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1 Introduction

1.1 Preface

In the last few decades, a major part of the field of condensed matter
physics is the exploration, classification, prediction and experimental
realization of topological insulators and superconductors (which, per-
haps counter-intuitively, can be treated very similarly; this is because
superconductors are thermal insulators). Such materials are indistin-
guishable from “normal” (or trivial) insulators or superconductors in
local bulk properties like density of states or electrical and thermal
conductivity, but are still different from normal states in a manner
that disallows a transition from topological to trivial without going
through a topological phase transition, during which the material loses
its insulating property.75,143

A principle called bulk-boundary correspondence implies that a bound-
ary between two different topological phases hosts robust edge states,
often with very peculiar properties, like absence of backscattering or
dephasing, or non-Abelian exchange statistics. These properties have
been recognized to have potential applications in quantum computing,
both as memory and for the implementation of quantum gates.131

Since then, a lot of experimental effort was put in the realization and
manipulation of materials with topological phases, but the materials
shown to have such properties are rather sparse.

In search for new experimental handles to engineer the topological
properties of a material, the possibility of periodic external driving was
proposed,116 which was shown to induce a topological band structure in
an initially trivial semiconductor. When periodical driving is introduced
to a quantum system, the so-called Floquet theory is usually employed, so
that this new type of topological insulators are called Floquet topological
insulators.

A model that captures the essential difference between insulators and
Floquet insulators is the so-called quantum walk, a quantum-mechanical
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1 Introduction

analogue to the random walk. Just like the classical random walk, the
quantum walk evolves in discrete time steps, so that the effect of the
external driving is represented by the subsequent application of time-
step evolution operators. It turns out that the family of quantum walks
are rich enough to implement relatively simple models with non-trivial
phase diagram for all different possible symmetry classes.101 Quantum
walks thus can serve as a platform to study the different topological
phases of Floquet topological insulators.

Besides their topological properties, quantum walks have also gained
a lot of popularity in the design of quantum algorithms.91,175 As many
classical algorithms can be understood as a (more or less) random walk
on a decision graph, the “quantization” of that random walk may lead
to a quantum algorithm for the same problem, often achieving close to
optimal quantum speed-up.

In the next three chapters of this thesis, we study the properties of
Floquet topological insulators by the help of quantum walks. In the
chapter thereafter, we present a related but slightly different study: We
consider the time-dependent transition of a (non-Floquet) topological
Josephson junction and its relaxation to the new ground state. The final
chapter is devoted to the experimental study of the spin-orbit interaction
in nanowires of indium antimonide, which are the central building block
in one of the most promising experimental approaches to manufacture a
one-dimensional topological superconductor.128

In the rest of this introduction, we outline a few basic ideas that are
used heavily in this thesis, especially the next three chapters, introduc-
ing most of the key concepts highlighted above, including the Floquet
theory, basic properties of quantum walks, the idea of band topology and
the resulting bulk-boundary correspondence, and a connection between
a quantum walk-based algorithm and band topology. We conclude with
a more detailed summary of the subsequent chapters of this thesis.

1.2 Floquet formalism
Periodically driven systems Most chapters in this thesis are concerned
with non-interacting single quantum particles whose time evolution is
governed by explicitly time-dependent Hamiltonians. Especially, we
consider a time evolution where the system is subject to a periodic
driving, so that the Hamiltonian is explicitly dependent on time and
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1.2 Floquet formalism

obeys

H(t)= H(t+T) (1.1)

for some fixed period T.
The energy of such systems is not conserved and it is not possible to

reduce the Schrödinger equation to the stationary Schrödinger equation.
However, the situation is essentially equivalent to the situation of a
particle in a periodic potential, implying broken translational invariance
in space, which can be tackled by the well-known Bloch theorem. Here,
similar ideas can be applied, replacing space with time. The resulting
theory is referred to as the Floquet theory of periodically driven systems.

The Floquet operator The basic element of Floquet theory is the unitary
Floquet operator F, which is the time evolution operator of the system
over one period. It can thus be found as the solution of the Schrödinger
equation for the time-evolution operator

i d
dtU(t, t0)= H(t)U(t, t0), (1.2)

U(t0, t0)= 1, (1.3)

evaluated after one period:

Ft0 =U(t0 +T, t0). (1.4)

One can write the solution formally as

Ft0 =Texp
(
−i

∫ t0+T

t0

H(t)dt
)
, (1.5)

where T refers to time ordering.
It is important to note that the Floquet operator depends on the choice

of t0. However, different choices are related by a unitary transformation:

Ft1 =U(t1, t0)Ft0U(t0, t1). (1.6)

We will refer to the choice of t0 as the choice of a time frame for the
Floquet operator. It is analogous to the choice of a unit cell for a lattice
in the Bloch theory.
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Quasienergy and effective Hamiltonian In analogy with the Bloch the-
orem, it can then be shown that any solution of the time-dependent
Schrödinger equation can be written as a superposition of solutions that
are eigenfunctions of the Floquet operator. Such solutions can be written
as

ψε(t)= e−iεtuε(t), (1.7)

where e−iεT is an eigenvalue of F, and uε(t) is a function with period T.
If one considers the function ψε(t) only at integer multiples of T, its

time dependence resembles that of a wave function with energy ε. It is
thus said to have quasi-energy ε. For time scales much larger than T,
the evolution of a wave function is the same as that of a system governed
by a stationary Schrödinger equation with the effective Hamiltonian

Heff =
i
T

log(Ft0 ). (1.8)

Because of the transformation Eq. (1.6), the spectrum of Heff does not
depend on the choice of t0, but the eigenfunctions uε(t) do.

Finally, we note that all quasienergies ε can be chosen to lie in the
interval

[− π
T , πT

]
(corresponding to the selection of the principle branch

of the logarithm) and should be considered periodic on that interval.
This is again in analogy with spatially periodic systems, and in fact this
interval is sometimes referred to as the quasienergy Brillouin zone.

