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Conditional and interaction gene-set analysis
reveals novel functional pathways for blood
pressure
Christiaan A. de Leeuw 1, Sven Stringer 1, Ilona A. Dekkers 2, Tom Heskes3 & Danielle Posthuma1,4

Gene-set analysis provides insight into which functional and biological properties of genes are

aetiologically relevant for a particular phenotype. But genes have multiple properties, and

these properties are often correlated across genes. This can cause confounding in a gene-set

analysis, because one property may be statistically associated even if biologically irrelevant to

the phenotype, by being correlated with gene properties that are relevant. To address this

issue we present a novel conditional and interaction gene-set analysis approach, which

attains considerable functional refinement of its conclusions compared to traditional gene-set

analysis. We applied our approach to blood pressure phenotypes in the UK Biobank data

(N= 360,243), the results of which we report here. We confirm and further refine several

associations with multiple processes involved in heart and blood vessel formation but also

identify novel interactions, among others with cardiovascular tissues involved in regulatory

pathways of blood pressure homoeostasis.
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The aim of gene-set analysis (GSA) is to uncover functional
and biological properties of genes involved in the genetic
aetiology of a phenotype1,2. If a property is relevant to a

phenotype, then variants associated with that phenotype will tend
to accumulate in genes with that property. For example, smooth
muscle cells (SMC) play a role in blood pressure regulation3,4,
and if this has a genetic basis we might expect to find genes
involved in the development of SMCs to exhibit genetic asso-
ciation with blood pressure phenotypes.

However, genes typically have numerous different properties,
which can be strongly correlated with each other if they involve
many of the same genes. Perhaps SMC development genes are
also involved in the development of other types of muscle cell, or
they are expressed primarily in muscle tissue. This would result in
a correlation between SMC development and muscle cell devel-
opment in general, or between SMC development and muscle-
specific gene expression.

In such scenarios, associated variants will accumulate in genes
with a property that does not itself play a role in the phenotype,
but is correlated with another gene property that does. Thus, the
SMC development gene set could become associated simply by
muscle-specific gene expression playing a role in the phenotype.
Traditional GSA only tests the marginal associations of gene
properties5,6, and cannot account for this kind of confounding.
Such GSA is therefore liable to identify gene properties that hold
no biological relevance for the phenotype, with potentially very
misleading interpretations and wasted effort in follow-up research
as a result.

To address this issue we have developed a novel GSA approach,
based on and implemented in our existing GSA tool MAGMA5.
Central to this approach is the conditional GSA model, which can
evaluate how associations of different gene properties relate to
each other. As Fig. 1 illustrates, it can identify confounding where
traditional GSA cannot.

The model can also deal with more complex scenarios, in
which particular combinations of multiple gene properties are
relevant to the phenotype rather than any individual gene
properties on their own. This manifests statistically as an inter-
action between gene properties, which are hard to detect when
testing only marginal associations and which can result in con-
founding of the gene properties involved (Fig. 1d). A more
complete and accurate insight into the phenotype based on GSA
therefore requires that such scenarios are taken into account as
well.

Our proposed approach works by selecting gene properties
with significant marginal associations using a standard GSA, then
using a series of follow-up analyses to discard those which are
likely not biologically relevant for the phenotype. A wide range of
gene properties is used as input to improve the probability of
relevant gene properties being included, as this allows for the
detection of confounding caused by those relevant gene proper-
ties. This also improves the specificity of the conclusions that can
be drawn because more gene properties can be ruled out as
having no biological relevance to the phenotype, and an absence
of confounding where it might have been expected can also be
shown.

The analysis workflow for our approach is shown in Fig. 2, with
a more detailed overview of this analysis workflow provided in
the Methods section and a guide to performing and interpreting
the analysis in the Supplementary Methods. The initial GSA in
step 1 can include both binary sets and continuous gene-level
variables, and is followed by four follow-up analysis steps that
refine the initial results. The results are first corrected for global
effects that are likely to act as general confounders in the GSA
(e.g., gene expression levels), after which overlap between sig-
nificant associations is evaluated. For gene sets (i.e. binary gene

properties) this is followed by additional checks for outliers and
signs of further confounding. Finally, post hoc interaction ana-
lyses are performed for all significant gene properties, to refine
the interpretation of their effects. In an optional sixth step,
exploratory interaction analysis is applied to detect additional
associations that were not picked up in the initial GSA.

We performed a simulation study to validate the conditional
and interaction GSA models used in our workflow, and then to
demonstrate the analysis workflow we applied it to the analysis of
blood pressure phenotypes. For this we used the UK Biobank7

data, analysing three blood pressure phenotypes: systolic blood
pressure (SBP), diastolic blood pressure (DBP) and pulse pressure
(PP). The gene annotation used in these analyses consisted of
gene sets from the three Gene Ontology domains3,8, miRNA
target gene sets9, and continuously valued tissue-specific gene
expression levels from the GTEx data10. A replication study was
also performed to further validate results from the UK Biobank
analysis.

High blood pressure is an important risk factor for cardio-
vascular disease11 and has an estimated heritability of 30–50%12.
Recently, large-scale GWAS studies have identified over 400 loci
that regulate blood pressure10,13–17, with many of the identified
loci showing associations with different blood pressure pheno-
types16. Some GSA was performed as part of these studies,
but only to a limited extent (see Supplementary Methods for a
brief overview) and only using traditional GSA approaches.
Applying our extend GSA analysis workflow to these phenotypes
may therefore expand our current understanding of the genetic
aetiology and biological mechanisms of blood pressure regulation.

Our analyses show that confounding and overlap between
associations is widespread, with the majority of initially sig-
nificant associations found to be due to the effects of general
confounders and the associations of other gene properties.
Interactions are also prevalent and often involve gene properties
with no detectable marginal association, suggesting that the
interaction analysis model can provide additional insights into
the phenotype to complement those of standard GSA. For the
blood pressure phenotypes a range of processes involved in heart
and blood vessel formation have been identified, as well as tissue-
specific expression in artery, heart and female reproductive
organs. Several novel interactions have also been found, among
others identifying joint involvement of cardiovascular develop-
ment and homoeostatic processes, and involvement of heart-
expressed miRNA-145 target genes.

