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KEY POINTS:  

• Pathogen-inactivated platelets were noninferior in preventing bleeding only in intention-

to-treat analysis 

• In contrast to animal models, alloimmunization could not be prevented when using 

pathogen-inactivated platelets  

 

 

ABSTRACT 

Pathogen inactivation of platelet concentrates reduces the risk of blood-borne infections. 

However, its effect on platelet function and hemostatic efficacy of transfusion is unclear. We 

conducted a randomized noninferiority trial comparing the efficacy of pathogen inactivated 

platelets using riboflavin and ultraviolet B illumination technology (intervention) compared to 

standard plasma-stored platelets (control) for the prevention of bleeding in patients with 

hematologic malignancies and thrombocytopenia. The primary outcome parameter was the 

proportion of transfusion treatment periods in which the patient had grade 2 or higher 

bleeding as defined by World Health Organization (WHO) criteria. Between November 2010 

and April 2016, 469 unique patients were randomized to 567 transfusion treatment periods 

(283 in the control arm, 284 in the intervention arm). There was a 3% absolute difference in 

grade ≥ 2 bleeding in the intention-to-treat analysis: 51% of the transfusion treatment periods 

in the control arm and 54% in the intervention arm (95% CI -6 to 11, p-value for 

noninferiority 0.012). In the per-protocol analysis, however,  difference in grade ≥ 2 bleeding 

was 8%: 44% in the control arm and 52% in the intervention arm (95% CI -2 to 18, p-value 

for noninferiority 0.19). Transfusion increment parameters were about 50% lower in the 

intervention arm. There was no difference in the proportion of patients developing HLA class 

I alloantibodies. In conclusion, the noninferiority criterion for pathogen inactivated platelets 

was met in the intention-to-treat analysis. This finding was not demonstrated in the per 

protocol analysis. (The Netherlands National Trial Registry number: NTR2106).   
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INTRODUCTION 

There remains interest in development of pathogen inactivation techniques to complement the 

‘multi-layered prevention strategy’ to avert transfusion of blood products contaminated with 

currently known as well as unknown pathogens. The available pathogen inactivation systems 

for platelet concentrates inactivate a broad array of viruses, bacteria and parasites.1-4 

Moreover, these techniques have also shown sufficient white cell inactivation to prevent 

transfusion-associated graft versus host disease, and may also reduce the formation of Human 

Leukocyte Antigen (HLA) antibodies.5-7 If hemostatic efficacy of pathogen inactivated 

platelets is sufficiently maintained, these advantages could favor the consideration to 

implement pathogen inactivation technology. A meta-analysis of 12 randomized controlled 

trials concluded that transfusions with pathogen inactivated platelet concentrates resulted in 

reduced transfusion increment, without hemostatic consequences or differences in patient 

survival.8 In three of these trials riboflavin, also known as vitamin B2, with ultraviolet  

illumination (Mirasol pathogen inactivation technology; Terumo BCT, Lakewood, Colorado) 

was used to inactivate pathogens.9-11 Despite the available data, it is insufficiently known 

whether Mirasol treatment in platelet concentrates results in an equivalent hemostatic effect in 

this vulnerable population. As bleeding is considered to be the pivotal outcome for platelet 

transfusion trials, we conducted a non-inferiority randomized controlled trial comparing 

pathogen-inactivated platelet concentrates using the Mirasol technology with conventional 

untreated platelet concentrates, with percentage of transfusion treatment periods in which the 

patient has World Health Organization (WHO) grade ≥ 2 bleeding as primary outcome.12 As a 

secondary outcome we measured HLA antibody-formation to determine whether pathogen-

inactivated platelets are able to reduce alloimmunization in hemato-oncology patients.  

 

METHODS 

The PREPAReS study (Pathogen Reduction Evaluation and Predictive Analytical Rating 

Score) was designed as a randomized multicenter non-inferiority study using a parallel arm 

design with one-to-one randomization. The protocol was written by a steering committee and 

approved centrally and by site institutional review boards. The study met the criteria captured 

in the Declaration of Helsinki (6th revision, 2008) and Good Clinical Practice guidelines. All 

patients gave written informed consent before the randomization procedure or any other study 
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related proceeding. A detailed review of the protocol and methods used was published 

separately, and is only briefly summarized here.13 The study was conducted in three countries, 

in ten centers with hemato-oncology departments: 4 sites in the Netherlands, 5 in Canada and 

1 in Norway.  

 

Eligibility Criteria 

Hemato-oncology patients with chemotherapy-induced thrombocytopenia aged 18 years or 

older were eligible for inclusion in the study if they were expected to require at least two 

platelet transfusions during a transfusion treatment period (Figure S1 in the supplementary 

appendix). Patients presenting with a grade ≥ 2 bleeding before enrolment could only be 

enrolled with existing (i.e. not new) bruises, while patients with grade ≥ 2 bleeding at other 

organ systems than skin could be enrolled only 14 days after resolution of the bleed. Other 

exclusion criteria included: known immunological refractoriness to platelet transfusions; 

indications to use hyperconcentrated platelets; idiopathic thrombocytopenic purpura (ITP); 

pregnancy; microangiopathic thrombocytopenia; known allergy to riboflavin or its 

photoactive products. 

 

Stratification and Randomization 

Eligible patients were randomized to receive untreated plasma-stored platelet concentrates or 

pathogen-inactivated platelet concentrates using a centralized, web-based allocation tool. The 

random allocation schedule was prepared by a biostatistician not directly involved in the study 

using a 1:1 ratio and randomly-varying block sizes of two to six. Three stratification factors 

were applied: center, diagnosis (AML vs. non-AML) and treatment (transplant vs no-

transplant). Patients could be randomized more than once if they had subsequent hospital 

admissions, and the statistical analysis accounted for multiple randomizations per individual.  

 

Platelet products and transfusion policy 



Van der Meer, Ypma, et al; