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Abstract

Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement

conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of

perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative meas-

urements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categor-

ized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on

brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be

debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard

operating procedure, based on practices already implemented in several research centers. Also, a theory of ‘deep MRI

physiotyping’ is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce

variance by taking both personal information and the presence or absence of perfusion modifiers into account. We

hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier

diagnoses of brain disorders.
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Introduction

Brain perfusion is essential for the delivery of oxygen
and glucose to the brain, and is tightly coupled with
brain metabolism and function.1 However, brain perfu-
sion is also affected by numerous factors not related to
brain metabolism, such as blood gasses, hematocrit and
caffeine. This confounds the interpretation of brain per-
fusion measurements, due to a large between- and
within-subject variability (16.2% and 4.8%, respect-
ively).2 The quantification of the micro-vascular cere-
bral perfusion and its strongly related macro-vascular
component cerebral blood flow (CBF) can be per-
formed with several imaging methods (summarized in
Table 1), such as: 133Xenon inhalation and injection
technique, N2O inhalation technique (Kety Schmidt
technique), single photon emission computed tomog-
raphy (SPECT), positron emission tomography
(PET), transcranial Doppler (TCD) sonography and
magnetic resonance imaging (MRI) using dynamic sus-
ceptibility contrast (DSC) or arterial spin labeling
(ASL).1,3 ASL utilizes magnetically labeled water as
an endogenous tracer, obviating the need for both
ionizing radiation and intravenous contrast bolus injec-
tion, which makes it the least invasive and cheapest
technique to measure whole-brain and regional paren-
chymal perfusion.3 Thus, ASL has the potential to be a
widely available perfusion technique in the quest for
viable biomarkers of brain health and disease.1 One
of the most promising applications of ASL is in
the diagnosis of neurodegenerative conditions.1

A multimodal approach including ASL can also be
applied to pathophysiological research, clinical diagno-
sis, and evaluation of novel therapies in psychiatric
disorders.1

Regional distribution of cerebral perfusion and pat-
tern recognition on perfusion maps may offer a
major contribution to understand pathophysiological
abnormalities,4 but pathology at very early stages
might be confounded by large individual variations in
perfusion due to physiology,5 aspects of lifestyle,6–8

dietary habits,9 and medication use.10,11 Alternatively,
physiological variations at the individual level can be
mistaken as abnormalities when not properly taken
into account. Unwanted variations of perfusion
should be small compared to disease-related alterations
if ASL-based perfusion measurements are to be used in
individual patients. Researchers have tried to map the
impact of many factors that modify cerebral perfusion
and to investigate its complexity for decades. Given
that ASL is increasingly being used in large population
studies and in clinical radiology, the accuracy of perfu-
sion measurements has gained a new relevance and
hence the understanding of physiological variability is
extremely important. The aim of this review is to sys-
tematically assess the magnitude of global and regional
effects of perfusion-modifiers and to gain insight into
the current level of knowledge represented by the litera-
ture. In this review, a perfusion modifier is defined as
any normal physiological variation that gives rise to a
change in cerebral perfusion. From this synthesis, sev-
eral possible practical solutions are proposed to
increase the precision of perfusion quantification.

Materials and methods

A comprehensive literature search for studies published
between 1952 and August 2016 was carried out using
the Web of Science and PubMed databases. First, an
exploration of all possible terms related to cerebral per-
fusion modifiers was performed. Subsequently, those
terms (e.g. caffeine, nicotine, age and gender) were
used to further refine the search in combination with
the terms: ‘cerebral blood flow’ and ‘cerebral perfu-
sion’. Articles were selected on the basis of two main
criteria: characteristics of the included subjects, and the
applied techniques. Only English, original research full-
text articles using non-anaesthetized healthy adults
were included. For the modifier, ‘age – children’ studies
including non-anaesthetized healthy children were
also considered. The applied techniques to investigate
cerebral perfusion and blood flow are summarized in
Table 1. Studies investigating the effects of prescribed
medicinal drugs on cerebral perfusion were excluded.

The modifiers were divided into four groups:
(1) physiology, lifestyle and health; (2) blood

Table 1. Techniques applied to measure cerebral perfusion and

blood flow on microvascular and macrovascular level.

Microvascular level: Cerebral perfusion
133Xe inhalation/intravenous injection techniques
85Kr inhalation/intravenous injection technique

N20 inhalation (Kety Schmidt technique)

Single-photon emission computed tomography (SPECT),

tracers:

# 133Xe

# N-isopropyl-[123I] p-iodoamphetamine (123IMP)

# Technetium exametazime (99mTc-HMPAO)

# Technetium ethyl cysteinate dimer (99mTc-ECD)

Positron emission tomography (PET), tracers:

# 15O-H2O

# 15O-CO2

Perfusion-weighted magnetic resonance imaging (PW-MRI):

# Dynamic susceptibility contrast (DSC) MR perfusion

# Dynamic contrast enhanced (DCE) MR perfusion

# Arterial spin labeling

Macrovascular level: Cerebral blood flow

Transcranial Doppler ultrasound (TCD)

Angiography X-ray

Phase-contrast/angiography MRI
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components; (3) mental state, personality and cogni-
tion; and (4) caffeine and recreational drugs (Table 2).
All full-text articles found were scrutinized. For each
modifier, three modifier criteria were calculated. First, a
consistency score was calculated based on the main
effect of the modifier in each article on global, grey
matter and white matter perfusion and blood flow in
the major cerebral and carotid blood vessels. Next,
for each modifier, the number of papers studying:
(1) global (including grey matter and white matter) per-
fusion; (2) regional perfusion and (3) other (major cere-
bral and carotid blood vessels) was attributed. Finally,
an effort was made to analyze both global (including
grey matter and white matter) and regional effect sizes
on brain perfusion. Global effects refer to changes in
whole-brain perfusion. Regional effects refer to changes
in the perfusion pattern of brain regions. The highest
effect size was determined for each modifier.