Results
Simulations demonstrate risk of confounding in GSA. A
simulation study was performed to evaluate the conditional and
interaction GSA models, both individually and in relation to the
standard marginal GSA (details on the simulation settings are
provided in the Methods and Supplementary Methods). As
shown in Supplementary Figure 1, marginal GSA is highly vul-
nerable to confounding. When a gene set with no biological effect
assigned to it is analysed, it will be statistically significant at a rate
far exceeding the significance threshold if it overlaps with another
gene set that does have an effect. The conditional analysis model
can effectively account for this however, correcting for the con-
founding effect of the overlapping set and yielding an error rate at
the nominal significance level. This phenomenon is also clearly
illustrated in the blood pressure analyses, for example for the
heart development gene set. For PP it is initially significant, with a
marginal p-value of 1.6 × 10–6. This association is entirely
explained by the much stronger association of the cardiovascular
system development set that contains it, with a conditional
p-value for heart development of only 0.40.
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A similar situation is shown in Supplementary Figure 2. Here,
two overlapping gene sets were simulated, with one or both of
them assigned an effect. This was then analysed in two ways:
analysing the two gene sets and their interaction in an interaction

GSA, and analysing the interaction set (containing all genes
shared by the two gene sets) by itself with a marginal GSA. In
these simulations there are no actual interaction associations, and
for the interaction analysis the error rates are indeed at the
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Fig. 1 Illustration of different confounding scenarios. In each of the scenarios, a gene set with no relevance to the phenotype overlaps with a relevant gene
set, resulting in a confounded association. The left column contains scatterplots of gene associations as a function of their position, with the lines below the
plots indicating which gene sets they belong to. The right column contains bar plots showing the resulting gene-set associations, when analysing either the
marginal associations of each gene set individually (as in traditional GSA) or when using a joint conditional (a–c) or interaction (d) analysis of the two gene
sets. In a–c, one of the gene sets is relevant to the phenotype, with the other having no effect; in d the effect is assigned to the interaction between the two
sets, with neither having a main effect. In all scenarios this is shown to be correctly reflected by the conditional/interaction analysis, but not the marginal
analyses
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nominal significance level. When testing the marginal association
of the interaction set however, the error rates are strongly inflated.

Although normally an interaction would not be analysed in
this way, it can happen that gene sets are defined in terms of a
combination of multiple gene properties. For example, a gene set
may be defined as all the genes in a particular pathway that are
also differentially expressed in the heart. Such a gene set is
therefore actually an interaction between that pathway and
differential heart expression, and will be confounded by any main
effects that the pathway or differential heart expression may have.
For these kinds of compound gene set, the interaction GSA is
therefore required as well.

Gene–property associations are strongly overlapping. Results of
the blood pressure analyses at different steps of the workflow are
summarised in Table 1, with the individual associations retained
at the end of the workflow shown in Table 2. Initially significant

associations that were later discarded can be found in Supple-
mentary Tables 1 and 2. As shown there is a considerable
reduction in the number of associations in the final results,
compared to the standard GSA in step 1.

A large portion of this is due to the general confounders that
are corrected for in step 2, which reduced the number of
associations by 75%. Conditioning the remaining associations on
each other in step 3 led to a further reduction of 30%. Moreover,
there were multiple instances of gene properties being selected
jointly, with their associations clearly reflecting a single signal but
their overlap too strong to be disentangled. The number of
distinct signals captured by these significant and retained gene
properties is therefore even lower.

This suggests the presence of a great deal of overlap between
the associations in the standard GSA, with many of the tested
gene properties tapping into a much smaller subset of shared
signals. Moreover, in practice the overlap in associations among

Step 1: perform basic GSA

Assemble wide range of
gene properties 

Step 2: condition on general confounders
Corrects for phenotype-, data-and annotation domain-

specific variables predictive of genetic association

Discard non-significant
properties 

Discard properties no
longer significant

(at same threshold) 

Step 3: condition on other significant properties
Prunes away redundant associations to select likely subset

of results involved in the phenotype 

Discard properties if
associations explained

by other properties 
Step 4: create set-specific QQ-plots for gene sets
Can detect outlier effects and hidden confounding

Discard sets with
strong outlier effects

Inspection of sets
with likely hidden

confounders 

Step 5: post-hoc interaction analysis
Further analyses discovered associations to improve their

specificity 

Step 6: exploratory interaction analysis (optional)
Uses large-scale interaction analysis to detect additional

associations with no or weak marginal effect 

Fig. 2 Overview of the extended gene-set analysis workflow. The workflow is composed of five steps, starting with a standard gene-set analysis in step one.
Results from this analysis are then successively refined in the subsequent steps, discarding initially significant gene properties if their associations are
found to be insufficiently robust. In the optional sixth step an exploratory interaction analysis is used to detect additional interaction effects not uncovered
in the main analysis workflow
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different gene properties in particular is even stronger than the
reduction in the number of hits suggests, as shown in Fig. 3a.
Looking at the associations of all the gene sets, the effect of
conditioning on general confounders is relatively moderate and
primarily affects the strongest associations. However, condition-
ing on all the significant gene sets retained at the end of the
analysis workflow has a much more profound impact. It is most
pronounced for PP, for which almost no marginal association
remains, but it strongly affects the other two phenotypes as well
(Supplementary Figure 3).

Evidence of widespread gene-set interaction. The analyses show
that although not as extensive as for the marginal associations,
there is considerable evidence for interactions both between pairs
of gene sets (Fig. 3b, Supplementary Figure 4) and between gene
sets and tissue-specific gene expression (Fig. 3c, Supplementary
Figure 5). This is also reflected in the individual results for the
post hoc interaction analyses, with significant interactions of both
kinds (Tables 3 and 4). It seems unlikely that this is unique to
blood pressure phenotypes, which suggests that gene properties
probably commonly affect the phenotypes specifically in combi-
nation with other gene properties. It follows that finding these
interactions is necessary for gaining a proper insight into the
genetics of a phenotype.

In the post hoc analyses, by definition one of the gene
properties had a marginal association strong enough to be
detected. In some cases this may reflect a genuine main effect, but
this can also happen when there is only a strong interaction. An
example of this is the cell proliferation gene set, for which the
marginal association can be entirely explained by two interactions
(see below). For the majority of interactions found in the post hoc
analyses, the second gene property also shows little or no
evidence of any marginal association. The involvement of those
gene properties would therefore be very difficult to detect in a
normal GSA. The exploratory interaction results point to the
same conclusion, with for many of the gene properties involved in

the top interactions again little evidence of marginal associations
(Supplementary Table 4).

It is also clear that such weak marginal associations can hide
very strong effects. For the interactions between tissue expression
and gene sets, the p-values of the subset of top 25% expressed
genes are often very low. Similarly, for the top interactions found
in the exploratory analysis, three of the four negative interactions
hide significant main effects of gene properties that are not
marginally significant. Although for these the observed marginal
associations were stronger, they were still not strong enough for
the GSA in step 1 to detect them. Since negative interactions are
relatively prevalent (Fig. 3c), this again suggests that there may be
a considerable amount of association that a normal GSA cannot
easily uncover.

