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Abstract

Two (so-called left and right) variants of N-centered ensemble density-functional

theory (DFT) are presented. Unlike the original formulation of the theory, these

variants allow for the description of systems with a fractional electron number.

While conventional DFT for open systems uses only the true electron density as

basic variable, left/right N-centered ensemble DFT relies instead on (a) a fictitious

ensemble density that integrates to a central (integral) number N of electrons, and

(b) a grand canonical ensemble weight α which is equal to the deviation of the true

electron number from N. Within such a formalism, the infamous derivative discon-

tinuity that appears when crossing an integral number of electrons is described

exactly through the dependence in α of the left and right N-centered ensemble

Hartree-exchange-correlation density functionals. Incorporating N-centered

ensembles into existing density-functional embedding theories is expected to pave

the way toward the in-principle-exact description of an open fragment by means

of a pure-state N-electron many-body wavefunction. Work is currently in progress

in this direction.
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1 | INTRODUCTION

Density-functional theory (DFT) has become over the last two decades the method of choice for performing routine large-scale electronic struc-

ture calculations. This success is essentially due to the relatively low computational cost of the method and its (often but not always) good accu-

racy. In most applications, DFT is applied to closed electronic systems, that is, systems with an integral number N of electrons. However, at the

formal level, there is no such a restriction. In other words, DFT is in principle able to describe also systems with a fractional electron number, as

shown in the pioneering work of Perdew, Parr, Levy, and Balduz (PPLB).[1] The extension of DFT to open systems plays a crucial role in the

description of charged electronic excitations.[2] More recently, it became a key ingredient in the derivation of DFT-based embedding approaches

such as partition DFT,[3–10] potential-functional embedding theory,[11] and frozen density embedding theory for noninteger subsystems' particle

numbers.[12]

The density n(r) of an open system integrates to a fractional number N of electrons. As shown in Perdew et al[1] and Perdew and Levy,[2] the

ground-state energy of such a system varies linearly with the deviation α=N − Nb c of the true electron number from its floor integral value.
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In the language of ensemble DFT,[6,13] the density is nothing but a weighted sum of ground-state densities nN−1(r) and nN(r) integrating to

N−1= Nb c and N= Nd e electrons, respectively:

n rð Þ= 1−αð ÞnN−1 rð Þ+ α nN rð Þ, ð1Þ

where, as readily seen, the ensemble weights are α and (1 − α), respectively. As shown in Kraisler and Kronik,[13] the explicit expression in Equa-

tion (1) is convenient for constructing density-functional approximations to the open-system exchange-correlation (xc) energy Exc[n] as functions

of α.

Quite recently, the authors have proposed an in-principle-exact reformulation of the fundamental gap problem in DFT.[14] For that purpose,

they introduced the concept of N-centered ensemble where, unlike in the true physical ensemble described in Equation (1), the ensemble density

integrates to an integral number of electrons. The practical advantage of such a reformulation is that the infamous derivative discontinuity contri-

bution to the true gap[2] can be expressed as an ensemble Hartree (H) xc energy derivative with respect to the ensemble weight,[14] exactly like in

DFT for canonical ensembles.[15] In the original formulation of the theory,[14] the ensemble weights have no physical meaning. They are just auxil-

iary variables which, through their variations, enable the extraction of quantities of interest like the ionization potential (IP), the electron affinity

(EA) or, when a single weight is used, the fundamental gap. In fact, N-centered ensemble DFT allows for a direct extraction of individual energies

for the neutral, anionic and cationic systems,[14] which are all closed systems, in a single calculation. In this work, we show how the theory can be

adapted to open systems. By considering ionization and affinity processes separately, we obtain two variants (referred to as left and right) of N-

centered ensemble DFT where the ensemble weight is now connected to α (see Equation 1).

The article is organized as follows. After a brief review on the original formulation of N-centered ensemble DFT in Section 2.1, the concept of

left and right N-centered ensembles is introduced (Section 2.2). The left/right variants of N-centered ensemble DFT are then derived in

Section 2.3. In this context, we obtain an in-principle-exact reformulation of the IP/EA theorem, as discussed in Section 2.4. An explicit connec-

tion (through scaling relations) between left and right ensemble density functionals is then made in Section 2.5. Finally, a brief discussion on

density-driven correlation effects, whose importance in canonical ensembles was recently revealed,[16–18] is proposed in Section 2.6. As a conclu-

sion to the “Theory” Section 2, we compare left/right N-centered ensemble DFT with conventional PPLB-DFT for open systems (Section 2.7). A

proof of concept study of the Hubbard dimer model is presented in Section 3, with a particular emphasis on the weight-dependence of the Hxc

left/right ensemble functionals. Conclusions and perspectives are finally given in Section 4.

2 | THEORY

2.1 | N-centered ensembles

In a previous work,[14] we introduced the concept of N-centered ensemble for the purpose of calculating fundamental gaps, in principle exactly,

within DFT. In standard approaches, the number of electrons is considered to vary continuously between two integers, thus allowing for the

description of ionization or affinity processes.[13,19–40] The situation is completely different in an N-centered ensemble where, by construction,

the number of electrons (which is obtained by integration of the N-centered ensemble density) is not affected by the charged excitation. It

remains equal to the so-called central number N of electrons which is an integer. Formally, an N-centered ensemble is described by the following

density matrix operator[14]:

Γ̂ N,ξ− ,ξ+f g
= ξ− Γ̂

N−1
+ ξ+ Γ̂

N+1
+ 1−

N−1ð Þ
N

ξ− −
N+1ð Þ
N

ξ+

� �
Γ̂N

, ð2Þ

where ξ− and ξ+ are ensemble weights assigned to the cationic (N − 1)-electron and anionic (N + 1)-electron systems, respectively. Each individual

density matrix operator Γ̂Ne , where Ne = N, N± 1, is used to describe an Ne-electron ground state. If the latter can be described with a pure-state

wavefunction ΨNe then Γ̂Ne �jΨNe ihΨNe j. In case of degeneracy, it may be written as a convex combination of pure Ne-electron states Γ̂Ne �PIλI j
ΨNe

I ihΨNe
I j , where

P
IλI = 1. As readily seen from Equation (2), the number of electrons within the N-centered ensemble is Tr Γ̂ N,ξ− ,ξ+f gN̂

h i
=N

where Tr[…] denotes the trace, N̂ =
Ð
dr n̂ rð Þ is the electron counting operator, and n̂ rð Þ is the density operator at position r.

As shown in Senjean and Fromager,[14] using two independent weights ξ− and ξ+ allows for a separate extraction of the IP and EA from the

N-centered ensemble energy Tr Γ̂ N,ξ− ,ξ+f g
Ĥ

h i
, where Ĥ is the (second-quantized) Hamiltonian. In the particular case where ξ− = ξ+ = ξ, the N-

centered ensemble density matrix operator simplifies as follows:

Γ̂ N,ξf g
= ξΓ̂N−1

+ ξΓ̂N+1
+ 1−2ξð ÞΓ̂N

, ð3Þ
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so that the fundamental gap can be extracted directly by differentiating the corresponding N-centered ensemble energy Tr Γ̂ N,ξf g
Ĥ

h i
with respect

to ξ.[14] The potential advantage of such a formalism over conventional approaches is that the infamous derivative discontinuity contribution to

the gap can be written as the derivative of the N-centered ensemble Hxc density functional with respect to the ensemble weight ξ, exactly like in

DFT for canonical ensembles.[15,41]

Let us stress that, in the current formulation of N-centered ensemble DFT, the ensemble weights have no physical meaning. They are just

convenient auxiliary variables. Actually, the properties of interest (namely the ground-state energies of the neutral [N-electron], cationic, and

anionic systems) should not depend on the value of the ensemble weights. In the rest of this work, we explore two variants of the theory which

are directly applicable to open systems. For such systems, a convenient and physical choice for the ensemble weight value is the deviation of the

(fractional) electron number N from either its integral floor value Nb c or the ceiling one Nd e.

