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Failures of Halofit model for computation of Fisher Matrices
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We use a simple cosmological model with two parameters (As, ns) to illustrate the impact of
using Halofit on error forecast based on Fisher information matrix for a h−3Gpc3 volume survey.
We show that Halofit fails to reproduce well the derivatives of the power spectrum with respect to
the cosmological parameters despite the good fit produced for its amplitude. We argue that the
poor performance on the derivatives prediction is a general feature of this model and we exhibit
the response function for the Halofit to show how it compares with the same quantity measured on
simulations. The analytic structure of the Halofit response function points towards the origin of its
weak performance at reproducing the derivatives of the non-linear power spectrum, which translates
into unreliable Fisher information matrices.

Considering a gas of cold dark matter (CDM) parti-
cles, we can study the problem of large scale structure
formation on linear and mildly non-linear scales [1, 2]. A
system of coupled, non-linear differential equations com-
posed of continuity, Euler and Poisson equations will de-
scribe the evolution of density fluctuations and velocity
of the CDM fluid under the action of a gravitational po-
tential. As long as the system can be linearized, differ-
ent Fourier modes evolve independently, and the signa-
ture of time evolution is factorized in the growth factor.
Linearization, however, is based on the assumption of
small density fluctuations and velocities. If the gravi-
tational attraction prevails over the background space-
time expansion, density fluctuations are no longer small
as sign of structure formation, and the justification for
the linearization of the dynamical equations disappears.
The non-linear terms on the equations of motion produce
couplings among different Fourier modes, and the power
spectrum for a given wave mode will depend on all the
other modes.
The transition from linear to non-linear regime is not

sharply determined in the theory, and indicators of the
reach of the non-linear regime may be given by the shape
of the power spectrum or by the rms amplitude of mass
fluctuations inside some spherical window. Considering
the dimensionless quantity constructed in terms of the
linear power spectrum:

∆2(k) =
k3P (k)

2π2
, (1)

we can define a scale of transition k∆nl as the value of
k such that ∆2(k∆nl) = 1. Alternatively, the non-linear
transition can be defined through the condition σ2

1/knl
=

1, where

σ2
R =

∫

dkk2

2π2
P (k)W (kR)2 (2)
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and W is a filter. If we take a Gaussian filter as W , we
will have kGauss

nl . For a top-hat filter, we have kTH
nl . The

regions delimited by k∆nl, k
Gauss
nl , and kTH

nl are shown in
Fig. 1 as function of z for a ΛCDM cosmology.
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FIG. 1. Delimitation of the domain of non-linear regime as a
function of redshift. The region where 1-loop Standard Per-
turbation Theory (SPT) compares with simulated data with
errors less than 1% [3] is indicated by the lower shaded re-
gion (in green/blue), and the translinear region is the upper
shaded areas (in yellow). Three alternative criteria can be
used to define the non-linear region, based on Eqs. (1) or
(2). We use a power spectrum in a ΛCDM cosmology with
ns = 0.96, h = 0.701, Ωm = 0.279, and σ2

8 = 0.815.

All these scales, even if not exactly close to each other,
give an idea of transition from an almost homogeneous
and isotropic fluid subjected to small perturbations to a
regime of halo formation, and halo models seem promis-
ing approaches to handle such non-linear domains [4].
At an intermediate scale between the linear and the non-
linear regimes, the mildly non-linear scales can be treated
analytically by perturbation theory [5]. Comparison be-
tween the predictions of the matter power spectrum from
Standard Perturbation Theory [2] (SPT) at 1-loop and
simulated data were performed, and a scale indicating
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an agreement better that 1% is proposed as ∆2(k) ≤ 0.4
[3, 6]. This region of agreement is also shown in Fig. 1.

The exploration of the mildly non-linear regime con-
ducts indeed to a large gain in terms of cosmological
information. Studies of the information content of the
non-linear power spectrum indicate that the cumulative
information grows with k until the reach of the translin-
ear regime (yellow shaded region on Fig. 1), where a
plateau starts [7–12]. The white region of Fig. 1 con-
tains, therefore, rich information and mining it will be
necessary for a proper analysis of the data from large
galaxy surveys.

Perturbation theories are based on fundamental fluid
dynamics and give reliable results for the power spec-
trum at mildly non-linear scales. Standard Perturbation
Theory (SPT) and resumed versions such as RegPT [13]
have no free parameters and numerical codes are avail-
able for computations at 2-loop level. Faster predictions
for the power spectrum amplitude can be obtained from
halo model inspired fit formulas like Halofit [4, 14–17].
Halofit parametrizes the non-linear effects as a sum of
a term related to the small scales interactions inside a
halo – the one-halo term – and the interactions between
different halos – the two-halo term – and the full model
is fitted using numerical simulations. It is however a
fit formula: equations with a form predicted from halo
models have a large number of free parameters that are
fixed using n-body simulations and despite its success,
it has some weaknesses such as the underestimation of
the power spectrum on the transition from two-halos to
one-halo regimes [18]. Performance tests of different per-
turbative schemes were performed in the literature [6] but
there is a large class of perturbation techniques relying
on different assumptions and a full panorama of the field
is hard to give. We show in Fig. 2 a comparison between
the predictions for the matter power spectrum produced
by SPT at 1 and 2 loops, RegPT at 1 and 2 loops [13],
and the HaloFit fit formula [17].

In what follows we will consider Halofit as presented in
[17] to show that, despite the good agreement on the am-
plitude fitting, its performance isn’t at the same level of
accuracy on predicting the derivatives of the non-linear
power spectrum with respect to the cosmological param-
eters. In order to measure the impact of the poor predic-
tion for the derivatives of the non-linear power spectrum
produced by Halofit, we will consider a two-parameter
cosmological parameter on section I and show how er-
ror forecast based on Fisher information matrix analysis
could be affected. We will then argue on section II that
the behavior of the derivatives displayed on the specific
two-parameter model considered is indeed intrinsic to the
Halofit model and rooted on its failure at reproducing the
response functions measured on the simulations.
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FIG. 2. Comparison between the prediction for the dark mat-
ter power spectrum using linear theory, 1-loop SPT, 2-loop
SPT, 1-loop RegPT, 2-loop RegPT, HaloFit and simulated
data from [13] at z = 0.35.

I. TWO-PARAMETER MODEL

In order to examine the performance of Halofit at pre-
dicting the derivatives of the non-linear power spectrum
with respect to the cosmological parameters, and its im-
pact on a Fisher matrix forecast based on Halofit, we
consider a very simple cosmological model where only
As and ns are allowed to vary. We assume here ΛCDM
model with Ωm = 0.279, ns = 0.96, h = 0.701, and
σ2
8 = 0.815 and k0 = 0.002Mpc−1. We display first

the results for d ln(Pnl(k))
d ln(As)

and d ln(Pnl(k))
dns

at z = 0.35 in

Fig. 3. This shows the relative behavior of the measured
data from simulation, the linear theory and the predic-
tion from HaloFit model.
In order to obtain the points in Fig. 3, we have per-

formed four pairs of N -body simulations employing 5123

particles in a 1 h−3Gpc3 periodic comoving cube with
slightly varied cosmological parameters for both As and
ns to estimate the derivative based on a finite difference
method (16 simulations in total). We vary As (ns) by
±1% (±0.01) from their fiducial values for the two simu-
lations in a pair and they share the initial random phases
such that the cosmic variance error is largely cancelled
when we take the numerical derivative. The initial con-
ditions are generated using a code based on second-order
Lagrangian Perturbation Theory [19, 20]. Then the par-
ticle distribution is evolved by a Tree-PM code Gadget2

[21, 22].

We measure the matter power spectrum from the snap-
shots at z = 0.35 using the standard method based on
Fast Fourier Transform with 10243 grid points and the
Cloud-in-Cells interpolation scheme [23]. We then take
the difference of the measured power spectra between a
simulation pair to have an estimate of the derivative of
P nl(k) with respect to As and ns. Finally, the mean
and the scatter of the estimates among the four pairs are
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FIG. 3. The plotted curves correspond to the log derivative of
the non-linear power spectrum wrt As and ns given by Halofit
at z = 0.35. The red points correspond to the data measured
from simulation.

recorded as our final estimate and uncertainty.
Note that the simulation settings described above are

consistent with those in [24], from which we take the
numerical values of the response function (see Figs. 6–8
below).
The recent work [25] also presents the comparison be-

tween Halofit predictions and measurement from simu-
lation of derivatives of the power spectrum with respect
to eight cosmological parameters. The discrepancy pre-
sented in Fig. 3 is not a particular feature of our choice
of cosmological parameters.

A. Fisher Matrix

Fisher information matrix provides important bound-
aries on the variances associated to the measured pa-
rameters on an experiment and allows to bypass a full
MCMC exploration of the space of parameters allowed
by the observations. It is defined as [26]:

Fαβ =

〈

∂2 lnL

∂α∂β

〉

(3)

where L is the likelihood, i.e., the probability of the data
given a model Θ with parameters α, β.
Given that our observable is the 3D matter power spec-

trum, if we assume that its covariance matrix does not
vary that much with the parameters of the model, once

we marginalize over the measured modes up to kmax

Eq. (3) specifies to [26]:

Fαβ =
∑

ki,kj≤kmax

∂P (ki)

∂α
Cov−1

ij

∂P (kj)

∂β
. (4)

The two key ingredients in Eq. (4) are the derivatives of
the power spectrum (observable) and its covariance ma-
trix (error budget). The determination of the covariance
matrix requires in general the modeling of the four point
correlation function of the dark matter field. Since we
are only interested on the general behavior of the Fisher
matrix, we will rely on the estimation of the covariance
matrix proposed in [12]

Covij = δij
2
(

P (ki) +
1
n̄

)2

Nki

+ σ2
minP (ki)P (kj) (5)

where ki is the representative value for the momenta in
the ith bin, n̄ is the shot noise term, Nki

is the number of
independent k available for the estimation of the power
spectrum in the bin i and σ2

min can be estimated through
general arguments related to hierarchical models.
It follows from (4) and (5) that the Fisher matrix for

two parameter α, β can be analytically expressed as

Fαβ = FG
αβ − σ2

min

FG
α lnAs

FG
lnAsβ

1 + σ2
min FG

lnAs lnAs

(6)

where FG
αβ is the classical gaussian Fisher information

matrix derived in [26]

FG
αβ =

V

2π2

∫ kmax

kmin

dkk2
[

P (k)

P (k) + 1/n̄

]2
∂ lnP

∂α

∂ lnP

∂β
.

(7)
The values for a 1h−3Gpc3 volume, we take n̄ =
3 10−4h3Mpc−3 and σ2

min = 1.5 10−4 as in [12]. This
form of the covariance matrix is convenient for its sim-
plicity and also for incorporating non-gaussian correc-
tions to the analysis. The fundamental fact for us in
this paper, however, is that the covariance matrix pro-
vides a metric for the comparison of the derivatives of the
power spectrum computed through distinct procedures.
Our results are therefore not strongly dependent on the
form and parametrization of the covariance matrix, but
rely mostly on the fact that a positive definite matrix is
uniquely defined for all possible sets of models for which
the derivatives of P (k) are compared.
Following this philosophy, we will build two families

of Fisher matrices indexed by k (= kmax in Eq. (7) and
kmin = 0.008hMpc−1): FN

ij will be constructed using the

measured values of ∂ lnP
∂ns

and ∂ lnP
∂ lnAs

on the simulation,

and FH
ij will use the prediction of Halofit for the same

derivatives. As an illustration, the posteriors and the
joint posterior for the two models at z = 0.35 and k =
0.121h/Mpc are compared in Fig. 4. The ellipses are
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generated with Cosmicfish1 [27].

FIG. 4. Ellipses for numerical and Halofit Fisher matrices at
k = 0.121h/Mpc at z = 0.35.

