
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/43299 holds various files of this Leiden University 
dissertation 
 
Author: Voltan, Stefano 
Title: Inducing spin triplet superconductivity in a ferromagnet 
Issue Date: 2016-09-29 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43299


2
THEORETICAL CONCEPTS

“The experiment left no doubt that, as far as accuracy of measurement went, the

resistance disappeared. At the same time, however, something unexpected occurred.

The disappearance did not take place gradually but abruptly. From 1/500 the resistance

at 4.2K, it could be established that the resistance had become less than a thousand-

millionth part of that at normal temperature. Thus the mercury at 4.2K has entered a

new state, which, owing to its particular electrical properties, can be called the state of

superconductivity.”

- Heike Kamerlingh Onnes-
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2.1 Superconductivity

When a superconductor is cooled down below its critical temperature Tc, the electrical

resistance drops to absolute zero. This is probably the most striking property of super-

conducting materials. In general, the electrical resistance of a metal is originated by

three independent mechanisms: i) electron-electron interactions, ii) electron-phonon

interactions, and iii) interactions of the electrons with impurities, crystallographic de-

fects or grain boundaries. Since the mechanisms are independent, they contribute

to the resistivity in an additive way. The contribution from impurities, defects an

grain boundaries ρimp is basically temperature independent, the one due to electron-

electron interaction ρel-el is proportional to T 2 while the electron-phonon contribu-

tion ρel-ph, instead, increases with increasing the temperature as T 5. At low temper-

atures the latter term is therefore negligible and the temperature dependence of the

resistivity is given by

ρ(T ) = ρ0 +aT 2 + ... (2.1)

where the first and the second term are respectively ρimp and ρel-el. This typical be-

havior is shown in Fig.2.1 (dashed line). Thus the ratio between resistivity at room

Figure 2.1: (Left) Low temperature dependence of the resistivity for a normal metal (dashed
line) and for a superconductor (full line). Above Tc the behavior is the same. (Right) The
Meissner-Ochsenfeld effect in a superconductor: both if the superconductor is cooled down
in field (middle right sketch) or with zero field (middle left), when T < Tc the magnetic field
cannot penetrate the superconductor (bottom). From Ref. [1].

temperature and at low temperature (ρ300K/ρ0K), called the residual-resistivity ratio

(RRR), is a measure of the purity of the metal. Kamerling Onnes, with his measure-

ments at low temperatures, aimed to experimentally prove this model and refute al-

ternative theories proposed at the time. The drop to zero resistance came completely
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unexpected. A typical superconducting transition is shown in sketched in Fig.2.1 (full

line).

The other characterizing property of a superconductor is the exhibition of the

Meissner-Ochsenfeld effect. If the superconductor is cooled down in a (small) mag-

netic field, the field is expelled at the transition to the superconducting state. So, a

superconductor is not simply a perfect conductor but also a perfect diamagnet. The

occurrence of the Meissner effect for a material of interest is often used as a definitive

proof of bulk superconductivity. As a matter of fact, the magnetic field is not com-

pletely screened but it penetrates the surface of the superconductor over a character-

istic short length given by the penetration depth λ. The field inside the superconduc-

tor is given by B = B0e−x/λ, with x the distance from the surface. λ is typically of the

order of a few tens of nanometers.

An understanding of the microscopical mechanism of superconductivity was miss-

ing for several years after its experimental discovery. Superconductivity was first de-

scribed phenomenologically in 1935 by the London theory. The description, similar

to superfluidity in 4He, used a two-fluid model: the current density j results from the

sum of two components, jn and js; jn is the normal component which carries entropy,

so disorder and heat; js is the superfluid component, which is ordered and does not

carry heat. The total density of carriers n = nn+ns is constant and the relative density

of carriers for the two components, n/nn and ns/n = 1−nn/n, varies with the temper-

ature. In the normal state only the normal component is present. When reducing the

temperature the superconducting component increases, shorting the normal carriers.

This simple model leads to the London equation, which connects the current density

j with the vector potential A,

j =−nse2

me
A, (2.2)

where e and me are the charge and the mass of the electron. Eq.2.2 is valid in the

regime when the penetration depth λ is larger than the effective coherence length ξ.

The effective coherence length is obtained by combining ξ0, the characteristic coher-

ence length of the superconducting state, and the mean free path `, via the relation

1

ξ
= 1

ξ0
+ 1

`
. (2.3)

Pippard introduced a generalized form of Eq.2.2, in order to include the cases when

λ < ξ. The London theory is a very simple phenomenological model and was based

on the introduction of two equations, in addition to Maxwell’s equations, which could

describe perfect diamagnetism and zero resistance. Although the model did not ex-
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plain the microscopical origin of superconductivity, it proved to be very powerful and

in many cases it gives the right predictions. The equation, furthermore, was later de-

rived by Bardeen, Cooper and Schrieffer starting from a full microscopical quantum

theory.

2.1.1 BCS vs Ginzburg-Landau theory

A microscopical description of superconductivity was proposed by Bardeen, Cooper

and Schrieffer in 1957 and it is known as BCS theory. Their model was developed based

on several experimental observations, such as the decrease of Gibbs energy and en-

tropy when going to the superconducting state, the quantization of the magnetic flux

with a charge equal to 2e and the exponential dependence of the specific heat. These

observations suggested that the superconducting state was an ordered state, with the

electrons paired up in two, and “protected” by an energy gap. According to the BCS

theory, when the temperature is reduced to the critical value, the electrons start to

feel an attractive force and they pair up in Cooper pairs. Indeed, the Cooper princi-

ple states that if there is an attractive interaction, however weak, between electrons

excited above the Fermi energy EF, there exists a pair bound state lower than EF sep-

arated by an energy gap ∆ from EF. The attraction between electrons is possible, de-

spite the repulsive Coulomb interaction, thanks to the mediation of the phonons. An

electron moving in the lattice attracts the surrounding positively charged ions, which

slightly move from their original position in the lattice. The positively charged cloud

left behind by the first electron, attracts the second electron. As a result there is an

attractive force between the two electrons. The coupled electrons have opposite mo-

mentum and, because of the Pauli principle, opposite spin. So, both the total mo-

mentum and the total spin of a Cooper pair are zero and the pair has a bosonic-like

behavior. When there is a superconducting transition, like in a Bose-Einstein con-

densation, the Cooper pairs condense to one common ground state. Since now the

interaction with the impurities does not happen with a single electron but with the

whole condensate of cooperative electrons, a larger energy is needed to excite a single

particle (quasiparticle). Indeed, the ground state is separated from the first excited

state by an energy gap 2∆. In general, the superconducting coupling is weak, and that

is why superconductivity appears only at low temperatures, when the thermal energy

is low. The magnitude of the coupling, proportional to ∆, typically does not exceed

a few meV. ∆ also defines the size of a Cooper pair, the coherence length ξ0, which is

given by

ξ0 = }vF

π∆
, (2.4)
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where } is the reduced Planck constant and vF is the Fermi velocity.

