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Homotopy equivalence in unbounded KK-theory

Koen van den Dungen and Bram Mesland

We propose a new notion of unbounded KK-cycle, mildly generalizing unbounded
Kasparov modules, for which the direct sum is well-defined. To a pair (A, B) of
σ -unital C∗-algebras, we can then associate a semigroup UKK(A, B) of homo-
topy equivalence classes of unbounded cycles, and we prove that this semigroup
is in fact an abelian group. In case A is separable, our group UKK(A, B) is iso-
morphic to Kasparov’s KK-theory group KK(A, B) via the bounded transform.
We also discuss various notions of degenerate cycles, and we prove that the
homotopy relation on unbounded cycles coincides with the relation generated by
operator-homotopies and addition of degenerate cycles.

Introduction

Given two (σ -unital, Z2-graded) C∗-algebras A and B, Kasparov [1980] defined
the abelian group KK(A, B) as a set of homotopy equivalence classes of Kasparov
A-B-modules, equipped with the direct sum. These groups simultaneously gener-
alize K -theory (if A = C) and K -homology (if B = C).

It was shown by Baaj and Julg that every class in KK(A, B) can also be rep-
resented by an unbounded Kasparov module. Many examples of elements in KK-
theory which arise from geometric situations are most naturally described in the
unbounded picture. The prototypical example is a first-order elliptic differential
operator (e.g., the Dirac operator, signature operator, or de Rham operator) on a
complete Riemannian manifold. The unbounded picture is also more suitable in
the context of nonsmooth manifolds. Indeed, while on Lipschitz manifolds there is
no pseudodifferential calculus, it makes perfect sense to consider first-order differ-
ential operators and thus to construct unbounded Kasparov modules on Lipschitz
manifolds (see, e.g., [Teleman 1983; Hilsum 1985; 1989]). Furthermore, the Kas-
parov product is often easier to describe in the unbounded picture. In fact, under
suitable assumptions, the Kasparov product of two unbounded Kasparov modules
can be explicitly constructed [Mesland 2014; Kaad and Lesch 2013; Brain et al.
2016; Mesland and Rennie 2016]. These advantages of the unbounded picture of
KK-theory motivate the following question.
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Question. Can Kasparov’s KK-groups equivalently be defined as the set of homo-
topy equivalence classes of unbounded Kasparov modules?

A similar question is considered in [Kaad 2019], where it is shown that Kas-
parov’s KK-groups can be obtained using the (a priori) weaker equivalence relation
of stable homotopy of unbounded Kasparov modules. In the present paper we will
provide a positive answer to the above question. Moreover, we will prove that the
stable homotopy relation of [Kaad 2019] in fact coincides with ordinary homotopy
equivalence.

The first problem one encounters when trying to answer the above question, is
that the direct sum of unbounded Kasparov modules is not well-defined. To resolve
this issue, we slightly weaken the standard definition of unbounded Kasparov mod-
ules in such a way that the set 91(A, B) of such unbounded A-B-cycles (E,D)

becomes closed under the direct sum operation. By considering the natural notion
of homotopy equivalence on 91(A, B) (completely analogous to homotopies of
bounded Kasparov modules), we thus obtain a semigroup UKK(A, B) given by the
set of homotopy equivalence classes of 91(A, B). We will prove that UKK(A, B)
is in fact a group.

To answer the aforementioned question, we must show that the group UKK(A, B)
is isomorphic to Kasparov’s KK-theory group KK(A, B). The results of Baaj and
Julg already show that the bounded transform

(E,D) 7→ (E, FD := D(1+D2)−1/2)

induces a surjective homomorphism UKK(A, B)→ KK(A, B). This is proven by
explicitly constructing an unbounded lift for any bounded Kasparov module.

The difficulty is to prove injectivity of the bounded transform. To be precise,
given unbounded cycles (E0,D0) and (E1,D1) and a homotopy (E, F) between
their bounded transforms, we can use the lifting results from Baaj and Julg to lift
(E, F) to an unbounded homotopy (E,S). However, it is in general not clear
how the endpoints of (E,S) are related to (E j ,D j ), and the main challenge is
therefore to construct (E,S) in such a way that its endpoints are in fact homotopic
to (E j ,D j ).

For this purpose, we describe a general notion of functional dampening, which
is the transformation D 7→ f (D) for suitable “dampening functions” f : R→ R

which blow up towards infinity at a slow enough rate (such that f (x)(1+ x2)−1/2

vanishes at infinity) and which are compatible with the Lipschitz structure obtained
from D. We prove that (E, f (D)) is operator-homotopic to (E,D) for any damp-
ening function f , generalizing a result in [Kaad 2019].

With a careful adaptation of the lifting construction of [Baaj and Julg 1983;
Kucerovsky 2000], using ideas from [Mesland and Rennie 2016], we then prove
our first main result:
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Theorem A. If A is separable, then any homotopy (E, F) between (E0, FD0)

and (E1, FD1) can be lifted to an unbounded Kasparov A-C([0, 1], B)-module
(E,S) such that, for j = 0, 1, the endpoints ev j (E,S) are unitarily equivalent
to (E j , f j (D j )) for dampening functions f j : R→ R.

As mentioned above, functional dampening provides an operator-homotopy be-
tween (E j ,D j ) and (E j , f j (D j )), and thus we obtain a positive answer to the
above question:

Theorem B. If A is separable, then the bounded transform induces an isomor-
phism

UKK(A, B)
'
−→ KK(A, B).

We continue to provide an alternative description of the homotopy equivalence
relation at the unbounded level. In bounded KK-theory, it is well-known that the
homotopy relation coincides with the relation obtained from unitary equivalences,
operator-homotopies, and addition of degenerate modules. We will prove an anal-
ogous statement in unbounded KK-theory. We consider two notions of degenerate
cycles, namely spectrally degenerate cycles (for which D is invertible and D|D|−1

commutes with A) and algebraically degenerate cycles (for which A is represented
trivially). We then consider the equivalence relation ∼oh+d obtained from unitary
equivalences, operator-homotopies, and addition of algebraically and spectrally
degenerate cycles. Our next main result then reads:

Theorem C. Degenerate cycles are null-homotopic. Furthermore, if A is separa-
ble, then the homotopy equivalence relation ∼h on 91(A, B) coincides with the
equivalence relation ∼oh+d .

We prove the first statement by explicitly constructing a homotopy between
degenerate cycles and the zero cycle. The second statement is then obtained by
combining [Kasparov 1980, §6, Theorem 1] with Theorem A.

Let us briefly compare our work with the existing literature on unbounded Kas-
parov modules. First, we note that, in the usual approach to unbounded KK-theory,
it is necessary to make a fixed choice of a dense ∗-subalgebra A⊂ A, and to con-
sider only those unbounded Kasparov A-B-modules (E,D) for which A⊂ Lip(D),
to ensure that the direct sum is well-defined. This means that any equivalence
relation on unbounded Kasparov A-B-modules only applies to those unbounded
Kasparov modules which are defined using the same choice of A. Thus, it is im-
possible to compare unbounded Kasparov modules which are defined with respect
to different choices of A. One major advantage of our approach is that, instead
of fixing a choice of ∗-subalgebra A, we consider the slightly weaker notion of
unbounded cycles, which only requires that A ⊂ Lip(D). For such cycles the direct
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sum is well-defined in full generality. In particular, the notion of homotopy equiva-
lence can then be used to compare arbitrary unbounded A-B-cycles. Nevertheless,
we will show that Theorems A–C remain valid if we do fix a countably generated
dense ∗-subalgebra A⊂ A, and replace UKK(A, B) by the semigroup UKK(A, B)
given by homotopy equivalence classes of all those unbounded Kasparov modules
(π, E,D) for which π(A)⊂ Lip(D).

Other equivalence relations on unbounded Kasparov modules have already been
considered in the literature, namely the bordism relation [Deeley et al. 2018] and
the stable homotopy relation [Kaad 2019]. Both of these approaches rely on a fixed
choice of a dense ∗-subalgebra A ⊂ A. Let us discuss the relationships between
homotopy equivalence, stable homotopy equivalence, and bordism. The paper
[Deeley et al. 2018] studies a notion of bordism of unbounded Kasparov modules
due to Hilsum [2010], and proves that there is a surjective homomorphism from
the corresponding bordism group �(A, B) to Kasparov’s KK-group KK(A, B). In
particular, from Theorem B we obtain a surjective homomorphism to our UKK-
group, which means that the bordism relation is stronger than the homotopy rela-
tion. However, it remains an open question if these relations coincide or not. One
technical tool appearing in [Deeley et al. 2018] is the notion of weakly degenerate
module, which is shown to be null-bordant. As a spin-off from our study of Clif-
ford symmetric modules, we give a direct proof in Lemma 4.15 that any weakly
degenerate cycle is also null-homotopic (without assuming A to be separable).

After the appearance of [Deeley et al. 2018] as a preprint in 2015, there has been
increased interest within the community regarding equivalence relations on un-
bounded Kasparov modules. Discussions between the authors and Kaad in Novem-
ber 2018 gave the problem new impetus. The subsequent paper [Kaad 2019] pro-
vides a first study of homotopies of unbounded Kasparov modules. The work in the
present paper was initiated independently and the methods developed here are com-
plementary to those in [Kaad 2019]. The main technical results, our Theorem A
and [Kaad 2019, Proposition 6.2], are very distinct in spirit and lend themselves to
different types of applications. Our proofs of Theorems A–C are independent of
the results from [Kaad 2019]. Moreover, it should be noted that our Theorem B is
stronger than the main result in [Kaad 2019] in the sense we now explain.

In [Kaad 2019], a countably generated dense ∗-subalgebra A⊂ A is fixed and
the notion of stable homotopy of unbounded Kasparov A-B-modules is considered.
Stable homotopy is a weakening of the homotopy equivalence relation obtained
from homotopy equivalences and addition of “spectrally decomposable” modules.
It is then proved that the resulting set of equivalence classes of unbounded Kasparov
A-B-modules forms an abelian group which (if A is separable) is isomorphic to
Kasparov’s KK-group. In particular, this group does not depend on the choice of
the dense ∗-subalgebra A⊂ A (up to isomorphism).
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As described above, we avoid in the present paper the need to fix a countably
generated dense ∗-subalgebra A⊂ A in the definition of the unbounded KK-group.
Even more importantly, thanks to our new approach towards lifting a homotopy
in Theorem A (adapting the more refined lifting methods of [Kucerovsky 2000;
Mesland and Rennie 2016]), we overcome the need to weaken the homotopy equiv-
alence relation by addition of spectrally decomposable modules. Furthermore, we
will also show that, in fact, adding spectrally decomposable modules does not
weaken the homotopy equivalence relation after all. Indeed, any spectrally decom-
posable module is just a bounded perturbation of a spectrally degenerate module.
Consequently, it follows from Theorem C that any spectrally decomposable cycle
is null-homotopic, so that the relation of stable homotopy equivalence coincides
with homotopy equivalence. We point out that, combined with the main results
from [Kaad 2019], this provides a second and independent proof of Theorem B.

Finally, let us briefly summarize the layout of this paper. We start in Section 1
with our definition of unbounded cycles, and we show that the direct sum is well-
defined. In Sections 1A and 1B we recall the lifting construction from [Baaj
and Julg 1983], closely following the arguments of [Mesland and Rennie 2016;
Kucerovsky 2000]. We collect some basic facts regarding regular self-adjoint op-
erators in Section 1C.

In Section 2A we introduce the homotopy relation (as well as the special case of
operator-homotopies), and construct the semigroup UKK(A, B). In Section 2B we
show that the notion of functional dampening can be implemented via an operator-
homotopy. In Section 2C we construct the lift of a homotopy and prove Theorem A
(see Theorem 2.11). Combined with the operator-homotopy obtained from func-
tional dampening, we then obtain Theorem B (see Theorem 2.12).

We introduce our notions of algebraically and spectrally degenerate cycles in
Section 3, and we prove that degenerate cycles are null-homotopic (Lemma 3.2
and Proposition 3.7). In Section 3C we then show that any homotopy can be imple-
mented as an operator-homotopy modulo addition of degenerate cycles (Theorem
3.10), which completes the proof of Theorem C.