Using the three modifier criteria, an ordinal classifi-
cation was devised and each factor was assigned a com-
posite score consisting of a letter for quality – according
to the methodology presented in Figure 1 – and a
number for magnitude. The alphabetical order of letters
reflects the number of studies in which the reported

factor is mentioned (i.e. prevalence) as well as the
consistency of the corresponding influence on brain
perfusion (i.e. increase, decrease, no effect): (a) ‘high
prevalence, consistent across studies’, (b) ‘high preva-
lence, inconsistent across studies’, (c) ‘low prevalence’.
The numbers represent the reported magnitude of
each perfusion-modifier effect: (1) ‘large effects’,
(2) ‘intermediate effects’, (3) ‘small effects’, (4) ‘unknown’.
Supplementary Tables 1 to 5 summarize results of all
studies that were included in this review. Absolute
(in ml/100 g/min) and relative measurements of perfu-
sion in the brain were determined for each reported
factor. For global perfusion, the mean and range of
absolute and relative measurements reported across
studies were calculated. For regional effects, only the
range of values presented in the literature was taken
into account. However, only studies including absolute
or relative values were selected for the section of results
of this review; studies with no such quantification infor-
mation were only reported in the Supplementary
Tables.

Based on these findings, we propose a suggestion – in
the form of a standard operating procedure – to reduce
the effect of physiological fluctuations on ASL and

Table 2. Summary of non-medication related perfusion-modifiers found in the literature, classified into four groups, including the

number of studies presented in the Supplementary tables.

Physiology, lifestyle and health Blood components

Mental state, personality

and cognition

Caffeine and recreational

drugs

Age Blood gases: O2 Stress Caffeine

Occupation Blood gases: CO2 Anxiety Energy drinks

Social environment Hematocrit Yoga & meditation Nicotine

Gender Blood viscosity Mood Alcohol

Menstrual cycle Hemoglobin Cognitive capacity Recreational opioids

Pregnancy Fibrinogen Creativity Amphetamines

Menopause Blood glucose Personality Cocaine

Diurnal rhythm Homocysteine Sleep Cannabis

BMI Cholesterol Drowsiness/sleepiness Solvents and inhalants

Physical exercise / training Ketone bodies Open/closed eyes MDMA and LSD

Altitude ADMA Mental activity Psilocybin

Diving Free fatty acids Arousal and vigilance

Blood pressure

Heart rate

Body temperature

Mobile phone

Nutritional diet

Hunger/satiety

Fat intake

Sugar intake

Thirst
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other perfusion measures, and to acquire physiological
and cognitive data in a structured manner at the time of
perfusion assessment. The standard operating proced-
ure was constructed on the basis of procedures already
used in four research centers associated with the
European Cooperation in Science and Technology–
Arterial spin labelling Initiative in Dementia (COST–
AID Action BM1103).

Results

One hundred thirty-seven individual search terms were
used in combination with ‘cerebral blood flow’ and
‘cerebral perfusion’. After screening and assessing for
eligibility, 553 full-text articles were included in the ana-
lysis of the effects of modifiers on cerebral perfusion
(Supplementary Tables 1 to 5); 137 of which were
selected to summarize the modifiers’ effects in this sec-
tion. All modifiers influencing global cerebral perfusion
were identified and are summarized in Figure 2. Fifty-
six human brain perfusion modifiers not related to
medication use – except for recreational drugs – are
summarized in Table 2. Table 3 categorizes the modi-
fiers according to the corresponding level of prevalence,
consistency and effect size. The spread of all reported
quantitative absolute and relative information on the
effects of the A1-modifiers, as well as the mean effect
can be found in Figures 3 (absolute) and 4 (relative).

Physiology, lifestyle and health

Without any correction for GM volume changes, global
perfusion was found to be negatively associated with
age (A1), with an average decline of 0.27ml/100 g/min
(range �0.16 to �0.38) per year [�0.53% (range
�0.37% to �0.66%)].5 A decrease of 0.31ml/100g/min

(range �0.11 to �0.62) per year [�0.49% (range
�0.16% to �0.77%)] was reported in the gray
matter,12 in combination with a redistribution of CBF
among almost all cerebral regions. The effect of age
only appeared to be significant in adults after the fifth
decade of life.5 The reported effect on age-related
decrease in brain perfusion from corrections for contri-
bution of brain volume loss and partial volume is some-
what controversial. One study found no impact of age
on perfusion after correction for partial volume
effects,13 whereas other similar studies have found an
age-related decline.5,14 In any case, age has to be taken
into account in any comparison of brain perfusion,
hence the A1 score. In children (A1) over five years,
age was found to be negatively correlated with grey
matter perfusion, causing an even more pronounced
decrease of �1.69ml/100 g/min (range �1.05 to
�2.00) per year [1.92% (range �1.20 to �2.06)].15

The maximum global brain perfusion was found to be
reached at the age of 5 to 6.5 years.16 After reaching the
age of retirement (C2), continuing to work or partici-
pating in regular physical activities seemed to delay the
decline in perfusion.7 No association was found
between global cerebral perfusion and social environ-
ment (C3) in a single study comparing elderly subjects
living in their own home with those staying in a retire-
ment home or a hospital.17

Global perfusion in women was found to be
approximately 7.26ml/100 g/min (range 3.80 to 10.73)
higher [12.1% (11.0% to 21.9%)] than in men. There
are also regional increases in the frontal, temporal, par-
ietal and cingulate regions and in the basal ganglia.5,18

Nonetheless, gender-related differences in global and
regional perfusion were not reported in all studies.5

Actually, the gender (B1) effect on cerebral perfusion
may be explained by the well-known gender difference

Figure 1. Schematic representation of the methodology applied to devise an ordinal classification of perfusion-modifiers based on

the three modifier criteria.
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in the hematocrit.19 The interaction between gender
and age is not yet solved and some contradictory obser-
vations have been reported. One study reported a
gender difference in perfusion in subjects older than
50 years,5 whereas other studies reported differences
starting during female reproductive years.20 Some
studies report that the age-related decline was
slower in women,14 while other studies found no

gender difference.21 The effect of gender is therefore
important, but more work is needed for further
clarification.

