting time of the period is much like choosing a different unit cell
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2.3 Scattering in quantum walks

in a crystal. It corresponds to a unitary transformation on the Floquet
operator F , and, as a result, cannot change the quasienergy spectrum.
Nevertheless, the choice of the correct time frame can be crucial when
investigating symmetries and topological properties as we shall discuss
in the course of this chapter.

2.3 Scattering in quantum walks
To study DTQWs in a scattering setting, we maintain the whole quantum
walk protocol only in a central region (0 ≤ x < L), which we want to
analyze. In the remaining regions we omit the rotations,

R j(x < 0)= R j(x ≥ L)= 1N for all j. (2.11)

In this way, a left (x < 0) and a right lead (x ≥ L) are formed. The
scattering setting is illustrated in Fig. 2.2 for the example of the simple
quantum walk. Deep in the leads, a particle with internal state n is
simply shifted by dn sites in direction sn in each period,

F |x,n〉 = SM . . .S1 |x,n〉 = |x+ sndn,n〉 ,

for x <−dn or x > L+dn. (2.12)

An infinite lead of this type has propagating solutions at all quasiener-
gies.

A natural basis for propagating states in the two leads (l,r) is given
by the states

|ln,d,ε〉 =
0∑

j=−∞
eisnε j | jdn −d,n〉 ,

|rn,d,ε〉 =
∞∑
j=1

eisnε j |L+ jdn −d,n〉 , (2.13)

for n ∈ M+∪M−. These are quantum walk equivalents of plane waves,
restricted to the left/right lead and normalized to carry the same particle
current. Unlike true plane waves,125 they only occupy every dnth site
and the different sublattices that arise in this way are indexed by d,
restricted to 1≤ d ≤ dn.

In a scattering problem, an incoming mode incident on a central region
is scattered into outgoing modes. Consider a mode |ln,d,ε〉 in the left lead,
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2 Scattering theory of topological phases in discrete-time quantum walks

Figure 2.2: Scattering setting for the simple quantum walk, Eq. (2.8). The lattice is divided in three
regions: a left lead (x < 0), a right lead (x ≥ L) and a scattering region in between. Each site contains
two internal spin states. The shift operators of the protocol act throughout the whole system (solid
black arrows), shifting a walker with state ↑ to the right, and state ↓ to the left. Rotations (dotted
arrows) only change the internal state of the walker in the scattering region. (a) A walker with
spin-up in the left lead is incident on the scattering region. (b) Once it reaches x = 0, it is subject to
rotations and acquires a spin-down component, which is shifted in the opposite direction. The purple
arrows illustrate a possible reflection process. (c) A walker with spin-down is propagated away from
the scattering region. While (a)-(c) depict the scattering in time, the scattering states we consider
are the corresponding quasienergy eigenstates.

with sn =+1, so that it is incident on the central region. It is scattered
into outgoing modes |Ψout

L,R〉 in both the left and the right lead. The
corresponding scattering state is a Floquet eigenstate with quasienergy
ε,

|Ψn,d,ε〉 = |ln,d,ε〉+ |ΨC〉+ |Ψout
L 〉+ |Ψout

R 〉 , (2.14)

|Ψout
L 〉 = ∑

n′∈M−

∑
d′

rn′d′,nd(ε) |ln′,d′,ε〉 , (2.15)

|Ψout
R 〉 = ∑

n′∈M+

∑
d′

tn′d′,nd(ε) |rn′,d′,ε〉 , (2.16)

where |ΨC〉 denotes the contribution of the state in the central region.
This defines the matrix elements of both the reflection matrix r(ε) and
the transmission matrix t(ε).

Using the Floquet operator of the scattering setting, we can write
down the scattering state explicitly,

|Ψn,d,ε〉 =
∞∑

ν=−∞
eiενF ν |−d,n〉 . (2.17)

This really is a stationary state with quasienergy ε, as can be seen
by application of F on Eq. (2.17). State |Ψn,d,ε〉 contains the correct
incoming plane wave, since

|ln,d,ε〉 =
0∑

ν=−∞
eiενF ν |−d,n〉 . (2.18)
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2.4 Symmetries of quantum walks

Furthermore, this state contains no incoming plane waves other than
|ln,d,ε〉, since terms in the above sum with ν > 0 correspond to states
that can be reached by propagating |−d,n〉 forward in time: they are in
the central region and in the outgoing modes.

The reflection matrix elements are found from projections of |Ψn,d,ε〉
onto outgoing (sn′ = −1) states in the left lead, |ln′,d′,ε〉. Using the
definitions above, we obtain

rn′d′,nd(ε)= 〈−d′,n′|
∞∑

ν=−∞
eiενF ν |−d,n〉

= 〈−d′,n′| (1− eiεF )
−1 |−d,n〉 . (2.19)

Similarly, the transmission matrix elements are

tn′d′,nd(ε)= 〈L−d′,n′| (1− eiεF )
−1 |−d,n〉 . (2.20)

for all n′ with sn′ = +. For numerical evaluation, the reflection and
transmission matrices can be calculated from this formula using Floquet
operators that are truncated in the leads. We discuss this in detail in
Appendix 2.A.