We give a direct proof that UKK(A, B) is a group (and not just a semigroup)
in Section 4. In the case where A is separable, this follows immediately from
the isomorphism UKK(A, B) ' KK(A, B), but our direct proof works for any
pair (A, B) of σ -unital C∗-algebras. The proof relies on the observation that
the presence of certain symmetries induces homotopical triviality. After a brief
discussion of Lipschitz regular cycles in Section 4A, we introduce the notion of
spectrally symmetric cycles in Section 4B. These cycles are a mild generalization
of the notion of spectrally decomposable modules introduced in [Kaad 2019]. We
prove that any spectrally symmetric cycle is a bounded perturbation of a spectrally
degenerate cycle, and therefore null-homotopic. In Section 4C we introduce the
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notion of Clifford symmetric cycles, which are elements of 91(A, B) which extend
to 91(A ⊗̂ Cl1, B). We prove that every Clifford symmetric cycle is operator-
homotopic to a spectrally symmetric cycle and therefore null-homotopic. The
proof is easily generalized to show that in fact every weakly degenerate cycle is
null-homotopic. We exploit such Clifford symmetries to prove in Section 4D that
the semigroup UKK(A, B) is in fact a group.

Finally, the Appendix contains some basic facts regarding localizations of Hilbert
C∗-modules and their dense submodules.

Notation and conventions. Let A and B denote σ -unital Z2-graded C∗-algebras.
By an approximate unit for A we will always mean an even, positive, increasing,
and contractive approximate unit for the C∗-algebra A. For elements a, b ∈ A we
denote by [a, b] the graded commutator. If a and b are homogeneous, we denote by
deg a, deg b ∈ Z2 their degree and [a, b] := ab− (−1)deg a deg bba. For general a, b
we extend the graded commutator by linearity. Let E be a Z2-graded Hilbert C∗-
module over B, or Hilbert B-module for short (for definitions and further details
regarding Hilbert C∗-modules, we refer to the books [Lance 1995; Blackadar
1998]). Throughout this article, we will assume E is countably generated. We
write End∗B(E) for the adjointable operators on E , and End0

B(E) for the compact
operators on E . For any subset W ⊂ End∗B(E), we write W for the closure of W
with respect to the operator-norm of End∗B(E).

1. Unbounded cycles

Kasparov [1980] defined the abelian group KK(A, B) as a set of homotopy equiv-
alence classes of Kasparov A-B-modules. We briefly recall the main definitions
(more details can be found in, e.g., [Blackadar 1998, §17]).

A (bounded) Kasparov A-B-module is a triple (π, E, F) comprising a Z2-graded,
countably generated, right Hilbert B-module E , a (Z2-graded) ∗-homomorphism
π : A→ End∗B(E), and an odd adjointable endomorphism F ∈ End∗B(E) such that,
for all a ∈ A,

π(a)(F − F∗), [F, π(a)], π(a)(F2
− 1) ∈ End0

B(E).

Two Kasparov A-B-modules (π0, E0, F0) and (π1, E1, F1) are called unitarily
equivalent (denoted with ') if there exists an even unitary in HomB(E0, E1) in-
tertwining the π j and F j (for j = 0, 1). A homotopy between (π0, E0, F0) and
(π1, E1, F1) is given by a Kasparov A-C([0, 1], B)-module (π̃, Ẽ, F̃) such that

ev j (π̃, Ẽ, F̃)' (π j , E j , F j ), j = 0, 1.

A homotopy (π̃, Ẽ, F̃) is called an operator-homotopy if there exists a Hilbert
B-module E with a representation π : A → End∗B(E) such that Ẽ equals the
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Hilbert C([0, 1], B)-module C([0, 1], E) with the natural representation π̃ of A
on C([0, 1], E) induced from π , and if F̃ is given by a norm-continuous family
{Ft }t∈[0,1]. A module (π, E, F) is called degenerate if for all a ∈ A we have

π(a)(F − F∗)= [F, π(a)] = π(a)(F2
− 1)= 0.

The KK-theory KK(A, B) of A and B is defined as the set of homotopy equiva-
lence classes of (bounded) Kasparov A-B-modules. Since homotopy equivalence
respects direct sums, the direct sum of Kasparov A-B-modules induces a (commu-
tative and associative) binary operation (“addition”) on the elements of KK(A, B)
such that KK(A, B) is in fact an abelian group [Kasparov 1980, §4, Theorem 1].

In this paper we will give a completely analogous description of KK-theory,
based instead on unbounded Kasparov modules [Baaj and Julg 1983]. Recall that
a closed densely defined symmetric operator D : Dom D→ E is self-adjoint and
regular if the operators D± i : Dom D→ E have dense range. We refer to [Lance
1995, Chapters 9 and 10] for details on regular operators on Hilbert modules. For
a self-adjoint regular operator D : Dom D→ E , we write

Lip(D) := {T ∈ End∗B(E) : T (Dom D)⊂ Dom D and [D, T ] ∈ End∗B(E)}.

It is worth noting that, because D is densely defined, Lip(D)∩End0
B(E) is equal to

End0
B(E). However, in general Lip(D) is not equal to End∗B(E). We also introduce

Lip0(D) := {T ∈ Lip(D) : T (1+D2)−1/2, T ∗(1+D2)−1/2
∈ End0

B(E)}.

We note that Lip0(D) is a ∗-subalgebra of End∗B(E). We introduce the following
relaxation of the notion of unbounded Kasparov module.

Definition 1.1. An unbounded A-B-cycle (π, E,D) consists of a Z2-graded, count-
ably generated Hilbert B-module E , a Z2-graded ∗-homomorphism π : A →
EndB(E), and an odd regular self-adjoint operator D on E , such that

π(A)⊂ Lip0(D).

The set of all unbounded A-B-cycles is denoted 91(A, B). We will often suppress
the representation π in our notation and simply write (E,D) instead of (π, E,D).

Remark 1.2. (1) It follows immediately from the definition that π(a)(1+D2)−1/2
∈

End0
B(E) for any a ∈ A, i.e., D has “A-locally compact” resolvents.

(2) We point out that if π(A) ⊂ End0
B(E) (i.e., A is represented as compact op-

erators), then the condition π(A)⊂ Lip0(D) is automatically satisfied, since
Lip(D)∩End0

B(E)⊂ Lip0(D) is always dense in End0
B(E).

Remark 1.3. We use the term unbounded A-B-cycle since our definition is differ-
ent from the usual definition of an unbounded Kasparov module, originally given
in [Baaj and Julg 1983]. An unbounded A-B-cycle (π, E,D) is an unbounded Kas-
parov module if there exists a dense ∗-subalgebra A⊂ A such that π(A)⊂Lip0(D).
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To avoid confusion we often refer to such cycles as ordinary unbounded Kasparov
modules.

Our main reason for relaxing this definition is the following simple lemma.

Lemma 1.4. The direct sum of unbounded A-B-cycles is well-defined, and there-
fore 91(A, B) is a semigroup.

Proof. Given unbounded A-B-cycles (πi , Ei ,Di ), i = 0, 1, we have Lip0(D0)⊕

Lip0(D1)⊂ Lip0(D0⊕D1) and πi (A)⊂ Lip0(Di ). It follows that

(π0⊕π1)(A)⊂ Lip0(D0)⊕Lip0(D1)⊂ Lip0(D0⊕D1),

and therefore (π0⊕π1, E0⊕ E1,D0⊕D1) is also an unbounded A-B-cycle. �

Remark 1.5. Note that if there are dense ∗-subalgebras Ai ⊂ A such that πi (Ai )⊂

Lip(Di ), it may not be possible to find a dense ∗-subalgebra A⊂ A such that

(π0⊕π1)(A)⊂ Lip0(D0⊕D1).

In fact, even if E0 = E1 and π0 = π1 = π , the intersection

Lip(D0)∩Lip(D1)∩π(A)

might not be dense in π(A) (for an example, see for instance [Deeley et al. 2018,
Appendix A]). Hence, the direct sum is not well-defined on ordinary unbounded
Kasparov modules. The usual way around this problem is to fix a dense ∗-subalgebra
A ⊂ A, and to consider only those unbounded Kasparov modules (π, E,D) for
which π(A)⊂ Lip0(D). With our relaxed condition π(A)⊂ Lip0(D), we avoid the
need to make such a choice for A.

Lemma 1.6. Let (π, E,D) be an unbounded A-B-cycle, and suppose that A is sep-
arable. Then there exists a countable subset W ⊂ Lip0(D) consisting of products of
elements in Lip0(D) (i.e., each w ∈W is of the form w= T1T2 for T1, T2 ∈Lip0(D))
such that π(A)⊂W .

Proof. Since A is separable, and since products are dense in any C∗-algebra, we
may pick a countable dense subset of products {a j b j } j∈N ⊂ A. Since π(A) ⊂
Lip0(D), there exist sequences {v j,k}k∈N, {w j,k}k∈N⊂Lip0(D) such that, for each j ,

lim
k
‖a j − v j,k‖ = lim

k
‖b j −w j,k‖ = 0.

The statement then holds with W := {v j,kw j,k} j,k∈N. �

Baaj and Julg proved for any ordinary unbounded Kasparov module that the
bounded transform D 7→ FD := D(1+D2)−1/2 yields a bounded Kasparov module
and hence a KK-class. Before we continue, we need to show that this still holds
for our relaxed definition of unbounded cycles.



HOMOTOPY EQUIVALENCE IN UNBOUNDED KK-THEORY 509

Proposition 1.7 (cf. [Baaj and Julg 1983]). If (π, E,D) is an unbounded A-B-
cycle (as in Definition 1.1), then the bounded transform (π, E, FD) is a bounded
Kasparov module and hence defines an element in KK(A, B).

Proof. As remarked in [Blackadar 1998, Proposition 17.11.3], it suffices to show
that [FD, a]b is compact for any a, b ∈ A. By Definition 1.1, there is a sequence
Tn ∈ Lip0(D) such that Tn→ a in norm, and then [FD, Tn]b→[FD, a]b in norm as
well. It thus suffices to show that [F, T ]b ∈ End0

B(E) for b ∈ A and T ∈ Lip0(D).
Compactness of [F, T ]b follows from the careful argument provided in the proof
of [Carey and Phillips 1998, Proposition 2.4], after multiplication with b from the
right. �

1A. The algebras CF and JF . Let E be a countably generated Hilbert B-module.
The following result is well-known, and follows from the proof of [Blackadar 1998,
Proposition 13.6.1] (which extends from h ∈ End0

B(E) to arbitrary h ∈ End∗B(E)).

Lemma 1.8 (cf. [Blackadar 1998, Proposition 13.6.1]). Let h ∈ End∗B(E). Then
hE is dense in E if and only if h ·End0

B(E) is dense in End0
B(E).

For a bounded Kasparov A-B-module (E, F) with F = F∗ and F2
≤ 1, we

define

CF := C∗(1− F2)+ FC∗(1− F2), JF := End0
B(E)+CF .

The C∗-algebra JF was introduced in [Mesland and Rennie 2016, Lemma 4.5], and
plays an important role in the construction of the (unbounded) lift of a (bounded)
Kasparov module.

Lemma 1.9. The space CF is a separable C∗-algebra, and 1− F2 is a strictly
positive element in CF .

Proof. It is explained in the proof of [Mesland and Rennie 2016, Lemma 4.5]
that CF is a separable C∗-algebra. By assumption, the spectrum spec(F) of F is
contained in [−1, 1], and by construction CF can be identified with a ∗-subalgebra
of C0(spec(F) \ {±1}). Under this identification, the element c = 1 − F2 cor-
responds to the function x 7→ 1− x2. In particular, we have c(t) 6= 0 for each
t ∈ spec(F)\{±1}. Since CF also separates points of spec(F)\{±1} (the elements
1− F2 and F(1− F2) suffice), the Stone–Weierstrass theorem implies that CF '

C0(spec(F) \ {±1}). Since c is a strictly positive function on C0(spec(F) \ {±1}),
it follows that 1− F2 is a strictly positive element in CF . �

Lemma 1.10. The space JF is a σ -unital C∗-algebra, and we have the inclusions

AJF , JF A, F JF , JF F ⊂ JF .