Variability across gene-set domains. In our results there are
considerable differences between the Gene Ontology and miRNA
target gene-set domains, in both the number of significant results
(Table 1) and the overall levels of association (Supplementary
Figure 6). The majority of the significant results are found in the
Gene Ontology biological process domain, with only a handful of
additional associations in the cellular component and molecular
function domains. For the miRNA target sets, no associations are
found at all.

As Supplementary Figure 6 shows, the miRNA results are not
entirely devoid of signal, and the general class of miRNA target
genes shows a strong association for both SBP and PP
(Supplementary Table 5). No individual miRNA families emerge
from the analysis however, with the three initially significant
miRNA target set associations explained away by the gene
expression and general miRNA target gene effects. It may be that
the miRNA target sets are too broad and are not involved in the
phenotypes as a whole, a possibility supported by the strong
interaction found for miRNA-145 with heart expression (see
below).

Although the cellular component and molecular function
domains do yield some associations they are dominated by the

Table 1 Overview of the number of initially significant gene properties retained in each step

Number of significant and retained gene properties

Domain Number of gene properties Phenotype Step 1 Step 2 Step 3a Finala

Tissue-specific gene expression 53 SBP 52 1 1 1
DBP 50 3 3 (2) 3 (2)
PP 43 14 7 (3) 7 (3)

miRNA targets 221 SBP 0 0 0 0
DBP 0 0 0 0
PP 3 0 0 0

GO—biological process 4653 SBP 10 6 5 5
DBP 14 6 5 (4) 5 (4)
PP 31 16 9 (8) 9 (8)

GO—cellular component 584 SBP 1 1 1 1
DBP 0 0 0 0
PP 6 2 2 (1) 2 (1)

GO—molecular function 929 SBP 2 1 1 0
DBP 1 1 1 1
PP 6 2 2 2

All domains 6440 SBP 65 9 8 7
DBP 65 10 9 (7) 9 (7)
PP 89 34 20 (14) 20 (14)
Combined 219 53 37 (29) 36 (28)

Gene properties are initially included based on significance in step 1, then retained or discarded in subsequent steps
Multiple testing correction was performed separately for each phenotype, applying Bonferroni correction per domain with α= 0.05/5= 0.01
SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, GO Gene Ontology
a Numbers in parentheses reflect the likely number of distinct underlying signals
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biological process domain, a feature that is found in the
interaction analyses as well (see Tables 3 and 4, Supplementary
Table 4). This is in part due to there being significantly more
biological process gene sets to analyse, though for the marginal
associations this is compensated by the correspondingly more
stringent multiple testing correction. Moreover, the associations
that are found for cellular component and molecular function are
not entirely convincing, with almost all of them showing
irregularities in their set-specific QQ-plots (Table 2, Supplemen-
tary Figures 7 and 8; see also step 4 of the detailed analysis
overview in the Supplementary Methods).

Tissue expression predicts blood pressure association. Initial
analysis of the GTEx gene expression levels shows that overall
gene expression is significant for all three phenotypes (Supple-
mentary Table 5), meaning that genes with a higher average gene
expression tend to have stronger genetic associations with the
phenotypes as well. This general effect drives the associations
found for many of the individual tissues, with the majority of the

associations for these tissues disappearing once the general effect
is corrected for (Table 1).

Expression in the remaining tissues is still strongly correlated
however, making it difficult to attribute associations to any
individual tissue. Conditioning the tissues on each other suggests
that there are likely at most three distinct clusters of
association (see Table 2). The first and strongest is in the arterial
expression levels, present in both DBP and PP. This arterial
association explains a large proportion of the other tissue
associations, but a second cluster of female reproductive organs
remains. It is the only association common to all three
phenotypes, and manifests most prominently in the uterus
expression. Unique to PP there is also a third association,
however, for heart (atrial appendage) expression.

Tissue-expression dependency of gene-set associations. Post-
hoc interaction analyses for the tissue-specific expression shows
that there is also considerable positive interaction between tissue
expression levels and gene sets, with significant interactions for all

Table 2 Marginally significant gene properties retained at end of extended analysis workflow

Gene property No. of genes Phenotype p-value Shared QQ check

Tissue-specific gene expression
Artery (aorta) – PP 1.16e-11 (1) –
Artery (coronary) – DBP 0.000113 (2) –
Artery (coronary) – PP 3.13e-10 (1) –
Artery (tibial) – DBP 8.82e-5 (2) –
Artery (tibial) – PP 1.15e-11 (1) –
Cervix (endocervix) – PP 1.58e-6 (3) –
Heart (atrial appendage) – PP 2.26e-8 –
Ovary – PP 5.65e-6 (3) –
Uterus – SBP 0.000123 –
Uterus – DBP 4.78e-5 –
Uterus – PP 4.03e-8 (3) –
GO—biological process
Blood vessel remodelling 29 DBP 5.74e-7
Cardiocyte differentiation 95 SBP 6.28e-9
Cardiocyte differentiation 95 PP 9.49e-9
Cardiovascular system development 764 PP 1.79e-9 (4)
Cell proliferation 645 PP 1.60e-8
CGMP biosynthetic process 13 DBP 4.06e-7
Circulatory system development 764 PP 1.79e-9 (4)
Embryonic eye morphogenesis 32 SBP 4.17e-7
Mesenchyme development 180 PP 9.11e-9
Negative regulation of cellular senescence 36 PP 3.63e-8
Negative regulation of smooth muscle cell proliferation 11 PP 6.20e-7 (5)
Negative regulation of transcription from RNA polymerase II
promotor

701 SBP 9.22e-7 Flagged

Nitric oxide metabolic process 15 DBP 6.22e-8 (6)
Positive regulation of developmental growth 150 SBP 1.84e-6
Positive regulation of urine volume 14 SBP 6.43e-7
Positive regulation of urine volume 14 DBP 5.72e-7
Reactive oxygen species biosynthetic process 21 DBP 3.37e-8 (6)
Regulation of smooth muscle cell proliferation 98 PP 1.00e-7 (5)
Regulation of transcription from RNA polymerase II promotor 1682 PP 9.97e-7
GO—cellular component
Actin cytoskeleton 430 PP 1.08e-6 (7) Flagged
Cytoskeleton 1882 PP 1.88e-7 (7) Flagged
T tubule 45 SBP 1.35e-5 Flagged
GO—molecular function
Cell adhesion molecule binding 180 PP 1.28e-6 Flagged
Peptide hormone binding 35 PP 4.96e-6 Flagged
Sequence-specific DNA binding 976 DBP 5.62e-6

p-Values are from step 2 of the analysis workflow, after correcting for general confounders. Gene properties that likely reflect a single shared association are marked by the same number in the ‘Shared’
column. Gene sets for which issues were noted during inspection of the QQ-plots are marked in the ‘QQ check’ column. These are still valid, but require more caution when interpreting their association
SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, GO Gene Ontology
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of the four analysed tissues and all three phenotypes (Table 3,
Fig. 4). The level of interaction association is found to vary across
phenotypes and tissues and also seems to be tissue-specific, as
there is little sign of interaction for the overall gene expression
level (Fig. 3c).