2.2 | Left and right N-centered ensembles

Starting from Equation (2), we explore in this section different choices of N-centered ensemble weights ξ− and ξ+ for the purpose of describing an

open N -electron system. In order to treat both Nd e=N and Nb c=N scenarios, thus, allowing for the description of fluctuations around the cen-

tral (integral) number N of electrons, we introduce what we will refer to as left (subscript “−”) and right (subscript “+”) N-centered ensemble den-

sity matrix operators, respectively:

Γ̂ N,αf g
− = 1−αð ÞΓ̂N

+
Nα
N−1

Γ̂N−1
, ð4Þ

Γ̂ N,αf g
+ = 1−αð ÞΓ̂N

+
Nα
N+1

Γ̂N+1
, ð5Þ

where 0 ≤ α ≤ 1. Note that, by construction, the number of electrons within these two ensembles is the central number N:

Tr Γ̂ N,αf g
− N̂

h i
=Tr Γ̂ N,αf g

+ N̂
h i

=N: ð6Þ

Moreover, left and right ensembles can be connected to each other as follows:

N
N−1

Γ̂ N−1,αf g
+ = Γ̂ N,1−αf g

− : ð7Þ

These ensembles are just special cases of the original N-centered one introduced in Senjean and Fromager.[14] Indeed, with the notations of Equa-

tion (2), we have

Γ̂ N,αf g
− = Γ̂ N, ξ− = Nα

N−1, ξ+ = 0f g
, ð8Þ

and

Γ̂ N,αf g
+ = Γ̂ N, ξ− =0, ξ+ = Nα

N+1f g
: ð9Þ

The original (two-weight) N-centered ensemble can actually be recovered from the left and right ones as follows:

Γ̂ N,ξ− ,ξ+f g
=

N−1ð Þ
2N

Γ̂ N,2ξ−f g
− +

N+1ð Þ
2N

Γ̂ N,2ξ+f g
+ : ð10Þ

Following the standard description of open systems in DFT,[1] we propose to use for the value of α in Equations (4) and (5) the deviation of

the true (fractional) electron number N , that we assume to vary in the range N−1<N <N+1, from the central number N, that is,

α= jN −N j : ð11Þ
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If Nd e=N, then α=N−N and the open system will be described by the left N-centered ensemble of Equation (4). If Nb c=N, then α=N −N and

the right N-centered ensemble of Equation (5) will be used instead. This is illustrated graphically in Figure 1.

Let us stress that these ensembles are not the physical ones, which are described by the following density matrix operators[13]:

Γ̂ Nð Þ �Nd e=N
Γ̂ N−αð Þ= 1−αð ÞΓ̂N

+ αΓ̂N−1
,

Γ̂ Nð Þ �Nb c=N
Γ̂ N+ αð Þ= 1−αð ÞΓ̂N

+ αΓ̂N+1
:

ð12Þ

Nevertheless, they can be used as auxiliary ensembles from which the exact properties of the true physical open system can be extracted. Indeed,

according to Equations (4) and (5),

Γ̂N
= Γ̂ N,α=0f g

� = Γ̂ N,αf g
� −α

∂Γ̂ N,αf g
�
∂α

ð13Þ

and

Γ̂N�1
=
N�1
N

∂Γ̂ N,αf g
�
∂α

+ Γ̂N

 !

=
N�1
N

Γ̂ N,αf g
� + 1−αð Þ∂Γ̂

N,αf g
�
∂α

 !
,

ð14Þ

thus, leading to the final expressions

Γ̂ Nð Þ �Nd e=N
Γ̂ N−αð Þ

= 1−
α

N

� �
Γ̂ N,αf g
− −

α 1−αð Þ
N

∂Γ̂ N,αf g
−
∂α

,
ð15Þ

and

Γ̂ Nð Þ �Nb c=N
Γ̂ N+ αð Þ

= 1+
α

N

� �
Γ̂ N,αf g

+ +
α 1−αð Þ

N
∂Γ̂ N,αf g

+

∂α
:

ð16Þ

A direct consequence of Equations (15) and (16) is that the physical energy E Nð Þ=Tr Γ̂ Nð ÞĤ
h i

of an open system can be extracted from a left or

right N-centered ensemble as follows:

E Nð Þ �Nd e=N
E N−αð Þ

= 1−
α

N

� �
ℰ N,αf g

− −
α 1−αð Þ

N
∂ℰ N,αf g

−
∂α

,
ð17Þ

F IGURE 1 Graphical illustration of left and right N-centered
ensembles. The shorthand notation n N,αf g

� rð Þ� n
Γ̂ N,αf g
�

rð Þ is used
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and

E Nð Þ �Nb c=N
E N+ αð Þ

= 1+
α

N

� �
ℰ N,αf g

+ +
α 1−αð Þ

N
∂ℰ N,αf g

+

∂α
,

ð18Þ

where ℰ N,αf g
� =Tr Γ̂ N,αf g

� Ĥ
h i

are the left/right N-centered ensemble energies.

Similarly, the true density nΓ̂ Nð Þ rð Þ=Tr Γ̂ Nð Þn̂ rð Þ� �
can be obtained as follows from the left or right N-centered ensemble ones

n
Γ̂ N,αf g
�

rð Þ=Tr Γ̂ N,αf g
� n̂ rð Þ

h i
:

nΓ̂ Nð Þ rð Þ �Nd e=N
nΓ̂ N−αð Þ rð Þ

= 1−
α

N

� �
n
Γ̂ N,αf g
−

rð Þ− α 1−αð Þ
N

∂n
Γ̂ N,αf g
−

rð Þ
∂α

,

ð19Þ

and

nΓ̂ Nð Þ rð Þ �Nb c=N
nΓ̂ N+ αð Þ rð Þ

= 1+
α

N

� �
n
Γ̂ N,αf g
+

rð Þ+ α 1−αð Þ
N

∂n
Γ̂ N,αf g
+

rð Þ
∂α

:

ð20Þ

Let us finally point out that, according to Equations (13) and (14),

Γ̂N−1− Γ̂N
= −

1
N

Γ̂ N,αf g
− + 1−α−Nð Þ∂Γ̂

N,αf g
−
∂α

 !
, ð21Þ

and

Γ̂N− Γ̂N+1
= −

1
N

Γ̂ N,αf g
+ + 1−α+Nð Þ∂Γ̂

N,αf g
+

∂α

 !
: ð22Þ

Consequently, the IP and EA can be extracted from the left and right N-centered ensemble energies as follows:

IN =Tr Γ̂N−1− Γ̂N
� �

Ĥ
h i

= −
1
N

ℰ N,αf g
− + 1−α−Nð Þ∂ℰ

N,αf g
−
∂α

 !
,

ð23Þ

and

AN =Tr Γ̂N− Γ̂N+1
� �

Ĥ
h i

= −
1
N

ℰ N,αf g
+ + 1−α+Nð Þ∂ℰ

N,αf g
+

∂α

 !
:

ð24Þ

As shown in the following, by deriving a DFT for left and right N-centered ensembles, we obtain from Equations (17)–(20) a novel and in-prin-

ciple-exact density-functional description of open systems.

2.3 | Left/right N-centered ensemble DFT

In this section, we derive a variational Kohn-Sham (KS) DFT expression for the left/right N-centered ensemble energies. As a result, the open sys-

tem problem will be mapped (via Equations 17 and 18) onto an auxiliary N-electron noninteracting ensemble, where the (central) number N is an

integer. The derivation follows closely the one presented in Senjean and Fromager[14] for two-weight N-centered ensembles (see Equation 2).
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Let us consider the usual ab initio quantum chemical Hamiltonian Ĥ= T̂ + Ŵee + V̂ext where T̂ and Ŵee are the kinetic energy and two-

electron repulsion operators, respectively, and V̂ext =
Ð
dr vext rð Þ n̂ rð Þ is the external potential operator. For an isolated molecule, the external local

potential vext(r) is simply the nuclear potential. If we introduce the analog for left/right N-centered ensembles of Levy's constrained-search universal

functional,

F N,αf g
� n½ �= min

γ̂ N,αf g
� !n

Tr γ̂ N,αf g
� T̂ + Ŵee

� �h in o

=Tr Γ̂ N,αf g
� n½ � T̂ + Ŵee

� �h i
,

ð25Þ

where the minimization is performed over left/right N-centered ensemble density matrix operators γ̂ N,αf g
� that fulfill the density constraint

n
γ̂ N,αf g
�

rð Þ=Tr γ̂ N,αf g
� n̂ rð Þ

h i
= n rð Þ, ð26Þ

then it becomes possible to express the exact left/right N-centered ensemble energies variationally as follows:

ℰ N,αf g
� =min

n!N
F N,αf g
� n½ �+

ð
dr vext rð Þn rð Þ

� 	
: ð27Þ

The minimum is reached when the density equals the exact left/right N-centered ensemble one n
Γ̂ N,αf g
�

. Note that the true (ie, interacting) density

matrix operators Γ̂ N,αf g
� in Equations (4) and (5) would be obtained by solving the ground-state Schrödinger equation ĤΨNe = ENeΨNe for Ne = N and

Ne = N±1 electrons. Like in regular DFT, we bypass this complicated task by introducing the following KS decomposition,

F N,αf g
� n½ �= T N,αf g

s� n½ �+ E N,αf g
Hxc� n½ �, ð28Þ

where the noninteracting density-functional kinetic energy contribution reads

T N,αf g
s� n½ �= min

γ̂ N,αf g
� !n

Tr γ̂ N,αf g
� T̂

h in o

=Tr γ̂ N,αf g
s� n½ � T̂

h i
,

ð29Þ

and E N,αf g
Hxc� n½ � is the left/right N-centered ensemble Hxc functional. Note that this functional is, for a fixed density n, α-dependent. It differs from

the conventional (N-electron) ground-state Hxc functional EHxc[n], which is recovered when α = 0:

E N,α=0f g
Hxc� n½ �= EHxc n½ �: ð30Þ

As shown in the following, modeling the dependence in α of the Hxc functional in this context is analogous to modeling the

derivative discontinuity in conventional DFT for open systems. In the light of Gould and Pittalis,[42] we define the exact Hx contribution

as follows:

E N,αf g
Hx� n½ �=Tr γ̂ N,αf g

s� n½ � Ŵee

h i
, ð31Þ

where γ̂ N,αf g
s� n½ � is the minimizing left/right N-centered ensemble density matrix operator in Equation (29). According to Equations (25), (28), and

(29), the correlation contribution can then be expressed as

E N,αf g
c� n½ �=Tr Γ̂ N,αf g

� n½ � T̂ + Ŵee

� �h i
−Tr γ̂ N,αf g

s� n½ � T̂ + Ŵee

� �h i
<0: ð32Þ

Let us now return to the variational ensemble energy expression of Equation (27). By inserting the exact decomposition of Equation (28), we

obtain, according to Equation (29), the final expressions

ℰ N,αf g
� =min

γ̂ N,αf g
�

Tr γ̂ N,αf g
� ĥ

h i
+ E N,αf g

Hxc� n
γ̂ N,αf g
�

h in o

=Tr γ̂ N,αf g
s� ĥ

h i
+ E N,αf g

Hxc� n
γ̂ N,αf g
s�

h i
,

ð33Þ
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where ĥ= T̂ + V̂ext . Like in regular ensemble DFTs, the minimizing (noninteracting) density matrix operators γ̂ N,αf g
s� in Equation (33) reproduce the

exact interacting left/right N-centered ensemble densities,

n
γ̂ N,αf g
s-

rð Þ= 1+
α

N−1

� �XN−1

i=1

φ N,αf g
i− rð Þ




 


2 + 1−αð Þ φ N,αf g
N− rð Þ




 


2,
= n

Γ̂ N,αf g
−

rð Þ,
ð34Þ

and

n
γ̂ N,αf g
s +

rð Þ= 1−
α

N+1

� �XN
i=1

φ N,αf g
i+ rð Þ




 


2 +
Nα
N+1

φ N,αf g
N+1ð Þ + rð Þ




 


2,
= n

Γ̂ N,αf g
+

rð Þ:
ð35Þ

The KS orbitals are obtained by solving the following self-consistent equations,

−
r2

2
+ v N,αf g

s� rð Þ
� �

φ N,αf g
i� rð Þ= ε N,αf g

i� φ N,αf g
i� rð Þ, ð36Þ

where the KS potential reads

v N,αf g
s� rð Þ= vext rð Þ+ v N,αf g

Hxc� n
γ̂ N,αf g
s�

h i
rð Þ, ð37Þ

and

v N,αf g
Hxc� n½ � rð Þ= δE N,αf g

Hxc� n½ �
δn rð Þ : ð38Þ

The final step in the formulation of left/right N-centered ensemble DFT consists in connecting the true energy of the (interacting) open system

under study to the KS orbital energies. For convenience, we use the Levy-Zahariev (LZ) shift-in-potential procedure,[14,43,44]

v N,αf g
Hxc� n½ � rð Þ! �v N,αf g

Hxc� n½ � rð Þ, ð39Þ

where

�v N,αf g
Hxc� n½ � rð Þ= v N,αf g

Hxc� n½ � rð Þ + E N,αf g
Hxc� n½ �− Ð dr v N,αf g

Hxc� n½ � rð Þn rð ÞÐ
dr n rð Þ : ð40Þ

Note that like in the original version of N-centered ensemble DFT,[14] since

E N,αf g
Hxc� n½ �=

ð
dr �v N,αf g

Hxc� n½ � rð Þ n rð Þ, ð41Þ

the total left/right N-centered ensemble KS energies match the interacting ones once the LZ shift ε N,αf g
i� !�ε N,αf g

i� has been applied to the orbital

energies (see Equations 36 and 37), that is

ℰ N,αf g
− = 1+

α

N−1

� �XN−1

i=1

�ε N,αf g
i− + 1−αð Þ�ε N,αf g

N− , ð42Þ

and

ℰ N,αf g
+ = 1−

α

N+ 1

� �XN
i=1

�ε N,αf g
i+ +

Nα
N+1

�ε N,αf g
N+1ð Þ + : ð43Þ
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Moreover, by applying the Hellmann-Feynman theorem to the variational energy expressions in Equation (33), it comes

∂ℰ N,αf g
−
∂α

−
∂E N,αf g

Hxc- n½ �
∂α







n= n

γ̂
N,αf g
s-

=
N

N−1

XN−1

i=1

ε N,αf g
i− −

XN
i=1

ε N,αf g
i−

=
1

N−1

XN−1

i=1

ε N,αf g
i− −ε N,αf g

N−

� �

=
1

N−1

XN−1

i=1

�ε N,αf g
i− −�ε N,αf g

N−

� �
,

ð44Þ

and, similarly,

∂ℰ N,αf g
+

∂α
−
∂E N,αf g

Hxc+ n½ �
∂α







n= n

γ̂
N,αf g
s +

= −
1

N+1

XN
i=1

�ε N,αf g
i+ −�ε N,αf g

N+1ð Þ +
� �

: ð45Þ

By combining Equations (17), (18), and (42)-(45) we can finally express the exact open-system energy in terms of the LZ-shifted KS orbital ener-

gies as follows:

E Nð Þ �Nd e=N
E N−αð Þ

=
XN−1

i=1

�ε N,αf g
i− + 1−αð Þ�ε N,αf g

N− −
α 1−αð Þ

N

∂E N,αf g
Hxc- n½ �
∂α







n= n

γ̂
N,αf g

s-

,
ð46Þ

and

E Nð Þ �Nb c=N
E N+ αð Þ

=
XN
i=1

�ε N,αf g
i+ + α�ε N,αf g

N+1ð Þ+ +
α 1−αð Þ

N

∂E N,αf g
Hxc+ n½ �
∂α







n= n

γ̂
N,αf g
s +

:
ð47Þ

Equations (46) and (47) are the central result of this work.

As readily seen from these equations, the exact physical energies are recovered by summing up the LZ-shifted occupied KS orbital energies

not only in the N-electron system (ie, when α = 0), as expected from Levy and Zahariev,[43] but also in the (N ± 1)-electron ones (ie, when α = 1).

This is a nontrivial result since the left/right N-centered ensemble densities do not reduce exactly to the physical ones when α = 1 (see the pre-

factors 1 ± (α/N) in Equations 19 and 20). In addition, keeping in mind that the physical energies E(N ± α) vary linearly with α, we expect the total

LZ-shifted KS energies

XN−1

i=1

�ε N,αf g
i− + 1−αð Þ�ε N,αf g

N− ð48Þ

and

XN
i=1

�ε N,αf g
i+ + α�ε N,αf g

N+1ð Þ+ , ð49Þ

for N − α and N + α electrons, respectively, to vary (at least) quadratically with α. Linearity should then be recovered when adding the ensemble

Hxc first-order-derivative corrections (third terms on the right-hand side of Equations 46 and 47). This is illustrated in Figure 2 with the Hubbard

dimer model (see Section 3 for further details).

2.4 | Reformulation of the IP/EA theorem

As shown in Section 2.2, the left/right N-centered ensemble energies (and their first-order derivatives in α) give directly access not only to the

physical energy for any fractional electron number N (ie, any value of α), but also to the IP and the EA (see Equations 23 and 24). From the KS-
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DFT expressions in Equations (42)-(45) we obtain the following reformulation of Janak's theorem,[45] which holds for any value of N or, equiva-

lently, for any value of α in the range 0≤ α≤1:

dE Nð Þ
dN =

N =N−α − IN

=�ε N,αf g
N− +

1−α−Nð Þ
N

∂E N,αf g
Hxc- n½ �
∂α







n= n

γ̂
N,αf g
s-

,
ð50Þ

and

dE Nð Þ
dN =

N =N+ α −AN

=�ε N,αf g
N+1ð Þ+ +

1−α+Nð Þ
N

∂E N,αf g
Hxc+ n½ �
∂α







n= n

γ̂
N,αf g
s +

:
ð51Þ

This is the second key result of the article.

In the limits N !N�η where η!0+, which consists in taking the α = 0 limit in both left and right N-centered ensembles, the density

becomes simply the conventional N-electron ground-state density:

n
γ̂ N,α=0f g
s�

rð Þ= n
Γ̂N rð Þ, ð52Þ

and the left/right ensemble Hxc functionals reduce to the conventional (N-electron) ground-state one (see Equation 30). The KS potential in Equa-

tion (36) is unique up to a constant, as we systematically search for the N- and (N ± 1)-electron ground states of a noninteracting system in order

to construct left or right N-centered KS ensembles. As a result, v N,α=0f g
s- rð Þ and v N,α=0f g

s + rð Þ may differ by a constant. However, once the LZ shift is

applied, the potential becomes truly unique (see Equation 40), thus, leading to

�v N,α=0f g
s- rð Þ= �v N,α=0f g

s + rð Þ: ð53Þ

Consequently, we have

�ε N,α=0f g
i− =�ε N,α=0f g

i+ , ð54Þ

and, in particular,

�ε N,α=0f g
N+1ð Þ + −�ε N,α=0f g

N− =�ε N,α=0f g
N +1ð Þ� −�ε N,α=0f g

N�
= εN+1−εN,

ð55Þ

where εN and εN + 1 are, respectively, the energies of the HOMO and LUMO obtained from a regular N-electron KS-DFT calculation. Note that

the LZ shift does not affect the HOMO-LUMO gap. Therefore, according to the IP/EA expressions in Equations (50) and (51), the exact funda-

mental gap can be written as follows:

IN−AN = εN +1−εN +
N+1ð Þ
N

∂E N,αf g
Hxc+ n

Γ̂N

h i
∂α








α=0

+
N−1ð Þ
N

∂E N,αf g
Hxc- n

Γ̂N

h i
∂α








α=0

, ð56Þ

F IGURE 2 Total LZ-shifted KS (dashed lines) and exact (full lines)
energies plotted as functions of the electron number for the
asymmetric Hubbard dimer with Δvext/t = 10 and U/t = 5. Results are
shown for the value N = 2 of the central number. See
Equations (48) and (49), and the text that follows for further details
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where the last two terms on the right-hand side play all together the role of the derivative discontinuity correction to the gap in conventional KS-

DFT. Note that, according to Equations (8) and (9), the left and right N-centered ensemble Hxc functionals are connected to the original N-

centered ensemble functional E N,ξ− ,ξ+f g
Hxc n½ � of Senjean and Fromager[14] (the latter describes the Hxc energy of the ensemble defined in

Equation (2)) as follows:

E N,αf g
Hxc- n½ �= E N,ξ− = Nα

N−1,ξ+ = 0f g
Hxc n½ �, ð57Þ

and

E N,αf g
Hxc+ n½ �= E N,ξ− =0,ξ+ = Nα

N+1f g
Hxc n½ �: ð58Þ

Thus, we recover the compact expression:[14]

IN−AN = εN+1−εN +
∂E N,ξ,ξf g

Hxc nΓ̂N

h i
∂ξ








ξ=0

: ð59Þ

Interestingly, designing density-functional approximations for the original (two-weight) N-centered ensembles benefits automatically to the left/

right variants of the theory through Equations (57) and (58).

2.5 | Left or right?

For clarity and convenience, we have derived explicitly both left and right variants of N-centered ensemble DFT. This is in principle not necessary

as we may opt for one of the ensemble (left or right) and simply increment or decrement the central number of electrons. As illustrated in Figure 1,

an open N -electron system with Nd e=N can be described either by a left ensemble centered on N or a right ensemble centered on (N−1). In

other words, one may express the number of electrons as

N =N−α, ð60Þ
or, equivalently,

N =N−1+ α0 , ð61Þ

where α0 = 1 − α. The two descriptions should of course lead to the same physical density and energy. It is actually quite simple to obtain the left

ensemble Hxc density functional from the right one, and vice versa. Indeed, according to Equations (7) and (25),

F N,1−αf g
− n½ �= N

N−1
× min

N
N−1γ̂

N−1,αf g
+ !n

Tr γ̂ N−1,αf g
+ T̂ + Ŵee

� �h in o

=
N

N−1
min

γ̂ N−1,αf g
+ ! N−1ð Þn

N

Tr γ̂ N−1,αf g
+ T̂ + Ŵee

� �h in o

=
N

N−1
F N−1,αf g
+

N−1ð Þn
N

� �
,

ð62Þ

where n is an N-electron density. Similarly, we can show that, if n is an (N − 1)-electron density, then

F N−1,αf g
+ n½ �= N−1

N
F N,1−αf g
−

Nn
N−1ð Þ

� �
: ð63Þ

As these scaling relations apply also to the noninteracting kinetic energy, we conclude that

E N,1−αf g
Hxc- n½ �= N

N−1
E N−1,αf g
Hxc+

N−1ð Þn
N

� �
, ð64Þ
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and

E N−1,αf g
Hxc+ n½ �= N−1

N
E N,1−αf g
Hxc-

Nn
N−1ð Þ

� �
: ð65Þ

In summary, a single (left or right) N-centered Hxc functional is needed for describing the variation of the electron number between two integers.

One functional is obtained from the other via the scaling relations of Equations (64) and (65).

Note that these relations enable to understand why, in the α = 1 limit of left and right N-centered ensembles, the sum of the LZ-shifted occu-

pied KS orbital energies matches the physical (N − 1)- and (N + 1)-electron energies, respectively (see Equations 38, 40, 46, and 47).

2.6 | Density-driven correlations in N-centered ensembles

Very recently, Gould and Pittalis[16,17] revealed that direct approximations to Gross-Oliveira-Kohn (GOK) ensemble DFT, where the ensemble con-

sists of N-electron ground and excited states,[15] miss an important correlation effect that they refer to as density-driven correlation. The latter

originates from the deviation in density of the individual KS states within the ensemble from the true interacting ones, as shown explicitly by one

of the author.[18] One may naturally wonder if this kind of correlation exists also in N-centered ensemble DFT. In the following, we will briefly

explain how density-driven correlations can be defined in this context. We leave their detailed study for future work.

Let us follow the derivation of Fromager[18] and adapt it to (say left) N-centered ensembles. We start by extracting the individual M-electron

(M = N or N − 1) total energies E Mð Þ=Tr Γ̂M
Ĥ

h i
. For that purpose we use Equations (13) and (14), and the variational N-centered ensemble energy

expression of Equation (33), thus, leading to the following (exact) expression:

E Mð Þ=Tr γ̂ N,αf g
s− ,Mĥ

h i
+ E N,αf g

Hxc-,M n
γ̂ N,αf g
s-

,n
γ̂ N,αf g
s− ,M

� �
, ð66Þ

where γ̂ N,αf g
s− ,M is the M-electron component of the KS N-centered ensemble density matrix operator:

γ̂ N,αf g
s- = 1−αð Þγ̂ N,αf g

s− ,N +
Nα
N−1

γ̂ N,αf g
s− ,N−1: ð67Þ

The individual N- and (N − 1)-electron Hxc bifunctionals in Equation (66) read

E N,αf g
Hxc-,N n,nN

� �
= 1−α

∂

∂α

� �
E N,αf g
Hxc− n½ � +

ð
dr
δE N,αf g

Hxc− n½ �
δn rð Þ nN rð Þ−n rð Þ
 �

, ð68Þ

and

E N,αf g
Hxc-,N−1 n,nN−1

� �
=
N−1
N

1+ 1−αð Þ ∂

∂α

� �
E N,αf g
Hxc− n½ �+

ð
dr
δE N,αf g

Hxc− n½ �
δn rð Þ nN−1 rð Þ− N−1ð Þ

N
n rð Þ

� �
, ð69Þ

respectively. One should then realize that the density constraint in Equation (29) does not necessarily imply that the individual KS densities match

the true interacting ones:

n
γ̂ N,αf g
s− ,M

6¼ n
Γ̂M : ð70Þ

This can be illustrated easily with the asymmetric Hubbard dimer model, which will be studied in detail in Section 3. In this model, the one-

electron ground-state density (which is an atomic site occupation) reads

nM=1 =
1
2
+

Δv
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 +Δv2

p , ð71Þ

where t is the strength of the kinetic energy and Δv is the analog of the local potential (here it is just a number that controls the asymmetry in

the dimer). When the dimer is asymmetric (ie, Δv 6¼ 0), the Hxc potential (which is the difference in potential between the KS noninteracting
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N-centered ensemble and the interacting one) is nonzero. In the weakly correlated regime, this can be readily seen from Equation (79). Therefore,

according to Equation (71), the true and KS one-electron states (each of them being a component of a [left] N-centered ensemble with N = 2) do

not have the same density. If we now return to the general case, it is then relevant to decompose each individual correlation energy into state-

driven (SD) and density-driven (DD) contributions, by analogy with GOK ensembles:[18]

E N,αf g
c-,M n

γ̂ N,αf g
s-

,n
γ̂ N,αf g
s− ,M

� �
� E N,αf gSD

c-,M + E N,αf gDD
c-,M , ð72Þ

where

E N,αf gSD
c-,M ≔E N,αf g

c-,M n
γ̂ N,αf g
s-

,n
Γ̂M

h i
: ð73Þ

While we do not expect the conventional ground-state functional EHxc[n] to be a good approximation to (neutrally) excited-state Hxc energies,

one may wonder how good the approximation E N,αf g
Hxc-,M n,nM

� �
≈EHxc nM

� �
is since an N-centered ensemble consists of ground states only. Answering

this question is expected to pave the way toward the rationalization and development of density-functional approximations that incorporate

derivative discontinuity corrections. Work is currently in progress in this direction.

2.7 | Comparison with conventional DFT for open systems

In standard PPLB-DFT for open systems,[1] the density n of the true physical open system is used as basic variable. It gives, by integration, the

total (fractional) number N of electrons:

N =
ð
dr n rð Þ: ð74Þ

The Hxc energy is then obtained from the universal ground-state functional EHxc[n] which is defined over the domain of densities that can inte-

grate to any integral or fractional number of electrons. Despite its formal beauty, this grand canonical formulation of DFT is not necessarily the

most appealing one when it comes to perform practical calculations. Indeed, modeling EHxc[n] accurately for any number of electrons (including

fractional ones) is not straightforward. Most importantly, the model should be able to reproduce the derivative discontinuity that the functional is

expected to exhibit when crossing an integer.[2] Note that, for open systems, the KS potential is truly unique (not up to a constant anymore).

Indeed, the chemical potential has to be adjusted such that the grand canonical ground-state energies of the (N − 1)- and N-electron systems

(we assume that N−1<N <N) are equal.

The situation is completely different in (say) left N-centered ensemble DFT, where we use two variables instead. The first one is the left N-

centered ensemble density that integrates to the so-called central number N= Nd e of electrons. The second variable α=N−N is the deviation of

the central number from the true electron number N . Even though alternative ensemble DFT approaches[13,36] do not rely on a centered density,

they use information about the (N−1) and N-electron systems (ie, systems with an integral number of electrons) as N-centered ensemble DFT

does. They are similar from this point of view.

Since a density n that integrates to N can be reproduced by either a pure N-electron ground state or a left N-centered ensemble, it is essential

to construct a functional E N,αf g
Hxc- n½ � that is both density- and α-dependent. At first sight, this version of DFT for open systems looks much more

complicated than the PPLB one. What makes the N-centered formulation appealing is that the infamous derivative discontinuity is now obtained

through the derivative in α of the N-centered ensemble density-functional Hxc energy. As a result, if one can model the dependence in α of the

latter functional, one can in principle solve the derivative discontinuity problem.