Furthermore, if k ∈End0
B(E) is a positive operator such that k+(1−F2) has dense

range in E , then k+ (1− F2) is strictly positive in JF .
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Proof. As E is countably generated, End0
B(E) is a σ -unital C∗-algebra (see, e.g.,

[Lance 1995, Proposition 6.7]). Since End0
B(E) is an ideal in End∗B(E), it follows

from [Kasparov 1980, §3, Lemma 2] that JF is also a σ -unital C∗-algebra. The
inclusions F JF , JF F ⊂ JF are immediate, and the inclusions AJF , JF A ⊂ JF

follow because a(1− F2) and [F, a] are compact for all a ∈ A.
Let k ∈ End0

B(E) be a positive operator such that h := k+ (1− F2) has dense
range in E . Consider an element l+c ∈ JF where l ∈ End0

B(E) and c ∈CF , and let
ε > 0. Since 1− F2 is strictly positive in CF by Lemma 1.9, there exists b ∈ CF

such that ‖(1− F2)b− c‖< ε. Moreover, since l − kb is compact, we know from
Lemma 1.8 that there exists a ∈ End0

B(E) such that ‖ha− (l − kb)‖< ε. Hence,

‖h(a+ b)− (l + c)‖ ≤ ‖ha− (l − kb)‖+‖(1− F2)b− c‖< 2ε,

which proves that h JF is dense in JF . �

1B. The lifting construction. Since our definition of unbounded cycle is more
general than the usual definition of unbounded Kasparov module, it of course re-
mains true that the bounded transform is surjective [Baaj and Julg 1983]. The
way to prove this surjectivity is by showing that every bounded Kasparov module
(E, F) can be lifted to an (ordinary) unbounded Kasparov module (E,D) such
that FD is operator-homotopic to F . Because we will make essential use of the
technical subtleties of this lifting procedure in the sequel, we present the proof here,
closely following the arguments of [Mesland and Rennie 2016; Kucerovsky 2000].
Recall that all approximate units are assumed to be even, positive, increasing, and
contractive for the C∗-algebra norm.

Lemma 1.11 [Mesland and Rennie 2016, proof of Theorem 1.25]. Let C be a
commutative separable C∗-algebra, {c j } j∈N ⊂ C a total subset, and {un}n∈N a
countable commutative approximate unit for C. If for some 0 < ε < 1, dn :=

un+1− un satisfies

‖dnc j‖ ≤ ε
2n for all j ≤ n,

then the series l−1
:=
∑
ε−ndn defines an unbounded multiplier on C such that

l := (l−1)−1
∈ C is strictly positive.

Proof. The series l−1c j :=
∑

n ε
−ndnc j is convergent for all j by our assumption

that ‖dnc j‖ ≤ ε
2n for all n ≥ j , so l−1 is a densely defined unbounded multiplier.

The partial sums
∑k

n=0 ε
−ndn are elements in the commutative C∗-algebra C '

C0(Y ), where Y = Spec C . Under this isomorphism, the approximate unit un

is identified with a sequence of functions converging pointwise to 1. For fixed
t ∈ (0, 1) set

Yk := {y ∈ Y : uk(y)≥ t},
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which gives an increasing sequence of compact sets Yk ⊂ Yk+1 with
⋃
∞

k=0 Yk = Y .
Let y ∈ Y \ Yk and m ≥ k. We have the estimates

∞∑
n=0

ε−ndn(y)≥
n=m∑
n=k

ε−ndn(y)+
∞∑

n=m+1

ε−ndn(y)

≥ ε−k(um+1− uk)(y)+
∞∑

n=m+1

ε−ndn(y)

≥ ε−k(um+1(y)− t)+
∞∑

n=m+1

ε−ndn(y)→ ε−k(1− t),

as m→∞. This shows that l−1 is given by a function whose reciprocal is a strictly
positive function in C0(Y ), so this defines a strictly positive element l ∈ C . �

Proposition 1.12. Let (E, F) be a bounded Kasparov A-B-module satisfying F∗=
F and F2

≤ 1. Given a countable dense subset A ⊂ A, there exists a positive
operator l ∈ JF with dense range in E such that

(1) the (closure of the) operator D := 1
2(Fl−1

+ l−1 F) makes (E,D) into an
ordinary unbounded Kasparov A-B-module with A⊂ Lip0(D), and

(2) F and FD are operator-homotopic.

Moreover, if F2
= 1, we can ensure that l commutes with F and that (1+D2)−1/2

is compact.

Proof. Pick an even strictly positive element h∈ JF . Since we have (see Lemma 1.10)

AJF , JF A, F JF , JF F ⊂ JF ,

there exists by [Akemann and Pedersen 1977, Theorem 3.2] an approximate unit
un ∈ C∗(h) for JF that is quasicentral for A and F . Let {ai }i∈N be an enumeration
of A, choose a countable dense subset {ci }i∈N⊂C∗(h), and fix a choice of 0<ε< 1.
By selecting a suitable subsequence of un , we can furthermore achieve that, for
each n ∈ N, dn := un+1− un satisfies

(a) ‖dnci‖ ≤ ε
2n for all i ≤ n,

(b) ‖dn(1− F2)1/4‖ ≤ ε2n ,

(c) ‖dn[F, ai ]‖ ≤ ε
2n for all i ≤ n,

(d) ‖[dn, ai ]‖ ≤ ε
2n for all i ≤ n, and

(e) ‖[dn, F]‖ ≤ ε2n .

Here properties (a)–(c) follow because un is an approximate unit for JF (and ci ,
(1− F2)1/4, and [F, ai ] all lie in JF ), and properties (d)–(e) follow because un is
quasicentral for A and F . By property (a) and Lemma 1.11 we obtain a strictly
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positive element l ∈ C∗(h) such that l−1
=
∑
ε−ndn . Since l JF ⊃ lC∗(h)JF ,

lC∗(h) is dense in C∗(h), and C∗(h)JF is dense in JF , it follows that l JF is dense
in JF and therefore l is strictly positive in JF . In particular, l has dense range
in E . From properties (b)–(e) it follows that l ∈ C∗(h)⊂ JF satisfies [Mesland and
Rennie 2016, Definition 4.6]. Then by [Mesland and Rennie 2016, Theorem 4.7;
Kucerovsky 2000, Lemma 2.2] the (closure of the) operator

D := 1
2(Fl−1

+ l−1 F)

is a densely defined and regular self-adjoint operator on E , and (E,D) is an or-
dinary unbounded Kasparov A-B-module with A ⊂ Lip0(D). Furthermore, the
proof of [Mesland and Rennie 2016, Theorem 4.7] (combined with [Blackadar
1998, Proposition 17.2.7]) shows that FD is operator-homotopic to F .

For the final statement, suppose F2
= 1, so that JF = End0

B(E). For any positive
element k ∈ JF with dense range, we can consider h := k+ Fk F ≥ k, which is also
positive with dense range [Lance 1995, Corollary 10.2]. Then h is a strictly positive
element in End0

B(E) (see Lemma 1.8), and h commutes with F . We then proceed as
above (conditions (b) and (e) now being redundant) to construct a compact operator
l ∈C∗(h)which also commutes with F . Lastly, for D= Fl−1 we see (1+D2)−1/2

=

l(1+ l2)−1 is indeed compact. �

Proposition 1.12 immediately implies the surjectivity of the bounded transform:

Theorem 1.13 (cf. [Baaj and Julg 1983; Kucerovsky 2000; Blackadar 1998, The-
orem 17.11.4]). If A is separable, then the bounded transform gives a surjective
map 91(A, B)→ KK(A, B).

1C. Regular self-adjoint operators. Let D be a regular self-adjoint operator on
a Hilbert B-module E . We recall from [Lance 1995, Theorem 10.9] that there
exists a continuous functional calculus for D, i.e., a ∗-homomorphism f 7→ f (D)
from C(R) to the regular operators on E , such that id(D)= D and b(D)= FD :=

D(1+D2)−1/2 (where b(x) = x(1+ x2)−1/2). In particular, if f ∈ C(R) is real-
valued, then f (D) is regular self-adjoint.

If the operators a(D± i)−1 are compact for some a ∈ End∗B(E), we note that
also ag(D) is compact for any g ∈ C0(R) (since the functions x 7→ (x ± i)−1

generate C0(R)). In particular, if f ∈ C(R) is a real-valued function such that
limx→±∞| f (x)| =∞, then a( f (D)± i)−1 and a(1+ f (D)2)−1/2 are compact.

For completeness, we will show that the continuous functional calculus is com-
patible with Z2-gradings.

Lemma 1.14. Let D be an odd regular self-adjoint operator on a Z2-graded Hilbert
B-module E. If f ∈ C(R) is an odd real-valued function, then the regular self-
adjoint operator f (D) is also odd.
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Proof. Let 0 denote the Z2-grading operator on E , and let us grade C0(R) by even
and odd functions. As in the proof of [Higson and Roe 2000, Lemma 10.6.2], the
identity

0(i ±D)−1
= (i ∓D)−10

shows that 0 graded-commutes with (i±D)−1 and hence with any element in C0(R).
The linear subspace E := {g(D)ψ : g ∈ Cc(R), ψ ∈ E} is a core for f (D) [Lance
1995, Lemma 10.8]. Each g ∈Cc(R) is the sum of an even function g0 ∈Cc(R) and
an odd function g1 ∈ Cc(R). Then we have 0E⊂ E. Moreover, since f g0 ∈ Cc(R)

is odd and f g1 ∈ Cc(R) is even, we find that

0 f (D)g(D)=− f (D)g0(D)0+ f (D)g1(D)0 =− f (D)0g(D).

Thus, [ f (D), 0]+ = 0 on the core E, and it follows that in fact 0 preserves
Dom f (D) and f (D) anticommutes with 0. �

Lemma 1.15. Let X be a locally compact Hausdorff space and Y ⊂ X an open
subset. Let {Dy}y∈Y be a family of regular self-adjoint operators on a Hilbert B-
module E , and assume there exists a dense submodule E⊂ E which is a core for Dy

for each y ∈ Y , such that for each ψ ∈ E the map Y → E , y 7→ Dyψ is continuous.
Then the operator D̃ on the Hilbert C0(X, B)-module C0(Y, E) defined by

Dom D̃ := {ψ ∈ C0(Y, E) : ψ(y) ∈ Dom Dy, D̃ψ ∈ C0(Y, E)},

(D̃ψ)(y) := Dyψ(y)

is regular and self-adjoint.

Proof. Consider the algebraic tensor product Ẽ := Cc(Y )⊗E. Since y 7→ Dyψ is
continuous for each ψ ∈ E, we note that Ẽ⊂Dom D̃. In particular, since Ẽ is dense
in C0(Y, E), we know that D̃ is densely defined. Moreover, since Dy is closed on
Dom Dy , it follows that also D̃ is closed on Dom D̃. By assumption, the operators
Dy ± i : E→ E have dense range in E for all y ∈ Y . Since C0(Y, E) ⊗̂evx B = {0}
for x /∈ Y , it follows from Corollary A.3 that the operators D̃± i : Ẽ→ C0(Y, E)
have dense range in C0(Y, E), and therefore D̃ is regular and self-adjoint. �

Remark 1.16. We will apply the above lemma to construct operator-homotopies
over X = [0, 1], and the two main cases of interest are Y = X or Y = (0, 1].

2. The unbounded homotopy relation

2A. The homotopy semigroup. For any t ∈ [0, 1], we have the surjective ∗-homo-
morphism evt : C([0, 1], B)→ B given by evt(b) := b(t). Given an unbounded
A-C([0, 1], B)-cycle (π, E,D), we then define

evt(π, E,D)= (πt , Et ,Dt) := (π ⊗̂ 1, E ⊗̂evt B,D ⊗̂ 1).
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Definition 2.1. Consider unbounded A-B-cycles (π0, E0,D0) and (π1, E1,D1).
We introduce the following notions:

• Unitary equivalence. (π0, E0,D0) and (π1, E1,D1) are called unitarily equiv-
alent (denoted (π0, E0,D0) ' (π1, E1,D1)) if there exists an even unitary
U : E0→ E1 such that UD0 = D1U and Uπ0(a)= π1(a)U for all a ∈ A.

• Homotopy. A homotopy between (π0, E0,D0) and (π1, E1,D1) is given
by an unbounded A-C([0, 1], B)-cycle (π̃, Ẽ, D̃) such that ev j (π̃, Ẽ, D̃) '

(π j , E j ,D j ) for j = 0, 1.

• Operator-homotopy. A homotopy (π̃, Ẽ, D̃) is called an operator-homotopy
if there exists a Hilbert B-module E with a representation π : A→ End∗B(E)
such that Ẽ equals the Hilbert C([0, 1], B)-module C([0, 1], E) with the nat-
ural representation π̃ of A on C([0, 1], E) induced from π .

We denote by ∼oh the equivalence relation on 91(A, B) generated by operator-
homotopies and unitary equivalences. The homotopy relation is denoted ∼h .

Remark 2.2. If (π, E,D) is an unbounded A-B-cycle such that π(A)⊂ End0
B(E)

(i.e., A is represented as compact operators), then (π, E,D) is operator-homotopic
to (π, E, 0), via the operator-homotopy given by Dt = tD for t ∈ [0, 1] (see also
Remark 1.2(2)).

We note that it was shown in [Kaad 2019, Proposition 4.6] that the homotopy
relation is an equivalence relation on unbounded Kasparov modules. We will show
next that the proof extends to our more general notion of unbounded cycles from
Definition 1.1, and for this purpose we recall some notation from [Kaad 2019, §4].
Consider two unbounded A-C([0, 1], B)-cycles (π, E,D) and (π ′, E ′,D′), and a
unitary isomorphism U : E ⊗̂ev1 B→ E ′ ⊗̂ev0 B satisfying

U (π(a) ⊗̂ev1 1)U∗ = π ′(a) ⊗̂ev0 1, U (D ⊗̂ev1 1)U∗ = D′ ⊗̂ev0 1,

for any a ∈ A. For t ∈ [0, 1] we consider the localizations Et := E ⊗̂evt B, and for
e∈ E we write et := e⊗̂evt 1∈ Et (as in the Appendix). We define the concatenation

E ×U E ′ := {(e, e′) ∈ E ⊕ E ′ :Ue1 = e′0}.

The space E ×U E ′ is endowed with the right action of C([0, 1], B) and the inner
product described in [Kaad 2019, §4]. We note that π ⊕π ′ and D⊕D′ are well-
defined on E×U E ′, and that D⊕D′ is a regular self-adjoint operator (see the proof
of [Kaad 2019, Proposition 4.6]). For two linear subspaces W ⊂ EndC([0,1],B)(E)
and W ′ ⊂ EndC([0,1],B)(E ′), we write

W ×U W ′ := {(w,w′) ∈W ⊕W ′ :U (w ⊗̂ev1 1)U∗ = w′ ⊗̂ev0 1}.
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We note that we have the inclusion Lip(D)×U Lip(D′) ⊂ Lip(D⊕D′). In fact,
using [Kaad 2019, Lemma 4.5], we obtain

Lip0(D)×U Lip0(D′)⊂ Lip0(D⊕D′).

Proposition 2.3 (cf. [Kaad 2019, Proposition 4.6]). The homotopy relation on un-
bounded A-B-cycles is an equivalence relation.

Proof. Reflexivity and symmetry are proven exactly as in [Kaad 2019, Proposition
4.6]. For transitivity, we need to show that the concatenation of two unbounded
A-C([0, 1], B)-cycles is again an unbounded A-C([0, 1], B)-cycle.

We will first show that we may assume (without loss of generality) that any
unbounded A-C([0, 1], B)-cycle (π, E,D) is “constant near the endpoints”. We
define

Ẽ := C([0, 1], E0)×Id E, π̃(a) := π0(a)⊕π(a), D̃ := D0⊕D.

Here π0(a) and D0 denote the obvious extension to C([0, 1], E0) of the operators
π(a) ⊗̂ev0 1 and D ⊗̂ev0 1 on E0, respectively. Now consider ε > 0 and a ∈ A. Pick
S ∈ Lip0(D) such that ‖π(a)− S‖< ε. Then we also have ‖π0(a)− S0‖< ε and
therefore ‖π̃(a)− S0⊕ S‖< ε. This proves that we have the inclusions

π̃(A)⊂ Lip0(D0)×Id Lip0(D)⊂ Lip0(D̃),

so (π̃, Ẽ, D̃) is an unbounded A-C([0, 1], B)-cycle which is constant on [0, 1
2 ].

Now suppose we have two unbounded A-C([0, 1], B)-cycles (π, E,D) and
(π ′, E ′,D′), and a unitary isomorphism U : E ⊗̂ev1 B→ E ′ ⊗̂ev0 B satisfying

U (π(a) ⊗̂ev1 1)U∗ = π ′(a) ⊗̂ev0 1, U (D ⊗̂ev1 1)U∗ = D′ ⊗̂ev0 1,

for any a ∈ A. As described above, we may assume (without loss of generality)
that (π ′, E ′,D′) is constant on [0, 1

2 ]. We define

E ′′ := E ×U E ′, π ′′(a) := π(a)⊕π ′(a), D′′ := D⊕D′.

Now consider ε > 0 and a ∈ A. Pick S ∈ Lip0(D) such that ‖π(a)− S‖< ε. Then
in particular we have

‖π ′0(a)−U S1U∗‖ = ‖π1(a)− S1‖< ε.

Pick a function χ ∈ C∞([0, 1]) such that 0≤ χ ≤ 1, χ(0)= 1, and χ(t)= 0 for all
1
2 ≤ t ≤ 1. Since E ′ is constant on [0, 1

2 ], we note that χU S1U∗ is a well-defined ad-
jointable operator on E ′, which in fact lies in Lip0(D′). If we also pick R′ ∈ Lip0(D′)

such that ‖π ′(a)− R′‖ < ε, then we obtain T ′′ := S⊕ (χU S1U∗+ (1−χ)R′) ∈
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Lip0(D)×U Lip0(D′) and we have the estimate

‖π ′′(a)− T ′′‖ ≤max{‖π(a)− S‖, ‖π ′(a)−χU S1U∗+ (1−χ)R′‖}
≤max

{
‖π(a)− S‖, sup

t∈[0,1]
(χ(t)‖π ′0(a)−U S1U∗‖+ (1−χ(t))‖π ′t (a)− R′‖)

}
< ε.

This proves that we have the inclusions

π ′′(A)⊂ Lip0(D)×U Lip0(D′)⊂ Lip0(D′′),

and we conclude that (π ′′, E ′′,D′′) is again an unbounded A-C([0, 1], B)-cycle. �

Definition 2.4. We define UKK(A, B) as the set of homotopy equivalence classes
of unbounded A-B-cycles.

We recall from Lemma 1.4 that the direct sum of two unbounded cycles is well-
defined. Since the direct sum is also compatible with homotopies, we obtain a
well-defined addition on UKK(A, B) induced by the direct sum. Moreover, this
addition is associative and commutative (since homotopy equivalence is weaker
than unitary equivalence). Hence, UKK(A, B) is an abelian semigroup, with the
zero element given by the class of the zero cycle (0, 0).

2B. Functional dampening. The goal of this subsection is to show that, up to
operator-homotopy, we can replace an unbounded cycle (E,D) by (E, f (D)) for
suitable functions f which blow up towards infinity at a sublinear rate. One can
think of f (D) as a “dampened” version of D, and we refer to the transformation
D 7→ f (D) as “functional dampening”. Our proof is partly inspired by the proof
of [Kaad 2019, Proposition 5.1], where the special case f (x) := x(1+ x2)−r (with
r ∈ (0, 1

2)) is considered.

Definition 2.5. A dampening function is an odd continuous function f : R→ R

such that
lim

x→∞
f (x)=∞, lim

x→∞
f (x)(1+ x2)−1/2

= 0.

Proposition 2.6. Consider an unbounded A-B-cycle (E,D) and a dampening
function f . Assume that there exists a self-adjoint subset W ⊂Lip0(D)∩Lip( f (D))
such that π(A)⊂W . Then (E, f (D)) is an unbounded A-B-cycle which is operator-
homotopic to (E,D).

Proof. By Lemma 1.14, f (D) is an odd regular self-adjoint operator on E . Since
the function x 7→ (1+ f (x)2)−1/2 lies in C0(R), we find that

Lip0(D)∩Lip( f (D))⊂ Lip0( f (D)).

Hence (E, f (D)) is indeed an unbounded A-B-cycle. To see that it is operator-
homotopic to (E,D), consider the functions g(x) := (1+ x2)−1/2(1+ | f (x)|) and
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h(x) := xg(x). Then g ∈ C0(R) and since f − h ∈ Cb(R), we see that h(D) is
a bounded perturbation of f (D) (in particular, (E, h(D)) is operator-homotopic
to (E, f (D))).

It remains to show that (E, h(D)) is operator-homotopic to (E,D). We consider
the operator-homotopy given for t ∈ [0, 1] by

Dt := Dgt(D), gt(x) := ((1− t)1/2+ g(x))t .

We note that g0(x)= 1 and g1(x)= g(x). Since g(x) is bounded from below by
a positive constant for |x |< r , we see that the map [0, 1] 3 t 7→ gt( · ) ∈ Cb(R) is
uniformly continuous on compact subsets of R, and therefore t 7→ gt(D) is strongly
continuous (see, e.g., [Kaad and Lesch 2012, Lemma 7.2]). Consequently, t 7→ Dt

is strongly continuous on Dom D. Furthermore, for each t ∈ [0, 1], Dom D is a
core for Dt , so from Lemma 1.15 we obtain a regular self-adjoint operator D̃ on
C([0, 1], E).

Consider a self-adjoint element w ∈W . Let us fix 0< t < 1 and write

Qt(D) := (1− t)1/2+ g(D),

so that gt(D) = Qt(D)
t . We note that Qt(D) ∈ Lip(D) and [D, Qt(D)] = 0, and

we find that

D[Qt(D), w] = D[g(D), w] = [h(D), w] − [D, w]g(D)

is bounded. Consider the integral formula (see the proof of [Pedersen 1979, Propo-
sition 1.3.8])

Qt(D)
t
=

sin(π t)
π

∫
∞

0
λ−t(1+ λQt(D))

−1 Qt(D) dλ. (2.7)

Since Qt(D) is bounded below by (1− t)1/2, we know that Qt(D) is invertible,
and that

‖(1+ λQt(D))
−1
‖ ≤ (1− t)−1/2λ−1. (2.8)

In particular, (1+ λQt(D))
−1 is of order O(λ−1) as λ→∞. Using that Dom D is

a core for Qt(D) and D commutes with Qt(D), we then compute

[(1+ λQt(D))
−1 Qt(D), w]D= (1+ λQt(D))

−1
[Qt(D), w]D

− λ(1+ λQt(D))
−1
[Qt(D), w]D(1+ λQt(D))

−1 Qt(D),

and we see that ‖[(1+ λQt(D))
−1 Qt(D), w]D‖ is finite and of order O(λ0) for

λ→ 0, and of order O(λ−1) as λ→∞. By applying the above integral formula,
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we obtain that

St := [gt(D), w]D= [Qt(D)
t , w]D

=
sin(π t)
π

∫
∞

0
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ

is a norm-convergent integral. It follows that St is a bounded operator. To show
that St is in fact uniformly bounded in t , let us split the integral in two parts. First,
since ‖(1+ λQt(D))

−1
‖ ≤ 1, we have∥∥∥∥sin(π t)

π

∫ 1

0
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ
∥∥∥∥

≤
sin(π t)
π
‖[g(D), w]D‖(1+‖Qt(D)‖)

∫ 1

0
λ−t dλ

≤
sin(π t)
π
‖[g(D), w]D‖(2+‖g(D)‖)(1− t)−1.

Second, using (2.8) we estimate∥∥∥∥sin(π t)
π

∫
∞

1
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ
∥∥∥∥

≤
sin(π t)
π
‖[g(D), w]D‖((1− t)−1/2

+ (1− t)−1
‖Qt(D)‖)

∫
∞

1
λ−t−1 dλ

≤
sin(π t)
π
‖[g(D), w]D‖(2(1− t)−1/2

+ (1− t)−1
‖g(D)‖)t−1.

Using that sin(π t)= O(t) as t→ 0 and sin(π t)= O(1− t) as t→ 1, we see that
both integrals are uniformly bounded in t . Thus, St is uniformly bounded. It then
suffices to check strict continuity on the dense submodule Dom D. Since gt(D) is
strongly continuous, we see that St is strongly continuous on Dom D. Furthermore,
rewriting

D[gt(D), w] = [Dgt(D), w] − [D, w]gt(D)

= [gt(D), w]D+ gt(D)[D, w] − [D, w]gt(D),

we conclude that S∗t =−D[gt(D), w] is also strongly continuous on Dom D. Thus,
we have shown that the commutator

[Dt , w] = [D, w]gt(D)+D[gt(D), w]

is uniformly bounded and strictly continuous, and therefore [D̃, w] is bounded and
adjointable on C([0, 1], E).