Changes in blood flow velocity in the middle cerebral
arteries have been observed during the menstrual cycle
(C3),22,23 but no effects on gray matter perfusion were
found.24 During pregnancy (C4), a decrease in blood
velocity of the middle cerebral artery (MCAv) at a rate

Figure 2. Effects of modifiers on global brain perfusion summarized as a color gradient: factors in the green area induce no effect,

the blue and red areas represent global decrease and increase respectively. All factors are classified both according to their effect and

the corresponding magnitude on global perfusion changes. Other factors, whose value is still unknown, are grouped around the grey

rectangle.
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of decline of 0.59 cm/s (range �0.41 to �0.77) per week
[�0.58% (range �0.57% to �0.58%)] has been
reported.25 Two studies investigated the effect of meno-
pause (C4) on perfusion, which was found to decrease
in several regions.26 This effect appears not to be asso-
ciated with age, nor with the elapsed time after
menopause.26

Global effects of diurnal rhythm (C4) have not yet
been reported, but regional decreases seem to occur in
regions of the default mode network throughout the

day.27 One study observed a cosine course in the
MCAv.28

The effect of body mass index (C3) on cerebral
blood flow is inconclusive. Cerebral blood flow vel-
ocity (MCAv) was found to be moderately decreased
in conjunction with an increase of body weight.29

Positive correlations between the fat-free body mass
(C4) and regional perfusion have been observed else-
where,30and a lowered global and regional perfusion
in overweight (C4) subjects has also been reported.31

Figure 3. Absolute effects of A1- and A2-modifiers on cerebral perfusion: absolute quantitative information for global (G), grey

matter (GM) and white matter (WM) reported in each study was plotted for each A1- and A2-modifier and the mean is visualized.
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Studies dealing specifically with obesity (BMI> 30)
and eating disorders (e.g. anorexia nervosa) are not
presented, as these are considered non-healthy
conditions.

Studies on the short-term effects of physical exercise
(A1) reported strong and rather congruent effects on
cerebral perfusion. Global perfusion was shown to be
increased by approximately 10.5ml/100 g/min (range
11.4 to 14.7) [22.1% (24.7 to 28.0%), and a regional
redistribution of flow was generated. Thirteen minutes

after cessation of activity, global perfusion returned to
normal, even when the regional perfusion in the sen-
sorimotor area was still increased.32 Although other
studies did not report any effect of exercise on global
perfusion,33 this apparent discrepancy can be (partially)
explained by changes in the partial arterial pressure of
carbon dioxide (PaCO2).

32–34 Perfusion changes are
also dependent on the load and type of exercise.34,35

After exercise (B1), some studies reported an increased
global perfusion,36 whereas other studies only reported

Figure 4. Relative effects of A1- and A2-modifiers on cerebral perfusion: relative quantitative information for global (G), grey matter

(GM) and white matter (WM) reported in each paper was plotted for each A1- and A2-modifier and the mean is visualized.
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regional changes with no effects on global perfusion.37

The chronic effects of long-term physical exercise or
training (B1) are rather incongruent.6,38 Curiously,
the difference in trained and sedentary men accounted
for a difference in MCAv equivalent ‘age’ of approxi-
mately 10 years.6 Regional redistributions have also
been observed,39 as well as associations between aer-
obic or cardiorespiratory fitness due to an active life-
style (B1) and increased perfusion in the hippocampus
and grey matter.40 Regional perfusion appears to be
decreased down to 39ml/100 g/min (�57,2%) after a
10-day cessation of physical training (C1) in master
athletes.41

Pressure changes by changing altitude (C1) have
profound effects on brain perfusion. Climbing to high
altitude (i.e. about 4000m) increases global perfusion
by 9.65ml/100 g/min (range 9.10 to 10.2) [þ30.1%
(range 24.0 to 36.2)] during the first day. The increase
is accompanied by regional redistributions.42

Approximately three weeks (C3) of acclimatization to
high altitude normalizes perfusion.43 Individual differ-
ences in perfusion have been observed after descending
(C4) to lower altitude, following a long stay at high
altitude.44 In divers (C4), a decrease in both global
and regional perfusion was reported.45,46 In former
divers (C4), a persistent decrease of perfusion was
found in certain regions of the frontal lobe and in
parts of the cerebellum.47

The effect of blood pressure has been extensively stu-
died. In chronic hypotension (C4) ([SBP]<100mmHg,
[DBP]<60mmHg), a decrease in the MCAv was
reported, while no changes in grey matter perfusion
were reported.48,49 Chronic hypertension (B1) (systolic
blood pressure (SBP)>150mmHg, diastolic blood pres-
sure (DBP)>90mm Hg) can decrease50 or increase
regional perfusion,51 which has been attributed to
gender-related differences in one study.52 A positive
relation between global brain perfusion and heart rate
(C4) was found, but perfusion in certain regions was
decreased.53

Hyperthermia and fever (C2) were also found to
decrease global perfusion at an average of 5.21ml/
100 g/min (range �2.72 to �7.70) [�10.2% (range
�5.48% to �15.0%)].54 Nevertheless, hyperthermia
was found to change the regional pattern of CBF by
increases in the frontal and temporal regions, and by
decreases in the limbic system, parietal lobe, and in the
cingulate cortex.55 These perfusion changes persisted
for at least 15min after normalization of body
temperature.55