The comparison of the ellipses produced by FN and
FH for all ks can be performed by looking at two quan-
tities: their relative area and relative inclination. The
ratio of the area of the ellipses is given by the ratio of
their determinants, or in other terms, the ratio of the Fig-
ures of Merit (FoM). For the relative inclination we take
the ratio of the angles determined by the eigenvectors
of each matrix. Namely, defining φ · = arctan(v ·

2 /v
·
1 ),

where {v ·
1 , v

·
2 } are the eigenvectors of F ·

ij , we can have
a measure of the relative inclination as φN/φH .
We show in Fig. 5 the results for the relative area

and relative inclination for error ellipses as function of
k. Comparing the results of Fig. 5 with the shaded re-
gions in Fig. 1 we realize that Halofit performs poorly
in the regime where SPT is precise at percent level (i.e.,
k . 0.2 h−1Mpc; see Fig. 2), indicating that a mixed
model between perturbation theory and Halofit could be
better suited for Fisher error matrix purposes.
We stress here that the departure of the Halofit pre-

dictions from the simulated ones is not due to the numer-
ical computation of derivatives, and indeed these deriva-
tives were computed through the response function as
presented in Sec. II. The comparison between numerical
derivatives and the ones produced through the response
function is performed at a high level of accuracy.
We claim therefore that the discrepancies present in

Fig. 5 – that could be antecipated from Fig. 3 – are

1 cosmicfish.github.io

FIG. 5. Ratio of the figures of merit and relative inclination
for Fisher information matrices constructed using numerical
data and Halofit at z = 0.35. The parameters used for the
covariance matrix are those given in [12]. The shaded region
correspond to reconstructions based on the numerical value
of the derivatives plus or minus their corresponding error.

not related to the cosmological parameters chosen in this
analysis nor to the particular calculation procedure, but
rather a general result due to the poor performance of
Halofit on the prediction of the derivative of the power
spectrum with respect to the cosmological parameters.
We will show in the next section that the root of this
behavior is related to the response function produced by
Halofit.

II. RESPONSE FUNCTIONS

The predictions from different perturbation theories
and fit formulas in the mildly non-linear regime should
be systematically compared based on internal consistency
and quality of the approximation to simulated data. A
second level of inquiry lies in the analysis of the response
functions. A response function, as defined in [28], is
the functional derivative of a prescribed non-linear power
spectrum with respect to the linear power spectrum that
generated it. The response functions can be measured on
simulations and compared with analytic results [24, 28].
Explicitly, at a fixed redshift, it expresses as

R(k, q) =
δP nl(k)

δP lin(q)
. (8)

The clear interest on response functions for the non-
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linear power spectrum on the context of Fisher matrix er-
ror forecast comes from an application of the chain rule:
the derivative of the non-linear power spectrum with re-
spect to a cosmological parameter can be expressed as the
convolution of the response function and the derivative
of the linear power-spectrum with respect to the cosmo-
logical parameter of interest (θ generically):

dP nl(k)

dθ
=

∫

dq
δP nl(k)

δP lin(q)

dP lin(q)

dθ
, (9)

where the numerical derivatives of P lin(q) can be com-
puted via Einstein-Boltzmann codes such as CAMB2 or
CLASS3.
We should look at response functions both as a mean to

compute the non-linear power spectrum, its derivatives,
and also as possible mean of diagnosing issues on predic-
tions for the amplitude of the non-linear corrections and,
in particular, test the robustness of HaloFit at this level.
In order to illustrate a general feature of the response

functions considered in this work and fix notation for
decompositions on which our future arguments will be
based, let us consider the response function for standard
perturbation theory as prototype. In SPT the non linear
power spectrum can be written, at 1-loop, as [29, 30]:

P SPT
1−loop(k) = (1 + 2Γ

(1)
1−loop(k))P

lin(k)

+ 2

∫

d3q

(2π)3
[F (2)

sym(q,k− q)]2× (10)

× P lin(|k− q|)P lin(q) .

Not focusing at the nature of each term, but on the gen-
eral structure of the equation, we can easily recognize
a term proportional to P lin(k) and a second term with
more complicated structure in which different modes are
coupled. In the same way, the power spectrum from
Halofit parametrization can be factorized as the sum of
a one-halo and a two-halos terms, the latter being pro-
portional to P lin as shown in Eq. (A4). By taking the
functional derivative of a non-linear power spectrum with
this structure to construct R(k, q) as in Eq. (8), we ob-
tain generically for these models:

R(k, q) = Rδ(k) δD(k − q) +Rsmooth(k, q) . (11)

For convenience we will define the kernel K(k, q) as con-
structed from the smooth contribution to the response
function

K(k, q) = q Rsmooth(k, q) . (12)

We observe that [28] defines K(k, q) = q R(k, q), but we
want to focus on the smooth part only.