Scattering matrices for DTQWs have been considered in a different
formalism by Feldman and Hillery.60,61 With an elegant mathematical
duality transformation, they assign the walker to the edges rather
than the nodes. We chose a different route from theirs, as outlined in
this Section, for two reasons. First, our approach is easier to apply to
multistep walks (i.e., DTQWs where the number of steps per cycle is
M > 2). Second, and this is the more important reason: our approach
allows for a transparent treatment of the relevant symmetries of the
system. This is the topic we turn to in the next Section.

2.4 Symmetries of quantum walks
The standard band theory of topological insulators describes topological
phases of Hamiltonians depending on three discrete symmetries: time-
reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS). In this section we show how the definition of these
symmetries translates to the Floquet operator and the scattering matrix
of DTQWs.
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2 Scattering theory of topological phases in discrete-time quantum walks

A quantum walk has TRS if an antiunitary operator T = KUT exists
such that

U†
TF∗UT =F−1 ⇔ U†

T H∗
effUT = Heff. (2.21)

Here K denotes complex conjugation in the basis used in Eq. (2.1), and
UT is a unitary operator acting on the internal state only. The TRS
operator T transforms the time-evolution operator F into its inverse,
justifying the term “time-reversal”.

If a unitary operator Γ achieves time reversal, this is referred to as
CS,

Γ†FΓ=F−1 ⇔ Γ†HeffΓ=−Heff. (2.22)

Finally, consider an anti-unitary operator P = KUP that transforms
the Floquet operator into itself,

U†
PF∗UP =F ⇔ U†

P H∗
effUP =−Heff. (2.23)

A symmetry of this form is referred to as PHS, because of its existence
in superconductors. In quantum walks, there is no natural concept of
particles and holes, but a symmetry of this form might still be present.

Like in the symmetry classification of time-independent problems, the
unitary symmetries present in the system are used to block diagonalize
the Floquet operator (and, as a consequence, the effective Hamiltonian)
before PHS, TRS and CS are analyzed. Then, P and T , if present, will
square to plus or minus unity, and chiral symmetry is related to the two
by Γ∝T P , if both are present. The possible presence or absence, as
well as the squares of these symmetries, gives ten possible symmetry
classes, which are referred to by so-called Cartan labels.9,150

We now turn to the discussion of symmetries in a scattering setup.
The situation is is very similar to systems whose dynamics are governed
by time-independent Hamiltonians. We thus refer the reader especially
to Appendix A of Ref. 65.

If a scattering setup possesses one of the symmetries above, we can
consider the action of the symmetry operators on the modes in the leads.
TRS and CS reverse the action of the time evolution operator, and thus
map incoming modes to outgoing modes and vice versa, while PHS will
act on these spaces separately.
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2.4 Symmetries of quantum walks

Symmetry class T 2 P 2 Γ QX =QX ,0 ×QX ,π

AIII × × X 1
2 Tr r(0)× 1

2 Tr r(π)

CII −1 −1 X 1
2 Tr r(0)× 1

2 Tr r(π)

BDI +1 +1 X 1
2 Tr r(0)× 1

2 Tr r(π)

D × +1 × 1
2 Det r(0)× 1

2 Det r(π)

DIII −1 +1 X 1
2 Pf r(0)× 1

2 Pf r(π)

Table 2.1: Symmetry classes with non-trivial topological invariants in gapped one-dimensional
DTQWs. For TRS and PHS, the table gives the square values of the symmetry operators. For CS,
existence is indicated by X. The full topological invariant QX is composed of invariants QX ,ε at
quasienergies ε= 0,π inside the two gaps of the quasienergy spectrum. The invariants as given in the
table apply after a basis change on the reflection matrix, as detailed in Appendix 2.B.

We thus can write a time-reversed incoming state as a superposition
of outgoing states. In the left lead this reads:

T |ln,d,ε〉 =
∑

n′∈M−
QT,n′n |ln′,d,ε〉 for n ∈ M+. (2.24)

In the same manner, time-reversed outgoing states are superpositions
of incoming states, with coefficients captured in the left lead by a matrix
VT =T 2(QT )T . Similarly, the action of CS is given by matrices QΓ and
VΓ =Γ2Q†

Γ. PHS on the other hand acts on right and left moving states
separately, and we write

P |ln,d,ε〉 =
∑

n′∈M±
QP±,n′n |ln′,d,ε〉 for n ∈ M±. (2.25)

Here the matrices VP+ and VP− are independent and, in general, can
have different dimensions.

The symmetries of the Floquet operator F translate to properties of
the reflection matrix r:

r(ε)=QT r(ε)TV †
T , (2.26)

r(ε)=QΓr(−ε)†V †
Γ , (2.27)

r(ε)=QP−r(−ε)∗Q†
P+. (2.28)

There is an important caveat here. The Floquet operator, and, conse-
quently, the effective Hamiltonian and the scattering matrix, all depend
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2 Scattering theory of topological phases in discrete-time quantum walks

on the choice of time frame, as in the example of Eq. (2.10). As a con-
sequence, the same DTQW can be seen to have a symmetry in one
timeframe, while this symmetry might be hidden in another timeframe
— this holds especially for TRS and CS. Therefore, finding the sym-
metries and the topological invariants includes going into the proper
timeframe. In this section and in the rest of the chapter, we assume
that this work has been done and that we are in a timeframe where the
symmetries are explicit.