1.3 Random walks and quantum walks
Random walks A classical random walk is a random process of a walker
on a one-dimensional lattice with lattice sites labeled by x ∈Z. The walk
consists of an integer number of steps, during each of which the walker
either walks to the right with probability p, or to the left with probability
1− p. We refer to the position of the walker after t steps as X t.

For the probability distribution after t steps, ρ(x, t)=Pr(X t = x), one
thus obtains the recursion relation

ρ(x, t+1)= pρ(x−1, t)+ (1− p)ρ(x+1, t). (1.9)

For the walker starting at site x = 0, the solution is well-known to be the
binomial distribution

ρ(x, t)=
{( t

(x+t)/2
)
p(x+t)/2(1− p)(x−t)/2 if x+ t even,

0 otherwise.
(1.10)
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1.3 Random walks and quantum walks

Quantum random walks One of the basic assumptions of quantum
theory is that the result of a measurement is a random process. We
can thus implement a classical random walk by using quantum me-
chanics: We consider a quantum mechanical particle (the walker) on
a one-dimensional lattice, whose state space is spanned by {|x〉 , x ∈Z},
together with a coin, whose state space is spanned by the two states
{|+〉 , |−〉} (corresponding to “heads” and “tails”). Any state of the total
system is thus given by a two component wave function ψ(x)= (u(x),v(x))
by the expansion

|ψ〉 =∑
x

u(x) |x〉 |+〉+v(x) |x〉 |−〉 . (1.11)

Instead of referring to the two systems as walker and coin, we appeal
to a physicist’s intuition by regarding ψ as the wave function of a spin-
1/2 particle on a lattice. Correspondingly, the two coin states will also
often be referred to as “spin-up” and “spin-down” (instead of “heads” and
“tails”).

Assume now that the system starts out in the state |ψ0〉 = |x = 0〉 |+〉.
We then apply the following operations: We first “flip” the coin by apply-
ing a rotation of the spin:

Rθ

(
u(x)
v(x)

)
=

(
cosθ −sinθ
sinθ cosθ

)(
u(x)
v(x)

)
= e−iθσy

(
u(x)
v(x)

)
, (1.12)

where here and in the rest of the introduction, we use ~σ= (
σx,σy,σz

)
to

denote the vector of Pauli matrices in the {|+〉 , |−〉} basis of the coin.
After the rotation, we apply a spin-dependent translation operator S,

defined by:

S
(
u(x)
v(x)

)
=

(
u(x−1)
v(x+1)

)
, (1.13)

which moves the spin-up component of the wave function to the right and
the spin-down component to the left. If we now perform a measurement
of the position of the walker, the walker will have performed a random
walk step, having moved to the right with probability p = cos2θ, and
to the left with probability 1− p = sin2θ. A balanced random walk is
obtained when choosing θ =π/4. In order to perform another step, the
coin must be reinitialized to |+〉.
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The simple quantum walk The idea of a quantum walk is repeating the
two steps of rotation and spin-dependent shift without the intermediate
measurement.91 Because measurement is the only source of classical
randomness in the previous description, it has become customary to
omit the term random from the name.

A quantum walk in this basic form we can thus consider as a protocol
for the time evolution of a spin- 1

2 particle on a one-dimensional lattice,
obtained by application of two unitary operations in alternation. The
time evolution of the system is thus given only in discrete steps, unlike
systems whose time evolution is defined by a Hamiltonian.

In a sense, quantum walks can be considered as a simplified “lattice
model” for periodically driven systems, restricting the wave functions to
only a finite lattice in time (with two points per period T in this case),
in a similar manner as tight-binding models are simplified models for
systems in a periodic potential.

The time evolution of the simple quantum walk during a whole cycle
is thus given by

ψ(t)= Fψ(t−1)= F tψ(t = 0), (1.14)

F = SRθ.

where we choose the units of time so that the period is T = 1.
In order to distinguish this time evolution from generalizations of this

idea (see below), we refer to this time evolution as the simple quantum
walk with rotation angle θ.

Choice of time frame As discussed before, the quasienergy spectrum
of a time evolution like Eq. (1.14) is defined unambiguously. The cor-
responding eigenfunctions, however, are not: As for the general case
of Floquet system, there is a freedom of choice for F, corresponding to
different time frames. However, while for Floquet systems governed by
a time-dependent Hamiltonian H(t) we obtain a family of Floquet oper-
ators Ft, t ∈ [0,T], for the quantum walk the choice is limited because
time evolution is only defined in discrete steps: The two choices for the
simple quantum walk are F1 = SRθ and F2 = RθS.

By breaking the time evolution operator in slightly smaller pieces,
more choices are possible. Considering the rotation as the product of
smaller rotations, we can write the same time evolution as repeated
application of F3 = Rθ/2SRθ/2. By splitting the shift operator in two
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1.3 Random walks and quantum walks

commuting operators S = S+S−, where each of the two only shifts one
spin species while leaving the other in place, we can also choose F4 =
S+RS−. The two latter choices for F are of special relevance as they
imply additional symmetries on the eigenfunctions, which is play a role
in Chapters 2, 3 and 4.

The Galton board There is an illustrative device to demonstrate the
idea of a classical random walk, called the Galton board (also known as
a quincunx, or bean machine), which consist of a board with interleaved
rows of pins, arranged in a diagonal lattice (the term quincunx actually
refers to the arrangement of five dots as on the five-side of a regular
game die: , which is the arrangement repeated to form the lattice
of pins on the Galton board, see Fig. 1.1). If a stream of irregular
shaped objects (beans) is flowing through this arrangement, the objects
will pass one pin of each row either on the left or the right, with a
very high sensitivity to the precise conditions, so essentially with equal
probability, p = 1/2. If the object are collected in bins after t rows, one
obtains a histogram of samples from the probability distribution ρ(x, t).
The vertical axis thus represents time in this experiment.