Using a mobile phone (C4) appeared to change the
regional task-related brain perfusion pattern, but not
regional perfusion during rest.56 Perfusion increased
in the prefrontal region for at least 30min after using
the mobile phone.57 Having a cell phone by your side

during the so-called ‘resting’ state appears to induce no
changes on MCAv.58

Food and liquid intake has reported effects on per-
fusion, but the effects are not sufficiently documented.
Dietary effects were studied in only two reports where a
high nitrate diet (C4) was reported to increase perfusion
in several regions,59 whereas fasting during the
Ramadan (C4) induced no changes on MCAv.60

Satiety (B4) after eating was found to immediately
affect regional perfusion.61 Fat intake (C3) induced a
decrease of nearly 13% in the perfusion of the hypo-
thalamus, and an increase of perfusion in the frontal
operculum, approximately half an hour after food
intake.62,63 Glucose and fructose (C4) seemed to exert
a distinct effect on regional perfusion 15 to 60min after
intake. Fructose induced both regional increases and
decreases, whereas the effects of glucose were limited
to regional decreases.64 Effects on global perfusion
were not observed.65

The experience of thirst (B4) was found to redistrib-
ute regional perfusion, leading to increased perfusion in
several cortical (e.g. cingulate) and cerebellar areas, and
to decreased perfusion in the frontal and temporal
regions (e.g. hippocampus), the basal ganglia and the
midbrain.66 Satiety (B4) after drinking water was found
to redistribute perfusion in multiple cerebral regions.66

Blood composition and components

Blood gases, O2 and CO2, have a profound effect on
brain perfusion.67 Hypoxia (B2) appears to increase
global perfusion at an average of 0.43ml/100 g/min
(range 0.26 to 0.59) per mmHg [þ0.87% (0.44% to
1.30%)] of decrease in the partial arterial pressure of
oxygen (PaO2).

68 The same was seen with hypercapnia
(A1) at an average of 1.65ml/100 g/min (range 0.80 to
2.89) per mmHg [þ3.95% (range 0.95% to 8.99%)] of
increase (PaCO2). These changes are associated with a
regional redistribution of perfusion.69 Hypocapnia (A1)
decreases both global and regional perfusion at a simi-
lar rate of change.70 However, it should be noted that
such a linear relationship was just observed in the range
of 23 to 60mmHg of PaCO2.

71 In some studies, hyper-
oxia (B1) appears to decrease both global and regional
perfusion; other studies report no effects on global per-
fusion and an inverse effect on regional
perfusion.72,73Again, an interaction was found between
the effects of O2 and CO2.

67

A high hematocrit (B1) leads to a decrease in global
perfusion at an average of �0.73ml/100 g/min (range
�0.32 to �1.55) [�2.28% (range �0.64 to �3.50)] per
1% of increase in the hematocrit value.74 However, the
effects of blood viscosity (C4) and hemoglobin (C2) are
still debatable. There are studies on blood viscosity
reporting no effect on grey matter perfusion,
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accompanied by regional increases.75 The hemoglobin
value was observed to determine a decrease in global
perfusion at an average of �1.65ml/100 g/min per g/dl
of increase in the hemoglobin value, and to change
cerebral perfusion in certain brain regions.76,77 For
fibrinogen (C2), a decrease in global perfusion of
3.20ml/100 g/min (6.43%) was found.78

For a blood glucose (B3) level below 3.6mmol/L
corresponding to severe hypoglycemia, both increases
and decreases in global perfusion were found, accom-
panied with increases of regional perfusion.79 Global
hyperperfusion was reported to outlast normalization
of blood glucose levels by 90min.79 However informa-
tion about the effects of physiological blood glucose
level on brain perfusion was not found. Circulating
homocysteine (C1) levels were found to be associated
with a decrease in global perfusion (2.38ml/100 g/min/
mmol/L on average) and to induce some regional redis-
tribution.80 A heightened total cholesterol level (C4)
was found to decrease regional perfusion in the tem-
poral and parietal regions.81 Hyperketonemia (C1) – a
state that can occur in cachectic patients, but is unlikely
to be found in normal subjects – was reported to
increase global perfusion,82 which tends to normalize
after three days (C3).82 The results on the effects of
asymmetric dimethylarginine (ADMA) (C3) are contra-
dictory, as either no effect80 or a weak regional decrease
in perfusion of the basal ganglia83 were observed. Free
fatty acids (C4) were found to be either positively or
negatively associated with the degree of perfusion in
several brain regions depending on the fatty acid
composition.84

Mental state, personality and cognition

Mental stress (C3) can increase regional perfusion in
the cerebellum, putamen, insula and in the anterior cin-
gulate cortex.85 Global increases appear to be non-sig-
nificant, but individual differences have been observed
and led to the suggestion that an inverted-U effect
might occur.85 Likewise, an inverted-U effect on brain
perfusion can be caused by anxiety (B1). There are
reports of global and regional perfusion increases in
situations causing low to moderate anxiety levels
(C4), and perfusion decreases in moderate to high anx-
iety (C4) generating conditions.86 Practicing yoga and
meditation (C4) changes the brain state and is asso-
ciated with a regional redistribution of perfusion,
depending on the method of meditation and its induced
depth.87 However, the reported results were obtained in
experienced Buddhist meditators.