Positive interaction between tissue-specific expression and a
gene set represents a scenario where there is an association
specific to the more strongly expressed genes in the gene set.
Many of the gene sets involved are quite different in function
from those found in the main GSA, and have generally weak
marginal associations. One finding is a set of interactions
between uterus-specific expression and three biological pro-
cesses relating to sexual development for both SBP and PP,
most strongly found for sex differentiation (interaction p-values
of 5.2 × 10–6 and 6.3 × 10–7, respectively). Marginal associations
for sex differentiation have p-values of only 0.0034 and 0.0052,
respectively, but when the subset of more strongly uterus-
expressed genes is tested, strong associations emerge (condi-
tional p-values of 2.2 × 10–6 and 4.3 × 10–7). This effect is
specific to uterus expression, with no sign of interaction for the
other analysed tissues.

Another novel finding is the interaction between tibial artery
expression and miRNA-145 target genes for SBP and PP
(interaction p-values of 1.6 × 10–5 and 1.0 × 10–5). Marginal
association is now absent altogether (p-values of 0.442 and 0.638),
but again the subset of top expressed genes is highly significant
(conditional p-values of 1.7 × 10–7 and 6.2 × 10–7). There are also
several interactions between nucleotide, nucleoside and purine
processes, and both arterial and heart expression, found for all
three phenotypes.

One other surprising result is the interaction between heart
expression regulation of blood pressure, highly significant for
both SBP and DBP (interaction p-values of 2.6 × 10–8 and 2.8 ×
10–9). It is also initially significant for PP, but the association is
not as strong and does not survive the outlier correction
(Supplementary Table 3). What makes this result surprising is
that, in an analysis of blood pressure phenotypes, it only shows
up here. It has no marginal associations, nor do any of its subsets,
and also does not interact with artery expression. Yet in
conjunction with heart expression its associations are very strong,
with conditional p-values for the top expressed subset (1.6 × 10–9

and 2.0 × 10–11 respectively) lower than for any of the marginal
gene-set associations.

Cardiovascular and muscle cell involvement. For PP, a number
of different biological processes related to the heart were found to
be associated (Table 2). The strongest of these was cardiovascular
system development (p= 1.8 × 10–9) (or circulatory system
development, which is identical), which by itself accounts for
much of the association of the other heart-related processes.

The association for cardiovascular system development is in
turn partly explained by its two significant interactions (see
Table 4), with the nested sets chemical homoeostasis and
homoeostatic process (interaction p-values of 1.4 × 10–5 and
2.0 × 10–5). These interactions explain part of the marginal
cardiovascular system development association (main effect
p-values of 0.00067 and 0.00098 in the interaction model), but
enough of it remains to suggest that its joint effect with the
homoeostasis gene sets is important but is not the whole story of
its role in blood pressure genetics.

There is also evidence for a related involvement of muscle cell
processes, with cardiocyte differentiation significant for both SBP
and PP (p-values of 6.3 × 10–9 and 9.5 × 10–9) and another
association for the nested pair of sets negative regulation of
smooth muscle cell proliferation and regulation of smooth muscle
cell proliferation for PP (p-values of 6.2 × 10–7 and 1.0 × 10–7).

Role of cell proliferation and intracellular regulation. Another
strong association is found for the cell proliferation set for PP
(p= 1.6 × 10–8). Although this set overlaps with the two SMC
proliferation sets, it is much larger and represents an independent
additional signal. This signal can be traced to a pair of two largely
independent interactions of cell proliferation (see Table 4), with
the biological processes regulation of intracellular transport and
regulation of intracellular signal transduction (interaction
p-values of 7.6 × 10–6 and 0.00020). Although similar in their
function, these two interactions do not strongly overlap. Jointly
they do account for almost all of the marginal association of cell
proliferation, with its main effect p-value reduced to 0.015 when
conditioning on both interactions simultaneously.
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Fig. 3 Global QQ-plots of associations for pulse pressure. a Comparison of gene-set associations corrected for other effects. Shown are associations with
no corrections (step 1), associations corrected for overall and tissue-specific gene expression (step 2), and associations additionally corrected for all
significant and retained gene sets listed in Table 2. When correcting for gene expression, the associations for miRNA target sets were also corrected for
general miRNA target status. b Comparison of the overall levels of marginal and interaction association. Marginal associations are corrected for general
confounders (step 2); the interaction associations are from the exploratory interaction analysis (step 6). c Comparison of tissue by gene set interactions for
different tissues. For all of the tissue-specific analyses, each interaction was also conditioned on the interaction between overall expression and the gene
set. For all three plots, corresponding figures for all of the phenotypes can be found in Supplementary Figures 3–5
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Discussion
The development of the analysis workflow presented in this paper
was motivated by the problem of correlated gene properties, and
the confounding and the multiplicity of redundant overlapping
associations that could result from this. The results from the
blood pressure analyses show that this can indeed present a
serious problem in practice.

General confounding factors, here primarily the involvement of
overall and tissue-specific expression, are shown capable of
inducing significant associations in a large number of gene
properties. Those gene properties subsequently also overlap with
and confound each other, with a subset of the significant gene
properties accounting for the associations of the rest as well as for
large amounts of sub-significant associations in the other gene
properties.

Correcting for these issues drastically reduces the number of
gene-property associations, which implies that traditional GSA
lacking such corrections is liable to yield large numbers of asso-
ciations which are likely not biologically relevant to the pheno-
type. Conclusions drawn from such analyses are therefore at
considerable risk of being incorrect, and potentially very mis-
leading. These same issues most likely affect other, similar types
of analysis as well, such as network analysis or SNP-set analysis.