The optical Galton board An analogous implementation of the quantum
walk is obtained by replacing the beans with a monochromatic beam
of light, and the pins with semi-transparent mirrors, so-called beam
splitters. The amplitudes of two incoming wave fronts (u,v) at 45-degree
angles from both sides is related to the outgoing wave fronts at 45-degree
angles (u′,v′) by the scattering matrix(

u′
v′

)
=

(
cosθ −sinθ
sinθ cosθ

)(
u
v

)
, (1.15)

where we took the liberty to define the phase of the incoming and
outgoing modes so that this matrix is real. The angle θ is given by the
reflectivity of the beam splitter. If we arrange an array of identical
beam splitters in the same manner, an incident beam on one of the
first rows in the array will propagate through the lattice, performing
a simple quantum walk. The state of the coin is encoded in horizontal
component of the wave vector. The beam splitters perform the action of
the coin operator R, while the free propagation in the space between the
beam splitters leads to the shift operator S. Detecting the intensity of
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Figure 1.1: Left: The Galton board consists of pins through which beans are falling, performing a
classical random walk. The number of rows of pins corresponds to the number of time steps taken in
the walk. Right: In the optical Galton board, the beans are replaced by a monochromatic beam and the
pins by beam splitters. Beams propagating to the right are considered spin-up and left-propagating
beams spin-down. The mixing of the two species happens at the beam splitters, which corresponds to
a rotation Rθ , while diagonal propagation in the space between the beam splitters corresponds to a
spin-dependent shift. In a “balanced” quantum walk with half-transparent mirrors, one has θ =±π/4
or θ =±3π/4.

the partial beams after n rows of beam splitters will thus result in the
probability distributions (|u(x)|2 , |v(x)|2) of the corresponding quantum
walk. By interference measurements, one could even recover the phases,
and thus obtain the function ψ(x, t).

One might argue that this construction shows that in fact the quantum
walk does not even deserve the name “quantum”, as it can be imple-
mented using classical waves. However, it must be understood that both
of the experiments presented here for the classical and quantum walk
only serve as an illustration of the corresponding processes and are by
no means an efficient implementation of either, given that the size of the
physical system is proportional to the square of the number of steps. In
contrast, an efficient simulation of the classical quantum walk, on a clas-
sical computer, say, only requires log2(n) physical objects (bits) to hold
the position of the walker, and similarly, an efficient implementation of
the quantum walk only requires log2(n) qubits.

Differences between random walk and quantum walk Even though the
construction in the previous paragraphs suggests similarities between
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Figure 1.2: Left: Comparison of a classical random walker starting at the origin and a simple quan-
tum walker with θ = π/4 and initial state |ψ0〉 = |x = 0〉 |+〉, after t = 100 steps. We show the probabil-
ity density ρ(x) for the classical walker, and the probability distribution for a position measurement
ρ(x) = |u(x)|2 + |v(x)|2 for the quantum walk. For both walks, we only show the probability at even
lattice sites, for odd lattice sites the probability is zero. Right: The quasienergy band structure of the
same quantum walk. The maximum propagation speed is vmax =±p2, and the gap in the spectrum is
given by ∆= |θ|.

classical random walks and quantum walks, it turns out that the two
behave quite differently. To illustrate the difference, we consider the
spread of the probability amplitude of a particle that starts out on a
single site with spin up, |ψ0〉 = |x = 0〉 |+〉. We choose the rotation angle
θ = π/4. Fig. 1.2 shows the square of the probability amplitude after
n = 100 steps, compared to the probability distribution of a classical
random walker starting at x = 0, which is ρ(x, t = 100).

While for the random walk we obtain the familiar bell-shaped dis-
tribution of width

p
t, the quantum walk results in a relatively flat

distribution, featuring oscillations, and terminated by two peaks at
around ±t/

p
2.

The long time behavior of the quantum walk Eq. (1.14) can be under-
stood by considering its Floquet operator and corresponding quasienergy
spectrum. Because this system is translational invariant, we can per-
form a Fourier transformation in space:

ψ(x, t)=
∫ 2π

0

dk
2π

eikxψ(k, t). (1.16)

In this basis, the shift operator S preserves k and can be written as

S(k)= exp(iσzk). (1.17)

We thus can calculate and diagonalize the Floquet operator in spin
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space.101 The result can be expressed as

F(k)= SRθ = exp(−iεk n̂k ·~σ), (1.18)

and the corresponding effective Hamiltonian is thus given by

Heff = εk n̂k ·~σ. (1.19)

In this expression, the quasienergies εk is given by (see Fig. 1.2)

εk =±arccos(coskcosθ) . (1.20)

This spectrum can be used to discuss the long-time behavior of a wave
packet97: A stationary-phase approximation of a wave function that con-
tains contribution from all k (as a very localized initial conditions does,
by Heisenberg’s uncertainty relation), will have most of its contribution
at ±vmax, which for θ =π/4 is given by vmax =

p
2/2. Besides the ballistic

spread, the other striking difference between the two distributions in
Fig. 1.2 is the asymmetry of the quantum walk. It is a consequence of
the asymmetry of the initial condition |+〉, together with the fact that
the quantum walk is not “random”, i.e. Markovian, and does retain
information about its past indefinitely, due to its unitary evolution. The
fact that the |+〉 state is asymmetric becomes clear in Fig. 1.1, where
the initial spin is given by the direction of the initial beam.

1.4 Generalizations and related concepts
Above, we described the simplest version of the quantum walk, consist-
ing of a shift and a rotation. Since, a plethora of generalizations have
been considered.

A generalization in one dimension is to split the shift operator S in
two operators S = S+S− which only shift one spin component, leaving
the other in place:

S+
(
u(x)
v(x)

)
=

(
u(x−1)

v(x)

)
, S−

(
u(x)
v(x)

)
=

(
u(x)

v(x+1)

)
. (1.21)

Additionally, a longer sequence of different rotations can be applied.
This leads to the family of split-step quantum walks14,101 with Floquet
operators given by

F = SnRθn · · ·S2Rθ2 S1Rθ1 , (1.22)
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1.5 Band topology

where Sn ∈ {S+,S−} and each θn ∈ [0,2π]. These one-dimensional walks
are the main subject of study in Chapters 2, and time-dependent Hamil-
tonians with similar properties are studied in Chapter 3.