Another factor that can influence brain perfusion is
mood. Stimuli inducing sadness (B3) have been found
to increase global perfusion, with regional redistribu-
tions among almost all brain regions. Happiness (B3)

was reported to induce both increases and decreases in
regional perfusion.88 Other mood states, such as disgust
(C4), worry (C4) and anger (C4) also have been
reported to influence regional perfusion.89–91 The
impact of a few aspects of cognitive capacity was inves-
tigated in a limited number of studies. A high intelli-
gence quotient (IQ) (B4) was associated with increases
in grey matter and regional perfusion.92 Other cognition-
related factors appear to redistribute regional perfusion,
such as processing speed (C4), verbal fluency (C4),
memory (C4) and executive functioning (C4).93,94 Both
short (C4)-95 and long-term cognitive training (B1)96

increase regional perfusion. Creativity (C4) was found
to increase perfusion in several frontal regions (e.g. the
gyrus rectus), and to decrease it in the precuneus.92,97

Personality is a multi-dimensional perfusion-modi-
fier still under investigation with only a limited
number of papers investigating. Extraversion (A4)
was found to be associated with a different pattern of
brain perfusion compared to introversion (A4).98

Regional perfusion was increased in association with
persistence (C4) or novelty-seeking (C4) behavior,
whereas psychoticism (C4), neuroticism (C4), harm
avoidance (C4), and reward dependence (C4) decrease
perfusion in certain regions of the brain.98

Although the effect of sleep on perfusion is quite well
understood, some aspects still remain unclear. During
non-rapid eye movement (NREM) sleep (A1), cerebral
perfusion decreases globally at an average of �5.65ml/
100 g/min (range �3.60 to �11.4) [�14.0% (range
�7.05% to �18.63%)] along with regional redistribu-
tions relative to pre-sleep perfusion.99,100 Afterwards,
during rapid eye movement (REM) sleep (B1), there
is an increase in the grey matter perfusion above pre-
sleep perfusion levels.99,100 This rate of change is attrib-
utable to the depth of sleep across various sleep stages
and cycles.99,101 Falling asleep (C4) seems to increase
the MCAv.102 Waking up spontaneously (C2), even at
night, decreases perfusion globally (�17.5%) and redis-
tributes regional perfusion.102 By contrast, being awa-
kened (C2) increases both global (þ5.70ml/100 g/min;
þ14.3%) and regional perfusion compared to stage 2
sleep perfusion level.103 No association between perfu-
sion and subjective sleepiness (C4) has been found, but
some positive and negative regional variations with
drowsiness (C4) were observed both in normal and
sleep-deprived subjects.104

Opening the eyes (C1) increases global perfusion.
Watching a constant or flickering flashing light or a
video during a perfusion scan increases occipital perfu-
sion by 24.4ml/100 g/min (þ50%).105 Mental activity
(C1) was found to redistribute regional perfusion,
(e.g. during self-referential tasks).106,107 Arousal and
vigilance (C3) due to a given task can also exert an
effect on regional perfusion.108
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Caffeine and recreational drugs

Acute caffeine (A2) intake exerts a profound short-term
decrease in global perfusion of approximately 2.75ml/
100 g/min (range �2.40 to �3.10) [�10.2% (range
�5.10 to �18.9)] in regular caffeine users.9,109 This
decrease was reported to last for at least 75min.109

These short-term effects seem to be more pronounced
in subjects taking a low daily dose of caffeine,9 and to
be very much dependent on perfusion levels prior to
caffeine intake.109 Long-term effects of daily caffeine
intake on perfusion are still not completely understood.
It was suggested that perfusion tends to normalize in
chronic (C3) users, due to a downregulation of vascular
adenosine receptors.9,110 Gray matter perfusion was
found to increase in heavy coffee drinkers after 24 h
of withdrawal (C4),9,110 and to normalize after 14
days (C4).110 Caffeine-containing soft drinks and tea
were found to exert similar effects on cerebral perfu-
sion.111,112 The acute consumption of caffeine contain-
ing energy drinks (C4) was found to be associated with
a decrease in the MCAv (�7.90 cm/s or �11.7%).113

Long-term nicotine (B2) use was found to be asso-
ciated with an average decrease of �6.37ml/100 g/min
(range �1.50 to �11.1) in global brain perfusion
[�9.16% (range (�2.0 to �15.5)].8 Short-term effects
of smoking (B2) (on global and regional perfusion)
are reported to differ among individuals. Increased,
decreased and normal global brain perfusion have
been observed in subjects smoking their favorite cigar-
ette brand.114 These short-term regional effects were no
longer visible after an abstinence period of 24 h (B2)
which seems to abolish these short-term effects
on regional perfusion.115 Although a tendency towards
normalization has been detected, global decreased
brain perfusion persists even after nine years of abstin-
ence (C2) following a long-term use of nicotine.116

Caution is needed when interpreting perfusion meas-
urements after withdrawal, since both nicotine-contain-
ing and denicotinized replacement therapies appear
to affect regional perfusion as well,117 and it has
been observed that perfusion is modulated by psycho-
tropic effects caused by withdrawal related to
addiction.117

Chronic alcohol (B1) consumption induced an aver-
age decrease of �2.43 (range �1.85 �> �3.00) ml/
100 g/min (�7.46%) in global perfusion along with
widespread regional perfusion changes.118 An acute
alcohol (B1) intake induces dose-dependent short-
term increases in global and regional perfusion up to
8.58ml/100 g/min (þ12.7%), which lasts at least for 2 h
after consumption.119,120 Global perfusion in chronic
alcohol drinkers has been reported to decrease after
24 h of abstinence (C1).121 A longer period of abstin-
ence (B1) results in a grey matter increase and regional
redistributions.122

The long-term use of recreational opioids (C4) was
found to be associated with a decreased perfusion in
some regions of the brain.123 An acute intake (B4) of
recreational opioids was also reported to induce mul-
tiple short-term changes in regional perfusion.124

Abstinence (B4) in long-term users was found to
induce a decrease of global and a redistribution of
regional perfusion.11 However, withdrawal effects
induced by naloxone were associated with a decrease
in regional perfusion as well.11 The long-term use of
amphetamines (B1) was reported in combination with
regional perfusion deficits.125,126 Nonetheless, these
effects were neither observed in all subjects nor were
they correlated with dose or duration of abuse.125,126

