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A measure of the size of the magnetospheric 
accretion region in TW Hydrae

GRAVITY Collaboration*

Stars form by accreting material from their surrounding disks. There is a consensus 
that matter flowing through the disk is channelled onto the stellar surface by the 
stellar magnetic field. This is thought to be strong enough to truncate the disk  
close to the corotation radius, at which the disk rotates at the same rate as the star. 
Spectro-interferometric studies in young stellar objects show that hydrogen emission 
(a well known tracer of accretion activity) mostly comes from a region a few 
milliarcseconds across, usually located within the dust sublimation radius1–3. The 
origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind 
or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ 
(Brγ) emission is spatially resolved rules out the possibility that most of the emission 
comes from the magnetosphere4–6 because the weak magnetic fields (some tenths of a 
gauss) detected in these sources7,8 result in very compact magnetospheres. In the case 
of T Tauri sources, their larger magnetospheres should make them easier to resolve. 
The small angular size of the magnetosphere (a few tenths of a milliarcsecond), 
however, along with the presence of winds9,10 make the interpretation of the 
observations challenging. Here we report optical long-baseline interferometric 
observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We 
find that the near-infrared hydrogen emission comes from a region approximately  
3.5 stellar radii across. This region is within the continuum dusty disk emitting region 
(7 stellar radii across) and also within the corotation radius, which is twice as big.  
This indicates that the hydrogen emission originates in the accretion columns  
(funnel flows of matter accreting onto the star), as expected in magnetospheric 
accretion models, rather than in a wind emitted at much larger distance (more than 
one astronomical unit).

The T Tauri star TW Hydrae (TW Hya) belongs to an association of 
young stars around 8 million years old. Its proximity to Earth, as well 
as its favourable pole-on orientation11, makes it an ideal candidate for 
protoplanetary disk studies. The disk structure of TW Hya includes a 
dust-depleted inner hole, as well as a series of bright rings, with the clos-
est one located at about one astronomical unit (1 au) from the star11,12. 
The presence of the inner hole and the small near-infrared excess13,14 
make TW Hya the prototypical ‘transitional disk’, in which planets and 
photoevaporation are expected to be the main mechanisms of disk 
dispersal. However, the measurement of non-negligible accretion 
rates (2.3 × 10−9M☉ yr−1; where M☉ is the solar mass)15 indicates that the 
inner-disk region of TW Hya is still rich in gas. Further evidence of accre-
tion is given by the detection of a nearly pole-on cool photospheric spot 
(stable over several years), coincident with the location of the main 
magnetic pole (B ≈ 2.5 kG), and a region of accretion-powered excess 
line emission16. This suggests that accretion in TW Hya takes place 
mostly poleward, and that the stellar magnetic field is strong enough to 
magnetically truncate the inner disk at a few stellar radii from the star. 
This value is equivalent to a few tenths of a milliarcsecond, and so it is 
impossible to directly resolve the magnetospheric accretion region, 

even for such a nearby star, using conventional methods. This leaves 
spectro-interferometry as the only suitable technique.

With this aim, we conducted high-angular resolution observations 
of the hydrogen Brγ line in TW Hya using the Very Large Telescope 
Interferometer (VLTI) instrument GRAVITY with the four 8-m Unit 
Telescopes (Fig. 1). The Brγ line is a well known tracer of accretion in 
low-mass protostars through an empirical relationship that relates the 
line and accretion luminosities17,18. Our interferometric measurements 
allowed us to probe the Brγ line and K-band emitting regions along six 
different baselines (projected baselines ranging from approximately 
130 m to 45 m, resulting in nominal angular resolutions of around 4 mas 
to 10 mas) and at various position angles. By fitting a geometrical model 
(see Methods) to the continuum emission (star plus continuum cir-
cumstellar emission) and assuming a K-band to stellar flux ratio of 
1.18 (refs. 14,15), we derive a stellar radius of R⁎ = (1.29 ± 0.19)R☉ (consist-
ent with theoretical expectations; where R☉ is the solar radius and R⁎ 
is the stellar radius) and a radius for the K-band continuum excess/
circumstellar emission of Rcirc = (6.50 ± 0.16)R⁎ (see Table 1 and Fig. 2). 
These values are in agreement with previous interferometric results 
and spectroscopic studies14,15,19. Furthermore, the location of the K-band 
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excess emission is consistent with the location of a disk rim, owing to 
silicate sublimation (see Methods).