3 | APPLICATION TO THE HUBBARD DIMER

3.1 | Hamiltonian and density functionals

A proof of concept study of the (not necessarily symmetric) Hubbard dimer is presented in this section. This is one of the simplest solvable

models exhibiting a nontrivial interplay between electron-electron interaction and inhomogeneity. It is often used as a lab for testing new ideas in

DFT, gaining more insight into those and their approximate formulations.[14,44,46–53] In this model, the ab initio Hamiltonian Ĥ is simplified as

follows:
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T̂! −t
X
σ = "#

ĉ†0σ ĉ1σ + ĉ
†
1σ ĉ0σ

� �
,Ŵee !U

X1
i=0

n̂i"n̂i#, V̂ext !Δvext n̂1− n̂0ð Þ=2, n̂iσ = ĉ†iσ ĉiσ , ð75Þ

where n̂i =
P

σ = "#n̂iσ is the density operator on site i (i = 0, 1). Note that the external potential reduces to a single number Δvext which controls the

asymmetry of the dimer. The density also reduces to a single number n = n0 which is the occupation of site 0 given that n1 = N− n for an N-

centered ensemble. In the following, the central number of electrons will be fixed to N = 2 and the hopping parameter will be set to t = 1. All den-

sity functionals can be derived analytically except the correlation ones that can be computed to arbitrary accuracy via Lieb maximizations.[14,44,48]

As shown in Appendix A, within left/right N-centered ensemble DFT, the exact ground-state energy of an open system with N� =2�α elec-

trons reads

E N�ð Þ� 2�α

2
T N=2,αf g
s� nð Þ+ E N=2,αf g

Hxc� nð Þ+Δvext × 1−nð Þ
� �

�α 1−αð Þ
2

∂T N=2,αf g
s� nð Þ
∂α

�α 1−αð Þ
2

∂E N=2,αf g
Hxc� nð Þ

∂α

" #
n= n N=2,αf g

� Δvextð Þ
: ð76Þ

According to Equations (8), (9), (29), and (31), the expressions for the left/right N-centered ensemble noninteracting kinetic and Hx energy func-

tionals can be obtained from the two-weight N-centered ensemble functionals of our previous work.[14] Indeed, the left functionals correspond to

ξ− = Nα
N−1 and ξ+ = 0, thus, leading to

T N=2,αf g
s- nð Þ= −2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− n−1ð Þ2

q
= TN=2

s nð Þ, ð77Þ

Δv N=2,αf g
KS- nð Þ= 2t n−1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1−nð Þ2
q , ð78Þ

where Δv N=2,αf g
KS- nð Þ= ∂T N=2,αf g

s- nð Þ=∂n is the KS potential for the left ensemble, and

E N =2,αf g
Hx- nð Þ= U 1−αð Þ

2
1+ n−1ð Þ2
� �

: ð79Þ

Similarly for the right functionals, we have ξ− = 0 and ξ+ = Nα
N+1, thus, leading to

T N=2,αf g
s + nð Þ= −2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α
3

−1

� �2

− n−1ð Þ2
s

, ð80Þ

Δv N=2,αf g
KS+ nð Þ= 2t n−1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α
3 −1

 �2− n−1ð Þ2

q , ð81Þ

and

E N=2,αf g
Hx+ nð Þ= U

2
1+

α

3
+

9 1−αð Þ
2α−3ð Þ2

n−1ð Þ2
" #

: ð82Þ

As readily seen from Equation (81), the noninteracting v-representability condition for the right N-centered ensemble is α-dependent:

2α
3

< n<2−
2α
3
: ð83Þ

Various density-functional approximations are tested in the following. For simplicity, we will restrict our study to functional-driven errors[54]

which means that all density-functional energies will be computed with the exact N-centered ensemble densities. The investigation of density-

driven errors[54] is left for future work. Let us start with two approximations that would be applicable also to ab initio problems. The simplest one

consists in neglecting correlation effects and using a regular (α-independent) Ground-State exchange functional. In this model, we simply have to

consider the α = 0 limit of Equations (79) and (82). The approximation will be referred to as GS-Hx. A conventional (α-independent) Ground-State

correlation functional might then be added, thus, leading to a second approximation referred to as GS-Hxc. In this context, we use the correlation
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functional of Carrascal et al.[47] which has been parameterized on the two-electron Hubbard dimer. Finally, in order to investigate the importance

of the α-dependence in both exchange and correlation ensemble energies, we consider two additional approximations. In the first one, which is

referred to as ensemble exact exchange (EEXX), Equations (79) and (82) are employed, and correlation effects are neglected. Adding the Ground-

State correlation functional of Carrascal et al.[47] leads to our last (so-called GS-c) approximation. The four approximations are summarized in

Table 1.

3.2 | Influence of the ensemble derivative-in-α Hxc density functional

As shown in Equations (46) and (47), the true physical energy of an open system cannot be expressed solely as a function of the shifted KS orbital

energies. An additional ensemble Hxc first-order-derivative correction has to be accounted for as soon as the true number of electrons deviates

from an integer. In Figure 2, we plot the exact expressions for the true physical energy using the left and right (N = 2)-centered ensembles, with

and without the ensemble derivative-in-α Hxc corrections. As expected, the exact energy is a piecewise linear function of the electron number.

Removing the derivative-in-α correction induces curvature. Hence, in the language of left/right N-centered ensemble DFT, describing the piece-

wise linearity of the energy consists in modeling the dependence in α of the ensemble Hxc density functional. As clearly shown in Figure 2, no

derivative-in-α correction is needed when the number of electrons is an integer. This is a direct consequence of the scaling relations in Equa-

tions (64) and (65), and the fact that, by construction, summing up the LZ-shifted occupied KS orbital energies gives the exact energy for an inte-

gral number of electrons.[43]

3.3 | Symmetric case

In this section, we investigate the performance of the various approximations (see Table 1) in the symmetric dimer (Δvext/t = 0) for different

values of U/t, as shown in Figure 3. As expected, the GS-Hxc energy is always below the GS-Hx one, because the correlation energy functional is

always negative (and there is no additional derivative-in-α correction). This statement also holds when comparing GS-c with EEXX. Since we use

the highly accurate parametrization of Carrascal et al.[47] for the two-electron GS correlation energy functional, the GS-Hxc and GS-c approxima-

tions are on top of the exact curve for N = 2. This is definitely not the case for the GS-Hx approximation which describes neither the correlation

effects nor the α-dependence. This is the reason why GS-Hx performs so poorly for any N value, especially when U/t is large. Note that it also

gives a wrong energy for N =1. Indeed, even if there is only one electron (and therefore no correlation), the Hx part of the functional is still

α-independent within GS-Hx, and therefore only meaningful when N =2 (ie, α = 0).

Returning to the GS-Hxc and GS-c approximations, they are both exact for N =2. When deviating from this central electron number, the

α-independent correlation functional of Carrascal et al. becomes an approximation, as one cannot expect the correlation energy to be the same

for systems with different numbers of electrons. In contrast, EEXX is exact for N =1, by construction. It is also exact for N = 3, which is due to

the particle-hole symmetry of the model. In the range 1<N <3, EEXX is not exact anymore due to the lack of the α-dependent correlation func-

tional. The effect of the latter on the true physical energy can be directly evaluated by comparing EEXX to the exact curve.

Interestingly, all the approximations give physical energies that vary linearly with N (or α). As shown in Appendix B, this is due to the fact that,

in the symmetric dimer, the left and right (N = 2)-centered ensemble densities are equal to n = 1.

3.4 | Asymmetric case

Let us now investigate the asymmetric case (we choose Δvext/t = 5) for different values of U/t. As shown in Figure 4, unlike in the symmetric case,

approximate energies exhibit curvature in N . In the particular case of GS-Hx and GS-Hxc (which are α-independent functionals), the curvature is

due to the α-dependence in both the noninteracting kinetic energy density functional and the interacting N-centered ensemble density. In the

weakly correlated regime (U/t = 1 and U/Δvext = 1/5) one cannot distinguish the exact curve from the EEXX one, showing that the ensemble

TABLE 1 Density-functional
approximations tested in this work

Acronym E N=2,αf g
Hxc� nð Þ≈ References

GS-Hx EHx(n) Equation (79) with α = 0

GS-Hxc EHx(n) + Ec(n) Carrascal et al[47]

EEXX E N=2,αf g
Hx� nð Þ Equations (79) and (82)

GS-c E N=2,αf g
Hx� nð Þ+ Ec nð Þ Equations (79) and (82), Carrascal et al[47]
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(α-dependent) correlation density functional is equal to 0 in this regime, for any α. This is due to the fact that the ensemble densities reach the

border of their noninteracting v-representability domain when jΔvext j �U and jΔvext j � t. For this particular value of the ensemble density, the

ensemble correlation density functional vanishes. Note that the same behavior occurred in the original N-centered ensemble DFT, for which the

explanation can be found in appendix C.3 of our previous work.[14] Because the v-representability domain of the left N-centered ensemble density

is α-independent, the two-electron (α = 0) correlation density functional is also very close to 0 in between 1≤N ≤2, such that GS-c is now on top

of the exact curve just like EEXX. It also explains why GS-Hxc and GS-Hx give the same true physical energy here but, in contrast to EEXX and

GS-c, they are not exact, thus, highlighting the importance of the (α-dependent) ensemble Hx functional in this regime. For 2≤N ≤3, the two-

electron correlation energy is not equal to zero such that EEXX and GS-Hx differ slightly from GS-c and GS-Hxc, respectively. Hence, GS-c is not

exact anymore, in contrast to EEXX.