An alternative way to describe superconductivity is via the Ginzburg-Landau (GL)

model, which was introduced in 1950 [2]. GL is a phenomenological macroscopic

description of superconductivity which does not explicitly include the microscopic

origin of the phenomenon. Nonetheless, Gor’kov [3] some years later could show that

it is possible to microscopically derive the GL model from the BCS theory, confirming

its validity. The Ginzburg-Landau theory is based on the observation that in supercon-

ductivity there is a phase transition: as for the transition water-vapor, the two states

of normal conductance and superconductivity are considered two separate phases.

For this reason, the GL theory is accurate close to Tc and become less precise at lower

temperatures. The other important aspect is that when a material becomes supercon-

ducting, it goes to a more ordered state, associated with a symmetry breaking. In sys-

tems where such symmetry breaking occurs, we can define an order parameter which

is zero in the disordered state and emerges when crossing the transition. An example

of symmetry breaking occurs in ferromagnets, when the temperature is lowered below

the Curie temperature and the spins become aligned in the ordered magnetized state,

along a defined direction. In this case the order parameter is the magnetization. In

the GL model a complex order parameter Ψ is associated with the strength of super-

conductivity. Ψ= 0 in the normal state andΨ(T ) 6= 0 in the superconducting state. By

deriving the GL theory starting from the microscopic BCS, it is possible to show that

Ψ has the physical meaning of the wave function describing the condensate where

|Ψ(T )|2 is the density of Cooper pairs. There is also a phase connected to the wave

function, which leads to the phenomenon of flux quantization. Currents, in this for-

malism, are driven by phase differences. The formalism of GL is very powerful. It can

explain the Meissner-Ochsenfeld effect and it allows to describe complex problems

without addressing the microscopic details. Examples where the GL theory is particu-

larly useful is the description of vortices in type-II superconductors (see Sec.2.1.3) and

the proximity effect between a superconductor and a different material (see Sec.2.2).

The GL coherence length is defined as

ξGL(T ) =
√

}2

4m|α(T )| , (2.5)

where m is the effective mass of the electron andα(T ) the coefficient of the |Ψ|2 in the

expression of the free energy. ξGL(T ) has the meaning of the length scale of the spatial

variation of the order parameter Ψ. The temperature dependence can be made ex-

plicit by ξGL(T ) = ξ(0)
p

1/(T /Tc −1), where ξ(0) is equivalent to the coherence length
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defined in Eq.2.4.

2.1.2 A modern description: the Usadel equation

Both the original BCS and GL theories have some limitations. The GL model is limited

to a temperature regime close to Tc, as already pointed out in the previous section,

and it is valid only in conditions of equilibrium. The BCS model, on the other hand, is

valid at zero temperature (also in equilibrium) and neglects all the interactions other

than the attractive Cooper pairing. In real experiments the temperature is typically

finite, not necessarily close to Tc, and interactions such as scattering with impurities,

electron-phonon or electron-electron interactions, play an important role. This is an-

other way of saying that quasiparticle excitations are difficult to handle, as are situa-

tions when the material parameters change rapidly, as for instance at interfaces.

In order to describe real experiments, thus, the Bogoliubov-de Gennes equation

(BdG), based on the BCS theory, seems to be more suitable. In the BCS the Hamil-

tonian of the system is written in terms of creation and annihilation operators for sin-

gle particle states (Bloch waves with a defined momentum and spin). However, in

the superconducting state the excitations are quasiparticles which originate from the

breaking of Cooper pairs. For this reason, instead of single particle states, it is more

correct to consider mixed states of electrons and holes. This concept, first introduced

by Bogoliubov, was developed further in the BdG equation [4], given by(
H0 ∆(r )

∆(r )∗ −H∗
0

)(
ψe (r )

ψh(r )

)
= E

(
ψe (r )

ψh(r )

)
. (2.6)

Here the eigenfunctionsψe (r ) andψh(r ) are the electron-like and hole-like part of the

wave function, respectively, ∆ is the superconducting pair potential, H0 the Hamilto-

nian of the system and E the energy (eigenvalue) of the excitations. It is interesting

to notice that only when ∆ 6= 0, thus below Tc, there is a mixing between ψe (r ) and

ψh(r ), which are decoupled otherwise. H0, beside the kinetic energy term, includes

all the interactions different from the pairing potential, such as for example the scat-

tering with impurities, defects or grain boundaries. However, even if it seems that the

BdG equations could be used to describe diffusive systems, in practice it is not ap-

plicable. Indeed, in order to find a solution we should know in details the scattering

potential, namely the exact position of all the impurities an defects. In addition, the

resulting diffraction effects on the k vectors of the scattered electrons would be on the

length scale of the Fermi wave lengthλF, at least two orders of magnitude smaller than



20 2 - THEORETICAL CONCEPTS

the superconducting characteristic length ξS. In most of the cases, the study of such

small scale effects in a mesoscopic goes beyond the computational capability and a

the BdG equation cannot be solved.

A solution to the problem is found by introducing the formalism of the Green’s func-

tions, “borrowed” from the quantum field theory. In this formalism, instead of calcu-

lating directly the amplitude of the wave functions, as done by the BdG equation, the

expectation values of the moving charges are probed. The (normal) Green function

G(x, t ; x ′, t ′) expresses the probability of moving an electron from a position x ′ at the

time t ′ to a position x at the time t . This is done by “creating” a charge at (x ′, t ′) with

the Heisenberg creation operatorΨ†(x ′, t ′) and “removing” it at (x, t ) with the annihi-

lation operatorΨ(x, t ). The operation is then averaged on all the possible paths of the

charge from (x ′, t ′) to (x, t ),

G(x, t ; x ′, t ′) = 〈Ψ(x, t )Ψ†(x ′, t ′)〉 . (2.7)

In this way, the G function basically describes the transport properties of the system.