Our extension to interaction GSA opens up new avenues of
analysis. Results for the blood pressure phenotypes suggest that
there may be numerous signals in the annotation that a standard

GSA cannot reliably detect, if it can detect them at all. This is
perhaps best exemplified by the regulation of blood pressure gene
set. Based on its marginal associations there is little evidence that
it is involved in blood pressure genetics, and would not have been
found in a traditional GSA. Yet it has a very strong interaction
with heart-specific expression for both SBP and DBP, and the
subset of top expressed genes in the set is highly associated. This
same pattern is found for many of the tissue expression by gene-
set interactions, with many of those gene sets having entirely
unremarkable marginal p-values. The same is suggested by the
exploratory interaction analysis, with negative interactions in
particular seen to mask strong associations.

Taken together, our results thus show that a traditional GSA is
doubly vulnerable. Firstly, due to confounding many marginal
associations are likely to be found that are biologically irrelevant,
or the byproduct of more specific interactions. This can lead to
potentially very misleading conclusions, and wasted effort trying
to follow them up. Secondly, many gene properties may only
affect the phenotype in combination with other gene properties,
rather than on their own. Marginal associations for such gene
properties will often be weak or absent altogether, and therefore
unlikely to be found in traditional GSA. Our extended GSA
approach can address these issues, pruning away many likely
irrelevant associations through conditional analysis and detecting
novel additional or more refined signals with the interaction
model.

Table 3 Significant and retained interactions from post hoc tissue expression by gene set interaction analysis

p-Value

Tissue Gene set Marginal (set) Interaction Top 25% Shared

SBP
Artery (coronary) Nucleoside phosphate biosynthetic process (BP) 0.0167 2.59e-8 3.86e-5 (1)
Artery (coronary) Purine-containing compound biosynthetic process

(BP)
0.0104 1.81e-7 6.38e-5 (1)

Artery (tibial) miRNA-145 targets 0.442 1.60e-5 1.74e-7
Artery (tibial) Nucleoside phosphate biosynthetic process (BP) 0.0167 8.56e-7 2.28e-4 (1)
Artery (tibial) Purine-containing compound biosynthetic process

(BP)
0.0104 1.12e-6 1.79e-5 (1)

Heart (atrial appendage) Positive regulation of catalytic activity (BP) 0.122 9.24e-7 8.53e-3 (2)
Heart (atrial appendage) Positive regulation of molecular function (BP) 0.0238 3.25e-6 1.86e-3 (2)
Heart (atrial appendage) Receptor signalling protein activity (MF) 0.123 2.39e-5 2.75e-5
Heart (atrial appendage) Regulation of blood pressure (BP) 0.0115 2.61e-8 1.57e-9
Heart (atrial appendage) Vascular process in circulatory system (BP) 0.00139 5.88e-9 2.25e-7
Uterus Development of primary sexual characteristics (BP) 0.00698 1.3e-5 3.19e-8 (3)
Uterus Reproductive system development (BP) 0.000829 2.93e-5 4.71e-4 (3)
Uterus Sex differentiation (BP) 0.00339 5.21e-6 2.21e-6 (3)
DBP
Artery (coronary) Nucleoside phosphate biosynthetic process (BP) 0.550 2.01e-6 1.08e-5 (4)
Artery (coronary) Purine-containing compound biosynthetic process

(BP)
0.117 2.48e-6 7.52e-6 (4)

Artery (tibial) Microtubule-based movement (BP) 0.582 2.45e-5 2.20e-3
Artery (tibial) Microtubule binding (MF) 0.525 2.34e-5 3.41e-3
Heart (atrial appendage) Regulation of blood pressure (BP) 0.000777 2.77e-9 2.04e-11 (5)
Heart (atrial appendage) Vascular process in circulatory system (BP) 5.55e-6 4.91e-10 1.37e-9 (5)
PP
Artery (coronary) Nucleoside phosphate biosynthetic process (BP) 0.500 1.02e-5 2.89e-4 (6)
Artery (coronary) Purine-containing compound biosynthetic process

(BP)
0.205 2.44e-5 3.63e-4 (6)

Artery (tibial) miRNA-145 targets 0.638 1.01e-5 6.20e-7
Heart (atrial appendage) Cellular response to nitrogen compound (BP) 0.0167 2.18e-5 8.10e-7
Uterus Development of primary sexual characteristics (BP) 0.0144 7.56e-7 2.84e-7 (7)
Uterus Sex differentiation (BP) 0.00523 6.26e-7 4.28e-7 (7)

Marginal gene-set p-values are from step 2 of the analysis workflow, after correcting for general confounders. The ‘top 25%’ p-values are for the gene set of the 25% genes with the highest residual
expression on the tissue, conditioned on the whole set and the tissue expression. Interactions that likely reflect a single shared association are marked by the same number in the ‘Shared’ column
SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, BP biological process, MF molecular function
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Aside from demonstrating the utility of our proposed analysis
workflow, our analyses also provide a variety of insights into the
genetics of blood pressure, and many of the individual associations
fit well with the existing blood pressure literature. The tissue
expression analyses detected associations for several cardiovascular
tissues, which are highly adapted to blood pressure fluctuations. In
the cellular component domain constituents of the (sacromeric)
cytoskeleton, including actin and T-tubules, were identified18, and
the majority of detected biological processes are involved in
blood vessel and heart formation. These include cardiovascular and
circulatory system development, cardiocyte differentiation, SMC
regulation and (cardiac) mesenchyme development.

The interaction analyses provided further detail for these
associations. Expression in the heart (atrial appendage) interacted
strongly with the regulation of blood pressure gene set for both
SBP and DBP, which possibly reflects the role of atrial natriuretic
peptide in the homoeostasis of sodium and water retention19.
This is supported by the interactions of cardiovascular system
development with homoeostatic processes for SBP and PP. Heart
expression also interacted with cellular response to nitrogen
compound for PP, which fits the known natriuretic peptide–nitric
oxide pathway and guanylate cyclase signalling systems that are
targeted by nitroglyceride20.

Artery tissues were found to exhibit interactions with nucleo-
side phosphate and purine-containing compound biosynthetic
process for SBP, DBP and PP. Nucleoside and purine are not only
constituents of RNA and DNA but are also involved in metabolic
processes such as signal transduction and regulation of enzyme
activity21. This therefore aligns with the interactions found
between cell proliferation and regulation of intracellular transport
and signal transduction for PP, supporting the role of purinergic
signalling in the proliferation of vascular smooth muscle and
endothelial cells22.

Further evidence for a role of signal transduction was found in
the associations of nitric oxide and cGMP for DBP. Nitric oxide is
an important signalling molecule that regulates vascular tone by
acting as a vasodilator via the cGMP signalling cascade and
intracellular Ca2+ levels23,24. Also found for DBP was reactive
oxygen species biosynthesis, which has been implicated with
cardiovascular disease including hypertension25.

The miRNA target genes, which regulate various physiological
and pathophysiological processes at a post-transcriptional level26,
were associated for all three blood pressure phenotypes. Although

none of the individual miRNA target sets was significant, an
interaction was found between tibial artery expression and the
miRNA-145 target set. This interaction can be explained by the
influence of miRNA-145 on differentiation27 and phenotype
switching of vascular SMCs28,29, and the upregulation of miRNA-
145 in endothelial cells in response to shear stress and
hypertension30.

No associations were found for the kidney cortex or the adrenal
gland in the tissue expression analysis, which is surprising con-
sidering the regulatory role of the renin–angiotensin–aldosterone
system on blood volume and systemic vascular resistance31 and
known associations of renal sodium regulatory genes variants with
blood pressure32. One possible explanation is that the available
kidney cortex expression is too general. It has been shown that
unique and highly distinctive patterns of gene expression exist for
glomeruli, cortex, medulla, papillary tips and pelvic tissue33, and
associations with blood pressure genetics may only exist in such
more specific tissues. Regulation of urine volume was also found
to be associated with both SBP and DBP, which supports the
hypothesis that kidney involvement may be quite specific.

Also notable were the associations of several female repro-
ductive organ tissues, most prominently the uterus, for all three
phenotypes. This may point to the involvement of an underlying
hormonal pathway, correlated to ovarian expression. Such a
pathway could reflect the known protective effects of oestrogens
on cardiovascular disease and hypertension34. Alternatively,
expression in these tissues may serve as a proxy for placental
expression, which is not available in the GTEx data. The placenta
has been shown to play a role in blood pressure regulation during
pregnancy35, and placental functioning is directly related to fetal
growth which has been linked to the development of hyperten-
sion during adult-life of the child36,37.

The application of traditional GSA has previously led to novel
biological hypotheses on human physiology and the pathophy-
siology of disease, and the GSA presented in this paper improves
on that promise for blood pressure phenotypes. Our results, fil-
tered and refined using the extended analysis workflow, suggest a
variety of possible avenues by which the role of genetics in blood
pressure may be explained. Exploring these avenues could
advance our understanding of blood pressure and the identifi-
cation of therapeutic targets for cardiovascular disease, and our
extended analysis can be used generally to provide the same for
other phenotypes as well.

Table 4 Significant and retained interactions from post hoc gene set by gene set interaction analysis for pulse pressure

Gene-set interaction pair Size Overlap Marginal
p-value

Full model p-values Shared

Main Interaction

Cardiovascular system development (BP)a 764 100 1.79e-9 2.74e-5 1.44e-5 (1)
× Chemical homoeostasis (BP) 844 0.000672 0.0836
Cardiovascular system development (BP)a 764 147 1.79e-9 0.000210 2.01e-5 (1)
× Homoeostatic process (BP) 1277 0.000981 0.100
Cell adhesion molecule binding (MF) 180 21 1.28e-6 0.000574 0.000751
× Glycosaminoglycan binding (MF) 201 0.0904 0.602
Cell proliferation (BP) 645 204 1.60e-8 0.00311 0.000204
× Regulation of intracellular signal transduction (BP) 1581 0.0197 0.340
Cell proliferation (BP) 645 74 1.60e-8 5.51e-5 7.62e-6
× Regulation of intracellular signal transduction (BP) 596 0.454 0.958
Regulation of transcription from RNA polymerase II promotor (BP) 1682 203 9.97e-7 0.00127 1.73e-5
× Homoeostatic process (BP) 1277 0.000981 0.125

Marginal gene-set p-values are from step 2 of the analysis workflow, after correcting for general confounders. Interactions that likely reflect a single shared association are marked by the same number in
the ‘Shared’ column
BP biological process, MF molecular function
a The same interaction exists for circulatory system development, which is identical to cardiovascular system development and therefore omitted from this table

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06022-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3768 | DOI: 10.1038/s41467-018-06022-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Methods
Core GSA framework. We use GSA implemented in MAGMA (v1.07), a detailed
description of which can be found in De Leeuw et al.5. Briefly, the model is based
on a linear regression framework with genes as data points, with the regression
equation Z=β0+BβB+SβS+ε, with ε � MVN 0; σ2e Σ̂

� �
. Gene p-values Pg are first

computed from the SNP data for each gene g . These are transformed to Z-scores,
Zg ¼ Φð1� PgÞ with Φ the probit function, such that higher Zg correspond to
stronger genetic associations with the phenotype. The gene set is encoded in the
variable S, with Sg=1 if gene g is in the gene set and Sg=0 otherwise.

Linkage disequilibrium (LD) between genes is quantified in the gene–gene
correlation matrix Σ̂, which is scaled by the variance σ2e to model the residuals.
Several common technical confounders are included as covariates, represented by
the matrix B in the regression. These are: the number of variants in each gene, an
estimate of the LD within each gene, the inverse of the mean minor allele count of
variants in each gene, and the sample size on which each gene p-value is based. For
each of these variables, the log transformation of the variable is also included as a
covariate.

A one-sided test is performed on the coefficient βs of the null hypothesis βs=0
against the alternative βs>0, testing whether the genes in the gene set are more
strongly associated with the phenotype than other genes. This constitutes a
competitive test (see De Leeuw et al.1 for a discussion on key differences with self-
contained GSA).

The model can also analyse non-binary gene properties, such as gene
expression. In this case S is a continuous variable, and the coefficient βs reflects the
degree to which the genetic association of a gene changes as the value for the tested
variable increases. By default, a two-sided test is performed on βs when analysing
continuous gene properties since, in contrast to gene sets, negative associations
may be informative as well.

Throughout the text, we use ‘gene property’ to refer to any type of gene-level
variable, and ‘gene set’ to refer specifically to a binary gene property.

Conditional and interaction GSA model. Conditional and interaction GSA is
implemented by generalising the core regression framework. For conditional
analysis a matrix of additional covariates C is included in the model, to obtain
Z=β0+BβB+CβC+SβS+ε. The βS now reflects the conditional effect of S on the
genetic association Z, corrected for the effects that the covariates in C have on Z.

For the interaction GSA an interaction term S12 is defined as the product of two
gene properties S1 and S2, with S12g ¼ S1g ´ S2g . Then S12 is tested conditional on S1
and S2 to determine if there is any interaction between them, in the model

Z=β0+BβB+S1β1+S2β2+S12β12+ε. The test can be either two-sided or one-sided in
either direction.