Generalizations to higher dimensions have also been studied.54,101 A
common approach is to introduce shift operators that perform the spin-
dependent shift along a selected axis and applies these alternatingly.

Another generalization (in one or more dimensions) is the introduction
of a coin space of higher dimension. The shift operator then typically
shifts two perpendicular subspace in opposite directions. This approach
is used in Chapter 2 to obtain a quantum walk with additional symme-
tries.

In fact, there are generalizations of the idea of a quantum walk to
arbitrary graphs.60 A similar approach,168 which is used in the design of
quantum algorithms, establishes a one-to-one correspondence between
random walks (Markov processes) on any graph and a “quantized” walk
on the same graph. Unlike described here, this approach is based on
reflections as the basic building block, not rotations. Still, under this
paradigm, the random walk on a line and the simple quantum walk
described above are indeed mapped to each other.*

Yet another modification of the quantum walk, which was considered
especially in the context of the optical Galton board implementation, is
the addition of non-linear operator to the time-evolution.130 A modifica-
tion of this nature is investigated in Chapter 4.

1.5 Band topology
In this thesis, we are mostly concerned with the topological properties of
the band structure of quantum walks. Before we consider the peculiari-
ties occurring in quantum walks and driven system, we quickly review
the idea of topological band structures. We restrict our attention to
non-interacting systems and focus mainly on one-dimensional systems.

The general idea is that a band is a periodic and continuous map from
the toric Brillouin zone to the set of eigenfunctions (mathematically,
elements of CPn).† For one-dimensional two-band models like the simple

*Because any rotation can be written as a product of two reflections, quantum walks
with rotations and quantum walks with reflections are very similar in any case.

†This means that eigenfunctions are only defined up to a phase. This is important,
because in general, one cannot make a continuous choice of phase for all k.
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quantum walk, it is the map from the unit circle of quasimomenta to
spinors, which can be imagined on the surface of the Bloch sphere. The
spin structure of a band can thus be envisioned as a closed path on the
surface of a sphere.

Under certain conditions, mappings can be different from each other
topologically, meaning that it is impossible to continuously deform one
mapping into the other. For closed curves on the Bloch sphere, however,
no such distinction exists: All paths on the unit sphere can be smoothly
deformed into a point, and thus also into each other.

Winding of a chiral Hamiltonian This situation can change, however,
when additional constraints are present. For instance, consider a tight-
binding Hamiltonian on a bipartite lattice with no on-site energies. This
means that the lattice can be divided into two sublattices A and B, and
the Hamiltonian only has finite elements between the two. We can then
write the Hamiltonian as

H =
(

0 H̃†

H̃ 0

)
, (1.23)

where the subblocks of the Hamiltonian correspond to the A and B
sublattice. The subblock H̃ still is a matrix in position basis (ignoring
for now possible further sub-structure such as spin). The structure of
this Hamiltonian can be described as

σzHσz =−H, (1.24)

where σz is acting on the A/B blocks. A symmetry of this sort is referred
to as chiral symmetry.*

We now consider the translationally invariant case, were bands can
form. We write the same Hamiltonian in momentum basis:

H(k)= hx(k)σx +hy(k)σy =
(

0 h∗(k)
h(k) 0

)
. (1.25)

Then, the spinors are restricted to the equator on the Bloch sphere, as
long as h(k) 6= 0. The path associated with each band will traverse this

*This term is borrowed from elementary particle physics, where its occurrence in a
Hamiltonian actually is related to the handedness of the corresponding particles. Here,
the term is used because of the similar mathematical structure. For an overview over the
history of the different uses of this term, we refer to the introductory chapter of Ref. 49
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1.5 Band topology

circle an integer number of times, and no deformation subject to the
chiral symmetry restriction can change this; furthermore there even is
a sense of orientation to this winding. For the underlying Hamiltonian,
its two bands will preserve this distinction as long as the bands are
separate, i.e. the gap does not close, h(k) 6= 0.

To capture this idea in mathematical terms, note that an eigen-
vector ξk = (u(k),v(k)) of the Hamiltonian (1.25) will always satisfy
|v(k)/u(k)|2 = 1, (the stereographic projection of the equator of the Bloch
sphere is the unit circle). Thus, we can write the integral

ν=
∫

dk
2πi

∂k log(v(k)/u(k)), (1.26)

which, according to the Cauchy integral theorem, will give the number
of times v/u winds around the origin, or equivalently (by stereographic
projection), how often ξk winds around the north-south axis of the
Bloch sphere. In this two-band example, the other band is given by
ξ̄k = (uk,−vk), and has the same winding number. Because v/u = h/ |h|,
the winding can also be found directly from the Hamiltonian:

ν= 1
2πi

∮
dh
h

=
∫

dk
2πi

∂k log(h(k)), (1.27)

Symmetry classes In one dimension, topological distinction of bands
can thus only occur under the assumption of symmetries. These symme-
tries are assumed to act locally: We require that they only act on the spin
subspace.* Usual unitary symmetries which commute with the Hamil-
tonian are generally not of interest, they only lead to decoupled blocks
of the Hamiltonian which can be considered individually. But there are
other symmetries, which anticommute with the Hamiltonian, or are
antiunitary. That leaves three possibilities: Time-reversal symmetry T
(antiunitary, anticommuting), particle-hole symmetry P (antiunitary,
commuting), and chiral symmetry Γ (unitary, anticommuting).9,150 The
antiunitary symmetries can either square to 1 or −1, and the presence of
two of such symmetries dictates the presence of the third;† this results

*In some systems, like graphene, a chiral symmetry emerges due to a sublattice
symmetry. Then, the chiral symmetry operator involves two neighboring sublattice sites,
and thus is only “almost” local.