If G is fully known, it is possible to estimate many properties of the system. In the limit

(x, t ) ⇒ (x ′, t ′), for example, it gives the local density of states, while its spatial deriva-

tive gives the electrical current. G describes the transport of single electrons. In case

of superconductivity we also need a Green’s function which describes the breaking of

a paired state. This is provided by the anomalous Green’s function

F (x, t ; x ′, t ′) = 〈Ψ↓(x, t )Ψ↑(x ′, t ′)〉 , (2.8)

which first “removes” from the system one electron of the Cooper pair at (x ′, t ′) and

then the other, with opposite spin, at (x, t ). Besides F and G , extra functions are

introduced in order to include the operations on holes and to consider all possible

spin combinations, for instance in the equal-spin triplet state. The BCS Hamiltonian

can now be rewritten in terms of Green’s functions [5], and the resulting equation has

a similar form as the BdG equation (Eq.2.6), with the Green functions replacing the

eigenfunctions [6]. This formalism allows important simplifications. In this case, like

in any system, the fast oscillating components, which depend on x − x ′, can be sep-

arated from the slower components, which depend on the center-of-mass position

(x ′+ x)/2. As a result, since the fast oscillating part is canceled by the averaging, only

the longer range features (longer than λF) remain. The second simplification applies

to the scattering potential. In the dirty limit, instead of looking at the single impurities

as for the BdG equation, we can consider an effective disorder potential. The outcome
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of these (quasiclassical) approximations is the Usadel equation [7]

}D [F∇2G −G∇2F ] = −2i∆G −2i EF, (2.9)

where D is the electronic diffusion coefficient, ∆ the superconducting gap and E the

energy of the excitation respect to the Fermi level. The Usadel equation allows to de-

scribe real diffusive systems and can be applied to characterize the proximity effect

(see Sec.2.2). In this case, however, because the formalism is built on the assumption

that the two spin bands are equally populated, it fails in describing the superconduc-

tivity induced in a ferromagnet. It stays valid only in the limit of very small exchange

energy, namely for weak ferromagnets.

2.1.3 Critical field in a superconductor

After discovering superconductivity, Kamerlingh Onnes was determined in exploiting

the perfect conductance to build powerful superconducting magnets. Unfortunately

he soon had to realize that there was a limit to the magnetic field a superconductor

could sustain. We already discussed the Meissner-Ochsenfeld effect: a superconduc-

tor expels the magnetic field. But this is true up to a certain value, called the critical

field Bc. The effect of the critical field divides the superconductors in two main cat-

egories: type-I and type-II (Fig.2.2). For Type-I superconductors there is one critical

field which separates the superconducting state from the normal state. The critical

field is temperature dependent and the typical behavior is shown in Fig.2.2a. For the

type-II cases, two critical fields occur, Bc1 and Bc2 (see Fig.2.2b). Below Bc1 the ma-

terial is fully superconducting, above Bc2 it is in the normal state. In the interme-

diate state the sample is still superconducting but the magnetic field penetrates in

the form of filaments (or vortices). The vortices consist of normal regions through

which there is quantized magnetic flux, a fluxoid of magnitude Φ0 = }/2e. The nor-

mal cores are surrounded by circulating superconducting currents which screen the

magnetic field outside the core. The direction of the circulating current is such that

the generated magnetic field is parallel the external applied field. The radius of the

core is equal to ξGL, while the decay length from the center of the core is given by the

penetration depth λ. Bc2 is basically defined by the maximum flux density sustain-

able by the superconductor, which corresponds to a spacing between the vortices of

about ξGL. Abrikosov, by using the Ginzburg-Landau theory, could accurately describe

the physics of vortices and could show that they arrange themselves in a periodic lat-

tice [9], usually triangular. The prediction was confirmed experimentally with sev-
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(a) (b)

Figure 2.2: Phase diagram Bc vs T for a type-I (a) and a type-II superconductor (b). Type-I
superconductors have only one critical field (temperature dependent) which separates the su-
perconducting from the normal phase. Type-II superconductors show two critical field values:
below Bc1 there is flux expulsion, above Bc2 the material is in the normal state, in between Bc1
and Bc2 the material is still superconductor but there are normal regions (vortices) through
which magnetic flux can penetrate. From Ref. [8].

eral imaging methods. The dynamics of the vortices can influence the current flowing

through the superconductor. The field B of the fluxoids interacts with the transport

current I, via the Lorentz force

F = I×B. (2.10)

The force can move the vortices in the direction perpendicular to the current, with

the normal cores now dissipating energy. Therefore the motion of vortices adds a fi-

nite resistance and is detrimental for applications. The dissipation can be avoided if

the vortices are pinned to a certain position due to, for example, impurities (pinning

centers). In general, according to the various conditions (current density, material,

temperature, field strength) the lattice of vortices can be in the different states: we

can have a pinned lattice, a more disordered but static glassy state, or moving vortices

either in a coherent or disordered way. The contribution of vortex motion can be ob-

served in the R(B) transition curve. An example is shown in the schematic of Fig.2.3.

The width of the transition (always larger for type-II superconductors) is due to the

presence of vortices and a change in the vortex dynamics results in a change of the

slope. From an experimental R(B) curve there are different operational ways to define

the upper critical field Bc2. As shown in Ref. [11, 12], for a weakly pinning material a

good estimate is obtained by the intercept of the normal resistance value RN and the

fitting line of the linear part of the transition, which is the flux flow regime (see Fig.2.3).
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Figure 2.3: Schematic of a typical R(B) transition curve for a type-II superconducting. The
different vortex-flow regimes (thermal activation, flux flow and fluctuations) are indicated are
indicated at the top. The arrow shows how the upper critical field Bc2 value is typically deter-
mined, namely by the intercept of the fitting line of the linear part of the transition with the
normal resistance value RN . Bc2 corresponds to the upper limit of the flux flow regime. From
Ref. [10].

In the region below Bc2 the material is still superconductor with a finite resistance due

the flux flow, above Bc2 there are fluctuations before the normal state is reached.