An acute intake (A2) of amphetamines was reported to
induce no effects on grey matter perfusion, but changes
in the pattern of brain perfusion in regions related to
the reward circuit.127,128 Even after months of abstin-
ence (A4), global and regional perfusion were found to
be decreased relative to normal volunteers.129

The long-term use of cocaine (B4) appears to be
associated with regional decreases in brain perfusion.130

An acute cocaine intake (B1) was found to cause a
decrease in global perfusion accompanied by regional
redistributions with a range from �36.6% to
þ28.1%.131 Such a short-term effect is dose-dependent
and lasts for approximately 40min.131 Brain perfusion
was reported to increase and decrease compared to con-
trol subjects in some regions after more than one year
of abstinence (C4), whereas global perfusion tends to
normalize.132 The long-term use of cannabis (B1) has
been described to decrease global perfusion and to
cause changes in regional perfusion.133 However, the
effects were not reported to be significant in all stu-
dies.134 An acute use of cannabis (A2) was found to
increase grey matter perfusion at an average of 5.29
(range 2.51 to 7.51) ml/100 g/min [8.14% (3.29 to
13.8%)] in combination with an altered pattern of
regional perfusion.135 Global and regional perfusion
changes persist after at least two months of abstinence
(B4).133

Long-term exposure to solvents and inhalants (B4),
such as industrial dyes and ethers, was in some studies
found to be associated with a decrease in grey matter
perfusion.136 There are also changes in regional perfu-
sion, which is increased in the left occipital region and
decreased in the prefrontal and temporal cortices, and
in the thalamus.137 Acute inhalation (C1) appears to
regionally increase grey matter perfusion up to
14.2ml/100 g/min (þ20.9%).138 A couple of weeks
after an acute intake of 3,4-methylenedioxy-metham-
phetamine (MDMA) (C1), regional perfusion has
been reported to show a maximal decrease of
�5.30ml/100 g/min (�10.0%).139 Some months after
(C3) an acute intake, global perfusion appears also to
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decrease (�2.30% on average).139 Somewhat surpris-
ingly, LSD (C4) was not found to have any effect on
global brain perfusion, but the effects of this modifier
should be further investigated as more information is
lacking.140 An acute psilocybin (hallucinogenic mush-
rooms) (C4) intake was reported to be associated with
regional decreases.141Finally, the effects of many other
recreational drugs have not yet been studied.

Discussion

This literature review shows that the most relevant fac-
tors influencing perfusion of the brain (ranked as A1)
are age (adult), age (children), physical exercise
(during), hypercapnia, hypocapnia and NREM sleep.
Given that it is not always possible to correct for
these modifiers at the time of perfusion assessment,
especially in the clinical setting, their effects should be
taken into account during the interpretation of perfu-
sion images and quantification. Although the variabil-
ity of reported results is often quite large for many
factors classified in category B, some perfusion-modi-
fiers belonging to category A also deserve further
research due to pronounced variability across study
results (e.g. in quantitative information) or the insuffi-
cient available information (e.g., on the dynamics of the
effects). Furthermore, a large group of potential modi-
fiers in category C needs investigation to ascertain the
corresponding effects on cerebral perfusion. In order to
correct for the effects of all perfusion-modifiers, it is
crucial to adopt a standard operating procedure in
the research setting. In the clinical setting such a pro-
cedure is also recommendable, at least to account for
the effect of perfusion-modifiers categorized as A1.

Understanding the effects of perfusion-modifiers

Regional and global perfusion alterations, caused by
the described perfusion modifiers, can mimic similar
regional disease-related changes which might be of the
same order of magnitude. More so, in early or mild
stages of neurodegeneration and psychiatric disorders,
perfusion changes will be subtle and in line with
changes caused by non-disease-related perfusion modi-
fiers. For example, in patients with early-onset
Alzheimer’s Disease, a hypoperfusion in the precuneus
and posterior cingulate cortex has been reported,142 a
perfusion pattern that can also be observed in healthy
subjects after an acute intake of caffeine.112

From the review, it is also clear that the understand-
ing of certain perfusion-modifiers is still limited (e.g.
IQ, mood, cognition and education), incomplete (e.g.
smoking and chronic caffeine use), or even contradict-
ory (e.g. physical training and blood pressure). On top
of that, the effect of some specific factors has not been

studied in healthy subjects at all. For instance, in spite
of the fact that significant – yet inconsistent – effects of
education143 and job complexity144 have been described
in perfusion studies involving patients with Alzheimer’s
disease, the same effects have not yet been confirmed in
healthy volunteers. Likewise, the effect of some other
factors remains to be investigated, such as physical
exercise before a perfusion scan (e.g. a brisk walk or
bike ride to the scanning facility), ethnicity, loneliness,
handedness, hyperglycaemia and eating related factors
like long-term fasting, hunger and satiety. It is also
unclear how important genetic factors are for cerebral
perfusion.

Data acquisition, methods, and a standard operating
procedure for the assessment of brain perfusion

Surplus variation secondary to non-standardized acqui-
sition or post-processing complicates the interpretation
of perfusion imaging.145 Given that ASL images can be
acquired using many different sequences and scanners,
and that there are many post-processing methods and
models for their analysis, a strategy to homogenize data
acquisition and post-processing methods must be estab-
lished. These issues – outside the scope of this review –
were thoroughly discussed in a recent paper by Alsop
et al,145 and should be kept in mind when interpreting
perfusion images or the effects of perfusion-modifiers.