Now consider the functions Rt ∈ C0(R) given by Rt(x) := (i ± xgt(x))−1. We
claim that t 7→ Rt is continuous with respect to the supremum-norm on C0(R). To
prove this claim, first observe that gt(x)≥ g(x)t ≥min(1, g(x)) for all x ∈ R and
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t ∈ [0, 1]. Hence, for each ε > 0 there exists r ∈ (0,∞) such that for all t ∈ [0, 1]
we have sup|x |>r |Rt(x)| ≤ ε. Then for t, s ∈ [0, 1] we can estimate

‖Rt − Rs‖ ≤ 2ε+ sup
|x |<r
‖Rt(x)− Rs(x)‖ ≤ 2ε+ sup

|x |<r
‖xgt(x)− xgs(x)‖

≤ 2ε+ r sup
|x |<r
‖gt(x)− gs(x)‖.

Since gt(x) is uniformly continuous for |x | < r , we see that t 7→ Rt is norm-
continuous. Consequently, we conclude that t 7→ (i ±Dt)

−1 is a norm-continuous
map such that w(i ± Dt)

−1 is compact for each w ∈ W and t ∈ [0, 1]. Hence,
w(D̃± i)−1 is compact on C([0, 1], E). This completes the proof that Dt yields
an operator-homotopy (C([0, 1], E), D̃). �

Remark 2.9. A higher order unbounded Kasparov module is a pair (E,D) such
that there exist 0< ε < 1 and a dense ∗-subalgebra A⊂ A for which the operators
[D, a](1+D2)−(1−ε)/2 (for a ∈A) extend to bounded operators. The class of higher
order Kasparov modules contains all ordinary unbounded Kasparov modules. In
[Goffeng et al. 2019, Theorem 1.37] it was shown that the C1-function

sgnlog(x) := sgn(x) log(1+ |x |)

can be used to turn a higher order unbounded Kasparov module into an ordinary
unbounded Kasparov module. In fact, the proof of [Goffeng et al. 2019, Theorem
1.37] shows that for any unbounded cycle (E,D) (as in Definition 1.1) we have
the inclusion Lip(D)⊂ Lip(sgnlog(D)). It then follows from Proposition 2.6 that
any unbounded cycle (E,D) is operator-homotopic to (E, sgnlog(D)).

Using the natural notion of homotopy for higher order modules, one can ask
whether the transformation (E,D) 7→ (E, sgnlog(D)) can be implemented as an
operator-homotopy within the class of higher order unbounded Kasparov modules,
so that every higher order module would be operator-homotopic to an ordinary
unbounded Kasparov module. It is not immediately clear if this is indeed the case.

2C. From bounded to unbounded homotopies. Recall the ∗-homomorphism evt :

C([0, 1], B)→ B given by b 7→ b(t). For a Hilbert C([0, 1], B)-module E we
write Et := E ⊗̂evt B for the localization of E at t ∈ [0, 1]. Moreover, for any
h ∈ End∗B(E), we consider the localization ht := h ⊗̂ 1 on Et . We describe some
basic facts regarding these localizations in the Appendix.

Now consider two unbounded A-B-cycles (E0,D0) and (E1,D1), and assume
that their bounded transforms are homotopic. Thus, there exists a homotopy (E, F)
between (E0, FD0) and (E1, FD1), where E is a module over C([0, 1], B). For
simplicity, let us assume that ev j (E, F) is equal to (E, FD j ) (i.e., there is no unitary
equivalence involved). We are ready to derive our main technical result.
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Proposition 2.10. Suppose A is separable, and B σ -unital. Consider two un-
bounded A-B-cycles (E0,D0) and (E1,D1), and let (E, F) be a homotopy be-
tween (E0, FD0) and (E1, FD1), satisfying F = F∗ and F2

≤ 1. Let W j ⊂ Lip0(D j )

be countable subsets consisting of products of elements in Lip0(D j ), such that A ⊂
W j (for j = 0, 1). Then there exists a positive operator l ∈ JF ⊂ End∗C([0,1],B)(E)
with dense range in E such that

(1) the (closure of the) operator S := 1
2(Fl−1

+ l−1 F) makes (E,S) into an
unbounded A-C([0, 1], B)-cycle, and

(2) writing l j := ev j (l) and S j := ev j (S) (for j = 0, 1), we have

l j ∈ C∗((1+D2
j )
−1), S j = FD j l

−1
j , W j ⊂ Lip(l−1

j )∩Lip(S j ),

and the operator l−1
j (1+D2

j )
−1/4 extends to an adjointable endomorphism.

Proof. Note that (1) can be obtained by an application of Proposition 1.12. In
order to achieve (2) simultaneously, we need to construct our lift more carefully.
Consider again the σ -unital C∗-algebra JF = End0

C([0,1],B)(E) + CF . Let k ∈
End0

C([0,1],B)(E) be an even strictly positive element and χ ∈ C([0, 1]) be given by
χ(t) := t (1− t). Then χk ∈ End0

C([0,1],B)(E) (see Lemma A.1), and we define

h := χk+ (1− F2) ∈ JF .

Consider the localizations

ht := evt(h)= χ(t)kt + (1− F2
t ).

For t ∈ (0, 1) we have that χ(t) > 0, and χ(t)kt has dense range in Et by Corollary
A.3. Since χ(t)kt ≤ ht , ht has dense range in Et by [Lance 1995, Corollary 10.2].
For t ∈ {0, 1}, we have ht = (1− F2

t )
1/2
= (1+D2

t )
−1/2, which has dense range as

well. Thus, applying Corollary A.3 again, we conclude that h has dense range in E .
Moreover, from Lemma 1.10 it follows that h is a strictly positive element in JF .

Let A := {ai }i∈N⊂ A be a countable dense subset of A, let {ci }i∈N be a countable
dense subset of C∗(h), and let {w j,i }i∈N be an enumeration of W j . We have the
inclusions AJF , JF A, F JF , JF F ⊂ JF (see Lemma 1.10). Since ev j (F)= FD j and
W j ⊂Lip0(D j ), we have for allw∈W j thatw(1− F2

D j
)=w(1+D2

j )
−1
∈End0

B(E j ).
Moreover, by assumption anyw∈W j is of the formw= T1T2 for T1, T2 ∈Lip0(D j ).
Since [FD j , T1]T2 is compact, as explained in the proof of Proposition 1.7, it fol-
lows that also [FD j , w] ∈ End0

B(E j ). It thus holds that

W j JFD j
, JFD j

W j , FD j JFD j
, JFD j

FD j ⊂ JFD j
.

Furthermore, since ev j : C([0, 1], B)→ B = End0
B(B) is a surjective ∗-homo-

morphism we have End0
B(E j )=End0

C([0,1],B)(E)⊗̂ev j 1 and hence JFD j
= JF ⊗̂ev j 1.
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Therefore, any approximate unit un ∈ JF gives an approximate unit ev j (un) for
JFD j

. The C∗-subalgebra C∗(h) ⊂ JF thus contains a commutative approximate
unit un for JF which is quasicentral for A and F , and such that for j ∈ {0, 1},
ev j (un) is quasicentral for W j [Akemann and Pedersen 1977, Theorem 3.2].

By fixing a choice of 0< ε < 1 and selecting a suitable subsequence of un , we
can achieve that, for each n ∈ N, dn := un+1− un satisfies properties (a)–(e) of the
proof of Proposition 1.12 as well as

(c′) ‖ev j (dn)[ev j (F), w j,i ]‖ ≤ ε
2n for all i ≤ n and for j = 0, 1, and

(d′) ‖[ev j (dn), w j,i ]‖ ≤ ε
2n for all i ≤ n and for j = 0, 1.

As in Proposition 1.12, property (c′) follows because ev j (un) is an approximate
unit for JFD j

and (d′) follows because ev j (un) is quasicentral for W j . Thus, as in
Proposition 1.12, we can construct a strictly positive element l ∈ JF , such that the
(closure of the) operator

S := 1
2(Fl−1

+ l−1 F)

is a densely defined and regular self-adjoint operator on E , and (E,S) is an un-
bounded Kasparov A-C([0, 1], B)-module for which we have A⊂ Lip0(S). This
proves (1).

For (2), we first note that l j ∈ C∗(h j ) and h j = (1+D2
j )
−1 for j = 0, 1. In

particular, l j commutes with FD j and S j = FD j l
−1
j . Properties (c′) and (d′) ensure

that [S j , w] and [l−1
j , w] are bounded for all w ∈W j ( j = 0, 1). Furthermore, from

property (b) it follows that l−1(1− F2)1/4 is everywhere defined and bounded, and
localizing in j = 0, 1 then shows that l−1

j (1+D2
j )
−1/4 is bounded. �

Theorem 2.11. Suppose A is separable, and B σ -unital. Consider two unbounded
A-B-cycles (π0, E0,D0) and (π1, E1,D1). Any homotopy (π, E, F) between (π0,

E0, FD0) and (π1, E1, FD1) can be lifted to an unbounded A-C([0, 1], B)-cycle
(π, E,S) such that, for j = 0, 1,

• the endpoints ev j (π, E,S) are unitarily equivalent to (π j , E j , f j (D j )) for
dampening functions f j : R→ R, and

• there exist countable self-adjoint subsets W j ⊂ Lip0(D j )∩Lip( f j (D j )) such
that π j (A)⊂W j .

Moreover, if (π, E, F) is an operator-homotopy, then (π, E,S) is an operator-
homotopy.

Proof. We may assume (without loss of generality) that F = F∗ and F2
≤ 1

[Blackadar 1998, Proposition 17.4.3]. For j = 0, 1, we have unitary equivalences
U j : ev j (E)→ E j such that ev j (F)=U∗j FD j U j . Then D j on E j is unitarily equiv-
alent to U∗j D jU j on ev j (E). To simplify notation, we will from here on ignore
this unitary equivalence and simply assume that ev j (E, F) is equal to (E j , FD j ).
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We know by Lemma 1.6 that, for j = 0, 1, there exist countable self-adjoint
subsets W j ⊂ Lip0(D j ) consisting of products of elements in Lip0(D j ), such that
π j (A) ⊂ W j . From Proposition 2.10, we obtain an unbounded A-C([0, 1], B)-
cycle (E,S := 1

2(Fl−1
+l−1 F)), which provides a homotopy between (E0,S0) and

(E1,S1), where S j := ev j (S). By property (2) of Proposition 2.10, we know that
l j ∈C∗((1+D2

j )
−1), S j = FD j l

−1
j , W j ⊂ Lip(l−1

j )∩Lip(S j ), and l−1
j (1+D2

j )
−1/4

is bounded. It follows that we can write S j = f j (D j ) for some dampening function
f j , which proves the first statement. Furthermore, if we have in fact an operator-
homotopy (E, F), then it is clear that the lift (E,S) obtained from Proposition 2.10
is also an operator-homotopy. �

2D. The isomorphism with KK-theory. Using the results from the previous sec-
tions, we can now prove that our semigroup UKK(A, B) is isomorphic to Kas-
parov’s KK-group.

Theorem 2.12. Suppose A is separable, and B σ -unital. The bounded transform
induces a semigroup isomorphism UKK(A, B)→ KK(A, B), given by [(E,D)] 7→

[(E, FD)].

Proof. If there exists a homotopy (E,D) between unbounded A-B-cycles (E0,D0)

and (E1,D1), then (E, FD) provides a homotopy between (E0, FD0) and (E1, FD1).
Moreover, the bounded transform is compatible with direct sums, so it induces
a well-defined semigroup homomorphism. Furthermore, this homomorphism is
surjective by Theorem 1.13, so it remains to prove that it is also injective.