The dependence of the upper critical field Hc2
i on the temperature has a universal

behavior for all the superconductors. For a bulk superconductor (3D), close to the

critical temperature Tc, the dependence is given by

Hc2(T ) = Φ0

2πξ2
GL(T )

= Hc2(0)

(
1− T

Tc

)
, (2.11)

where Hc2(0) = Φ0/2πξ2
GL(0) is the critical field at 0 K. For a thin film (2D, thickness

d ¿ 2ξGL), namely when the thickness is smaller than the coherence length, the be-

havior depends on whether the field is applied out-of-plane (perpendicular) or in-

plane (parallel). In the first case the dependence is linear as in Eq.2.11, because in

the direction perpendicular to field, i.e. along the plane, there is no confinement of

the order parameter, as for a bulk sample. In the second case, it has a square-root

iVery often in the literature, when discussing about the critical field effects, the applied field H is consid-
ered rather than induction B . For this reason from now on we will use Hc as critical field.
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dependence

Hc2(T ) = Hc2(0)

√
1− T

Tc
. (2.12)

From the study of the phase diagram it is therefore possible to obtain information

about the properties of the superconductor, in particular its coherence length, and

the dimensionality. For for a 2D film

Hc2⊥(0) = Φ0

2πξ2
GL

(2.13)

Hc2∥(0) =
p

12Φ0

2πξGLd
, (2.14)

where d is the layer thickness. In fact, when the field is applied parallel, a third crit-

ical field Hc3 has to be taken into account. In general, when the applied field H ap-

proaches Hc2 from above, the order parameter can nucleate at the edge of the sample

before vortices are formed. The thickness of the superconducting sheet in this case is ξ

(instead of 2ξ), which implies a higher critical field. Calculations show that in the dirty

limit (` < ξ0) the surface critical field Hc3 is given by Hc3 = 1.69· Hc2 [13]. For more

details see Ref. [14].The analysis of the critical field dependence becomes particularly

interesting in hybrid systems, where a superconductor is put next to a different ma-

terial such as a normal metal or a ferromagnet in a bilayer or multi-layered structure.

In the next section we will look at how the superconductivity is affected by the prox-

imity with a non-superconducting material and how superconductivity is induced in

a non-superconducting material.

2.2 Proximity effect

When a superconductor (S) is placed next to a normal metal (N), the superconducting

order parameter Ψ does not vanish at the interface but penetrates the N layer. It de-

cays within a certain range defined by the coherence length which, in the dirty limit,

is given by

ξN =
√

}DN

kB T
, (2.15)

where } is reduced Planck constant, DN the diffusion coefficient of the normal metal,

kB the Boltzmann constant and T the temperature. A sketch of the behavior of Ψ at

an S/N interface is shown in Fig.2.4. At low temperatures and for conventional met-



2.2. Proximity effect 25

ξN

↑↓−↓↑↑↓−↓↑

NS

↑↓+↓↑(triplet, ms=0  
↑↓−↓↑ singlet

ξF

↑↓−↓↑

FS

↑↓−↓↑

FS

ξF

↑↑(ms =1)
↓↓(ms= -1)

ξS

( (
(

Figure 2.4: Schematic of the proximity effect which shows the behavior of the superconduct-
ing order parameter (red curve) in three cases: at the interface superconductor (S)/normal
metal (N) (top panel), at interface superconductor (S)/ ferromagnet (F) (middle panel), at inter-
face superconductor/ferromagnet when the equal-spin triplet component is generated (bottom
panel). ξN,F is the coherence length of either the N layer or the F layer.
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als (e.g. copper), this length can be of the order of a micrometer. On the supercon-

ductor side, in the vicinity of the interface, the order parameter is depleted within a

region equal to the (Ginzburg-Landau) coherence length of the superconductor ξS(T )

(equivalent to ξGL(T ) of Eq.2.5). The phenomenon of induced superconductivity on

the normal metal is called proximity effect, while the reduction on the S side is known

as inverse proximity effect. For simplicity the whole effect can be seen as the result

of Cooper pairs leaking from the superconductor into the normal metal. However a

more correct description of the actual mechanism is given by introducing the concept

of Andreev reflection. An electron on the N side with energy ε lower than the gap ∆

cannot be injected into the superconductor as a single quasiparticle, but has to form

a Cooper pair. This is possible if the injection of the electron is accompanied by the si-

multaneous injection of a second electron from the valence band, with opposite spin

(singlet pairing) and exactly opposite momentum and energy −ε (respect to EF). On

the N side, this is equivalent to the retro-reflection of a hole. The net effect is thus a

charge transfer of 2e with no transfer of energy. Since the momentum of the reflected

hole is exactly opposite to the incoming electron, it follows its original path. As long

as electron and hole are phase coherent, the pair is indistinguishable from a Cooper

pair, so that superconducting properties are induced in the normal metal even with-

out the existence of an attractive pairing mechanism. When describing the proximity

effect, thus, it would more appropriate to talk about induced “superconducting corre-

lations” rather than induced Cooper pairs. However, for simplicity in this thesis we will

often refer to the phenomenon as induced Cooper pairs, in line with the language typ-

ically used in literature. The coherence length, defined in Eq.2.15, basically measures

the distance from the interface up to which the phases of the correlations stay coher-

ent, when averaging over all energies below the gap. The interface transparency plays

an important role in determining the strength of the proximity effect. A non-perfect

quality of the interface and the band mismatch between the two materials, indeed,

partially hinders the injection of Cooper pairs into N. This results in a discontinuity of

the order parameter across the interface, as depicted in Fig.2.4.

2.2.1 Proximity effect in superconductor/ferromagnet
hybrids

How does the proximity effect change if a ferromagnet is placed next to the supercon-

ductor, instead of a normal metal? As already introduced in Chap.1, the exchange en-

ergy Eex of the ferromagnet strongly affects the proximity. On the one hand, because

the two spin bands are not equally populated, the Andreev reflection is partially sup-
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pressed (or completely in case of half-metals). On the other hand, Eex strongly affects

the induced superconducting correlations by forcing the spins to be parallel, therefore

breaking the phase coherence between the injected electron and the reflected hole.

For diffusive ferromagnets the characteristic penetration length of the order parame-

ter is given by the coherence length ξF (Eq.1.1). For a standard ferromagnet this length

is only a few nanometers. For a 100% spin-polarized material such as CrO2, in which

only one spin band in available at the Fermi level, the (singlet) Cooper pairs cannot

be injected at all. The S/F interface is thus fully “reflective” and ξF is of the order of

atomic distances.