Additionally, extra standardization and knowledge
will help to reduce variance and create a scope for the
correct interpretation of perfusion measurement
results. The extensive procedure is summarized in
Table 4, and includes specific assessments, neuropsy-
chological testing, physiological measurements, scan
instructions, and a questionnaire. Some parameters
can be measured before or during the perfusion scan.
For instance, body weight, temperature and blood pres-
sure can easily be measured. Several blood components
(hematocrit, hemoglobin, homocysteine, caffeine con-
centration, nicotine concentration, alcohol concentra-
tion) can be determined by taking a blood sample.
Capnography can be used to calculate the end-tidal
CO2; heart and respiratory rate can be measured
using physiological monitoring systems during scan-
ning. Some of the perfusion modifiers can also be mod-
elled out if accurate theoretical models are available to
describe their effects.

Specific instructions can be used to improve subject
cooperation and to reduce variability caused by the
scanner environment. Perfusion assessment at a fixed
time of the day should minimize the effects of diurnal
rhythm. Minimizing stress and anxiety can be achieved
by thoroughly explaining the experiment and character-
istics of the MRI environment to the volunteer before
the perfusion scan, and by using clear instructions
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during the scanning session as well. It is essential that
the volunteer feels comfortable and knowledgeable
about what to expect (e.g., loud noises). Restricting
the use of a mobile phone can be advised for a few
hours before the perfusion scan. However, the necessity
of this impractical restriction still has to be proved.
Asking the volunteer not to perform strenuous exercises
before scanning can be suggested, but this may be dif-
ficult in certain situations (e.g. if the volunteer cycled to
the scanning facility or had to hurry to be on time). In
these circumstances, it might be wiser to take this modi-
fier into consideration and, if possible, to allow for
some rest before measuring perfusion. Adequate hydra-
tion can be ascertained by instructions before scanning.
However, beware that drinking too much before scan-
ning might lead to a toilet break during the scan
session.

Asking the subjects to close their eyes and dimming
lights in the scanner room minimizes the effects of light
and closed versus opened eyes during the perfusion
scan. It is important that the subject remains in a
‘resting state’ by simple instruction or message at the
beginning of perfusion scanning, just like it is done for
resting state fMRI. It is imperative that the subject
doesn’t sleep. The awake condition can be checked by
inquiring with the subject or by using EEG during the

perfusion scan. Asking the volunteers about their sleep
during the night before scanning might provide some
extra information on their predisposition to fall asleep.
Instructing the subjects not to move during the perfu-
sion scan is mandatory to avoid motion artefacts,
which always induces unwanted measures and quanti-
fication problems. Using rigorous procedures for pos-
itioning can also minimize unwanted movement.

The use of an adequate questionnaire and a set of
psychological tests can be helpful to assess the so-called
‘physiotype’ of the brain of a given subject.
Information on age, occupation, social environment,
gender, menstrual cycle, pregnancy and menopause
can be taken into account by using such a simple ques-
tionnaire. In spite of being unusual in clinical and
research settings, factors such as altitude and diving
can also be queried. It might be useful to take into
account the usual pattern of physical exercise and the
exercise practiced the day before and on the day of
scanning. Providing a standardized meal an hour
before the perfusion scan might minimize the effects
of food on perfusion. However, this solution may not
take metabolism-related variability into account and
can be quite expensive and impractical. A better
option would be to query dietary habits and informa-
tion related to the last meal before the perfusion scan.

Table 4. Summary of the standard operating procedure proposed to reduce perfusion-modifiers induced variability.

Questionnaire (Q) Measurements (M) Neuropsychology (N) Instructions (I)

Age Thirst Diurnal rhythm Free fatty acids IQ Diurnal Rhythm

Occupation Stress Blood pressure Stress Cognitive capacity Physical exercise/

training

Social environment Anxiety Heart rate Anxiety Mobile phone

Gender Mood Body temperature Mood Hunger/Satiety

Menstrual cycle IQ Blood gasses: O2 Sleep Fat intake

Pregnancy Cognitive capacity Blood gasses: CO2 Drowsiness/

Sleepiness

Sugar intake

Menopause Creativity Hematocrit Arousal Thirst

BMI Personality Blood viscosity Caffeine

concentration

Sleep

Physical exercise/

training

Drowsiness/

sleepiness

Hemoglobin Nicotine

concentration

Drowsiness/

Sleepiness

Altitude Arousal Fibrinogen Alcohol

concentration

Open/closed eyes

Diving Caffeine Blood glucose Mental activity

Nutritional diet Energy drinks Homocysteine Caffeine

Hunger/satiety Nicotine Cholesterol Nicotine

Fat intake Alcohol Ketone bodies Alcohol

Sugar intake Recreational drugs ADMA Recreational drugs

Additional potential perfusion modifiers (not studied in literature/not included in review)

Educational level Pathology Respiratory rate Pathology Medication

Handedeness Medication
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Likewise, information on the current and past use of
caffeine (and other recreational drugs) can be easily
acquired by using a questionnaire. Advising withdrawal
of acute drug intake is a plausible option. However,
asking a volunteer not to smoke or drink or eat caffein-
ated foods (e.g. coffee, tea, coke, chocolate) for a
couple of hours before scanning can cause even more
variability in perfusion due to withdrawal effects.
A better approach would be to determine how much
consumption of these drugs occurred the day before
and the day of scanning. Querying the subjective feeling
of thirst immediately after the perfusion scan may be a
practical solution to control for the effects of thirst on
perfusion. Several aspects of cognitive capacity and cre-
ativity can be tested using a battery of neuropsycho-
logical tests. A personality test before scanning can
provide information regarding the personality of the
volunteer. Finally, a mood-sensing test should be per-
formed before the perfusion scan. A simple mood
rating can also be assessed immediately after scanning,
using a visual analogue scale for happy and sad mood.

The standard operating procedure proposed is the
result of a collaborative effort of the European COST
– AID Action BM1103, and should be applied in the
setting of the recently published consensus on best
practices for ASL acquisition and post-processing.146

Although this standard operating procedure is mostly
applicable in the context of perfusion measurements
using ASL, it can be used as a normalisation system
to control for between- and within-subject variability
with other perfusion techniques as well. The standard
operating procedure is available as Supplementary
material.