†Also, not more than one of each of the symmetries can be present. E.g. if there
are two time-reversal symmetries T1 and T2, then T1T2 is a unitary symmetry of the
Hamiltonian, which we excluded.

13



1 Introduction

in the existence of ten different symmetry classes, of which five turn out
to allow topological distinctions in one dimension. Chapter 2 considers
all of these, while in the rest of the introduction, we only consider classes
AIII and BDI (see below) as examples.

Finally, we remark that the names of the symmetry operators hint to
certain physical mechanism that ensure them. However, in this thesis,
most models are rather artificial, so that the names of the symme-
tries should be considered historical, and their mathematical properties
should be taken as their definition independent of their origin.

Consider the Hamiltonian Eq. (1.25). It can have all three symmetries:
It will always have a chiral symmetry represented by the operator
Γ=σz:

σzH(k)=−H(k)σz. (1.28)

If this is the only present symmetry, the Hamiltonian is said to belong
to symmetry class AIII. If furthermore, h(k)= h∗(−k), the system also
has a particle-hole symmetry P = K , which is complex conjugation in
position basis:

H∗(−k)= H(k). (1.29)

Note that complex conjugation in position basis involves k → −k in
momentum basis. This particle-hole symmetry operator P is of the
kind P2 = 1. Furthermore, because Γ and P are present, then also
T = ΓP = σzK is a time-reversal symmetry of the system, and in this
case is of type T2 = 1. This class is referred to as BDI and as we will see
shortly, the simple quantum walk belongs to this class.

However, so far, we have discussed the symmetries and band topol-
ogy of time-independent Hamiltonians. The same classification can
be applied to the quasienergy bands of a Floquet system, but the role
of the symmetries has to be carefully re-evaluated: Firstly, it is not
immediately clear how the presence of a discrete symmetry in the ef-
fective Hamiltonian is caused by certain symmetries in the underlying
time-dependent Hamiltonian. Secondly, even if such a symmetry exists,
because the eigenfunctions depend on the choice of the time frame, the
symmetries and corresponding topological numbers may also depend on
the time frame. This allows for a somewhat richer classification scheme
of the topology of driven systems and is the main subject of investigation
in Chapters 2 and 3.
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1.5 Band topology

Symmetry and topology of the simple quantum walk To illustrate these
points, we discuss the topological properties of the simple quantum walk.
The Floquet operator is given by

F = Se−iθσy (1.30)

As we can check immediately, the effective Hamiltonian has a particle-
hole symmetry P = K , as can be seen from

F∗ = F, (1.31)

because S is real in position basis (it only has matrix elements 0 and 1).
It follows that

H∗
eff =−Heff. (1.32)

It turns out that the same system also has a chiral symmetry.14,14,101

However, in the effective Hamiltonian presented above, it is “hidden”.
Namely, when changing the time frame to

F = Rθ/2SRθ/2, (1.33)

we can see by a quick calculation that

σxFσx = F−1 ⇒ σxHeffσx =−Heff, (1.34)

so that chiral symmetry is given by Γ=σx. Particle-hole symmetry is
still given by K ; consequently, a time-reversal symmetry is also present.
The symmetry class this effective Hamiltonian thus is BDI, and by a
simple change of basis, we could write it in the form of Eq. (1.25).

The winding number of this effective Hamiltonian can be found by
direct calculation, and turns out to be ν= sgnθ.*

If we try to find the “hidden symmetry” in the original time frame,
we can use the fact that time frames are connected by unitary transfor-
mations. We can reconstruct the action of Γ = σx and find the “chiral
symmetry operator” in the original basis: Γ= R−θ/2σxRθ/2. This operator
is not a useful symmetry operator: It explicitly contains the parame-
ter θ, and thus it is not sensible to compare the winding numbers of

*The sign is actually not well-defined, as it depends on the basis transformation used
to bring Heff to a standard form. For discussion of this matter we refer to the appendix of
Chapter 2.
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Hamiltonians with different values of θ, furthermore, adding any in-
homogeneities or disorder to θ seems to break it. In the symmetrized
time frame Eq.(1.33), however, these problems to not apply. We thus say
that the simple quantum walk belongs to symmetry class BDI because
there exists one time frame in which the effective Hamiltonian has the
required symmetries.

Finally, we note that in the second symmetrized time frame mentioned
above, namely F = S+RS−, the same chiral symmetry Γ=σx holds; the
winding number in this time frame however is always ν= 0, independent
of θ. We thus see that the choice of time frame is relevant.

1.6 Bulk-boundary correspondence
The most interesting consequence of band topology occurs when two
large (so that bands can form) systems are interfaced at a common
boundary. The general principle of the bulk-boundary correspondence
predicts that at such an interface, bound states of a certain type must
always exists even when both systems have no extended states at that
energy and the topological number is different for both systems.

In general, the features of such bound states depend on the dimension-
ality of the problem and on the symmetries involved. In one dimension,
such bound states are located precisely at zero energy (which is a special
energy, because it is singled out by chiral or particle-hole symmetry).
These states, often called Majorana zero modes, have been the subject
to much interest recently for their robustness: not only is their presence
guaranteed independent of the details of the boundary, and also not
destroyed by the presence of disorder, but additionally their energy is
pinned to a fixed value. This topological protection makes these states
interesting for use as storage of quantum information (qubits).