Consider two unbounded A-B-cycles (E0,D0) and (E1,D1), with [(E0, FD0)] =

[(E1, FD1)]. Then there exists a homotopy (E, F) between (E0, FD0) and (E1, FD1).
From Theorem 2.11 we obtain an unbounded A-C([0, 1], B)-cycle (E,S) such
that, for j = 0, 1, the endpoints ev j (E,S) are unitarily equivalent to (E j , f j (D j ))

for dampening functions f j : R→ R, and there exist self-adjoint subsets W j ⊂

Lip0(D j )∩Lip( f j (D j )) such that π j (A)⊂W j . It then follows from Proposition 2.6
that D j is operator-homotopic to S j . Thus, we have the composition of homotopies

D0 ∼oh S0 ∼h S1 ∼oh D1,

which proves that [(E0,D0)] = [(E1,D1)]. �

Remark 2.13. A priori, UKK(A, B) is a semigroup, and the isomorphism

UKK(A, B)→ KK(A, B)

is an isomorphism of semigroups. Since KK(A, B) is a group, it of course fol-
lows that UKK(A, B) is also a group. However, the isomorphism UKK(A, B)→
KK(A, B) requires the assumption that A is separable. In Theorem 4.16 we will
give a direct proof that UKK(A, B) is a group, which avoids the bounded transform
and therefore also works for nonseparable (σ -unital) C∗-algebras.
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For any dense ∗-subalgebra A ⊂ A, we define 91(A, B) as the set of those
(π, E,D) ∈ 91(A, B) for which π(A) ⊂ Lip0(D), and we define UKK(A, B) as
the homotopy equivalence classes of elements in 91(A, B) (where it is understood
that the homotopies are given by elements in 91(A,C([0, 1], B))). The natural in-
clusion 91(A, B) ↪→91(A, B) induces a well-defined semigroup homomorphism
UKK(A, B)→ UKK(A, B). We say that A is countably generated if A contains
a countable subset that generates it as a ∗-algebra over C. We emphasize that this
does not involve taking closures of any kind. While, as we explained in Remark 1.5,
it is not necessary to fix a countably generated dense ∗-subalgebra A⊂ A, we will
show next that it is nevertheless possible to define unbounded KK-theory using any
such fixed choice for A⊂ A.

Proposition 2.14. Suppose A is separable, and B σ -unital. For any countably
generated dense ∗-subalgebra A⊂ A, the map UKK(A, B)→ UKK(A, B) is an
isomorphism.

Proof. We have the following commuting diagram:

UKK(A, B) //

&&

UKK(A, B)

xx

KK(A, B)

We know from Theorem 2.12 that the map UKK(A, B)→ KK(A, B) is an iso-
morphism. Thus, we need to show that also UKK(A, B)→ KK(A, B) is an iso-
morphism. The assumption that A is separable ensures that the bounded transform
UKK(A, B)→ KK(A, B) is surjective (see Theorem 1.13). Moreover, the proofs
of Theorems 2.11 and 2.12 with the special choice W j = π j (A) show that the
bounded transform is also injective. �

3. Degenerate cycles

In this section, we will consider two notions of degenerate cycles in unbounded
KK-theory, namely “algebraically degenerate” and “spectrally degenerate” cycles.
Our aim is to prove the following:

• any degenerate cycle is null-homotopic, i.e., homotopic to the zero cycle (0, 0),
and

• any homotopy can be implemented as an operator-homotopy modulo addition
of degenerate cycles.

3A. Algebraically degenerate cycles.
Definition 3.1. An unbounded A-B-cycle (π, E,D) is called algebraically degen-
erate if π = 0.
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By considering the obvious homotopy (C0((0, 1], E),D), we easily obtain:

Lemma 3.2. An algebraically degenerate unbounded A-B-cycle (E,D) is null-
homotopic.

As an application of the above lemma, we will show that two unbounded cy-
cles (π, E,D) and (π, E,D′) are homotopic if the difference D−D′ is “locally
bounded”.

Proposition 3.3. Let (π, E,D) and (π, E,D′) be unbounded A-B-cycles. Suppose
there exists a subset W ⊂ Lip0(D)∩Lip0(D′) with π(A) ⊂ W such that for each
w ∈ W , the operator (D−D′)w extends to a bounded operator. Then (π, E,D)

and (π, E,D′) are homotopic.

Proof. Consider the unbounded A-C([0, 1], B)-cycle (π,C([0, 1], E⊕E),D⊕D′)

with the representation given for t ∈ [0, 1] by πt(a) := (a⊕ a)Pt in terms of the
norm-continuous family of projections

Pt :=

(
cos2( 1

2π t) cos( 1
2π t) sin( 1

2π t)
cos( 1

2π t) sin( 1
2π t) sin2( 1

2π t)

)
.

We note that P0 = 1⊕ 0 and P1 = 0⊕ 1. For homogeneous w ∈W we compute

[D⊕D′, (w⊕w)Pt ] =(
[D,w]cos2( 1

2π t) (Dw−(−1)degwwD′)cos( 1
2π t)sin(1

2π t)
(D′w−(−1)degwwD)cos( 1

2π t)sin(1
2π t) [D′,w]sin2(1

2π t)

)
.

We observe that Dw − (−1)degwwD′ = (D − D′)w + [D′, w] is bounded, and
similarly for D′w−(−1)degwwD. Hence, [D⊕D′, (w⊕w)Pt ] is uniformly bounded
and norm-continuous in t , and we obtain (w⊕w)P•⊂Lip(D⊕D′). Moreover, since
the resolvents of D⊕D′ are constant in t , we have in fact (w⊕w)P•⊂Lip0(D⊕D′).
Thus, we have

π•(A)⊂ {(w⊕w)P• : w ∈W } ⊂ Lip0(D⊕D′),

and we have a homotopy between (π⊕0, E⊕E,D⊕D′) and (0⊕π, E⊕E,D⊕D′).
Finally, since algebraically degenerate cycles are null-homotopic by Lemma 3.2,
we note that (π ⊕ 0, E ⊕ E,D⊕D′) is homotopic to (π, E,D), and that (0⊕π,
E ⊕ E,D⊕D′) is homotopic to (π, E,D′). �

Remark 3.4. The assumption that (D−D′)w is bounded for all w ∈ W is inter-
preted as saying that D− D′ is locally bounded. In the above proposition, we
have assumed that both (E,D) and (E,D′) are unbounded cycles. Under certain
conditions, it suffices to assume only that (E,D) is an unbounded cycle; using
local boundedness of D−D′ one can then prove that (E,D′) is also an unbounded
cycle. We refer to [van den Dungen 2018] for further details.
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3B. Spectrally degenerate cycles. We denote by sgn :R\{0}→ {±1} the function
sgn(x) := x

|x | . We say that a regular self-adjoint operator D : Dom D → E is
invertible if there exists D−1

∈ End∗B(E) that satisfies DD−1
= D−1D = 1. It

then follows that Dom D = Ran D−1
= Ran|D|−1 and Ran D = E . Thus, if D is

invertible, sgn(D) is well-defined and equal to D|D|−1.

Definition 3.5. An unbounded A-B-cycle (π, E,D) is called spectrally degener-
ate if D is invertible and there exists W ⊂ Lip0(D) such that π(A) ⊂ W and
[sgn(D), w] = 0 for all w ∈W .

Lemma 3.6. Let D : Dom D→ E be self-adjoint, regular, and invertible. If w ∈
End∗B(E) is such that w : Dom D→ Dom D and [sgn(D), w] = 0, then [D, w] is
bounded if and only if [|D|, w] is bounded.

Proof. This follows from the simple observation that sgn(D) is a self-adjoint unitary
and D= sgn(D)|D|. We have

[D, w] = sgn(D)[|D|, w], [|D|, w] = sgn(D)[D, w],

whence [D, w] is bounded if and only if [|D|, w] is bounded. �

We have already seen in Lemma 3.2 that any algebraically degenerate cycle is
null-homotopic. Here we shall prove that also any spectrally degenerate cycle (E,D)

is null-homotopic. The easiest way to prove this is by observing that the bounded
transform (E, FD) is operator-homotopic to the degenerate cycle (E, sgn(D)) (which
is null-homotopic), and then applying Theorem 2.11. However, we can only apply
Theorem 2.11 if A is separable. But with only a bit more effort, we can in fact
explicitly construct an unbounded homotopy between any spectrally degenerate
cycle and the zero module.

Proposition 3.7. Any spectrally degenerate unbounded A-B-cycle (E,D) is null-
homotopic.

Proof. Consider for t ∈ (0, 1] the family of regular self-adjoint operators

Dt := t−1 sgn(D)|D|t .

Since t 7→ |D|t−1 is norm-continuous and |D|t = |D|t−1
|D|, we see that |D|t

is strongly continuous on Dom D. Since Dom D is a core for Dt for each t ∈
(0, 1], we obtain from Lemma 1.15 a regular self-adjoint operator D̃ on the Hilbert
C([0, 1], B)-module Ẽ := C0((0, 1], E). We claim that (Ẽ, D̃) is an unbounded
cycle, and therefore it provides a homotopy between ev1(Ẽ, D̃) = (E,D) and
ev0(Ẽ, D̃)= (0, 0).

To prove the claim, choose W ⊂Lip0(D) such that π(A)⊂W and [sgn(D), w]=
0 for all w ∈W . First consider the resolvents of Dt . We compute

(Dt ± i)−1
=∓i t sgn(D)|D|−t(t sgn(D)|D|−t

∓ i)−1. (3.8)
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Since D is invertible, the operators w|D|−t are compact for 0 < t ≤ 1 and for
w ∈W , and hence so are w(Dt ± i)−1. Moreover, t 7→ |D|−t is norm-continuous
on (0, 1], and therefore t 7→ t sgn(D)|D|−t is norm-continuous on (0, 1]. But then
the composition with x 7→ x(x ± i)−1 gives again a continuous function, and we
see from (3.8) that t 7→ (Dt ± i)−1 is norm-continuous on (0, 1]. Furthermore,
since |D|−t is uniformly bounded and t sgn(D)|D|−t is self-adjoint, it also follows
from (3.8) that

lim
t↘0
‖(Dt ± i)−1

‖ = lim
t↘0

t‖sgn(D)|D|−t(t sgn(D)|D|−t
∓ i)−1

‖ = 0,

so we also obtain continuity at 0. Hence, w(D̃± i)−1 is compact on Ẽ .
Next, we consider the commutator [Dt , w] = t−1 sgn(D)[|D|t , w] for some self-

adjoint w ∈ W . We have seen above that |D|t is strongly continuous on Dom D,
and hence also [Dt , w] is strongly continuous on Dom D. To show that [Dt , w] is
strongly continuous everywhere, it then suffices to show that [Dt , w] is uniformly
bounded. For this purpose, we consider the operator inequality

±i[|D|−1, w] = ∓i |D|−1
[|D|, w]|D|−1

≤ ‖[|D|, w]‖|D|−2,

where [|D|, w] is bounded by Lemma 3.6. Applying [Kucerovsky 2000, Proposi-
tion 2.11] to the function f (x) := x t , we then find that

±i[|D|−t , w] = ±i[ f (|D|−1), w] ≤ f ′(|D|−1)‖[|D|, w]‖|D|−2

= t |D|1−t
‖[|D|, w]‖|D|−2

= t‖[|D|, w]‖|D|−1−t .

For any ψ ∈ Dom D, we therefore have

〈ψ |±i[|D|t , w]ψ〉=〈ψ |∓i |D|t [|D|−t , w]|D|tψ〉=〈|D|tψ |∓i[|D|−t , w]|D|tψ〉

≤〈|D|tψ | t‖[|D|, w]‖|D|−1ψ〉=〈ψ | t‖[|D|, w]‖|D|t−1ψ〉.

Since both ‖[|D|, w]‖ |D|t−1 and [|D|t , w] are bounded for t ∈ [0, 1] (for the latter,
see for instance [Gracia-Bondía et al. 2001, Lemma 10.17]), we have the norm-
inequality

‖[|D|t ,w]‖=‖±i[|D|t ,w]‖≤ t‖[|D|,w]‖‖|D|t−1
‖≤ t‖[|D|,w]‖max{1,‖|D|−1

‖}.

We finally obtain

‖[Dt , w]‖ ≤ t−1
‖sgn(D)‖‖[|D|t , w]‖ ≤ ‖[|D|, w]‖max{1, ‖|D|−1

‖}.

Hence, [Dt , w] is uniformly bounded and strongly continuous as a function of
t ∈ (0, 1], and therefore the commutator [D̃, w] is bounded on Ẽ . Thus, we have
shown that W ⊂ Lip0(D̃) and therefore π̃(A)⊂W ⊂ Lip0(D̃). �
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3C. Operator-homotopies modulo degenerate cycles. In bounded KK-theory, it
was shown by Kasparov that any homotopy can be implemented as an operator-
homotopy modulo addition of degenerate modules [Kasparov 1980, §6, Theo-
rem 1]. Using this result, we will prove that a similar statement holds in unbounded
KK-theory.

Let ∼oh+d denote the equivalence relation on 91(A, B) given by operator-homo-
topies, unitary equivalences, and addition of spectrally degenerate and algebraically
degenerate cycles. We already know from Lemma 3.2 and Proposition 3.7 that
degenerate cycles are null-homotopic, so ∼oh+d is stronger than ∼h . We will prove
here that in fact these two relations coincide.