By removing the continuum contribution to the line emission  
(see Methods), we find that the Brγ line emitting region is very  
compact, but nonetheless marginally resolved for the longest pro-
jected baselines (more than about 60 m). This allows us to measure a 
radius for the Brγ emitting region of RBrγ = (3.49 ± 0.20)R⁎ assuming a 
distance of about 60 pc from the Sun to TW Hya (see Table 1, Fig. 2 and 
Extended Data Fig. 1). This size is consistent with the small (less than 
about 1°; with total amplitude of less than 2°) photocentre shift of the 
line with respect to the continuum (the so-called differential phase) 
detected in our longest baselines (see Fig. 1). Such a differential phase 
roughly translates into a Brγ line displacement of less than about 5R⁎ 
(see Methods for more details), in agreement with the value derived 
from the continuum-subtracted Brγ line visibilities.

The inferred size of the Brγ line emission is too compact to be emitted 
in a photoevaporative wind that in TW Hya is expected to be launched 
beyond the dust cavity (R > 0.5–1 au, that is, R > 80R⁎–160R⁎)20,21.  
It should be pointed out that in TW Hya there is no evidence of the pres-
ence of a disk wind, which is typically emitted within 0.5 au from the 
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Fig. 1 | VLTI-GRAVITY observations of TW Hya. The Brγ line profile is normalized 
to the continuum flux and shown in the top row. The radial velocity is with respect 
to the stellar reference. a, Wavelength-dispersed visibility amplitudes for the six 
baselines along with the errors derived from the data reduction. PBL, projected 
baseline; PA, position angle. The continuum-subtracted Brγ line visibilities are 
shown as full coloured symbols. The associated errors were derived by 

propagating equation (1) as described in the main text. b, Same as a, but for the 
wavelength-dispersed differential-phase signals. Errors are derived from the data 
reduction pipeline. c, Wavelength-dispersed closure phases for the triplets 
UT2-UT3-UT4, UT1-UT3-UT4, UT1-UT2-UT4 and UT1-UT2-UT3. The maximum 
projected baseline of each baseline is indicated in parentheses. Errors are derived 
from the data reduction pipeline.

Table 1 | Size estimates of TW Hya

TW Hya R (mas) R (au) R (×R☉)

Star 0.10 ± 0.01 0.006 ± 0.001 1.29 ± 0.19

Disk 0.65 ± 0.02 0.039 ± 0.001 8.39 ± 0.21

Line 0.35 ± 0.02 0.021 ± 0.001 4.50 ± 0.26

Estimates are derived from the best fit of the continuum and continuum-compensated Brγ 
line data.
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source, or a jet, which would be associated with bright fast blue-shifted 
emission in lines, such as Hα and [O i] 6,300 Å and [S ii] 6,717 Å, that 
are not observed in this object9,22. Therefore, the results presented here 
indicate that the Brγ line is emitted in the magnetospheric accretion 
region. Classical magnetospheric accretion models assuming free-fall 
velocities along an axisymmetric, dipolar magnetosphere predict 
indeed that the Brγ line is formed along the accretion columns23–25. 
In these models, the Brγ line has a broad profile, comparable to the 
free-fall velocity, centred around zero velocity. This is the case for the 
Brγ line observed in TW Hya, which shows a full width at zero intensity 
of about 400 km s−1, consistent with the expected velocity of gas around 
a solar-mass star falling at free-fall from about 3R⁎–4R⁎. Therefore, our 
measurements indicate that the Brγ line is emitted along the magne-
tospheric accretion columns that truncate the disk at around 3.5R⁎.