There are two special quasienergies: As can be seen from Eqs. (2.27)
and (2.28), CS and PHS yield special constraints on the scattering matrix
if ε=−ε, which, due to the periodicity of quasienergy, is fulfilled at both
ε= 0 and ε=π. As we show in the following, this has the consequence
that for DTQWs, topological invariants come in pairs.

2.5 Topological invariants of gapped
quantum walks

In this section we consider balanced quantum walks, where the number
n+ of shift operators that shift to the right equals the number n− of
shift operators that shift to the left in a period. For these walks, the
quasienergy band structure generically has gaps around the special
quasienergies ε= 0 and ε=π. Then, the transmission amplitudes at the
two quasienergies are exponentially small in system size L, and, in the
limit of large system size, the reflection blocks, r(0) and r(π), become
unitary matrices.

2.5.1 Topological invariants

In five of the ten symmetry classes, unitarity of the reflection matrix
allows us to define topological invariants, along the lines of the scattering
theory of topological insulators and superconductors.66 These classes
are AIII, CII, D, BDI and DIII, as defined in Table 2.1, where we also
summarize the main results of this section.

As a first step towards defining the topological invariants, a change
of basis is performed separately for both in- and outgoing lead states,
to simplify Eqs. (2.26), (2.27), and (2.28). Concrete recipes for the ba-
sis transformations are presented in Appendix 2.B for each class. In
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2.5 Topological invariants of gapped quantum walks

the thus standardized form, the reflection matrices obey the following
relations,

r(ε)= r∗(−ε) for class D, (2.29)

r(ε)= r∗(−ε)=−rT (ε) for class DIII, (2.30)

r(ε)= r†(−ε) for classes AIII, CII and BDI, (2.31)

which we need to define the topological invariants. These follow from
PHS, PHS + TRS and CS respectively after the simplifying basis changes.

In class D, r(0) and r(π) are real and due to unitarity they are or-
thogonal matrices. Hence they have determinant ±1. Four topologically
distinct situations arise, distinguished by the Z2 ×Z2 invariant

QD = 1
2 Det[r(0)]× 1

2 Det[r(π)] for class D. (2.32)

In symmetry class DIII, the reflection matrices r(0) and r(π) are both
real and antisymmetric. Therefore, the invariant of (2.32), will be ( 1

2 , 1
2 ),

as the eigenvalues of real antisymmetric matrices are purely imaginary
and come in complex conjugate pairs. However, the determinant of an
antisymmetric matrix is the square of a function of the matrix, the
Pfaffian. The Pfaffian in this case can take values ±1. Thus, again four
topologically different cases can be distinguished,

QDIII =Pf[r(0)]×Pf[r(π)] for class DIII. (2.33)

In symmetry classes AIII, BDI, CII the reflection blocks r(0) and r(π)
are Hermitian and unitary. Thus their eigenvalues are pinned to ±1
and their traces are quantized to integer values. This is expressed by
the Z×Z topological invariant

Qch = 1
2 Tr[r(0)]× 1

2 Tr[r(π)] forclassesAIII,CII,BDI. (2.34)

In class CII, the traces can only take even integer values due to Kramers
degeneracy of the scattering states. In principle, this invariant is also
defined for i r(0) and i r(π) in symmetry class DIII, which we described
before, but will always take the trivial value (0,0), due to the antisym-
metry of r.

In combination with the scattering formalism in Sec. 2.3, the topo-
logical invariants QD, QDIII and Qch, are the main results of this work.
Our approach is in agreement with the most recent analysis of topology
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2 Scattering theory of topological phases in discrete-time quantum walks

in DTQWs from a Floquet operator perspective,14 as we will demon-
strate for three examples in the next section. Similar invariants exist
for reflection matrices of time-independent systems at zero energy,66

but the time-periodicity of DTQWs leads to an extra contribution at
quasienergy π.

2.5.2 Boundary states
The main reason bulk topological invariants are interesting is that they
can be used to predict the number of protected midgap states at an
interface between two bulk systems.75 This applies to inhomogeneous
DTQWs that have two domains, A (x < 0) and B (x > 0), governed by
different quantum walk protocols, given that the complete system has
the right combination of symmetries. If the topological invariant QX =
QX ,0×QX ,π with X ∈ {D,DIII,ch} changes across the interface by ∆QX =
∆QX ,0×∆QX ,π =QA

X −QB
X , it can be shown that a number of |∆QX ,{0,π}|

quasienergy eigenstates are guaranteed to exist at quasienergies ε= 0,π
inside the gaps. These are bound to the interface and protected by the
change of topological invariant. A full discussion based on reflection
matrices is provided in Appendix 2.C.