As shown in the lower panels of Figure 4, the curvature of the approximate energies becomes more pronounced as U/t increases. As

expected, EEXX is not accurate anymore, especially around N =2, where the correlation energy becomes important. Unlike in the strongly corre-

lated symmetric case, GS-c reproduces essentially the exact energy when N =1 (ie, α = 1). In this case, the left N-centered ensemble density is

actually equal to n N=2,α=1f g
− =1+Δvext=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 +Δv2ext

q
(see Equation A11), thus, leading to

n N=2,α=1f g
− !jΔvext j=t!+∞

2: ð84Þ

Similarly, it can be shown that, for α = 1, the right N-centered ensemble density reads n N =2,α=1f g
+ = 1+Δvext= 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 +Δv2ext

q� �
such that

n N=2,α=1f g
+ !jΔvext j=t!+∞

2−
2
3
: ð85Þ

Thus, we conclude that, for large Δvext/t values, the two ensemble densities reach the border of their noninteracting v-representability domains

(see Equations 78 and 81), such that the exact (α-dependent) ensemble density-functional correlation energy becomes zero. For the left ensemble,

it is clear that the α-independent correlation energy used in the GS-c approximation is also equal to zero, as the border of the v-representability

domain does not depend on α. Therefore, both GS-c and EEXX become exact when N =1. However, when N = 3, GS-c introduces a spurious cor-

relation energy contribution obtained by inserting the right ensemble density value n = 2−2/3 into the two-electron (α = 0) ground-state correla-

tion functional.

F IGURE 3 Exact and approximate energies of the symmetric
(Δvext/t = 0) Hubbard dimer plotted as functions of the electron
number N (or, equivalently, as functions of α). The central number of
electrons is N = 2. Results are shown for U/t = 1, 5, and 10.
Approximations are detailed in Table 1
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4 | CONCLUSIONS AND PERSPECTIVES

So-called left and right variants of N-centered ensemble DFT have been explored. Unlike in the original formulation of the theory,[14] both open

and closed electronic systems can be described. In left/right N-centered ensemble DFT, the key variables are the left/right ensemble density,

which integrates to the central integral number N of electrons, and the (absolute) deviation α of the true electron number from N. Within such a

formalism, the infamous derivative discontinuity is taken care of by the α-dependent N-centered ensemble Hxc functional. Its α-dependence plays

also a key role in reproducing the correct piecewise linearity of the energy, as illustrated in this work with the Hubbard dimer model. What we

learn from this model is that conventional (α-independent) xc functionals are not sufficient for describing open systems in the context of N-

centered ensemble DFT. Developing ab initio α-dependent density-functional approximations is a challenging but necessary task. As a starting

point, a (semi-)local approximation could be obtained, for example, by applying the theory to finite uniform electron gases.[55] Work is currently in

progress in this direction.

Various applications of left/right N-centered ensemble DFT can already be foreseen. Regarding density-functional embedding techniques, it

could be used in place of conventional DFT for grand canonical ensembles when describing open fragments. The practical advantage would come

from the explicit description of derivative discontinuity contributions to the energy through the dependence in α of the Hxc functional. Another

even more appealing feature of the N-centered formalism is the possibility to use a (pure-state) N-electron many-body wavefunction for describ-

ing an open fragment. Even though such an idea seems counterintuitive and difficult to implement, it can be made formally exact if appropriate

density-functional corrections are introduced. The basic idea is to consider the following decomposition:

F N,αf g
� n

Γ̂ N,αf g
�

h i
= F n

Γ̂ N,αf g
�

h i
+ΔF N,αf g

� n
Γ̂ N,αf g
�

h i
, ð86Þ

where n
Γ̂ N,αf g
�

is the left/right N-centered ensemble density (from which the density of the open system can be extracted, according to Equa-

tions 19 and 20), and

ΔF N,αf g
� n½ �= F N,αf g

� n½ �−F N,α=0f g
� n½ �: ð87Þ

F IGURE 4 Exact and approximate energies of the asymmetric
(Δvext/t = 5) Hubbard dimer plotted as functions of the electron
number N (or, equivalently, as functions of α). The central number of
electrons is N = 2. Results are shown for U/t = 1, 5, and 10.
Approximations are detailed in Table 1
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Since F n½ �= F N,α=0f g
� n½ � is the standard Levy's constrained-search functional, the first term on the right-hand side of Equation (86) can be rewrit-

ten as

F n
Γ̂ N,αf g
�

h i
= min

Ψ!n
Γ̂ N,αf g
�

ΨjT̂ + ŴeejΨ
D E

= Ψ N,αf g
� jT̂ + ŴeejΨ N,αf g

�
D E

,

ð88Þ

where Ψ N,αf g
� is an auxiliary many-body wavefunction with density n

Γ̂ N,αf g
�

. Combining Equations (27), (86), and (88) leads to the following hybrid

wavefunction/DFT N-centered ensemble energy expression,

ℰ N,αf g
� = Ψ N,αf g

� jT̂ + Ŵee + V̂extjΨ N,αf g
�

D E
+ΔF N,αf g

� nΨ N,αf g
�

h i
, ð89Þ

from which the energy of an open fragment can be extracted, in principle exactly (see Equations 17 and 18). Further exploration of this formalism

is left for future work.
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APPENDIX A: EXACT ANALYTICAL EXPRESSIONS FOR THE HUBBARD DIMER

In the following, the central number of electrons will be set to N = 2. The ensemble energies read

ℰ N=2,αf g
� Δvextð Þ=min

n
fT N =2,αf g

s� nð Þ+ E N=2,αf g
Hxc� nð Þ +Δvext × 1−nð Þg, ðA1Þ

where the minimizing densities are n N=2,αf g
� Δvextð Þ. Note that

∂

∂α
ℰ N=2,αf g

� Δvextð Þ= ∂T N=2,αf g
s� nð Þ
∂α

+
∂E N=2,αf g

Hxc� nð Þ
∂α

" #
n= nN=2,α

� Δvextð Þ
, ðA2Þ

where the Hx and the noninteracting kinetic density functionals are given in Equations (77), (79), (80) and (82), such that

∂T N=2,αf g
s- nð Þ
∂α

=0, ðA3Þ

∂E N=2,αf g
Hx- nð Þ

∂α
= −

U
2

1+ 1−nð Þ2
� �

, ðA4Þ

∂T N=2,αf g
s + nð Þ
∂α

= −
4t
9

2α−3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α
3 −1

 �2− n−1ð Þ2

q , ðA5Þ
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and

∂E N=2,αf g
Hx+ nð Þ

∂α
=
U
2

1
3
+
9 2α−1ð Þ n−1ð Þ2

2α−3ð Þ3
" #

: ðA6Þ

Plugging Equations (A1) and (A2) into Equations (17) and (18), one recovers the exact analytical expression for the true physical energies in Equa-

tion (76). In this article, we choose to focus on the functional-driven errors only, such that the exact left and right N-centered ensemble densities

are used. The latter are obtained by differentiating the left and right N-centered ensemble energies,