An interaction of this type means that genes that have high values for both gene
properties are more strongly (or weakly, if β12 is negative) associated with the
phenotype than genes that have high values for only one of the two. This suggests a
specific role for that combination of properties. This role may be limited to that
combination, but can also be in addition to significant main effects (β1 and β2) of
the gene properties. For pairs of gene sets, S12 simply corresponds to the set of
genes included in both gene sets.

The conditional and interaction GSA models are implemented in MAGMA as
part of the GSA framework, and can be used with any of the gene analysis models
available in MAGMA. It can therefore be applied to both raw genotype data as well
as SNP summary statistics from any type of single variant analysis.

Analysis workflow. The extend GSA workflow consists of six analysis steps
(Fig. 2). An initial GSA is first performed to select significant gene properties, and
the subsequent steps are then used to provide further information on their asso-
ciations. This is then used to aid interpretation of the results, and to discard likely
irrelevant gene properties from consideration. It can also flag some gene properties
as requiring further analysis and data before interpreting them, if the evidence for
their biological relevance to the phenotype is ambivalent. The initial GSA results
are thus progressively refined, improving the reliability of the conclusions that can
be drawn. An overview of the six steps is provided here. An extensive guideline on
performing the analyses and interpreting the results can be found in the Supple-
mentary Methods.

The first step of the analysis workflow is a standard MAGMA GSA (with only
the automatic correction for technical confounders). Only gene properties
significant in this GSA are directly evaluated in the subsequent steps (except
step 6). In the second step, the significant gene properties are conditioned on likely
confounders, and the impact those confounders have on their associations is
assessed. Gene properties that are no longer significant at the significance threshold
used in step 1 are then discarded.

In step 3, remaining significant gene properties are conditioned on each other.
This helps determine the extent to which their associations overlap, and to identify
which of those associations are most likely relevant for the phenotype. Gene
properties are selected in a stepwise fashion on the strength of their associations
and the way those associations overlap with each other. In each selection step, gene
properties are conditioned on both the gene properties already selected and the
general confounders from the second analysis step. Gene properties for which the
association is largely or wholly explained by other gene properties are discarded;
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Fig. 4 Illustration of results from post hoc tissue expression by gene set interaction analysis. Only interactions that were initially significant and retained
after follow-up checks are shown. Tissue expression per anatomic site (blue), biological process (green), molecular function (yellow) and miRNA (red)
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gene properties which are found to share a single underlying association that
cannot be disentangled are selected and interpreted jointly.

The fourth step applies only to gene sets, and checks for outliers and signs of
confounding effects not detected in the previous steps. For each gene set QQ-plots
of the residual Z-scores of genes in the set are created, adding a confidence band to
visualise the degree of deviation expected by chance. These are inspected for signs
that the association of the gene set may be driven by a smaller subset of genes in the
set, indicating possible confounding. If not uncovered in the post hoc interaction
analyses, the source of confounding could then be investigated further using
targeted analyses with additional data or annotation. If the likely associated subset
is very small the problem is likely one of outliers instead, and the gene set can be
discarded altogether.

In the fifth step, interaction analyses are performed for all the remaining
significant gene properties. This can narrow down the significant associations to
more specific effects that occur only in combination with other gene properties.
Positive interactions are tested with all other available gene properties; for
interactions between gene sets, this is restricted to pairs of gene sets for which the
overlap between the sets is not too large or small, as otherwise the interaction term
is not meaningfully defined.

In the optional sixth step, an exploratory interaction analysis is performed in
order to detect additional interactions. An initial list of gene properties is generated
based on their marginal associations, and interactions with all other gene properties
are tested for this list as in step 5. A liberal selection criterion such as FDR-
controlled significance is recommended for creating the initial list. In contrast to
step 5, two-sided tests are performed for the interactions. This allows for the
detection of negative interactions, which would point to involvement in the
phenotype of a particular gene property only the absence of another gene property.
This step is independent of the previous steps, and therefore requires separate
multiple testing correction.

Genotype and phenotype data. Primary quality control and imputation of the
UK Biobank (July 2017 release) data was performed by UK Biobank itself7. We
applied additional QC and filtering of variants and individuals to obtain a sample
of independent individuals of European ancestry, containing hard-called genotypes
with MAF greater than 0.000001 and missingness of at most 5%. Since poorly
imputed SNPs can bias the results, only variants of high imputation quality (info
score of at least 0.9, variants imputed on HRC panel only) were included in the
analysis. Full details on the data and QC can be found in the Supplementary
Methods. The processed data set used for the blood pressure analyses contained
360,243 individuals and 13,923,638 autosomal variants.

In our analyses, three phenotypes were analysed: SBP, DBP and PP. SBP and
DBP were corrected for use of blood pressure-lowering medication, adding 10 and
15 mm Hg respectively to the measured values for individuals known to use such
medication38. PP was computed as PP= SBP−DBP. Thirty principal components
were included as covariates to correct for population structure in the data,
computed using FlashPCA39. Other covariates included in the analysis were sex,
age, age squared, BMI, Townsend Deprivation index, and genotyping array
indicator.

To further validate the results from the UK Biobank analysis, a replication
analysis was performed using the 2011 ICPB GWAS data40. Details for this
replication analysis can be found in the Supplementary Methods.

Annotation. Variants were annotated to genes based on NCBI (37.3) gene defi-
nitions41, mapping variants to a gene if they were located in the transcription
region of that gene, or within two kilobase upstream or one kilobase downstream of
the transcription region. A total of 18,285 autosomal protein-coding genes had at
least one variant mapped to them, and 43.7% of the variants in the data mapped to
at least one gene. Variants not mapped to any gene were not used in the analysis.

Gene annotation from five different domains was used in the analysis: tissue-
specific gene expression data, three Gene Ontology domains, and miRNA target
sets. Gene Ontology and miRNA target gene sets were obtained from MsigDB
(v6.0)8. For the miRNA target sets, an additional gene set of all genes contained in
at least one of the target sets was created, reflecting general miRNA target status.

GTEx (v7)9 was used for the gene expression data. Mean RPKM values were
computed across gene and tissue. These were truncated down to 50, incremented
by one, then log-transformed to obtain a per-tissue expression score. Average
scores across tissues were computed as a measure of the overall expression level of
each gene. Ensembl gene IDs were mapped to Entrez IDs for the genes in the data,
resulting in expression scores for 17,064 genes in the data.

Simulation study. A random subsample of 10,000 individuals was taken from the
UK Biobank data, filtering variants with MAF smaller than 1% and variants not
mapped to any gene. Continuous phenotypes were simulated for this data by
constructing a genetic component and adding normally distributed noise such that
the genetic component explained 10% of the phenotypic variance. The genetic
components were created by designating 1000 genes as causal, then selecting a
subset of SNPs from each of these genes as effect SNPs and combining them
(see Supplementary Methods for full details).