2 camb.info
3 class-code.net

A. The measured kernels

The response function can be measured from simula-
tions [28] and computed from theoretical models for the
non-linear growth of structures. Therefore we can test
the agreement between theory and N-body simulations
not only at the level of the power spectrum but also
at the level of the response functions. The comparison
between response functions measured from simulations
and those predicted from SPT and RegPT are studied in
[24, 28]. The response functions can also be computed
for the Halofit model, and the derivation is presented in
App. A.

In Fig. 6, 7 and 8 the kernels K(k, q) are plotted
as function of q at z = 0.35 for k = 0.1525 hMpc−1,
k = 0.4525 hMpc−1 and k = 0.6025 hMpc−1, respec-
tively. Even if SPT is no longer supposed to predict
well the response function at k = 0.1525 hMpc−1 for the
redshift considered, we trace its response at one loop in
Fig. 6 just to display its global behavior. We can see that
even beyond its regime of validity, SPT reproduces the
general features of the data points.
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FIG. 6. SPT-1loop, Halofit and measure points at z = 0.35.
The points correspond to the dataset for the kernel measured
at k = 0.1525hMpc−1 .

The disagreement between measured kernels and
Halofit predictions is more dramatic for small ks. In or-
der to investigate the reasons for this departure from the
measured points we can combine Eqs. (9) and (11) to
compute the following quantity:

PHf(k)
d lnPHf

d lnAs
(k)− P SPT

1−loop(k)
d lnP SPT

1−loop

d lnAs
(k)

=
[

Rδ
Hf(k)−Rδ

SPT(k)
]

P lin(k)

+

∫

dq
[

Rsmooth
Hf (k, q)−Rsmooth

SPT (k, q)
]

P lin(q) . (13)

The derivative with respect to the amplitude As is taken
for simplicity. The indexes Hf stand to Halofit. The first
and second terms on the rhs of Eq. (13) are the differences
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FIG. 7. Halofit and measure points at z = 0.35. The points
correspond to the dataset for the kernel measured at k =
0.4525hMpc−1 .
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FIG. 8. SPT-1loop, Halofit and measure points at z = 0.35.
The points correspond to the dataset for the kernel measured
at k = 0.6025hMpc−1 .

of the Rδ and Rsmooth using the nomenclature given in
Eq. (11).

We observe that the derivatives of the non-linear power
spectrum computed with Halofit and 1-loop SPT are not
coincident (as expected) but their difference remains lim-
ited to a region around zero, oscillating but with no ten-
dency to grow or decrease in this range of ks, as shown
in Fig. 9. The same is not true for the Rδ and Rsmooth

terms: they grow in opposite directions but almost com-
pensate each other. The Halofit Rδ term is normalized
to be in accord with halo profiles and has a slow de-
crease if compared with SPT [31]. This implies that
Rδ dominates the response function at small ks, as we
can clearly see from Fig. 10. The smooth component of
the response function is then constrained to contribute
much less that its SPT counterpart at this regime. Since
the SPT Rsmooth term reproduces the global behavior of
the measured data points, we should not be surprised by
desagreament between Halofit predictions and measured
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FIG. 9. Behavior of the lhs and of each of the terms on the
rhs of Eq. (13) at z = 0.35.

datapoints displayed in Fig. 6.
The relative contributions of Rδ and Rsmooth terms for

d lnPHf

d lnAs
(k), shown in Fig. 10, indicates that the Rsmooth

component start dominating the response function on
non-linear scales, what explains the proximity of the data
points to the Halofit kernels presented in Figs. 7 and 8,
even though the high q behavior is not reproduced.
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FIG. 10. Contributions of the Rδ and Rsmooth to d lnP
Hf

d lnAs
(k)

at z = 0.35.