The short range decay is not the only characteristic of the penetration of the order pa-

rameter in a ferromagnet: as can be seen from the middle panel of Fig.2.4, the function

has an oscillatory behavior. This can be explained by considering the other supercon-

ducting components. Indeed, besides the singlet pairing, theoretically a Cooper pair

can exists in three other states (triplet). The four possible states are

SINGLET

{
|↑↓ − ↓↑〉 ms = 0

TRIPLET


|↑↑〉 ms =+1

|↑↓ + ↓↑〉 ms = 0

|↓↓〉 ms =−1

,

where ms is the magnetic quantum number, which represents the projection of the

total spin along the direction of quantization, defined by the exchange field. The os-

cillatory behavior is a mixture of the singlet with the ms = 0 triplet component. This

can be seen as follows: in a ferromagnet the subbands for spin-up and spin-down are

shifted by an amount 2Eex. For this reason the two electrons forming the Cooper pair

with opposite spin and opposite momentum (+k, −k), in order to adjust to the Fermi

level in the ferromagnet, have to shift their momenta by an amount Q/2. A schematic

of the process is shown in Fig.2.5. So for spin-up we have k↑ = k+Q/2, for spin-down

k↓ =−k+Q/2). As a result the Cooper pair acquires a nonzero center-of-mass momen-

tum Q. The amplitudes of the components |↑↓〉 and |↓↑〉 become modulated in space

by a factor exp[±i (k↑+k↓) ·R] respectively. As a result [15] we have

|↑↓ − ↓↑〉⇒ |↑↓〉e i Q ·R −|↓↑〉e−i Q ·R = |↑↓ − ↓↑〉cos(Q ·R)+ i |↑↓ + ↓↑〉sin(Q ·R). (2.16)

Thus the singlet component is mixed with the ms = 0 triplet component and the over-

all behavior is oscillating. The same mixing can result from a reflection for a spin po-

larized interface barrier. In this case the electrons acquire a spin dependent phase θ,
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2Eex

2Eex

k↑
kF↑

kF↑

kF↓

kF↓

k↓

EF

Energy

Figure 2.5: Depiction of the electronic structure for a ferromagnet. At an S/F interface, when
the electrons pass from to S to F they have to adjust to the Fermi level EF. Because the exchange
energy shifts the two spin bands, k↑(blue) and k↓(red) shift accordingly. As a result, the Cooper
pair acquires a finite center-of-mass momentum. From Ref. [15].
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which modulates the amplitude by a factor exp[±iθ]. This is the only possible mecha-

nism for spin-mixing in presence of half-metals, where the injection is (almost) com-

pletely forbidden for the spin of the minority band.

The fact that the superconducting order parameter has an oscillating dependence

on the distance from the S/F interface has an interesting implication: the possibil-

ity of having a π-Josephson junction. A Josephson junction is a structure made by

two superconductors separated by a non-superconducting material. If the length of

the spacer, in our case a ferromagnet, is within two times the coherence length ξF, a

supercurrent can be injected from on side of the junction to the other, across the fer-

romagnetic layer. The two superconductors are then coupled and quantum coherent

effects are observed. If the superconducting order parameter oscillates from positive

to negative values along the F layer, by varying the length of the spacer, namely the po-

sition of the second F/S interface, it is possible to switch from a positive (0-junction) to

a negative current direction (π-junction). This results in an oscillating behavior of the

critical current which can be explored either by varying the length of the F layer [16,17]

or the temperature [18,19]. The possibility of switching between the two states, 0- and

π-junction, is interesting for the development of electronic devices. Experimental ev-

idence of such switching could be shown for extremely diluted ferromagnets, such as

CuNi [18], PdNi [16], but also for Ni [17, 20], Ni80Fe20(Py) and Co [20]. However, a big

limitation for the development of applications is the short range of the proximity ef-

fect in S/F systems. More details about the working principle and the properties of

Josephson junctions will be discussed in Sec.2.3.1.

2.2.2 Long-range proximity effect

The possible scenarios offered by S/F systems are not limited to a short range, os-

cillating proximity. A long-range proximity effect can be induced and, surprisingly,

Cooper pairs can be injected into a ferromagnet and exist for distances up to several

hundreds nanometers, as for a normal metal. In order to overcome the pair-breaking

mechanism of the exchange energy, the standard singlet Cooper pairs have to be con-

verted into the triplet state |↑↑〉 (or |↓↓〉) thus with ms = 1 (or -1), in which the spins are

aligned parallel. This is possible even for conventional superconductors characterized

by singlet coupling: if a certain degree of magnetic non-collinearity is provided at the

S/F interface the triplet ms = 0 component, introduced in the previous section, can be

converted into the spin-parallel one. Indeed, the ms = 0 component is not rotationally

invariant. Therefore, if the magnetization vector, so the direction of the quantization,
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changes direction along the path crossed by the Cooper pairs, this component is ro-

tated in the spin space and converted as shown in Fig.2.6. For instance, if at the S/F

Figure 2.6: Sketch which shows the mechanism of singlet-to-triplet conversion at an S/F inter-
face. If the at interface there are misaligned magnetic moments, the ms = 0 triplet component is
rotated in the spin space and converted into the spin-parallel triplet component. From Ref. [15].

interface the magnetization is aligned along the y-axis and, within a length ξF, it is ro-

tated to the z-axis, the component with projection ms = 0 along y will have a nonzero

projection along z. The result is the conversion |↑↓ + ↓↑〉y ⇒ |↑↑+ ↓↓〉z . The conver-

sion efficiency is maximized when the angle between the magnetization directions is

90 degrees. The amount of polarization of the the ferromagnet defines the relative

amplitude of the two components ↑↑ and ↓↓. In the case of the half-metals, one of

the two is completely suppressed. In most of the cases, the main limiting factor for

the long-range proximity effect is the spin diffusion length. The spin diffusion length

measures the characteristic distance traveled by the electron inside the ferromagnet

before the occurrence of a scattering event which flips the spin. Once the spin of one

of the two electrons is flipped, the triplet alignment is lost and the Cooper pairing is

broken by the exchange interaction. For Co, the polarization is about 42% [21] and the

spin diffusion length is expected to be 60 nm [22, 23]. For CrO2, 100% spin-polarized,

the spin flipping is not a problem and the limiting factor for the coherence length, as

for a normal metal, is the diffusion coefficient DF, via the relation:

ξT
F =

√
}DF

kB T
, (2.17)
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As already mentioned in Sec.1.3, in order to be compatible with a long range in a diffu-

sive ferromagnet, the superconducting triplet coupling has to be spin-parallel, s-wave

and odd-frequency. In Sec.1.3 an intuitive picture to understand the meaning of the

odd-frequency was given. A more rigorous explanation involves the use of the Gor’kov

formalism. A detailed description and a review about odd-frequency superconductiv-

ity can be found in Ref. [24].