Lemma 3.9. Suppose A is separable, and B σ -unital. Let (E, F) be a (bounded)
Kasparov A-B-module, such that F = F∗, F2

= 1, and [F, a] = 0 for all a ∈ A
(in particular, (E, F) is degenerate). Let D := Fl−1 be a lift of F , where l is a
positive element in JF with dense range in E obtained from Proposition 1.12. Then
the unbounded A-B-cycle (E,D) is spectrally degenerate.

Proof. Since F2
= 1 and [F, l]= 0, we have that D is invertible and that sgn(D)= F

(graded) commutes with the algebra A. Thus, (E,D) is spectrally degenerate. �

Theorem 3.10. Suppose A is separable, and B σ -unital. Then the homotopy equiv-
alence relation ∼h on 91(A, B) coincides with the equivalence relation ∼oh+d .

Proof. We need to prove that the relation ∼oh+d is weaker than ∼h . To this end let
(E0,D0) and (E1,D1) be unbounded A-B-cycles which are homotopic. We then
know that the bounded transforms (π0, E0, FD0) and (π1, E1, FD1) are also homo-
topic. By [Kasparov 1980, §6, Theorem 1], there exist degenerate bounded Kas-
parov modules (π ′0, E ′0, F ′0) and (π ′1, E ′1, F ′1) such that (π0⊕π

′

0, E0⊕E ′0, FD0⊕F ′0)
is operator-homotopic to (π1⊕π

′

1, E1⊕ E ′1, FD1⊕ F ′1). Denote by E ′op
j the Hilbert

B-module E ′j equipped with the opposite Z2-grading. By adding the algebraically
degenerate module (0, E ′op

0 ,−F ′0)⊕ (0, E ′op
1 ,−F ′1), we obtain the top line in the

following diagram:

FD0 ⊕ F ′0⊕−F ′0⊕−F ′1
oh

oh

FD1 ⊕ F ′1⊕−F ′0⊕−F ′1

oh

FD0 ⊕ F̂ ′0⊕−F ′1

oh

FD1 ⊕ F̂ ′1⊕−F ′0

oh

FD0 ⊕ FD̂′0
⊕−FD′1

oh FD1 ⊕ FD̂′1
⊕−FD′0

(3.11)
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Since F ′j is degenerate, we know for all a∈ A that [F ′j , π
′

j (a)]=π
′

j (a)(1− (F
′

j )
2)=

0. As in [Blackadar 1998, §17.6], (π ′j ⊕ 0, E ′j ⊕ E ′op
j , F ′j ⊕ −F ′j ) is operator-

homotopic to the degenerate module

(π ′j ⊕ 0, E ′j ⊕ E ′op
j , F̂ ′j ), F̂ ′j :=

(
F ′j (1− (F ′j )

2)1/2

(1− (F ′j )
2)1/2 −F ′j

)
.

This yields the vertical operator-homotopies between the first two lines in (3.11).
By construction, (F̂ ′j )

2
= 1 and [F̂ ′j , π

′

j (a)] = 0. Hence, by Lemma 3.9 and
Proposition 1.12 we can lift F̂ ′j to spectrally degenerate unbounded cycles (π ′j ⊕ 0,
E ′j ⊕ E ′op

j , D̂′j ), such that F̂ ′j ∼oh FD̂′j
. Moreover, using again Proposition 1.12,

we can lift −F ′j to algebraically degenerate unbounded cycles (0, E ′op
j ,−D′j ) such

that −F ′j ∼oh −FD′j
. This yields the vertical operator-homotopies between the

last two lines in (3.11). Finally, by transitivity we obtain the horizontal operator-
homotopy on the bottom line, and by Theorem 2.11 this operator-homotopy lifts
to an unbounded operator-homotopy

D0⊕ D̂′0⊕−D′1
oh

D1⊕ D̂′1⊕−D′0.

Thus, we have shown that (E0,D0)∼oh+d (E1,D1). �

4. Symmetries and the group structure

In this section we discuss various notions of symmetries for unbounded cycles.
The presence of such symmetries induces homotopical triviality and can be used
to give a direct proof of the fact that the semigroup UKK(A, B) is a group for any
two σ -unital C∗-algebras.

4A. Lipschitz regularity. Let 0<α< 1 and fα ∈C0(R) be a function that behaves
like xα towards infinity. We will show here that we can use the functional damp-
ening of Proposition 2.6 to replace any unbounded cycle (E,D) by a Lipschitz
regular cycle (E, fα(D)).

Definition 4.1. An unbounded A-B-cycle (π, E,D) is called Lipschitz regular if
π(A)⊂ Lip0(D)∩Lip(|D|).

Remark 4.2. Since the map x 7→ |x | − (1 + x2)1/2 lies in C0(R), we have for
T ∈ End∗B(E) that [|D|, T ] is bounded if and only if [(1+D2)1/2, T ] is bounded,
and therefore Lip(|D|)= Lip((1+D2)1/2).

The following result generalizes [Kaad 2019, Proposition 5.1], where the spe-
cific function x 7→ x(1+ x2)(α−1)/2 was considered.

Proposition 4.3. Let (E,D) be an unbounded cycle, 0 < α < 1, and let fα :
R→ R be any odd continuous function such that limx→∞ fα(x)− xα exists. Then
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(E, fα(D)) defines a Lipschitz regular unbounded cycle that is operator homotopic
to (E,D).

Proof. We will show that Lip(D)⊂ Lip( fα(D))∩Lip(| fα(D)|), and the statement
then follows from Proposition 2.6. Given two such functions fα and gα, both
fα−gα and | fα|−|gα| lie in Cb(R). Thus, fα(D)−gα(D) and | fα(D)|−|gα(D)| are
bounded operators, and we see that Lip( fα(D))= Lip(gα(D)) and Lip(| fα(D)|)=
Lip(|gα(D)|). Hence, it suffices to prove the statement for fα(x) := x(1+x2)(α−1)/2.
Using for s ∈ (0, 1) the integral formula (which can be derived from (2.7) by
replacing Qt(D) by (1+D2)−1)

(1+D2)−s
=

sin(πs)
π

∫
∞

0
λ−s(1+ λ+D2)−1 dλ,

it is shown in the proof of [Kaad 2019, Proposition 5.1] that [(1+D2)(α−1)/2, T ]D
extends to a bounded operator for each T ∈ Lip(D). Hence, Lip(D)⊂ Lip( fα(D)).

To prove the Lipschitz regularity, we consider instead the function gα(x) :=
sgn(x)(1+ x2)α/2. Using again the above integral formula, one can show similarly
that

[|gα(D)|, T ] = [(1+D2)α/2, T ] = −(1+D2)α/2[(1+D2)−α/2, T ](1+D2)α/2

is indeed bounded for each T ∈ Lip(D), and therefore Lip(D)⊂ Lip(|gα(D)|). �

Remark 4.4. In addition to the two functions x 7→ x(1 + x2)(α−1)/2 and x 7→
sgn(x)(1+ x2)α/2 considered in the proof of Proposition 4.3, another typical exam-
ple of a function fα as in Proposition 4.3 is the function sgnmodα : R→ R given
by x 7→ sgn(x)|x |α . Note that if D is invertible, then sgnmodα(D)= sgn(D)|D|α =
D|D|α−1.

Remark 4.5. Recall from Remark 2.9 the function sgnlog(x) := sgn(x) log(1+|x |).
In [Goffeng et al. 2019, Theorem 1.16], it is proved that the transformation D 7→

sgnlog(D) turns Lipschitz regular twisted unbounded Kasparov modules into or-
dinary unbounded Kasparov modules. Incorporating this “untwisting” procedure
into the homotopy framework using Proposition 2.6 is of interest in the study of
twisted local index formulae. This is beyond the scope of the present paper.

4B. Spectral symmetries.

Definition 4.6. An unbounded A-B-cycle (E,D) is called

• spectrally symmetric if there exist an odd self-adjoint unitary S on E and a
W ⊂ Lip0(D) such that π(A)⊂ W , [S, w] = 0 for all w ∈ W , S : Dom D→

Dom D, DS− SD= 0, and SD is positive, and

• spectrally decomposable if there exists a spectral symmetry S such that both
(S± 1)D are positive.



530 KOEN VAN DEN DUNGEN AND BRAM MESLAND

The definition of spectrally decomposable cycle is adapted from [Kaad 2019,
Definition 4.1] (where it is phrased in terms of the projection P = 1

2(1+ S)). By
definition, every spectrally decomposable cycle is also spectrally symmetric. More-
over, any spectrally degenerate cycle (E,D) is clearly spectrally decomposable
(hence spectrally symmetric) with spectral symmetry sgn(D).

Spectrally symmetric cycles are actually not much more general than spectrally
degenerate cycles. Indeed, the following lemma shows that any spectral symmetry
S more or less acts like sgn(D) (except that D may not be invertible, so there could
be some freedom in how S acts on Ker D).

Lemma 4.7. Let (E,D) be an unbounded A-B-cycle with spectral symmetry S.
Then D= S|D|, and (E,D) is Lipschitz regular.

Proof. On the Z2-graded module E = E+⊕ E− we can write

D=

(
0 D−

D+ 0

)
, S =

(
0 U∗

U 0

)
,

where U : E+→ E− is unitary. Since DS = SD, we see that UD− = D+U∗. We
then compute

D2
=

(
D−D+ 0

0 D+D−

)
=

(
U∗D+U∗D+ 0

0 UD−UD−

)
.

Since SD is positive, we know that U∗D+ and UD− are positive, and we obtain

|D| =

(
U∗D+ 0

0 UD−

)
= SD.

As in Lemma 3.6, it then follows that Lip(|D|)= Lip(D), so in particular (E,D)

is Lipschitz regular. �

Furthermore, the next proposition shows that any spectrally symmetric cycle is
in fact just a bounded perturbation of a spectrally degenerate cycle.

Proposition 4.8. Let (E,D) be an unbounded A-B-cycle with spectral symmetry S.
Then (E,D+ S) is a spectrally degenerate unbounded A-B-cycle.

Proof. Since S is bounded, self-adjoint, and odd, we know that (E,D + S) is
again an unbounded A-B-cycle. Furthermore, since (D+ S)2 = D2

+ 1+ 2SD is
positive and invertible, we know that also D+ S is invertible. Moreover, noting
that (D+ S)2= (1+ SD)2 and that 1+ SD is positive, we see that |D+ S| = 1+ SD.
Hence, we find that

sgn(D+ S)= (D+ S)|D+ S|−1
= S(SD+ 1)(1+ SD)−1

= S,

and we conclude that (E,D+ S) is degenerate. �
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In [Kaad 2019, Definition 4.8], the notion of spectrally decomposable module
was used to define the equivalence relation of “stable homotopy” for unbounded
Kasparov modules (i.e., homotopies modulo addition of spectrally decomposable
modules). Here, we point out that in fact any spectrally symmetric cycle (E,D) is
null-homotopic. If A is separable, this follows from Theorem 2.11 by observing
that, if S is a spectral symmetry of (E,D), then the bounded transform (E, FD)

is operator-homotopic to the degenerate cycle (E, S) (since [FD, S] = 2SFD is
positive [Blackadar 1998, Proposition 17.2.7]). In general, we simply combine
Propositions 4.8 and 3.7 to obtain:

Corollary 4.9. Any spectrally symmetric unbounded A-B-cycle is null-homotopic.
Consequently, the relation of stable homotopy equivalence of [Kaad 2019, Defini-
tion 4.8] coincides with the relation ∼h of homotopy equivalence.

In [Kaad 2019, Theorem 7.1] it was shown that, for any countable dense ∗-
subalgebra A⊂ A, the stable homotopy equivalence classes of elements in91(A, B)
form a group which is isomorphic to KK(A, B). In particular, this group is inde-
pendent of the choice of A. We emphasize here that Corollary 4.9, combined
with [Kaad 2019, Theorem 7.1], then gives a second independent proof of the
isomorphism UKK(A, B)' KK(A, B) from Theorem 2.12.

As a further application of Corollary 4.9, the following proposition (adapted
from the results of [Kaad 2019]) gives a criterion that ensures that two given un-
bounded cycles are homotopic.

Proposition 4.10 (cf. [Kaad 2019, Proposition 6.2]). Let (π, E,D) and (π, E,D′)

be unbounded A-B-cycles such that π(A) ⊂ Lip0(D)∩Lip0(D′). Suppose there
exists an odd self-adjoint unitary F : E → E such that F commutes with both D

and D′, and such that we have the equalities FD = |D| and FD′ = |D′|. Then
(E,D) is homotopic to (E,D′).