The bulk-boundary correspondence in one-dimensional chiral systems
Because the later chapters make much use of the bulk boundary corre-
spondence, we shall sketch here, as an example, how the bulk-boundary
correspondence emerges for two-band Hamiltonians with chiral sym-
metry. We consider a setup where the lattice is divided into two bulk
domains A and B, in which the Hamiltonian is constant in space, with
different parameters, so that it can be described by two translationally
invariant Hamiltonians HA,B(k). In between, in the boundary region,
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x x = 0

θ

domain A domain B

p(x)

0
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θB

Figure 1.3: At a domain boundary, the Hamiltonian, parametrized by the parameter θ, varies be-
tween two different values θA and θB , and is translationally invariant in the two bulk domains. If the
two Hamiltonians are topologically different, protected zero modes are expected in the region where
the function p(x) is finite, which is the essence of the bulk-boundary correspondence.

the Hamiltonian interpolates between the two domains in an arbitrary
way (see Fig. 1.3), with the restriction, however, that the Hamiltonian of
the total system still obeys the chiral symmetry, so that we can write it
as:

H =
(
0 h†

h 0

)
, (1.35)

where h is a matrix acting on position space only, and its matrix elements
hxx′ are local: We require that hxx′ decays exponentially as |x− x′|→∞,
and that h is approaches translational invariance deep in the domains.

The flat-band Hamiltonian The object of consideration now is a de-
formed version of H, the flat-band Hamiltonian Q, given by

Q = signH, (1.36)

which is obtained by deforming all positive eigenvalues of H to +1 and
all negative eigenvectors to −1, and leaving zero eigenvalues at zero. For
the bulk Hamiltonians, this corresponds to rectifying the loop h(k) to lie
on the unit circle, h(k) → q(k) = h(k)/ |h(k)|, which does not change its
winding number. We thus can write the operator for the setup including
the boundary as

Q =
(
0 q†

q 0

)
, (1.37)
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where the operator q acts on space only. A crucial important property of
Q, which we shall not prove here, is that, like H, its matrix elements
decay in real space exponentially, i.e. qxx′ = O(e−ξ|x−x′|) as |x− x′| →∞
for some decay length ξ.*

Consider now an eigenfunction ψ= (u,v) of Q with eigenvalue ±1:

qu =±v, q†v =±u. (1.38)

Then,

q†qu = u, qq†v = v (1.39)

And thus, u is an eigenvector of q†q while v is an eigenvector of qq†,
both with eigenvalue 1.

Eigenfunctions of Q with eigenvalue 0, on the other hand, can be
chosen to have either v = 0 or u = 0, and thus are eigenfunctions of the
chiral operator σz at the same time. We thus distinguish zero modes by
their chirality n, σzψ= nψ, where n =±1.

Counting the zero modes We can thus write down the total chirality,
i.e. the sum of the chiralities of all the zero modes of Q, as

n = dimker q†q−dimker qq† (1.40)

(dimker denotes the dimension of the kernel, in other words, the number
of linearly independent zero eigenfunctions) and because we just saw
that the eigenvalues of qq† and q†q only take values 0,1, this can be
expressed as traces:

n = tr(1− q†q)− tr(1− qq†)= tr(qq† − q†q). (1.41)

Only zero modes of Q contribute to exactly one of the two traces, depend-
ing on the chirality. We immediately see that in any finite system (i.e.
with periodic boundary conditions), the total chirality n = 0, by cyclic
invariance of the trace. For the infinite line, the mathematical situation
is more complicated and the result can be finite.142

*In fact, an algebraic decay |x− x′|α with α<−1 is sufficient 95; but fast decay often
holds and makes for somewhat easier intuition of the proof.
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Zero modes in a region We can modify the formula to count only those
zero modes that have support in the boundary region. For that, we
introduce the operator

P =∑
x

px |x〉〈x| , (1.42)

where (see Fig. 1.3)

px =
{

1 close the boundary region
→ 0 as |x|À ξ, far in the domains.

(1.43)

This allows us to define the chirality of that region as

n = tr(qq† − q†q)P. (1.44)

The effect of the operator P is that eigenfunctions of Q only contribute
according to their weight in the region where px is finite, so that zero
modes in the region where px = 0 are not counted.

In position space we can then write

n =∑
xx′

(
q∗

x′xqx′x − q∗
xx′ qxx′

)
px′ =

∑
xy

q∗
x+y,xqx+y,x

(
px+y − px

)
, (1.45)

and because qx+y,x decays, there is no contribution for large y. This
means that there is no contribution for x close to the boundary, because
px − px+y = 1−1 = 0 for small y, We only get contributions where p
varies, which is in the bulk. This allows us to obtain an expression
which only involves the bulk Hamiltonians and is independent of the
exact properties of the boundary.

In the bulks, q is translationally invariant, and we can write qxx′ =
qA,x−x′ where p varies from zero to one, and qxx′ = qB,x−x′ where p
varies back to zero. Then we can write*

n =∑
xy

q∗
x+y,xqx+y,x

(
px+y − px

)=∑
y

yq∗
A,yqA,y −

∑
y

yq∗
B,yqB,y. (1.46)

*We used the following telescoping formulas:∑
x¿0

px − px+1 = p−∞− p0 =−1, thus
∑

x¿0
px − px+y =−y.

for all not too large y; and a similar expression for x > 0. The fact that we then can also
extend the sum over y to infinity requires the decay of q.
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Using the Fourier transform qA/B,y =
∫

qA/B,k eiky(dk/2π), we can finally
write this as n = νB −νA , where

νA/B =−∑
y

yqA/B,yq∗
A/B,y =−i

∫
dk
2π

q∗
A/B,k∂k qA/B,k, (1.47)

which is the winding number of q(k), and thus h(k) defined in Eq. (1.27)
Thus we conclude that if the winding number of q(k), and thus of h(k),
changes by δν across a domain boundary, the total chirality of the states
in the boundary is indeed given by δν, and especially, the number of
zero modes in the boundary is at least |δν|.

Bulk-boundary correspondence in Floquet systems The bulk-boundary
correspondence also applies to effective Hamiltonians, but is not suffi-
cient. The crucial difference is the definition of Q: While for stationary
Hamiltonians, the sign function is defined unambiguously, effective
Hamiltonians are defined only up to multiples of 2π, which makes the
distinction arbitrary. This also leads to the possibility of bound states
at quasienergy ε = π = −π which are protected by symmetry (e.g. in
class BDI as discussed above, they can carry chirality). In fact, Floquet
systems have been found where the classification of the effective Hamil-
tonian predicts no bound states, while numerical or optical simulations
show protected edge modes.99,149

How to classify the topology of driven systems beyond the bands of an
effective Hamiltonian has been the subject of a lot of recent research
and is addressed in Chapters 2 and 3 in this thesis.