In order to interface two DTQW protocols, such that they form an
inhomogeneous system, the two protocols have to be compatible (we
explain what we mean by this below). The shift operators are nonlocal,
and thus to ensure that the Floquet operator of the combined system
is unitary, they have to be applied throughout the system at the same
time, and to the same internal states. Thus, two DTQW protocols A and
B are compatible if SA

j = SB
j for every j. The two DTQW protocols can

only differ in their rotations.
Note that there is no unique DTQW analogue of open boundary con-

ditions. Thus the bulk topological invariant alone does not predict the
number of topologically protected edge states at the ends of a finite
line segment on which an otherwise homogeneous DTQW takes place.
Edge states can exist, but their number depends on the way the walk
is terminated.13 This is analogous to the situation of time-independent
Hamiltonian systems with chiral symmetry.66

Note further that the values of the topological invariants depend on
the starting time of the period of the DTQW, i.e., the choice of time frame
for the Floquet operator. Nevertheless, the correct number of protected
boundary states is obtained from the individual topological invariants
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2.6 Topological invariant of unbalanced quantum walks

of two interfaced quantum walk domains when their starting times are
chosen such that the walks are interfacable.

2.6 Topological invariant of unbalanced
quantum walks

When a period of the quantum walk protocol contains a different number
of shift operators that shift to the right than shift operators that shift
to the left, n+ 6= n−, the quasienergy bandstructure shows a winding
in quasienergy space.98 This unique type of topology only can occur
because of the 2π-periodicity of quasienergy space. From a transport
point of view, such a winding is produced when particles are pumped
through the one dimensional system. A simple example is given by
F = S+

↑ for which the quasienergy band structure is given by the raising
half of the green dotted line in Fig. 2.1.

The scattering matrix of such a system has an unusual form since
the reflection blocks r and r′ of the scattering matrix are rectangular
matrices of size n−×n+ and n+×n− respectively, while the transmission
blocks are square matrices of differing sizes: n+×n+ (t) and n−×n−(t′).
The ranks of the matrix products rr† and r′r′† is thus at most as large as
min(n+,n−) and one of them has at least |n+−n−| zero eigenvalues. Due
to the unitarity of the scattering matrix, |n+−n−| of the transmission
eigenvalues of the larger transmission block have thus to be unity for
all quasienergies. These perfectly transmitting channels in only one
direction reflect the charge pumping through the system. Hence the
topology of the quantum walk can be read off from the scattering matrix
through the topological invariant

I = dim(t)−dim(t′). (2.35)

2.7 Examples
In this section, we consider three examples for gapped DTQWs and
demonstrate how their topological properties can be analyzed by the
scattering matrix approach. We first discuss the so-called split-step
walk,101 which includes the simple quantum walk of Eq. (2.8) as a
special case. We then discuss a generalization of this protocol, which
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2 Scattering theory of topological phases in discrete-time quantum walks

contains four shift operators per period.14 Depending on the choice of
parameters, it can fall into several of the relevant symmetry classes,
realizing either QD or Qch. The third example has a larger internal
space and is characterized by the invariant QDIII.

Finally, we show that the scattering matrix approach can also be used
to define topological invariants in the presence of disorder and illustrate
this using the simple quantum walk with disordered rotation angles.

2.7.1 Split-step walk
Extending the DTQW of Eq. (2.8) by adding another rotation, we obtain
the so-called split-step walk97

F = S+
↑ R2S−

↓ R1. (2.36)

Here, R j = R(θ j) is a rotation about the y axis as defined in Eq. (2.9).
The split-step walk is thus parametrized by two angles θ1,θ2. This
DTQW has two internal states (N = 2), again referred to as a spin, with
spin-up propagating to the right, and spin-down propagating to the
left. Since d1 = d2 = 1, according to Sec. 2.3, the reflection matrix is a
1×1-matrix.

To find the topological properties of the split-step walk, we first need to
understand its symmetries. According to Eq. (2.9), the rotation matrices
are real matrices. The same applies for the shift matrices in position
basis, so that F will be real and thus have PHS, with P = K .101 The
protocol also has a chiral symmetry. This can be seen by choosing a
different time frame,14

F ′ =
√

R1S+
↑ R2S−

↓
√

R1, (2.37)

so that chiral symmetry is given by Γ = σx, which can be seen from
σxS↑σx = S−1

↓ and σxRσx = R−1. Thus the system falls in symmetry
class BDI. Note that also the simple quantum walk is of this form if
written as in Eq. (2.10), with θ1 = 0.

We calculated the reflection matrix in Eq. (2.19) numerically for the
Floquet operator F ′, following the procedure described in Appendix 2.A.
The resulting class BDI invariant Qch is plotted in Fig. 2.3 as a function
of the rotation angles θ1,θ2 for system size L = 50. The calculation is
simplified by the fact that the chiral symmetry of r is in its canonical
form, Eq. (2.31), because VΓ = 1. The topological invariant Qch is thus
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in fact half of the reflection matrix’s only element, taken at energies 0
and π, with values Qch ∈ (± 1

2 ,± 1
2 ).

The results plotted in Fig. 2.3 are in agreement with topological
invariants that were derived directly from the Floquet operator, by
counting gap closings in the dispersion relation.13

2.7.2 Four-step walk
We now turn to a multistep walk, choosing a longer sequence that
includes three different rotations,

F = S−
↓ R3S−

↓ R2S+
↑ R1S+

↑ . (2.38)

Here, we also allow for more general rotations

R(θ,χ)=∑
x
|x〉〈x|⊗ e−iθ(σy cosχ+σz sinχ), (2.39)

so that the walk is parametrized by six angles, θ j,χ j, with j ∈ 1,2,3.
This four-step walk has been introduced before in Ref. 14.

For the four-step walk, there are still only two internal states (N = 2),
but the number of shift operators is larger (d↑ = d↓ = 2), leading to a 2×2
reflection matrix. The symmetries of the system are fixed by restricting
the parameters to certain subsets. To be precise, if we set χ1,2,3 = 0, the
rotation matrices are real, and the system has PHS, given by P = K . On
the other hand, if we require R1 = R3, the system has chiral symmetry
given by Γ= σx. This walk thus serves as an illustrative example for
the symmetry classes D, AIII, or BDI. We concentrate on the BDI case,
where all χ= 0 and θ1 = θ3.

In Fig. 2.3, we show the numerical result for the invariant Qch from
the scattering matrix. As defined in Sec. 2.5, the invariant is half the
trace of the reflection block at quasienergies 0 and π, and here each of
the two elements can take the values {−1,0,1}. Similar to the split-step
walk above, the symmetry relations for r are in their standard form
already, so no basis transformation is required.

Our result for the the phase diagram agrees with Fig. 2 of Ref. 14,
where the topological invariant was calculated by combining winding
numbers from two different time frames. Interestingly, with the ap-
proach of this chapter, it suffices to consider the protocol in one time
frame. This is because the scattering matrix method uses all possible
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2 Scattering theory of topological phases in discrete-time quantum walks

plane waves to probe the quantum walk, which reach the scattering re-
gion at different times. The reflection matrix thus contains information
about the dynamics of the system during one timestep.

Quantum walks for classes AIII and D are obtained from this walk
by breaking either particle-hole or chiral symmetry. In the former case,
the topological invariant does not change, while in the latter case, the
topological invariant is reduced to Z2 ×Z2.14

2.7.3 Symmetry class DIII
The construction of a DTQW that realizes T 2 = −1 is more involved;
some proposals have been given in Ref. 101. As an example, we now
consider a protocol with DIII symmetry, which is constructed with four
internal states N = 4, of which two are right-moving and two are left-
moving. We consider these as two instances of a two-state quantum
walk, which are governed by

F =
(
F1 0
0 F2

)
eiσzτyγ

(
F2 0
0 F1

)
, (2.40)

where σi are Pauli matrices acting on the spin of each copy of the two-
state quantum walk, while τy is a Pauli matrix that mixes the two
instances. Here, F1 and F2 are both Floquet operators of the simple
quantum walk in the form of Eq. (2.10), with different parameters θ1/2.
The additional angle γ provides a way to couples the two instances of
the walk. This quantum walk has CS with Γ= iσxτy, PHS with P = K ,
and thus TRS with T =σxτyK , falling into symmetry class DIII.

According to Sec. 2.5, the calculation of the topological invariant
from the reflection block r requires us to find the basis in which r is
antisymmetric, in order to calculate the Pfaffian. From Appendix 2.B, it
follows that this property is fulfilled by the matrix r̃ =VT r, so that the
topological invariant in this example can be calculated as

QDIII =Pf
(
τyr(0)

)×Pf
(
τyr (π)

)
. (2.41)

The resulting phase diagram of this protocol, with θ2 = 0, is displayed
in Fig. 2.3 (c). It realizes all possible topological phases of the symmetry
class. Non-generic features can be observed at θ1 = 0,π in the phase
diagram, signalling unprotected gap closings at which the topological
invariant does not change.
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Figure 2.3: Topological phase diagrams for three quantum walk examples, obtained from the scatter-
ing matrix approach. All phases are labelled by their topological invariant QX and are furthermore
encoded in brightness (QX,0) and hue (QX,π). (a) Topological invariant QBDI of the split-step quan-
tum walk (2.37). (b) Topological invariant QBDI of the four-step quantum walk (2.38), where θ1 = θ3
and χ1,2,3 = 0, so that falls into class BDI. (c) Topological invariant QDIII of the quantum walk (2.40),
with θ2 = 0. For all three examples, the length of the scattering region is L = 50. Close to phase bound-
aries, where the gap closes, r becomes subunitary due to finite size effects and the invariants are not
quantized. Otherwise the quantization of the invariants is evident.
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2 Scattering theory of topological phases in discrete-time quantum walks

2.7.4 Disorder

A major advantage of the classification of topological phases using the
scattering matrix is that the topological invariants can also be defined
for systems with spatial disorder.

As a proof of concept, let us now add disorder to the simple quantum
walk, Eq. (2.10). Spatial disorder is introduced by drawing the the
rotation angle θ (x) for each site x from a Gaussian ensemble with mean
〈θ〉 and variance δθ, with no correlation for different x. This breaks
neither PHS nor CS, so a BDI topological invariant is still defined if r
remains unitary.

As for the split-step walk, the BDI topological invariant is just half
the reflection block itself, which is a single number. Furthermore, due to
an additional symmetry,97 Qch,π =−Qch,0, so we only have to consider
quasienergy ε= 0. We thus numerically calculated an ensemble average
of r(0) for a range of 〈θ〉 and δθ which is presented in Fig. 2.4. Note
that the topological invariant is stable against the introduction of small
disorder unless very close to the transition, demonstrating the stability
of the phases to disorder.

For strong disorder, the ensemble average approaches zero (the green
region in Fig. 2.4). However, this is not due to the fact that r becomes
subunitary. On the contrary, the distribution of r is strongly bimodal
around ±1, indicating that individual systems are still insulating and
allow for the definition of a topological invariant, whose value however
can not be predicted for large disorder strengths.

2.8 Experiment

The scattering matrix of a discrete-time quantum walk is not only a
theoretical construct but can also be directly measured. In this section
we discuss the principle of such an experiment using the example of the
split-step walk, introduced in Sec. 2.7.1. For the split-step walk, the
reflection matrices are real numbers of unit magnitude, (r(0), r(π)) =
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Figure 2.4: Disorder averaged invariant 〈Qch,0〉 at ε = 0 for the simple quantum walk as a function
of mean rotation angle and disorder strength. The transition region around 〈θ〉 = 0 is broadened
with increasing disorder until the topological phases are not properly defined anymore (green region).
System size is L = 50, the average is taken over n = 100 different disorder realizations.

(±1,±1), and, using (2.19), the pair of topological invariants simplify to

Qch,0 =
1
2

∞∑
ν=1

〈−1,↓|F ν |−1,↑〉 ;

Qch,π =
1
2

∞∑
ν=1

(−1)ν 〈−1,↓|F ν |−1,↑〉 . (2.42)

These formulas suggest a measurement protocol for the topological
invariants: (1) Initialize the walk with the walker at time τ = 0 at
x = −1, in state ↑. (2) Obtain the topological invariants as the sum,
and alternating sum of the probability amplitudes for the walker at
timestep τ ∈ N to be at x = −1, in state ↓. This measurement can be
straightforwardly conceived in optical realizations of quantum walks, as
we show below.

We demonstrate our ideas using a simple beam splitter (BS) repre-
sentation of the quantum walk, shown in Fig. 2.5. This layout can be
easily adapted to many actual physical realizations, including integrated
photonics,152 or even optical feedback loops.161* It consists of an array
of cascaded BS’s, with a light pulse incident on the lower left BS. As

*Recently, there has in fact been a report of the realization of this experimental
proposal in time-multiplexed quantum walk experiments using optical fiber loops, Ref. 18.
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x=0

x=2

x=1

x=-1

τ=1 τ=2τ=0 τ=3

x=3

τ=4 τ=5 τ=6

Figure 2.5: Schematic layout for the experimental measurement of the reflection amplitudes of a split-
step quantum walk. An incident coherent light pulse at τ= 0, x =−1 enters an array of beam splitters
of two types (dark blue, light orange), where it is split and recombined repeatedly, thereby performing
the quantum walk. A row of detectors at x =−1 measure the wave amplitudes 〈−1,↓|Fτ |−1,↑〉 leaving
the quantum walk region. The reflection amplitudes r(0) and r(π) are given by the sum and and the
alternating sum of the measured reflected amplitudes, Eqs. (2.42).

the light propagates in time, it spreads throughout the array in a way
that can be interpreted as a quantum walk. The state of the light just
before and just after the nth column of BS’s is mapped to the state of
the walker just before and just after the nth rotation operation. The
direction of propagation of the modes is identified with the internal state
of the walker, “right-up” representing ↑ and “right-down” representing ↓.
The vertical coordinate in the arrays is identified with the position x of
the walker, as indicated in Fig. 2.5. We use two different types of BS’s to
realize the two rotations in the Floquet operator, Eq. (2.36).

In optical DTQW experiments, intensity measurements on the modes
leaving the array at the right edge are used to read out the position
distribution of the walker after τ steps. In our case, there are two
differences. First, as indicated in Fig. 2.5, our output modes are not
at the right edge, but rather at the bottom edge of the array. Second,
intensity measurement on the output modes does not work for us, since
it destroys the phase information that is crucial to obtain the topological
invariants, as sums of probability amplitudes, Eq. (2.42).

A direct measurement of the probability amplitudes as required for
the invariants is possible if the incident light pulse is a strong coherent
state |α〉, containing many photons. This is standard practice in some
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photonic quantum walk experiments.161 Strictly speaking the spreading
of the light pulse is then not a quantum walk any more, since there is
no entanglement at any point in the system. However, it simulates a
single-photon quantum walk directly. At any time, the array contains
coherent states Π j |α j〉, with the coherent amplitudes α j corresponding
exactly to the probability amplitudes Ψ j of the walker, Ψ j =α j/α. This
is used in experiments160 to read out the state of the walker during the
walk, and to measure the probability distribution after N steps in one
shot.

The 0 and π quasienergy invariants are obtained by measuring the
sum and the alternating sum of the outcoming coherent amplitudes,
cf. Eqs. (2.42). This can be done practically by interfering each output
mode with a local oscillator, or, interfering the output modes directly
with each other on an N-port. Note that since the BS’s have only real
elements (no phase shifting), a single intensity measurement suffices.
Moreover, in this setup, one can even use a CW laser instead of a laser
pulse.

2.9 Conclusion
In this chapter we have classified the topological phases of one-dimen-
sional discrete-time quantum walks using a scattering matrix approach.
For this purpose, we generalized the concept of the scattering matrix to
these periodically time-dependent systems.

We find that, dependent on their symmetries, gapped DTQWs are
characterized by one of three different topological invariants, QD, QDIII
and Qch. They are calculated from the determinant, Pfaffian or trace
of the reflection matrix as summarized in Table 2.1. In contrast to
their analogs for time-independent systems,66 the invariants consist of
two independent contributions Q =Q0 ×Qπ that are evaluated at the
two special quasienergies ε= 0,π. Adapting arguments for topological
insulators,66 we found that an interface between two extended quantum
walk regions hosts a number of protected boundary states that equals the
difference of the invariants across the interface. These are stationary
states of the walk where the walker stays exponentially close to the
interface, and has quasienergy ε= 0 or ε=π.

We also considered unbalanced DTQWs where there is a difference
n in the number of left- and rightward shifts per cycle, producing a

49
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quasienergy winding in the Brillouin zone. We found that they have n
channels that transmit perfectly in the majority direction. The charac-
terization of transmission in this problem, including the transport time
distribution of disordered quantum walks with quasienergy winding,
poses an interesting direction for further investigation.

We provide a simple scheme to directly measure the reflection matrix
— and, thus, the topological invariants — of a quantum walk. This
scheme is well within the reach of current experiments working with
light pulses137,152,160,161.

Our scattering matrix approach complements existing methods based
on Floquet operators in momentum space, with two important advan-
tages. First, we provide a unified framework describing topological
phases in different symmetry classes as simple functions of a single,
typically small matrix. Second, our formulas use only a single time
frame for the Floquet operator. This is in contrast with Ref. 14, which
explicitly states that the topological invariants of chiral quantum walks
can only be obtained by combining the winding numbers from different
timeframes. The scattering matrix gets around this restriction, and
probes the behavior of the system during a protocol by including contri-
butions from plane wave-like modes that enter and exit the scattering
region at intermediate times.

The scattering matrix formalism presented in this chapter gives a
powerful new tool for the investigation of the effects of disorder on
topological phases and transport in DTQWs. Depending on the types
of disorder and symmetries, experiments and theory on DTQWs have
already seen both Anderson localization,159 and delocalization.134 Our
generalized scattering matrix formalism allows a continuation of this
research to more general multistep DTQWs.

2.A Numerical implementation
According to Eq. (2.19) the scattering matrix is determined by following
the time evolution of a particle which is placed in an incoming mode until
it enters an outgoing mode. While doing so, most of the infinite Hilbert
space of the scattering problem will not be reached by the particle.
Consequently, we can evaluate this formula in a modified, finite Hilbert
space.

We thus introduce a reduced circular system, which contains all states
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of the L sites in the system, and additional “buffer” states, which we
now describe. Consider all lead states that are localized on a single lead
site only and, after one period, will be shifted into the scattering region.
These are the only lead states which are non-trivially involved during
one time step, all other lead states are just shifted according to the lead
propagator. Likewise, consider all localized lead states that are reached
from the scattering region during one period. These two groups of
states are arranged symmetrically with respect to the scattering center:
Whenever a shift operator moves a state into the scattering region from
one side, a corresponding state on the other side of the system is moved
out of the system. To form the reduced finite space, we identify such
pairs of lead states with each other. Each pair forms one of the buffer
states, which in turn form a circular system when combined with the
scattering region.

In summary, there are dn buffer states and L system states in the
reduced space for each internal state n. For exactly one time period, the
time evolution of this finite system will be the same as for the original
infinite system.

We can use this system to describe the complete scattering process,
if before each step we initialize the buffer states with a wave function
from the incoming leads, propagate for one unit of time, and then unload
the buffer states as the outgoing mode. Denoting by ψsys the wave
function on the scattering sites and by ψin/out the states of the buffer,
the dynamics are described by:(

ψsys (t+1)
ψout (t+1)

)
=V

(
ψsys (t)
ψin (t)

)
=

(
A win

wout S0

)(
ψsys (t)
ψin (t)

)
, (2.43)

where the matrix V describes the effect of F on this reduced space. We
note that this form corresponds to the standard form for discrete-time
scattering problems given in Ref. 67.

We can write V in terms of modified shift and rotation operators:

V =V (M)
S V (M)

R · · ·V (2)
S V (2)

R V (1)
S V (1)

R . (2.44)

Here, the effect of S( j) on our reduced space is given by a shift matrix

V ( j)
S =∑

n

L∑
x=−dn

|x+ sn j ,n〉〈x,n| , (2.45)
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which is circular because of the identification of incoming and outgoing
localized states |L+1,n〉 ' |−dn,n〉. Similarly, the effect of a rotation on
this space is given by

VR = ∑
n,n′

L∑
x=1

|x,n〉Rnn′ (x)〈x,n′|

+∑
n

0∑
x=−dn

|x,n〉〈x,n| , (2.46)

applying the rotation to the system, but not to the buffer.
It can then be shown67 that the scattering matrix (reflection and

transmission) can be obtained from the finite matrix V by

S = wout

(
e−iε− A

)−1
win +S0, (2.47)

in contrast to Eq. (2.19) which is defined on an infinite space.