2.3 Superconducting devices

By combining superconducting with non-magnetic layers we can build superconduct-

ing devices, in which the proximity effect plays a crucial role in determining the prop-

erties. The two systems of main interest for our research are Josephson junctions (JJs)

and triplet spin valves (TSVs). In our work we fabricate these devices in order to pro-

vide an experimental evidence for the (long-range) proximity effect. In a JJ, if super-

conducting coupling is observed across the ferromagnetic spacer, it means that the

intermediate layer has been fully proximized and that the supercurrent could survive

from one side to the other. In a TSV, as will be explained in Sec.2.3.2, by looking at the

variations of the properties of the superconducting layer, it is possible to indirectly

infer proximity with the adjacent layers. In a broader perspective, such superconduct-

ing devices are interesting for their peculiar properties and their applications. A JJ,

for example, because of its quantum properties is already used as sensitive voltage

probe (SQUID) and is promising as a building block for superconducting electron-

ics or quantum computers. A TSV could be in principle used for generating spin-

polarized supercurrents, in combination with more complex electric circuits, or as

field sensors. However, the development of such applications is not the goal of this

work. JJs and TSVs, the details of which will be described in the following sections, are

here mainly used as tools to investigate the proximity effect.

2.3.1 Josephson junctions

The Josephson effect, originally demonstrated for an insulating spacer (I) in an S/I/S

device, is an example of quantum behavior which manifests itself at the macroscopic

scale. The effect, proposed by Josephson in 1962, allows the cotunneling of the two

electrons forming a Cooper pair from one side of the junction to the other, through

the insulating layer. When this happens, the S layers are coupled and the conduction
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properties of the junction depend only on the macroscopic properties of the super-

conductors, in particular on the phase difference between the superconducting con-

densate of the S layers, φ(t ) = ϑ1(t )−ϑ2(t ). The equations for voltage and current as

function of time are

V (t ) = }
2e

∂φ

∂t
(2.18)

IS(t ) = Ic sin(φ(t )), (2.19)

where } is the Planck constant, e the charge of the electron and Ic the critical current

of the junction at zero field. From Eq.2.19 we can see that, up to the critical value Ic, it

is possible to have a current flowing even with zero applied voltage (if φ(t ) 6= 0). This

peculiar property is illustrated in Fig.2.7 which shows a typical I −V characteristic for

a Josephson junction. The same behavior is observed when the insulating gap is re-

I

V

Ic

Figure 2.7: Left panel: typical I −V characteristic of a Josephson junction (full line)(from
Ref. [1]). The dashed line shows the linear slope for a standard ohmic dependence. Right panel:
theoretical Fraunhofer pattern for a Josephson junction (from Ref. [25]).

placed by either a normal metal or a ferromagnet, in an S/N/S or S/F/S junction. In

this case the transfer of Cooper pairs does not happen via tunneling but via Andreev

reflection, which proximizes the intermediate layer. In order to have Josephson cou-

pling the spacer length has to be smaller than two times the coherence length of the

proximized layer. The quantum behavior unfolds even more explicitly when a mag-

netic field is applied perpendicular to the current direction. When a field is applied,

the vector potential interacts with the supercurrent adding an extra phase difference,

which is proportional to the magnitude of the field. By increasing the field we can ob-

serve an oscillating behavior of the critical current, due to the periodicity of the phase,

superimposed on the decay due to the orbital breaking effect. The result is the char-
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acteristic behavior shown in Fig.2.7, known as the Fraunhofer pattern, because of the

similarity with the pattern observed in optical diffraction. The period of the oscilla-

tions is equal to ∆B =Φ0 · A, where Φ0 is the quantum magnetic flux and A is the area

of the junction penetrated by the magnetic field (flux).

In order to have a long-range proximity effect in an S/F/S junction the singlet super-

conductivity of the S layers has to be converted into triplet and for that to happen,

as we have already discussed, it is essential to provide misaligned magnetic moments

at the S/F interface. Via the same mechanism the triplet supercurrent in the F layer

needs to be converted back into singlet before being injected into the second S lead.

In this case the junction can be better described by a multilayer S/F’/F/F"/S, where F’

and F" represent the region of the ferromagnet where the magnetic moments are mis-

aligned with respect to F. In most of the experiments F’ and F" are separate magnetic

layers, the magnetization of which can be controlled independently by F. As shown in

Fig.2.8, the relative orientation of the magnetization of F’, F and F" is crucial to deter-

mine the amplitude of the critical current of the junction. The bottom graph of Fig.2.8

is the result of a computation by Houzet and Buzdin [26], where the normalized crit-

ical currents Ic are plotted as a function of the normalized thickness of the F’ layer

(F" has the same thickness). If the magnetizations of F’ and F are kept fixed with a

relative angle ΦL at the optimum value π/2, the Ic value strongly depends on the an-

gle between F and F", called φR. The maximum occurs for φR = −π/2, namely with

F’ and F" magnetized antiparallel. If magnetizations are parallel, or in general with

0 < φR 6 π/2, a π-junction behavior is expected. The importance of controlling both

interfaces is one of the factors which makes it experimentally challenging to fabricate

a “working” triplet Josephson junction. An alternative, even if less direct, way of prob-

ing the long-range proximity effect can be achieved, as we will see in the following

section, by studying a simpler device, the triplet spin valve.

2.3.2 Triplet spin valve

A superconducting spin valve, in general, is a multilayer structure made by one super-

conductor (S) and two ferromagnets (F1 and F2), where the superconducting prop-

erties of the S layer depend on the relative magnetization orientation of the F layers.

In conventional superconducting spin valves the structure is F1/S/F2, with the super-

conductor (not thicker than a few times ξs) in the middle. These devices have been

extensively studied both theoretically [27, 28] and experimentally [29–31] by measur-

ing the difference in Tc between parallel and antiparallel alignment of F1 and F2. This

geometry can be used to investigate the triplet superconductivity [32], on condition
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Figure 2.8: .Top: geometry of an S/F’/F/F"/S junction. The arrows indicate noncollinear orien-
tations of the magnetizations in each layer with thicknesses dL, d , and dR, respectively. Bottom:
normalized critical current Ic induced in a an S/F’/F/F"/S junction, for varying length of F’ and
F" layers, at dL = dR ≈ ξF ¿ d ¿ ξ0, and for different orientations of the magnetization of F"
(angleΦR). ΦL is fixed at π/2. From Ref. [26].
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that magnetic inhomogeneities are provided, however it is not the most suitable one

for this purpose. The generation of triplets can be more easily controlled and studied

in a multilayer structure S/F1/F2 [33], the so-called superconducting triplet spin valve