Proof. Using Proposition 4.3, we may assume (without loss of generality) that
(E,D) and (E,D′) are Lipschitz regular, and that π(A)⊂W for some

W ⊂ Lip0(D)∩Lip(|D|)∩Lip0(D′)∩Lip(|D′|).

We then note that the operator F satisfies the assumptions of [Kaad 2019, Proposi-
tion 6.2] (with the dense ∗-subalgebra A⊂ A replaced by W ), where we point out
that the Lipschitz regularity of D ensures that

D[F, w] = [DF, w] − [D, w]F = [|D|, w] − [D, w]F

is bounded for w ∈ W (and similarly for D′). Then we know from (the proof of)
[Kaad 2019, Proposition 6.2] that (E,D)− (E,D′) is homotopic to a spectrally
decomposable cycle. Using Corollary 4.9 we conclude that (E,D)− (E,D′) is
null-homotopic, and therefore (E,D) is homotopic to (E,D′). �
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Corollary 4.11. Let (π, E,D) and (π, E,D′) be unbounded A-B-cycles. Suppose
that D and D′ are both invertible, and that sgn(D) = sgn(D′). Then (E,D) is
homotopic to (E,D′).

4C. Clifford symmetries.

Definition 4.12. An unbounded Kasparov A-B-cycle (E,D) is called Clifford sym-
metric if there exists an odd self-adjoint unitary γ on E and a W ⊂ Lip0(D) such
that π(A)⊂W , [γ,w] = 0 for all w ∈W , γ :Dom D→Dom D, and Dγ =−γD.

The idea here is that a Clifford symmetric A-B-cycle is in fact an A ⊗̂Cl1-B-
cycle, and the image of the map KK(A ⊗̂Cl1, B)→ KK(A, B) is zero. Indeed,
one easily checks that the bounded transform (E, FD) of a Clifford symmetric
unbounded cycle is operator-homotopic to the degenerate Kasparov module (E, γ ).
We prove here an analogous statement for unbounded cycles.

Lemma 4.13. Let (E,D) be an unbounded A-B-cycle with a Clifford symmetry γ
and 0 < α < 1. Then (E,D) is operator-homotopic to the spectrally symmetric
unbounded cycle (E, γ |D|α).

Proof. Since γ commutes with |D|α and (γ |D|α)2 = |D|2α , we know that γ |D|α is
regular and self-adjoint, and T (1+ (γ |D|α)2)−1/2 is compact for any T ∈ Lip0(D).
Moreover, since Lip(γ |D|α) = Lip(|D|α) contains Lip(D), we see that π(A) ⊂
Lip0(D)⊂ Lip0(γ |D|α). Thus, (E, γ |D|α) is indeed an unbounded cycle. We note
that γ provides a spectral symmetry for (E, γ |D|α). The operator-homotopy is
obtained by composing the operator-homotopy between D and sgnmodα(D) (see
Proposition 4.3 and Remark 4.4) with the operator-homotopy given for t ∈ [0, 1] by

Dt := cos( 1
2π t) sgnmodα(D)+ sin( 1

2π t)γ |D|α. (4.14)

Note that γ anticommutes with sgnmodα(D) as the latter is given by an odd func-
tion of D (see Lemma 1.14). We then compute that D2

t = |D|
2α , and thus Lip0(D)⊂

Lip0(Dt) for all t ∈ [0, 1], so Dt is indeed an operator-homotopy. �

As in [Deeley et al. 2018, Definition 3.1], we say that an unbounded cycle (E,D)

is weakly degenerate if D is given by a sum D= D0+S, such that

• D0 and S are odd regular self-adjoint operators with Dom D = Dom D0 ∩

Dom S,

• S is invertible, A ⊂ Lip(S), and Sa− aS= 0 for all a ∈ A, and

• there is a common core E⊂ Dom(SD0)∩Dom(D0S) for D0 and S such that
D0S+SD0 = 0 on E.

Roughly speaking, this means that S is degenerate and D0 has Clifford symmetry
γ = sgn(S). The proof of Lemma 4.13 can be adapted to weakly degenerate cycles.
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Lemma 4.15. Any weakly degenerate unbounded A-B-cycle (E,D = D0+S) is
operator-homotopic to spectrally symmetric unbounded A-B-cycle (E, sgn(S)|D|α)
for any 0< α < 1. In particular, (E,D) is null-homotopic.

Proof. The proof is the same as for Lemma 4.13, but we need to show that (4.14)
is again an operator-homotopy (with γ = sgn(S)). We compute

D2
t = |D|

2α
+ 2 sin(1

2π t) cos(1
2π t)[sgnmodα(D), γ ]|D|α.

Since S is invertible, also D is invertible, and we find that

[sgnmodα(D), γ ] = [D, γ ]|D|α−1
= 2|S| |D|α−1.

In particular, [sgnmodα(D), γ ]|D|α is a positive operator and therefore D2
t ≥ |D|

2α

for all t ∈ [0, 1]. Hence, if T (1+D2)−1/2 is compact for some T ∈ EndB(E), then
also T (1+ |D|2α)−1/2 is compact, and therefore

T (1+D2
t )
−1/2
= T (1+ |D|2α)−1/2(1+ |D|2α)1/2(1+D2

t )
−1/2

is compact. Thus, Lip0(D)⊂ Lip0(Dt) for all t ∈ [0, 1], so Dt is indeed an operator-
homotopy. Finally it follows from Corollary 4.9 that (E,γ |D|α) is null-homotopic.�

4D. The unbounded KK-group. As mentioned in Remark 2.13, the isomorphism
UKK(A, B)'KK(A, B) from Theorem 2.12 implies in particular that UKK(A, B)
is a group. Here we give a direct proof of this fact, working only in the unbounded
picture of KK-theory (hence avoiding the bounded transform entirely). In partic-
ular, the proof we give here (in contrast with Theorem 2.12) does not require the
assumption that A is separable.

Given an unbounded A-B-cycle (π, E,D), define its “inverse” as

−(π, E,D) := (πop, Eop,−D),

where Eop
= E with the opposite grading and the representation

πop(a)= (−1)deg aπ(a)

for homogeneous elements a ∈ A.

Theorem 4.16. For any σ -unital C∗-algebras A and B, the abelian semigroup
UKK(A, B) is in fact a group. To be more precise, the inverse of [(π, E,D)] ∈

UKK(A, B) is given by [−(π, E,D)].

Proof. The sum (π, E,D)− (π, E,D) is given by the Clifford symmetric cycle

(π, E,D)− (π, E,D)=

(
π ⊕πop, E ⊕ Eop,

(
D 0
0 −D

))
, γ =

(
0 1
1 0

)
,
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where γ denotes the Clifford symmetry. From Lemma 4.13 we know that a Clif-
ford symmetric cycle is operator-homotopic to a spectrally symmetric cycle. Fur-
thermore, by Corollary 4.9, every spectrally symmetric cycle is null-homotopic.
Thus, we have shown that (π, E,D)− (π, E,D) is null-homotopic, and therefore
[−(π, E,D)] is indeed the inverse of [(π, E,D)]. �

Appendix: On localizations of dense submodules

Let X be a locally compact Hausdorff space, B a C∗-algebra, and E a Hilbert
C0(X, B)-module. We will show in this appendix that a submodule of E is dense
if and only if it is pointwise dense. One way to prove this could be by showing
that E can be viewed as a continuous field of Banach spaces (where each Banach
space is in fact a Hilbert B-module), and then applying the theory of continuous
fields [Dixmier and Douady 1963] (for this approach, see for instance [Ebert 2018,
Lemma 2.7, Corollary 2.8, and Proposition 2.21]). Here, we prefer instead to give
our proof in the language of Hilbert C∗-modules.

For x ∈ X we denote by evx : C0(X, B)→ B the ∗-homomorphism f 7→ f (x).
Let ι : B → B+ be the embedding of B into its (minimal) unitization B+. We
define the localization Ex := E ⊗̂evx B+, and we note that there is a map E→ Ex

via e 7→ ex := e ⊗̂ 1. For a submodule F ⊂ E we write

Fx := { fx ∈ Ex : f ∈ F} ⊂ Ex ,

for the image of F under the map e 7→ ex . We collect some basic facts regarding
these localizations in the following lemma.

Lemma A.1. (1) The Hilbert C0(X, B)-module E is a central bimodule over
C0(X), and the left C0(X) action is by adjointable operators.

(2) The map E→ Ex given by e 7→ ex := e ⊗̂ 1 is surjective.

(3) We have a unitary isomorphism Ex ' E ⊗̂evx B.

(4) We have the equality ‖e‖E = supx∈X‖ex‖, and the map x 7→‖ex‖ lies in C0(X).

Proof. For (1), see for instance [Kasparov 1988, Definition 1.5] and the discussion
following it. For (2), it suffices to consider elements e ⊗̂ b ∈ Ex with e ∈ E and
b ∈ B. Picking f ∈ C0(X) such that f (x) = 1 and defining b̃ ∈ C0(X, B) by
b̃(y) := f (y)b for y ∈ X , we see that e ⊗̂b= eb̃ ⊗̂1, which proves (2). For (3), we
note that the map id ⊗̂ ι : E ⊗̂evx B→ E ⊗̂evx B+ is an isometry, so we only need to
check that the range is dense. Using an approximate unit un ∈ B, we indeed find

‖e ⊗̂ 1− e ⊗̂ un‖
2
= ‖e ⊗̂ (1− un)‖

2
= ‖(1− un) evx(〈e, e〉)(1− un)‖→ 0.
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The equality in (4) follows by direct calculation:

‖e‖2E = ‖〈e, e〉‖C0(X,B) = sup
x∈X
‖〈e, e〉(x)‖B = sup

x∈X
‖〈e ⊗̂ 1, e ⊗̂ 1〉Ex‖B = sup

x∈X
‖ex‖

2.

Finally, for continuity of the norm, we use that ‖ex‖ = ‖〈e, e〉1/2(x)‖ and that the
map x 7→ 〈e, e〉1/2(x) is continuous. �

Proposition A.2. If F ⊂ E is a submodule, then F is dense in E if and only if for
each x ∈ X , Fx is dense in Ex .

Proof. We will freely use the facts from Lemma A.1. If F is dense in E , the equality
‖e‖E = supx∈X‖ex‖ shows that Fx is dense in Ex for each x ∈ X . Conversely,
suppose Fx is dense in Ex for all x ∈ X . Fix ε > 0 and ψ ∈ E . For each x ∈ X ,
there exists φ ∈ F such that ‖ψx −φx‖<

ε
2 . By continuity of the norm, there exists

a precompact open neighborhood Ux of x in X such that

sup
y∈Ux

‖ψy −φy‖< ε.

There exists a compact subset K ⊂ X such that supx∈X\K‖ψ(x)‖ < ε. By com-
pactness of K , we can choose finitely many points {xi }

N
i=1 such that K ⊂

⋃N
i=1 Uxi .

Thus, on each Ui :=Uxi there exists φi ∈ F such that supy∈Ui
‖ψy −φi,y‖< ε. Let

U0 := X \ K , and let χi be a partition of unity subordinate to {Ui }
N
i=0. Let {un} be

an approximate unit for B, and choose n large enough such that ‖φi,y−φi,yun‖< ε

for all i = 1, . . . , N and y ∈Ui . Let ηi ∈ C0(X, B) be given by ηi (x) := χi (x)un .
Then the element φ :=

∑N
i=1 φiηi ∈ F is supported on V :=

⋃N
i=1 Ui , and we

compute

‖ψ −φ‖ ≤ sup
x∈V
‖ψx −φx‖+ sup

x∈X\V
‖ψx −φx‖

≤ sup
x∈V \K

∥∥∥∥(1−
N∑

i=1

χi (x)
)
ψx

∥∥∥∥+ sup
x∈V

∥∥∥∥ N∑
i=1

χi (x)(ψx −φi,x)

∥∥∥∥
+ sup

x∈V

∥∥∥∥ N∑
i=1

χi (x)(φi,x −φi,x un)

∥∥∥∥+ sup
x∈X\V

‖ψx‖

≤ 4ε.

It follows that F is dense in E . �

For any adjointable operator T on E , we write Tx := evx(T ) := T ⊗̂ 1 for the
corresponding operator on Ex = E ⊗̂evx B+.

Corollary A.3. Let E be a C0(X, B)-module and h ∈ End∗B(E). Then h has dense
range in E if and only if for all x ∈ X , hx has dense range in Ex .
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