Deep MRI physiotyping

Obtaining personalized profiles and perfusion data
from a large number of healthy subjects on the basis
of a standard operating procedure would provide an
opportunity to develop the so-called ‘deep MRI physio-
typing’. In other words, it would be possible to match a
given volunteer to a specific physiotypic profile by using
perfusion data and personalized information. The most
difficult challenge of ‘deep MRI physiotyping’ would be
obtaining a database large enough to create persona-
lized normality templates. A first big challenge is the
number of templates and the amount of data to popu-
late the templates which, due to the multi-dimension-
ality of the problem with so many factors to take into
account, could well be over 10,000 datasets. Although
large databases of normal brain MRI already exist and
precautions have been taken to deal with unwanted
variance, most of these do not include knowledge
about the many perfusion-modifiers as appears to be
required.18

Another challenge is the lack of standardized neuro-
psychological testing and the difficulty to test all
domains of cognition. A consensus is needed on the
choice of neuropsychological tests in order to define a
specific physiotype. For instance, in the United States
of America (USA), the National Institute of Health
(NIH) toolbox sets an example of how neuropsych-
ology can be standardized.147 Unfortunately, this
framework is only validated in the USA for native
English and Spanish speakers, despite ongoing efforts
to translate this into other languages and cultures,
including those of the European countries. In order to
test the most important major neuropsychological
domains and to rule out major psychiatric disorders,
it would be recommendable to choose a battery of
neuropsychological tests assessing general cognition,
memory, language, attention, verbal fluency, processing
speed, executive function and visuospatial skills.

Limitations of this review

The major limitation of this review derives from the
existing variety of techniques andmethods used to inves-
tigate the reported perfusion-modifiers. Moreover, older
studies mostly focused only on perfusion-modifiers lead-
ing to an increase of cerebral perfusion (as opposed to a
decrease in perfusion), which may have introduced a
potential bias to this review. Furthermore, the concepts
of global and regional perfusion, as well as the assessed
cerebral regions were not precisely defined in many stu-
dies. This complicates the interpretation and generaliz-
ability of the reported results.

There was no uniformity in the reported units to
measure perfusion. Results obtained on the basis of
macrovascular approaches, such as TCD and angiog-
raphy (Table 1), should also be interpreted with care,
as these techniques measure blood flow velocity in a
large cerebral artery (e.g. in the ICA or the MCA),
rather than perfusion at the microvascular level.
Therefore, results only based on macrovascular data
were marked with an asterisk (*) in the supplementary
tables. Nevertheless, we assume that these techniques
can provide a strong indication of changes in blood
supply to the brain.3 For each modifier, the average
value and range of the reported information are pre-
sented in the results section and the supplementary
tables. However, only a few papers reported quantitative
information, which complicates a correct attribution of
their effect sizes. Additionally, the reported absolute
values of CBF have been found to widely vary between
30 and 99ml/100 g/min for grey matter, and between 13
and 45ml/100 g/min for white matter,148 which also pre-
cludes us from drawing uniform conclusions. Many stu-
dies mentioned either only absolute or only relative
values. Therefore, a scaling factor across average
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values (per modifier) was impossible. It was also, obvi-
ously, impossible to present ranges for those modifiers
that were only investigated by a single study. For these
reasons, the use of averages and ranges reported in this
review cannot be used as a recommendation for use as
some kind of correction factor, but they can be inter-
preted as a way of understanding which modifiers have
the most significant effect size on perfusion.

Another limitation of this review pertains to the fact
that the reported effects of some perfusion-modifying
factors were considered in isolation, because inter-
actions between modifiers were often not described.
A key example here is the influence of PaCO2 on per-
fusion, which probably depends on PaO2, and vice
versa.67 Another example is the above-mentioned inter-
action between the effects of gender and hematocrit on
cerebral perfusion.19 In the future, interactions might
be better characterized using ‘deep MRI physiotyping’,
assuming that the necessary effects are taken into
account. This review did not address the many under-
lying psychological and physiological mechanisms to
explain the effects of modifiers. A better understanding
of these mechanisms could clarify some of the reported
results, but this was not the main goal of the current
report.

Results from some patient studies were included in
this review of modifiers of normal perfusion because
most knowledge for certain modifiers was obtained
from such studies, and the factors described are often
present in part in what is considered normal or in sub-
jects who present themselves as normal. This includes
studies about blood pressure, haematocrit, blood
viscosity, haemoglobin and LDL-cholesterol.
Furthermore, plenty of studies investigating the effects
of alcohol and recreational drugs included patients
suffering from poly-drug dependency. Because of the
significant role of the results of those studies in the
understanding of perfusion modifiers, exceptions for
inclusion have been made. Finally, the effects of pre-
scription and over-the-counter drugs were not included
in this review. This can be regarded as an additional
limitation, as it is clear that many medicinal drugs have
a large influence on perfusion.10,11 Nevertheless, given
that we wanted to investigate perfusion-modifiers in
normal subjects and medication is related to patho-
logical conditions, we decided not to include the cor-
responding effects in this review.

Conclusion

This review provides an overview of perfusion-modify-
ing factors influencing between- and within-subject
variability of perfusion measurements. It underlines
the complexity and importance of numerous influences
on brain perfusion that can affect its quantification

and pattern. The effect of over fifty perfusion-modifiers
was reported. In order to disentangle their impact from
effects caused by disease, we suggest the combination of
a standard operating procedure with a novel approach
called ‘deep MRI physiotyping’. This approach can help
to create personalized perfusion templates and be an
invaluable resource to set up multi-center studies,
longitudinal studies, and to help validating clinical
applications of ASL. By extrapolation, it may also
be helpful to interpret other quantitative measures of
the brain.
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