2.B Symmetries of the reflection matrix

2.B.1 Derivation of the symmetry relations
We demonstrate how we obtain the symmetry relations Eqs. (2.26),
(2.27), (2.28) for the reflection matrix. Assume that we are given a
scattering state with one incoming mode (n ∈ M+), so that

(ε−Heff)
[|ln,d,ε〉+ r |ln,d,ε〉+ |ΨC〉

]= 0. (2.48)

The first term is the incoming mode and the second term describes the
corresponding reflected modes, where we use operator notation for the
reflection matrix:

r |ln,d,ε〉 =
∑

n′∈M−

dn′∑
d′=1

rn′d′,nd |ln′,d′,ε〉 . (2.49)

The third term describes the wavefunction within the scatterer, cf.
Eq. (2.16).

By application of the TRS operator T on Eq. (2.48), using the fact
that it commutes with Heff, and employing the representation of TRS
on the scattering states, Eq. (2.24), we find that

(ε−Heff)
[
QT |ln,d,ε〉+VT r∗ |ln,d,ε〉+T |ΨC〉

]= 0, (2.50)
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where the complex conjugation occurs due to the antiunitarity of T .
Thus we constructed another scattering state at energy ε, where

the incoming modes are the time-reversed former outgoing modes:
VT r(ε)∗ |ln,d,ε〉, and outgoing modes are constructed from the time-
reversed incoming mode: QT |ln,d,ε〉. By the definition of r, we thus
must have the relation

r (ε)VT r(ε)∗ |ln,d,ε〉 =QT |ln,d,ε〉 , (2.51)

and as this holds for all n ∈ M+ and corresponding d, we can conclude
Eq. (2.26). Analogous arguments can be given to show Eq. (2.27) and
Eq. (2.28).

2.B.2 Basis transformations
We next consider basis transformations of the incoming and outgoing
modes in order to turn the symmetries of r presented in Eqs. (2.26)
to (2.28) into standard form. Because the incoming and outgoing modes
are separate spaces, we can choose basis transformations for both in-
dependently. This amounts to a multiplication of r with two unrelated
unitary matrices from the left and right respectively.

In the following we assume that r is taken at energies ε= 0,π and we
suppress energy dependence.

Class D If P 2 = 1, it can be seen that QP± =QT
P±. Thus, we can find

square roots M2
± = QP,±, which are also symmetric. It can then be

checked that after the transformation

r̃ = M∗
−rMT

+ , (2.52)

Eq. (2.28) is equivalent to r̃ = r̃∗.

Class DIII If T 2 =−1, one can see that QT
T =−VT . Again, we can find

symmetric square roots,

M2
+ =QP,+, (2.53)

M2
− =Q†

TQP,−Q∗
T , (2.54)

and performing the basis transformation

r̃ = M∗
−V∗

T rMT
+ , (2.55)
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this leads from Eqs. (2.26) and (2.28) to r̃ = r̃∗ = −r̃T . Importantly,
one uses the fact that because of assumed irreducibility of any unitary
symmetry operator, by Schur’s lemma we must have P T P T = eiφ,
from which one finds that M−MT+ = e−iφ/2.

Chiral classes For these classes, we have a chiral operator, obeying
VΓQΓ = Γ2 = 1. Then we can choose r̃ = VΓr and from Eq. (2.27) find
r̃ = r̃†.

We note that these transformation are not unique (for instance, in
class D, any orthogonal transformation preserves r̃ = r̃∗) , so that other
possible choices exist. The actual value of topological invariants obtained
from r̃ depend on the choice. However, because there is no unambiguous
notion of a trivial vacuum for quantum walk systems, we do not impose
further restrictions on the choice of basis, and instead remark that the
definition of topological invariants is only possible after fixing a specific
suitable basis.

2.C Protected boundary states
Here we derive the existence of protected boundary states caused by
a change of topology across an interface between two domains with a
different DTQW protocol. We exemplify the derivation for a class D
quantum walk. For other symmetry classes, one can argue in a similar
fashion.66

If two compatible DTQWs, a left (A) and right (B) one, are inter-
faced, a bound state occurs at the interface whenever Det (1− rAr′B)= 0,
where r′ denotes the reflection matrix for incoming states from the
right. Consider a fixed energy ε ∈ 0,π. The reflection matrices rA and
r′B are orthogonal matrices at this energy, as is their product. Thus,
Det (rAr′B)=±1.

The determinant Det (rAr′B) is the product of the eigenvalues of an
orthogonal matrix, which in term come either in complex conjugate pairs
or are 1 or −1.

For even matrix size and Det (rAr′B)=−1, an odd number of eigenval-
ues has to be −1 and thus at least one eigenvalue 1. An eigenvalue of 1
amounts to a bound state at the given energy. For odd matrix size on the
other hand, a positive determinant requires at least one eigenvalue 1
and thereby ensures a bound state.
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To connect these bound states to the topological invariant QD, we first
need to understand the relation between r and r′. This can be deduced
by requiring that by connecting two copies of the same quantum walk,
no bound states should exist (they would be states in the middle of
a gap). Thus for even matrix dimension, Det r = Det r′ while for odd
matrix dimension Det r =−Det r′.

In conclusion this means that, when Det rA 6=Det rB, a bound state
between the two regions is ensured by the change of topology across the
boundary.
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