B. Leakage of the one-halo term

The response function measures how much the non-
linear power spectrum at a given scale k is affected by a
change in the linear power spectrum at a given scale q.
As discussed, the response function can be decomposed
as R(k, q) = Rδ(k) δD(k− q)+Rsmooth(k, q) and Rsmooth

can be further decomposed into a one-halo and a two-
halos contribution, as in Eqs. (A4) and (A15). In this
framework, the one-halo term encodes the effect of the
physics concentrated on scales around and smaller than
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the size of a halo while the two-halo term should describe
interaction between halos i.e. wide range interactions.
Let R1H(k) be defined as

R1H(k) :=

∫

dq K1H(k, q)P lin(q)
∫

dq K(k, q)P lin(q)
(14)

where K1H(k, q) is the corresponding contribution in Eq.
(12) due to the 1-halo term on Rsmooth.
Given the interpretation of the 1-halo and the 2-halo

terms, we should expect R1H(k) ≈ 1 for high ks, what
is indeed the case as shown in Fig. 11. For small ks we
should expect a rapid decrease of R1H(k), what is not
verified.
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FIG. 11. Contribution from the 1H term to the total area
delimited by the kernel K.

Even if the computation of derivatives of the non-linear
power spectrum through the response function will be
dominated by the Rδ term at small scales, R1H(k) rang-
ing around the percent level at small ks indicate a leak-
age of the 1-halo term to extremely large scales, what
is unphysical and due to the choice of parametrization
functions and fitting process.

III. CONCLUSION

Halo models parameters encapsulate the general fea-
tures of the power spectrum but they are not capable
to grasp the full gravitational physics acting on modes
coupling and structure formation. Fitting the power
spectrum based on halo model parametrizations such as

Halofit constraint the model to reproduce the amplitude
under certain regimes, but will not necessarily reproduce
also its derivatives with respect to all cosmological pa-
rameters. We must therefore be cautious on performing
error forecasts based on Fisher information matrices and
using these models.

The discrepancy between the derivatives measured on
simulation and the predicted by Halofit is rooted on the
poor behavior of the Halofit response function when com-
pared with the numerical points, most importantly at low
k. We can directly point at the leakage of the one-halo
term into large scales as an unphysical feature.

We took a two-parameter cosmological model Fisher
information matrix to illustrate a particular feature of
more general phenomenon: since the response func-
tion connects derivatives of the linear and non-linear
power spectrum with respect to cosmological parameters
through a simple chain rule, the estimation of all deriva-
tives and construction of Fisher information matrices for
a larger set of parameters are faded to suffer from the
same pathology. Indeed we can see in Fig 11 from [25]
that Halofit performs poorly for the global set of param-
eters used in their analysis.

Two lessons come out of this exercise: first, error fore-
casts based on Fisher information matrices that use fitted
non-linear power spectrum such as Halofit may hide sub-
tle effects and inaccuracies if the response function is not
well reproduced by the non-linear model. Secondly, tests
of fit formulas and emulators should also aim at compar-
ing their response functions with the response functions
measured on the simulations.
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Appendix A: The HaloFit response function

The response function for SPT has already been ex-
plored on the literature [28] and the general case of
RegPT is also under study [24]. The calculation of the
response function for the HaloFit model has not been
computed yet in the literature, and therefore we present
the basis of the calculation here.

The functional form of the revised halofit model is
taken from [17], where the formulas provided by [14] are
re-analysed. Defining

∆2
L(k) =

k3P lin(k)

2π2
(A1)

we can compute the variance of the density field using a
gaussian filtering:

σ2(R) =

∫

d ln k∆2
L(k) e

−k2R2

. (A2)

A non-linear scale Rnl is defined for a given P lin(k) by
the implicit condition:

σ2(Rnl) = 1 . (A3)

Let y := kRnl, f(y) = y/4 + y2/8. The non-linear power
spectrum is given by:

∆2
NL(k) = ∆2

1H(k) + ∆2
2H(k) (A4)

where ∆2
NL(k) = k3P nl(k)/(2π2), and

∆2
1H(k) =

an y
3f1(Ωm)