(TSV) [34]. In this case F1 is called mixer layer and F2 drainage layer. A TSV can be

thought of as half of a Josephson junction, so with only one interface to control. If we

refer to the previous section, the correspondence is F’→F1 and F→F2. In a TSV the

generation of triplet Cooper pairs is inferred by the change of the superconducting

properties of the proximized multilayer. The superconducting order parameter of a

proximized superconductor, constant in the bulk, is depleted in a region close to the

interface (inverse proximity effect) with the characteristic length scale of the depletion

given by the coherence length ξS. So, if the thickness of the S layer does not exceed a

few times ξS, the superconducting properties of the layer are affected by the proxim-

ity, this because the macroscopic critical temperature is proportional to the average

of the amplitude to the order parameter in the whole layer. The stronger the proxim-

ity, the larger the effect on the superconducting side. This is the basis of the working

principle of a TSV, which is shown in Fig.2.9. We have already seen that, in order to

Figure 2.9: Working principle of a superconducting triplet spin valve (TSV). If the magnetiza-
tions of F1 and F2 are parallel (or antiparallel) there is no generation and the valve is “off”. If they
are misaligned, triplet Cooper pairs are generated and injected into the F2 layer, with a conse-
quent stronger depletion of the order parameter on the S side: the valve is “on”. This results in
a suppression of the critical temperature Tc. Note that the misalignment can be either in-plane
or out-of-plane.

have singlet-to-triplet conversion, we need misaligned magnetic moments so that the

ms = 0 triplet component is rotated into the ms = 1 component, with equal spin. So if
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the magnetizations of F1 and F2 are aligned parallel (or antiparallel) there is no gener-

ation and the valve is “off”. If they are misaligned (either in-plane or out-of-plane) the

TSV is “on”: triplet Cooper pairs are generated and injected into the F2 layer, with a

consequently stronger depletion of the order parameter on the S side. This results in a

suppression of the critical temperature Tc, with the minimum expected when the two

magnetizations are perpendicular to each other. The non-monotonic dependence of

Tc on the relative angle between the magnetization vectors is a peculiar signature of

TSVs. For a standard (singlet) spin valve, in the same geometry but with no triplet in-

duction, we would expect a monotonic decrease from the parallel to the antiparallel

configuration, due to the different pair-breaking effective exchange field, lower in the

latter case [33]. It is important to stress that there is an optimal value for the thickness

of the mixer layer F1. The length scale for it is set by the coherence length of F1, ξF1 : if

the F1 layer is much thicker, the induced (short range) Cooper pairs vanish within the

layer without being converted; if F1 is too thin the spin mixing mechanism which gen-

erates the ms = 0 component is not efficient enough. For this reason the dependence

of the TSV effect on the thickness of the mixer layer is expected to be non-monotonic

with a maximum around the optimal value. Tc is not the only interesting quantity to

look at for a TSV. In fact, the upper critical field Hc2 can provide useful insight into the

study of the triplet channel in such devices. This is particularly true in the experiments

where a magnetic field is applied in order to vary the relative orientation of F1 and F2.

In this case, the variation of Tc could be the result of the change of critical field which,

as pointed out in 2.1.3, depends on the orientation of the applied field.

2.4 Ferromagnetism

In the previous sections we have already discussed the role of the exchange energy in

the pair-breaking and the importance of magnetic inhomogeneities for the generation

of triplet superconductivity. In this section we want to provide further insight into the

ferromagnetism in general. A material which shows an intrinsic magnetic moment,

with no applied field, is a ferromagnet. The macroscopic effect is the result of the

additive contributions of the small dipole magnetic moments at the microscopic level.

These dipoles are mainly due to the orbital and the spin moments of the electrons,

with the spin giving the major contribution. The magnetic moment of an electron

is equal to a Bohr magnetron µB = e}/2me =9.27 J/T. In general, because of the Pauli

principle, every completed energy state is occupied by two electrons with antiparallel

spins, so with resultant zero magnetic moment. The strong magnetic effects originate
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from a small fraction of unpaired electrons.

There are two models to describe ferromagnetism: in the first model, used e.g. for

magnetic insulators and 4 f metals, the contributing moments are localized, in the

second one, which describes magnetic 3d transition metals, they are itinerant. Here

we will briefly present the latter model, also called band model, which describes the

most common ferromagnets, such as Co, Fe and Ni [35]. In the transition (ferromag-

netic) metals, the outer occupied (or semi-occupied) bands are 4s and 3d , with the

spin-up 3d↑ and spin-down 3d↓ sub-bands shifted due to the exchange energy Eex

(see Fig.2.10, left panel). As a consequence 3d↑ and 3d↓ are not equally occupied and

this results in a net magnetic moment. In the case of Ni, for example, 3d↑ is fully oc-

cupied by 5 electrons, while the 3d↓ is partially empty, with about 0.6 holes due to 0.6

electrons transferred to the 4s band. As a result Ni has a magnetic moment of about

0.6 µB per atom. For comparison, the moments of Fe and Co are 2.2 and 1.7 µB, re-

spectively. The origin of the exchange interaction is purely quantum mechanical and

H
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Ms

0

Mr

E

4s

E

EF

3d

Eex

N (E)N (E)

EF

Figure 2.10: Left: schematic of the band structure of an itinerant ferromagnet close to the Fermi
level (adapted from Ref. [36]). Top right: sketch of a confined structure with different magnetic
configurations: the presence of magnetic domains minimizes the stray field. Bottom right: typ-
ical hysteresis loop M(H) for a ferromagnet.

a direct consequence of the Pauli exclusion principle. It exists only between particles

with parallel spin: since they cannot exist in the same state, the expectation value of

their distance is increased respect to the antiparallel state. The increase of the distance

reduces the overlap of neighbor orbitals with a consequent decrease of the potential

energy (lower Coulomb repulsion). For this reason, it can be more favorable for the
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spin to be aligned parallel. The result is then a shift of the spin sub-bands. It can be

shown that the condition for that to happen is given by the Stoner criterion

I ·D̃(EF) > 1, (2.20)

with I the exchange integral and D̃(EF) = (V /2N ) ·D(EF), where V is the volume and

D(EF) the density of states at the Fermi level. I is connected to the exchange energy

Eex via the relation Eex = I (n↑ −n↓)/N , where n↑(↓) is the number of electrons with

spin-up (down) and N is the total number of electrons n↑+n↓. Typical exchange en-

ergy values are of the order of a few eV , three order of magnitude stronger than the

superconducting coupling. If the thermal energy exceeds the exchange interaction,

the ordered pairing is lost and the magnetic moments are randomized. The threshold

temperature is given by the Curie temperature TC.