Is this value consistent with the expected magnetospheric truncation 
radius of TW Hya as determined by its magnetic field? Zeeman–Doppler 
imaging has been used to reconstruct the magnetic field topology and 
strength in TW Hya16. Those measurements showed that the magnetic 
field of TW Hya is strong (about 1.5 kG) and mostly poloidal and axisym-
metric with respect to the stellar rotation axis. The field can be sepa-
rated into a complex octupole component of approximately 2.5 kG and 
a much fainter dipolar large-scale field of 400–700 G. Models for such 
complex magnetic field topologies show that the gas initially accretes 
following the dipolar field lines, although near the stellar surface the 
octupole component alters the flow of matter26,27. In accordance with 
this idea, and with the theoretical work of Bessolaz et al.28, we estimate 
a truncation radius of 3R⁎–4R⁎ assuming a stellar radius and mass of 
1.22R☉ and 0.6M☉ (ref. 15), and a mass accretion rate of 2.3 × 10−9M☉ yr−1 
(refs. 14,15) for TW Hya, and a strength of the dipolar magnetic field 
component of 400–700 G. Therefore, the size of the Brγ line emitting 
region derived from our interferometric measurements and the size of 
the truncation radius estimated from the magnetic field of TW Hya are 
strikingly similar. In addition, the measured size of the line-emitting 
region is inconsistent with a disk wind, since it is much smaller than the 
inferred truncation radius. There is a small possibility that dust-free 
disk gas extends inwards of the inferred sublimation radius, and could 

be responsible for at least part of the line emission. However, the previ-
ously measured magnetic field strength and geometry implies a disk 
truncation radius consistent with the size of the K-band continuum. 
Finally, the detection of spatially resolved line emission rules out the 
possibility that most of the Brγ emission originates at the accretion 
shock near the stellar surface. A schematic view of our findings is 
shown in Extended Data Fig. 2. Our results are thus in agreement with 
the topology and strength of the magnetic field and they validate the 
assumption that when the magnetic field of the central star is complex, 
the truncation radius is located closer to the central star than would 
be expected if the magnetic field has a dipolar morphology of similar 
average strength26,29.
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Methods

Observations and data reduction
TW Hya was observed with the VLTI instrument GRAVITY30 on  
21 January 2019 using the four 8-m Unit Telescopes of the European 
Southern Observatory (see Extended Data Table 1). The target was 
observed in single-field combined polarization mode (that is, fringes 
were tracked and servoed on the target itself), using the MACAO on-axis 
adaptive optics system. The data on the fringe tracker detector were 
recorded at low spectral resolution (R ≈ 23) with a detector integration 
time per interferogram of 0.85 ms, whereas the science detector was 
working at high spectral resolution (R ≈ 4,000, that is, ΔV ≈ 70 km s−1) 
and with a detector integration time per interferogram of 30 s.

The data were reduced using the GRAVITY pipeline version 1.3.0  
(ref. 31). The atmospheric transfer function was calibrated using the cali-
brators HD 91937 and HD 95470 (see Extended Data Table 1). The spec-
trum of TW Hya was obtained by averaging the high-spectral-resolution 
spectra recorded in the four photometric channels. Standard telluric 
correction was also applied to the spectrum using HD 95470 (SpT K2/3 
III) as a telluric standard star. Finally, the spectrum was flux-calibrated 
assuming a Two Micron All-Sky Survey (2MASS) K-band magnitude of 
7.3 for TW Hya. The wavelength calibration of the spectra was refined 
using several telluric absorption lines present in the spectrum. An 
average shift of about 4 Å was applied to the data.

Interferometric observables
VLTI-GRAVITY observations of TW Hya provided us with the K-band 
spectrum of the source, six spectrally dispersed visibilities (which 
give a measure of the size of the object, with V = 1 indicating a point 
source and V = 0 indicating a fully resolved object) and differential 
phases (which measure the photocentre shift of the line with respect 
to the continuum) and four closure phases (which provide a measure 
of the asymmetry of the continuum and/or line emission) (see Fig. 1).

The spectrum of TW Hya shows bright Brγ 2.166 μm line emission, 
along with Na i 2.206 μm, and Na i 2.209 μm, and rovibrational CO in 
absorption. No interferometric signal is detected for any of these lines 
except the Brγ line. A small differential phase signature of 2° in the Brγ 
line is detected along the two longest baselines. No closure phases were 
detected within the errors.