AB
, (A5)

with A = 1 + µny
−1 + νny

−2 and B = 1 + bn y
3f2(Ωm) +

[cn f3(Ωm)y]
3−γn is the one-halo term. The two-halos

term is given by

∆2
2H(k) = ∆2

L(k)
(1 + ∆2

L(k))
βn

1 + αn∆2
L(k)

e−f(y) . (A6)

The functions f1, f2, f2 depend on Ωm only. The pa-
rameters an, bn, cn, αn, βn, γn, µn, νn (see [17]) are func-
tions of the effective spectral index neff and the curvature
C, defined as:

neff + 3 = −
d lnσ2(R)

d lnR

∣

∣

∣

∣

σ=1

, (A7)

C = −
d2 lnσ2(R)

d lnR2

∣

∣

∣

∣

σ=1

. (A8)

To obtain the response function R(k, q) for the HaloFit
we have to solve the exercise defined on Eq. (8) for
the non-linear power spectrum predicted by HaloFit
on Eqs. (A4), (A5), (A6). Since all the parameters
an, bn, cn, αn, βn, γn, µn, νn are functions of neff and C,
and these two quantities are implicitly given in terms of
P lin through Eqs. (A2), (A3), we have to provide expres-

sions for δneff

δP lin and δC
δP lin .

δneff

δP lin
=

(neff + 3)

Rnl

δRnl

δP lin
−Rnl

δ

δP lin

dσ2

dRnl
(A9)
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δC

δP lin
= −

[

(neff + 3)− 2C

Rnl

]

δRnl

δP lin

−(2neff + 7)Rnl
δ

δP lin

dσ2

dRnl

−R2
nl

δ

δP lin

d2σ2

dR2
nl

(A10)

We must then compute δRnl

δP lin . For this end, we observe
that Eq. (A3) implies:

0 =
δσ2

δP lin(q)
=

q2

2π2
e−q2R2

nl +
δRnl

δP lin(q)

dσ2

dRnl
(A11)

and therefore

δRnl

δP lin(q)
=

q2 Rnl e
−q2R2

nl

2π2(neff + 3)
(A12)

where we used Eq. (A7) to express the derivative dσ2(Rnl)
dRnl

in terms of neff .

We also have:

δ

δP lin(q)

dσ2

dRnl
= −

q4Rnl

π2
e−q2R2

nl +
δRnl

δP lin(q)

d2σ2(Rnl)

dR2
nl

,

(A13)

δ

δP lin(q)

d2σ2

dR2
nl

=
q4(2q2R2

nl − 1)

π2
e−q2R2

nl

+
δRnl

δP lin(q)

d3σ2(Rnl)

dR3
nl

. (A14)

The derivatives d2σ2(Rnl)
dR2

nl

, and d3σ2(Rnl)
dR3

nl

can be computed

from the definition.
If we take the 2-halos term, the functional derivative

gives:

δ∆2
2H(k)

δP lin(q)
=

k3

2π2

(1 + ∆2
L(k))

βn

1 + αn∆2
L(k)

e−f(y)

[

1 +
β∆2

L(k)

1 + ∆2
L(k)

−
α∆2

L(k)

1 + α∆2
L(k)

]

δD(k − q) + ∆2
L(k)

×
(1 + ∆2

L(k))
βn

1 + αn∆2
L(k)

e−f(y)

[

−
k(1 + kRnl)

4

δRnl

δP lin

+ ln(1 + ∆2
L(k))

(

∂β

∂neff

δneff

δP lin
+

∂β

∂C

δC

δP lin

)

−
∆2

L(k)

1 + α∆2
L(k)

(

∂α

∂neff

δneff

δP lin
+

∂α

∂C

δC

δP lin

)

]

. (A15)

We see that this term has two contributions: a dis-
tributional component corresponding to a propagator
term, and a smooth component corresponding to mode-
coupling contributions.
The one-halo term does not involve P lin explicitly and

therefore its functional derivative has no distributional
component. Using the chain rule

δ∆2

1H(k)
δP lin(q) can also be

expressed in terms of δRnl

δP lin ,
δneff

δP lin ,
δC

δP lin and the partial
derivatives of the parameters an, bn, cn, αn, βn, γn, µn, νn
with respect to neff and C.