The exchange energy determines the occurrence of magnetic order, but does not ex-

clusively control the homogeneity of the magnetic state of a finite sample. In most

of the cases, the magnetization of a ferromagnetic sample is not homogeneously ori-

ented in one direction but subdivided in smaller domains. The rotation of the magne-

tization from one domain to the other happens within a domain wall. The final mag-

netic configuration is the one which minimizes the total free energy density, which in

the static case is given by [37]

Etot = A (∇m)2︸ ︷︷ ︸
exchange energy

+ εan︸︷︷︸
crystalline anisotropy

+ 1

2
µ0M ·Hd︸ ︷︷ ︸

demagnetizing energy

− µ0M ·Ha︸ ︷︷ ︸
Zeeman energy

− σex ·ε0︸ ︷︷ ︸
external stress

+ 1

2
(pe −ε0) · ¯̄c · (pe −ε0)︸ ︷︷ ︸

magnetostriction energy

, (2.21)

where A is the exchange stiffness constant (the first term is Eex), m is the magneti-

zation M normalized by the saturation magnetization Ms, Hd and Ha are the demag-

netizing and the applied field, respectively; the second term is the energy term con-

nected to the anisotropy of the crystallographic structure, which makes certain di-

rections more energetically favorable; σex is the external stress tensor, ε0 the strain

(namely the change in length divided by the total length), pe the deviation from the

initial non-magnetic state and ¯̄c the tensor of elastic constants. If there is no applied

field, no magnetocrystalline anisotropy and no stress from external factors, the con-

figuration is uniquely determined by the competing exchange and demagnetizing en-

ergy, also called shape anisotropy. If a sample is uniformly magnetized, the exchange
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term is minimized (the gradient of m is zero) but the demagnetizing field Hd, namely

the stray field generated by M , is maximum. The exchange interaction is on atomic

scales and short range while the demagnetizing energy derives from dipole fields and

is dominant at larger scales. Thus, small samples (typically below micron size) are

single domain while larger samples show a multi-domain configuration, which min-

imizes the stray field (see Fig.2.10 (right top)). In this case the ratio between domain

size and domain wall width is determined by the ratio between the two energy terms.

The shape of the sample strongly influences the demagnetizing field and therefore

the domain configuration. In a thin film, for instance, the magnetization typically

lies in-plane, so that the stray field is minimized. The orientation of the domains can

be influence by other anisotropies, such as the crystalline anisotropy: when a crys-

tallographic structure is present, aligning the magnetic moments along a particular

direction of the lattice can be energetically favorable than along others. This has to do

with the spin-orbit interaction of the electrons. The preferred directions can be one,

or more, according to the type of crystalline anisotropy. The last two energy terms

of Eq.2.21 are related to the deformation of the lattice - due to either external me-

chanical stress, or to an applied magnetic field - which causes displacement of the

atoms of the crystal with a consequent modification of the overlap of the neighbor or-

bitals. These terms are usually negligible in conventional systems. The combination

of all the anisotropies determines the “easy axis” of the sample, namely the energeti-

cally favorable direction(s) of spontaneous magnetization. A “hard axis”, a direction of

maximum energy and unfavorable, can also be present. When a magnetic field is ap-

plied, in order to minimize the Zeeman energy, the magnetic moments are rotated and

aligned parallel to the applied field. The field above which all the (possible) moments

are rotated is called saturation field Hsat. In this state the samples has the maximum

magnetization Ms. If, after the first magnetizing procedure, the field is swept back a

forth between H > Hsat and H <−Hsat, the magnetization shows a characteristic hys-

teretic behavior (see Fig.2.10,right bottom). The width of the loop, defined by the field

at which the magnetization changes its sign (i.e. the coercive field), says how difficult

is to magnetize the ferromagnet: materials with a low coercive field are called “soft”

ferromagnets, the ones with high coercive field “hard” ferromagnets. A single domain

configuration will have a sharp transition, namely a rectangular hysteresis loop, while

in a multi-domain ferromagnet the saturation happens gradually with different slopes

depending on the the way the domains are rotated.
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2.4.1 Ferromagnetism in CrO2

CrO2, as we have already discussed, is an interesting material because of its half-

metallicity. In the previous section we saw that for the most common materials the

ferromagnetism is due to the contribution of itinerant electrons of the valence band,

while in other cases it is the result of more localized moments. CrO2, in this respect,

is a peculiar material. A band model can properly describe the behavior of the con-

duction electrons but fails to explain other experimental observations, such as the

particular paramagnetic behavior above the Curie temperature TC and the large tem-

perature dependence of the resistivity (from over 220 µΩcm [38] close to TC, to a few

µΩcm at low temperatures). Both these behaviors are more consistent with a model

of localized moments. Such a model, however, would lead to an Mott insulating-like

and antiferromagnetic ground state [39], because of the strong correlations [40]. A

Figure 2.11: Left: rutile structure of CrO2, with every Cr atom surrounded by 6 atoms in an
octahedron. From Ref. [41]. Right: total density of states per formula unit and for both spins (a)
and partial Cr 3d (b) and O 2p (c) density of states of CrO2. From Ref. [39].

correct description, instead, is provided by a hybrid model which involves both itin-

erant and localized moments [39, 42]. CrO2 has a rutile crystal symmetry (as TiO2,

RuO2, VO2 and MnO2) with two Cr atoms in positions [0,0,0] and
[ 1

2 , 1
2 , 1

2

]
and 4 O

atoms at [u,u,0], [1−u,1−u,0],
[ 1

2 +u, 1
2 −u, 1

2

]
and

[ 1
2 −u, 1

2 +u, 1
2

]
, with u about

0.3 [43]. These positions are such that every Cr atom is surrounded by 6 O atoms
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forming an octahedron (see Fig.2.11). The lattice parameters are a = b =4.419 Å and

c =2.912 Å [43]. Cr is in a 4+ state with two unpaired electrons in the 3d band, O is in a

2- state. According to the model, one of the two electrons of Cr is localized and forms

a narrow band below EF (1 eV below), while the other hybridizes with the 2p bands,

at the Fermi level. A plot of the density of state for CrO2 and Cr and O separately, is

shown in Fig.2.11(right). The metallicity of CrO2 is due to a self-doping process: the

most energetically favorable state is with some of the 2p electrons of O occupying the

empty 3d bands of Cr. These electrons leave holes in the 2p bands at EF, which are

responsible for the conduction and have little correlation effects.
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