The continuum visibilities point towards a very compact circumstellar 
environment around TW Hya with measured continuum visibilities above 
about 0.95 in all our baselines. Interestingly, the total visibilities within 
the line decreases with respect to the continuum visibilities, indicating 
that the sum of the Brγ emitting region plus the continuum contribution 
(including the stellar plus circumstellar environment) is more extended 
than the continuum alone. However, it should be noted that the total vis-
ibility is not just the sum of each visibility component but is weighted by 
the flux of each component. In other words, assuming that the level of the 
continuum within and outside the line is the same and that the differential 
phase is zero, then: VtotFtot = VcontFcont + VlineFline, with VcontFcont = V⁎F⁎ + VcircFcirc; 
and Ftot = Fcont + Fline. In these expressions, Ftot, Fcont, Fline, and Vtot, Vcont, Vline 
are the total, continuum and line fluxes and visibilities, respectively; and 
F⁎, Fcirc, and V⁎, Vcirc are the stellar and circumstellar continuum fluxes and 
visibilities. To further investigate the circumstellar and Brγ line emitting 
region the contribution from the star and the overall continuum emission 
must be removed from the measured visibilities.

Circumstellar continuum emitting region
As mentioned above, to estimate the size of the continuum circum-
stellar emitting region the emission from the star must be removed. 
In doing so, a K-band to stellar flux ratio of 1.18 was assumed14. As we 
expected to be able to marginally resolve TW Hya owing to its close 
distance (that is, V⁎ < 1 on our longest baselines), we took the conserva-
tive approach of fitting two Gaussian components to the continuum 
visibilities measured by GRAVITY, one corresponding to the central star 

plus an additional component due to the circumstellar disk (assumed 
to be inclined, that is, the inclination (i) and position angle (PA) were 
allowed to be free parameters). Using this approach, our best-fitting 
model corresponds to two Gaussians with full-width-at-half-maximum 
values of FWHM⁎ = 0.20 ± 0.03 mas and FWHMcirc = 1.30 ± 0.04 mas, 
respectively. The i and PA values of the latter component are consistent 
with a nearly face-on structure as reported by ALMA11. However, owing 
to the lack of long baselines, along with the nearly face-on geometry, 
we cannot provide stringent constraints on the i and PA values of the 
system, and from now on we will assume ALMA measurements of i ≈ 5° 
and PA ≈ 32° as our fiducial values. Coming back to the size of the emit-
ting region, the derived FWHM values correspond to a stellar radius 
of R⁎ = (1.29 ± 0.19)R☉ and Rcirc = (8.39 ± 0.21)R☉ assuming a distance of 
60 pc (ref. 41). The retrieved stellar and circumstellar radii are in good 
agreement with previous values found in the literature14,20,32,33. If a lower 
value of the observed K-band to stellar flux ratio of 1.10 is assumed34,35, it 
would provide a worse fit, with stellar and circumstellar radii with much 
larger errors, namely, R⁎ = 0.05 ± 0.11 mas (that is, (0.68 ± 1.42)R☉), and 
Rcirc = 0.70 ± 0.13 mas (that is, (9.03 ± 1.68)R☉).

Continuum-subtracted Brγ line visibilities
The size of the Brγ line emitting region can be estimated by assuming 
that the total visibilities within the Brγ line are due to the contribu-
tion of the line emitting region plus the continuum component. In this 
way, the pure (or continuum compensated) Brγ line visibilities can be 
derived by subtracting the continuum contribution from the total line 
visibilities following36:

V V
V

F F
F V F Ve =

+
( + e ) (1)ϕ Φ

cont tot
i ′ cont

cont line
cont cont line line

iΔ

where ϕ′ is the differential phase in the line, and ΔΦ is the difference 
of the Fourier phases of the continuum and line components, that is 

Φ B λ Φ B λ Φ B λΔ ( / ) = ( / ) − ( / )line cont line line line . Thus the errors on the con-
tinuum compensated visibilities have been estimated taking into 
account the error on the continuum and total visibilities (assuming 
the root-mean-square value as a conservative error), and the differen-
tial phase errors.

Initially, the continuum-compensated Brγ line visibilities were com-
puted at three velocity channels at radial velocities of approximately 
−33 km s−1, 4 km s−1 and 40 km s−1, and with a line-to-continuum ratio 
higher than 10%. For all six baselines, the continuum-compensated Brγ 
line visibilities measured at each spectral channel are roughly the same 
within the errors. Therefore, the weighted mean of the three pure line 
visibilities for each baseline was computed and used to derive the size 
of the Brγ line emitting region. The average pure Brγ line visibilities are 
shown in Figs. 1, 2. The Brγ line emitting region is marginally resolved 
only for the longest projected baselines (more than about 60 m), mean-
ing that the emitting region is very compact.