ℰ N=2,αf g
− Δvextð Þ= 1−αð ÞEN=2 Δvextð Þ+2αεH Δvextð Þ ðA7Þ

and

ℰ N=2,αf g
+ Δvextð Þ= 1−αð ÞEN =2 Δvextð Þ + 2α

3
εH Δvextð Þ+Uð Þ, ðA8Þ

with respect to Δvext, where εH Δvextð Þ= − 1=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 +Δv2ext

q
is the HOMO energy. According to the Hellmann-Feynman theorem,

∂ℰ N=2,αf g
� Δvextð Þ
∂Δvext

=
1
2
Tr Γ̂ N=2,αf g

� n̂1− n̂0ð Þ
h i

=
1
2
Tr Γ̂ N=2,αf g

� N̂−2n̂0
� �h i

=
N
2
−n N=2,αf g

� Δvextð Þ,

ðA9Þ

thus, leading to the following expressions for the left and right N-centered densities:

n N =2,αf g
� Δvextð Þ=1− ∂ℰ N=2,αf g

� Δvextð Þ
∂Δvext

: ðA10Þ

Inserting Equations (A7) and (A8) into the latter expression leads to

n N=2,αf g
− Δvextð Þ=1−2α

∂εH Δvextð Þ
∂Δvext

− 1−αð Þ∂E
N=2 Δvextð Þ
∂Δvext

, ðA11Þ

and

n N=2,αf g
+ Δvextð Þ=1− 2α

3
∂εH Δvextð Þ
∂Δvext

− 1−αð Þ∂E
N=2 Δvextð Þ
∂Δvext

, ðA12Þ

where

∂εH Δvð Þ
∂Δv

= −
Δv

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 +Δv2

p , ðA13Þ

The expressions for the ground-state energy of the two-electron Hubbard dimer and its derivatives are given in the appendix of Deur

et al.[48]

APPENDIX B: PIECEWISE LINEARITY IN THE SYMMETRIC CASE

In this appendix, we derive the analytical formulas for the approximate grand canonical energies in the symmetric case (Δv = 0). Let us start from

the expressions of the left and right ensemble energies
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ℰ N=2,αf g
− Δvð Þ= 1−αð ÞEN =2 Δvð Þ+2αEN =1 Δvð Þ ðB1Þ

ℰ N=2,αf g
+ Δvð Þ= 1−αð ÞEN=2 Δvð Þ+ 2α

3
EN=3 Δvð Þ, ðB2Þ

where EN = 1(Δv = 0) = − t, EN = 3(Δv = 0) = U − t and

EN=2 Δv = 0ð Þ= 1
2

U−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
: ðB3Þ

Note that ℰ N,αf g
� Δv =0ð Þ= F N,αf g

� n=1ð Þ, thus, leading to,

F N =2,αf g
− n=1ð Þ= 1−α

2
U−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
−2αt, ðB4Þ

F N=2,αf g
+ n= 1ð Þ= 1−α

2
U−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
+
2α
3

U−tð Þ: ðB5Þ

As the noninteracting kinetic energy functionals read

T N =2,αf g
s- n=1ð Þ= −2t, ðB6Þ

T N=2,αf g
s + n=1ð Þ= −2t 1−

2α
3

� �
, ðB7Þ

one obtains the following expression for the left and right Hxc energy functionals:

E N =2,αf g
Hxc- n=1ð Þ= 1−α

2
U−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p
+ 4t

� �
, ðB8Þ

E N=2,αf g
Hxc+ n=1ð Þ= 2

3
αU+ E N=2,αf g

Hxc- n=1ð Þ: ðB9Þ

The grand canonical energies are then given by

E N =2−αð Þ= 2−αð Þ
2

E N,αf g
Hxc- n=1ð Þ−2t

� �
−
α 1−αð Þ

2

∂E N,αf g
Hxc- n= 1ð Þ

∂α
ðB10Þ

E N =2 + αð Þ= −2t 1−
α

2

� �
+ 1 +

α

2

� �
E N,αf g
Hxc+ n=1ð Þ+ α 1−αð Þ

2

∂E N,αf g
Hxc+ n=1ð Þ

∂α
ðB11Þ

By realizing that

E N=2,αf g
Hxc- n=1ð Þ= α−1ð Þ∂E

N=2,αf g
Hxc- n=1ð Þ

∂α
, ðB12Þ

E N=2,αf g
Hxc+ n= 1ð Þ= α−1ð Þ∂E

N=2,αf g
Hxc+ n=1ð Þ

∂α
+
2
3
U, ðB13Þ

where ∂E N =2,αf g
Hxc� n=1ð Þ=∂α is constant (α-independent), it is straightforward to see that all quadratic terms (with respect to α) in Equations (B10)

and (B11) cancel out as expected. The slopes of the true physical energies are, according to Equations (12) and (B3),

∂E N =2�αð Þ
∂α

=
1
2

�U−2t+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
: ðB14Þ

Turning to the different approximations considered in Section 3 of this article, we follow the same reasoning and end up with the following con-

stant slopes for Δv = 0 for GS-Hx,

20 of 21 SENJEAN AND FROMAGER



∂E N =2�αð Þ
∂α

= t�U
4
, ðB15Þ

for EEXX,

∂E N =2�αð Þ
∂α

= t�U
2
, ðB16Þ

for GS-Hxc,

∂E N =2−αð Þ
∂α

= −
1
4

U−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
, ðB17Þ

∂E N =2+ αð Þ
∂α

=2t+
1
4

U−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p� �
, ðB18Þ

and finally for GS-c,

∂E N =2−αð Þ
∂α

= −
U
2
+
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p
, ðB19Þ

∂E N =2+ αð Þ
∂α

= 2t+
U
2
−
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + 16t2

p
: ðB20Þ

Note that in the case N =2−α, the slope with respect to N in Figures 3 and 4 are the same as the above but with opposite sign. As readily seen

from Equations (B14) and (B17) in the atomic limit t!0, the energy of the open system within GS-Hxc has the same slope (equal to zero) as the

exact one for 1≤N ≤2. As GS-Hxc is exact at N =2, GS-Hxc is also exact in the range 1≤N ≤2 in the atomic limit. Another interesting behavior,

in the symmetric case and in the atomic limit, is that none of the approximations considered in this article can describe the derivative discontinuity

of the grand canonical energy when crossing N =N=2. Indeed, all the approximations feature a constant slope in between 1≤N ≤3, making no

difference between the ionization potential and the electronic affinity, and thus, no fundamental gap. This is obviously not correct, as the exact

fundamental gap is equal to U in this limit. Therefore, in order to reproduce the correct behavior, weight-dependent correlation functionals are

required. Such developments are left for future work.

SENJEAN AND FROMAGER 21 of 21


	N-centered ensemble density-functional theory for open systems
	1  INTRODUCTION
	2  THEORY
	2.1  N-centered ensembles
	2.2  Left and right N-centered ensembles
	2.3  Left/right N-centered ensemble DFT
	2.4  Reformulation of the IP/EA theorem
	2.5  Left or right?
	2.6  Density-driven correlations in N-centered ensembles
	2.7  Comparison with conventional DFT for open systems

	3  APPLICATION TO THE HUBBARD DIMER
	3.1  Hamiltonian and density functionals
	3.2  Influence of the ensemble derivative-in-α Hxc density functional
	3.3  Symmetric case
	3.4  Asymmetric case

	4  CONCLUSIONS AND PERSPECTIVES
	ACKNOWLEDGMENT
	  AUTHOR CONTRIBUTIONS
	REFERENCES