1.7 Quantum algorithms
The idea of quantum walks have been generalized to arbitrary bipartite
graphs (or in fact any graph, using its bipartite double cover)168, which
allows the design of quantum algorithms that solves computational
problems represented by such graphs.

Even though such algorithms are not the main topic of this thesis,
they are a large field of application of quantum walks, and furthermore
can often be understood in terms of the properties of quantum walks
that we discussed above. In this section, we thus take a small detour
and consider one of these algorithms, first presented in Ref. 162, and
highlight their connection to topology.
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1.7 Quantum algorithms

Quantum search on the hypercube The algorithm we discuss solves the
same problem as the famous Grover search algorithm.72 In the problem,
we want to find the solution to the problem f (x∗)= 0, where x∗ ∈ {0,1}n

i.e. x is a bit string of length n. The function f is not restricted, but we
assume the solution x∗ to be unique.

The computation is performed by a quantum walk on the hypercube
graph, formed by possible solutions x. The walker’s position thus can be
any bit string x of length n, and during one step, the walker is allowed
to move to any bit string x′ when x and x′ only differ by a bit flip at one
position, (see Fig. 1.4 for an illustration with n = 3).

The oracle The evaluation of the function f (x) is performed by an
oracle O. This oracle is an additional unitary evolution of the walker
which “marks” the solution of f (x) = 0 by changing the phase of the
walkers wave function on these points by π.* We thus have

O = 1−2 |x∗〉〈x∗| (1.48)

For definiteness, we can even assume that the solution is x∗ = 00 . . .0,
because except for the application of the oracle, all parts of the algorithm
are invariant under bit flips of the labels of the vertices, as will become
apparent immediately.

The quantum walk on the hypercube The generalization of the one-
dimensional quantum walk to this graph is rather straight-forward:
Because at each time there are n possible directions for the walker to go,
we require an n-dimensional internal coin space (not a two-component
spinor, as for the one-dimensional walker).

The coin rotation R must be a unitary on that space, and should be
invariant under bit flips. We could use a rotation around the symmetric
state |s〉, defined by

|s〉 = 1p
n

n∑
i=1

|i〉 , (1.49)

which can be written as

Rθ = e−iθ |s〉〈s|+ eiθ(1−|s〉〈s|), (1.50)

*It must be understood that for the implementation of such an oracle, it is not
necessary to know the target state x∗ explicitly; In fact, if f can be computed efficiently
with classical gates, the oracle can be implemented efficiently using quantum gates.
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Figure 1.4: (a) The three-dimensional hypercube is mapped to a one-dimensional quantum walk by
joining states which have the same distance to the oracle state |0〉. (b) The one-dimensional quantum
walk has an effective θ1D = arcsin(1− x/n). The oracle changes θ1D (x = 0) = −π to π. This results is
two bound states: |ψ0〉, located around x = n/2, which corresponds to the totally delocalized state on
the original hypercube, and |ψ1〉, localized around the oracle state. The states are shown for n = 32,
(c) The algorithm works by a beating between the initial state and the oracle state. We show this
oscillation for n = 32. When measuring the position of the walker at time t = t∗, the probability of
measuring the oracle state is almost 0.5.

and in order to achieve a maximal spreading speed, we can choose
θ = π/2. In fact, in the original description, the coin is chosen as a
reflection around |s〉 instead, which differs from Rπ/2 by a factor i.

The shift step then is a coin-dependent shift in the direction in which
the coin is pointing, in other words, if the coin state is |i〉, the ith bit of
x is flipped.

The algorithm then proceeds by initializing the walker in a equal
superposition of all possible states and then performing a quantum
walk, applying

F =OSR (1.51)

repeatedly. After t = π
2

p
2n repetitions, the position of the walker is
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measured, and will result in the state marked by the oracle with high
probability (almost 0.5).

Projection to one dimension The mechanism underlying this surprising
result can be understood by projecting the walk on the hypercube to
a one-dimensional walk on n+1 sites and two-dimensional coin (see
Fig. 1.4a), where the position denotes the distance to the oracle state
(if x∗ = 00 . . .0, this is the number of 1’s in the bit string, see Fig. 1.4)
and the coin state is projected to either pointing towards or away from
the oracle state. Omitting the action of the oracle, the result is a simple
quantum walk, albeit with site-dependent rotation angle:

θ1D = arcsin(1−2x1D /n), (1.52)

where x1D labels the sites of the reduced walk, see Fig. 1.4b.

Topological bound states in 1D walk Because the simple quantum walk
changes its bulk winding number at θ = 0, it ca be seen that this 1D walk
features a topological phase transition at x1D = n/2, and a corresponding
chiral bound state is expected. In fact, this “bound state” is simply the
result of projecting the equal superposition of all starting positions onto
the 1D walk; this is just the initial condition of the described algorithm,
and it in fact can be seen to be a zero-energy eigenstate of the system
without the oracle.

We now consider the changes to the 1D walk when introducing the
oracle operator. The oracle only acts on the target state, which is mapped
to the state x1D = 0 and in fact in the one-dimensional projected quantum
walk, it turns out to be a change of the rotation angle θ1D by π. This
leads to the formation of a second topological phase transition, and a
corresponding bound state.

The working of the algorithm is now clear: Because of the finite
distance between the two bound states, they have an exponentially small,
but finite overlap, leading to a splitting in quasi-energy ∆ε∝ 2−n/2, so
that the application of the effective Hamiltonian leads to a very slow
quantum beating between the two bound states at zero energy. The
algorithm terminates after half a beating period, when the walker is
in the bound state exponentially localized around the oracle state, see
Fig. 1.4c.
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1.8 This thesis
We finally give a short overview over the topics and main results of each
of the following chapters.

Chapter 2
Besides considering winding numbers of the bulk, it is also possible
to characterize the topological quantum numbers of band insulators
by calculating the scattering matrix of a half-infinite insulator at the
energies of interest.65 This matrix is directly related to the bound states
emerging at an interface of two such systems, and can thus be used
to classify the topological properties of the Hamiltonian, in accordance
with the bulk-boundary correspondence. In fact, depending on the
symmetries of the system, the topological quantum number at a certain
energy can be expressed in terms of the determinant, trace, or Pfaffian
of the scattering matrix.

In this chapter, we extend this approach to the Floquet scattering
matrix of quantum walks, immediately identifying expressions for the
additional quantum numbers required for Floquet systems. We use this
result to map out the topological phase diagram of several quantum
walk protocols with different symmetries.

Chapter 3
The Su-Schrieffer-Heeger model (SSH model) is a one-dimensional tight
binding model with alternating hopping strengths u and v, originally
devised to model the electronic structure of polymers with conjugated π-
bonds. With fixed u,v, this system forms a one-dimensional topological
insulator with chiral symmetry.

When driving the hopping strengths periodically in a symmetric way,
the system becomes a topological Floquet insulator, with chiral symme-
try still present. The Floquet operator of this system is very similar to
that of quantum walks, and can in fact be mapped to quantum walks if
the time-dependence of u(t),v(t) is chosen piecewise constant.

In this chapter, we study the topological properties and bulk-boundary
correspondence of the driven SSH model and find that in order to estab-
lish a bulk-boundary correspondence for both zero and π-quasienergy
bound states, we need to calculate the winding number of the Floquet
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operator in two different time frames, or, equivalently, consider the time
evolution operator U(T/2,0) which connects the two time frames.

Chapter 4
In this chapter, we consider the simple quantum walk as presented in
the introduction. However, we introduce an important modification,
which is a non-linear self-interaction of the walker. To be precise, the
local spin density M(x)=ψ†(x)σzψ(x) of the walker is taken to lead to
a correction to the rotation angle θ(x) = θ0 +δθ(M(x)) in the next time
step.

This self-interaction makes the time evolution in the bulk nonlinear,
and a description in terms of a single particle Floquet operator is not
longer possible. However, the interaction is chosen so that topologically
protected bound states, which are present at domain boundaries in the
linear model, are insensitive to this non-linearity, meaning that they
still are a steady state solution of the non-linear time evolution.

We show that furthermore in this model, numeric simulation suggests
that some of these modes are in fact attractive fixed points of the dy-
namics, meaning that independent of the initial conditions, the system
approaches the same stable state at finite times. We corroborate this
behavior by considering the non-linear Dirac equation obtained as a
continuum approximation of the quantum walk for long wavelengths.

Chapter 5
In this chapter we consider a driven system which is not driven period-
ically, but instead we consider a quench, where a parameter is varied
from −∞ to ∞, crossing a phase transition in between.

The system under consideration is a generalization of the single elec-
tron emitter,30,31,52,64,121,136 where a quantum dot is coupled to a one-
dimensional lead. The dot is assumed to have a bound state well below
the Fermi energy EF , which is thus occupied. A plunger gate is then
used to control the energy of the bound state, moving it well above the
Fermi energy. While the energy of the bound states crosses EF , the
particle will tunnel from the quantum dot and enter the lead as a lo-
calized excitation above the Fermi surface. Surprisingly, it has been
recognized that this simple scheme to emit a single electron on top of
a Fermi surface is very noiseless, in fact, at zero temperature and in
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the limit of constant derivative of the energy of the bound state, the
final state of the lead is precisely the ground state of the lead, with one
particle added above the Fermi surface. Thus, even though the system is
explicitly time dependent and the lead is assumed gapless, no additional
particle-hole pairs are created.

In this chapter, we consider a generalization of this scheme to su-
perconducting systems. Here, we change the phase across a topologi-
cal Josephson junction as a function of time, thus driving the system
through a fermion parity switch. Similarly, this leads to the emission of
a particle, which now, due to the presence of superconductivity, will be a
Bogoliubov quasiparticle, i.e. a coherent superposition of electron and
hole.

We solve the scattering problem analytically for a minimal model
and find again that no additional particle-hole pairs are created in the
lead. Additionally, we give expressions for the charge of the emitted
quasiparticle, which in general depends on both the coupling to the lead
as well as the speed of the sweep. We find that for very slow (adiabatic)
sweeps, the emitted particle is always either an electron or a hole, and
that in order to obtain equal superposition, a very special coupling, a
Majorana filter, is required.

Chapter 6
In this chapter, unlike the previous chapters, we consider a classical
transport problem of a solid state system. The theoretical issue consid-
ered, inspired by experiments that are also described in detail in this
chapter, is that of magnetotransport in a hexagonal indium antimonide
nanowire, which features strong spin-orbit coupling. Experimentally,
the spin-orbit interaction strength can be determined by measuring the
so-called weak localization and weak antilocalization, which are quan-
tum corrections to the conductivity that depend on a small magnetic
field in a characteristic manner.

However, the relation between magnetic field dependence and re-
sulting spin-orbit strength estimates depend on the geometry of the
problem. Because applying results for two-dimensional wires appeared
as an oversimplification for the presented experiments, we used Monte
Carlo simulation and the quasi-classical technique to model the three-
dimensional geometry of the hexagonal nanowires.

The results of the simulation are used to interpret the experimental
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data and furthermore explain an observed independence of weak local-
ization on magnetic field direction as a coincidence for the parameters
of the examined samples.

In regimes not accessible by current experiments, the simulations
predict an interesting dependence of the weak localization corrections
on the ratio W/le with a fractional exponent, where W is the radius of
the wire and le is the electronic mean free path.
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