To derive the size of the Brγ line emitting region, we computed a 
geometric model of the Brγ line continuum-compensated visibilities 
using a Gaussian fit. As for the continuum, we fixed the i and PA to the 
values derived by ALMA and we fitted the line visibilities with only the 
Gaussian FWHM as a free parameter. The best-fit result is shown in 
Table 1, and it corresponds to a radius of the Brγ line emitting region 
of RBrγ = 0.35 ± 0.02 mas or RBrγ = (4.5 ± 0.26)R☉, assuming a distance of 
about 60 pc to TW Hya (Fig. 2 and Extended Data Fig. 1).

To probe the effect of the assumed Ftot/Fcont flux ratio on our results, 
we have repeated the analysis, varying this ratio by 10%. The results 
(R = 0.37± 0.05 masBrγ

−10% ; R = 0.33 ± 0.02 masBrγ
−10% ) are consistent with 

the previous one within the error bars.

Continuum-subtracted Brγ line differential phase
As for the case of the visibilities, the contribution of the continuum to 
the differential phase can be removed. This type of analysis is especially 
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useful when the measured photocentre shift of the line is weak37,38. 
Following ref. 36, the displacement of the photocentre of the line at any 
given wavelength can be derived from:

ϕ ϕ
F V

F V
sin(Δ ) = sin( ) ×

| |
| |

(2)tot tot

line line

The displacement of the photocentre of the emission at any given 
wavelength δ is then:

δ ϕ
λ

B
= − Δ

2π
(3)

where B is the length of the baseline. The upper limit of the differential 
phase is about 1°. This translates into a maximum value of ϕΔ = − 6.2°

max
Brγ , 

equivalent to a maximum displacement of δmax ≈ 3.8R☉ ≈ 4.9R⁎. This 
value is very similar to the one derived from the continuum-subtracted 
visibilities.

Rim radius
We can estimate the rim radius (or the distance from the star where 
silicates sublimates) using equation (11) of Dullemond et al.39 under the 
assumption that the pressure scale height is a small fraction of R. For 
the temperature (4,000 K) and radius (R ≈ 1.2R☉) assumed here for TW 
Hya, a rim radius of Rrim ≈ 7.5R⁎ is found for a sublimation temperature 
of 1,500 K.

Corotation radius
The corotation radius depends on the stellar mass, radius and rotation 
velocity. This latter is uncertain owing to the low inclination of TW 
Hya with respect to the line of sight. Estimates of the rotation velocity 
ranges from 80 ± 34 km s−1 (assuming vsini = 7 ± 3 km s−1 (ref. 15) and a 
disk inclination of 5°; ref. 11) to about 17.4 km s−1 (assuming a rotation 
period of P = 3.56 days; ref. 40). Taking these values, and a stellar mass 
and radius of 0.58M☉ and 1.22R☉ (ref. 15), we find a corotation radius of 
Rco ≈ 6.5R⁎–7.1R⁎. The corotation radius is noticeably larger than RBrγ, 
supporting our hypothesis that the Brγ size measures the radius of the 
magnetosphere, probably tracing the width of the region containing 
accretion columns.
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Extended Data Fig. 1 | Best-fit model to the continuum-subtracted Brγ line 
visibilities. Continuum subtracted visibilities are represented in colour in the 
u–v plane. The symbol size indicate the error of each single data point.  

For comparison, the average visibility error is represented by the dark full circle 
at the bottom right of the figure. Contours represent the visibility values of the 
best two-dimensional Gaussian model.
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Extended Data Fig. 2 | Sketch of the inner-disk region of TW Hya. The main 
features of the inner disk are represented: the dusty disk (brown), the dust 
sublimation radius located at about 7.5R⁎, the inner gaseous disk (blue), 

truncated by the stellar magnetosphere (red) at about 3.5R⁎, along with the Brγ 
line emitting region, which is probably tracing the width of the accretion 
columns.



Extended Data Table 1 | Observation log of the VLTI GRAVITY+UT high-resolution observations of TW Hya

UT, Unit Telescope; Tot. Int., total integration; Proj., projected. 
*DIT, detector integration time per interferogram. 
†NDIT, number of interferograms. 
‡PA, baseline position angle from the shortest to longest baseline. 
§UD diameter, the calibrator uniform-disk diameter (K band) was taken from the SearchCal tool available at http://www.jmmc.fr/searchcal.

http://www.jmmc.fr/searchcal
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