Simulated phenotypes were analysed in PLINK 1.9 (ref. 42) to obtain SNP
p-values. Ten genetic components were constructed (designating new causal genes

and SNPs), with 100 replicates for each. Multiple phenotypes with new random
noise were generated for each replicate, using meta-analysis on the SNP p-values to
obtain GWAS results representing sample sizes of 10,000, 50,000, and 100,000.

Pairs of overlapping gene sets were then constructed, containing different
patterns and proportions of causal genes. In each condition an initial gene set was
created containing a specified proportion of causal genes. Another gene set was
then created overlapping with it, as either a subset, a superset, or partially
overlapping set. Genes in the overlap were randomly selected from the initial gene
set, with the rest randomly sampled from the remaining genes. For evaluation of
the interaction model, only partial overlap conditions were used.

Additional parameters that were varied across conditions were the gene set
sizes, the degree of overlap, and the level of association assigned to the initial
gene set. For the interaction model, the level of main effect association assigned to
the second gene set was also varied. A full description of the simulation settings
and results is given in the Supplementary Methods.

In each condition, ten gene sets overlapping with the initial set were created. For
the conditional model simulations the marginal association and association
conditional on the initial set were tested. For the interaction model, the interaction
term was tested either as a gene set by itself or using the interaction model. Results
were aggregated per condition over the ten sets and the 1000 GWAS replicates,
computing type 1 error rates at different significance thresholds.

Primary GSA. Analyses were performed using MAGMA (v1.07)5. Phenotypes were
first regressed on the covariates, using the resulting residuals as input for the
MAGMA gene analysis. The SNP-wise (multi) model was used for the gene ana-
lysis. This model combines the SNP-wise (mean) model (more sensitive to many
smaller SNP associations in a gene) and the SNP-wise (top) model (more sensitive
to a single large SNP association in the gene) to obtain a good distribution of power
over different genetic architectures. This model is recommended when the number
of SNPs in a data set is very large, as the SNP-wise (mean) and PC regression
models are less sensitive to detecting gene associations when a single strong SNP
effect is present in a gene containing many other SNPs.

To deal with rare variants, per gene SNPs with a minor allele count smaller than
100 were aggregated into a weighted burden score. This was then included in the
model in the same way as normal SNPs, replacing the rare variants. At most 25
SNPs were used per burden score. For genes with more than 25 rare variants,
multiple burden scores were created.

All GSA was performed using this gene analysis output. Bonferroni correction
was used to correct for multiple testing, separately for each phenotype. It was also
applied separately for each domain, corrected for the number of domains, for a
significance threshold of αD ¼ 0:05

5´KD
¼ 0:01

KD
per domain D with KD the number of

tests for that domain. In all the analyses one-sided tests were used, testing for
positive associations.

Conditional GSA. After the initial GSA, analyses were repeated conditioning
on potential general confounders. Overall gene expression was included for
all domains. For the four gene set domains, tissue-specific expression for
coronary artery, tibial artery, heart (atrial appendage), and uterus were also
conditioned on; the miRNA target set analyses were additionally conditioned
on general miRNA target status. For conditional analyses of the gene sets,
missing tissue expression values were set to the median expression value for
that tissue. Only gene sets and tissues still significant at the original threshold
were retained.

Conditional analyses were then performed to evaluate overlap between
associations of significant associations. The stepwise procedure was used per
domain for the significant and retained gene properties until there were no
remaining associations with conditional p-values below 0.05 (see Analysis
workflow above and Detailed overview of blood pressure analysis in
the Supplementary Methods). For gene sets, associations retained after this
selection were then also conditioned on those from the other domains. All these
analyses also included the general confounders as covariates. After this set-specific
QQ-plots were created for all retained gene sets to inspect them for signs of outliers
and hidden confounding.

Expression by gene set interaction analysis. After the conditional analyses, post
hoc interaction analyses were performed for the top tissue expression levels. Genes
with no expression values were removed, and interactions were then tested with all
gene sets of at least 100 genes. To make the results more comparable across
phenotypes, the same tissues were used for all three phenotypes, testing interac-
tions for coronary and tibial artery, heart (atrial appendage) and uterus, as well as
for overall gene expression.

For each tissue, overall expression and its interaction with the tested gene set
were included as covariates. For miRNA target sets, general miRNA target status
and its interactions with overall expression and the tissue expression were
additionally included. One-sided tests were performed for the interaction terms,
testing for positive interactions. Bonferroni correction was performed per tissue,
correcting for the 1495 interactions tested per tissue.

To check for outliers, scatterplots of residual tissue expression (corrected for the
overall expression) by gene Z-scores were created for all significant interactions.
Each plot only used genes in the set, and both variables were normalised within
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those genes. Genes were marked as an outlier if they were more than two standard
deviations from the origin and all genes within two standard deviations were either
further from the origin or themselves marked as outlier.

The analysis was then repeated with the marked outliers removed from the gene
set. A gene set was also constructed of the top 25% residually expressed genes in the
gene set (excluding outliers), in which was then tested conditional on the whole
gene set. Interactions for which neither follow-up test was significant were
discarded.

Gene set by gene set interaction analysis. Post hoc interaction analyses were
also performed for all significant and retained gene sets, testing interactions with
other gene sets. Interactions were only tested for gene-set pairs if there was
meaningful overlap between the gene sets: for each set in the pair, the overlap with
the other gene set as well as the part not overlapping with the other gene set was
required to be at least 20 genes, and at least 10% of the genes in the gene set. One-
sided tests for positive interactions were performed, conditioning on the general
confounders. Bonferroni correction was applied separately for each of the sig-
nificant and retained gene sets, correcting for the number of interactions tested for
that gene set.

An exploratory interaction analysis was also performed. Gene sets were selected
using FDR correction (Benjamini–Hochberg, at α=0.05), separately for each of the
four gene-set domains. For each of these gene sets, interactions were tested with all
other gene sets for which there was meaningful overlap, using the same criteria as
in the post hoc interaction analysis. Two-sided tests were performed on the
interactions, conditioning on the general confounders. Bonferroni correction was
applied for the total number of interactions tested.

Code availability. The MAGMA analysis software can be obtained for Linux,
Windows and Mac platforms from http://ctg.cncr.nl/software/magma.

Data availability
The raw genotype and phenotype data analysed in this study were used under license
from UK Biobank (http://www.ukbiobank.ac.uk), and restrictions apply to its availability.
However the data are available from the authors upon reasonable request, if permission is
given by UK Biobank.
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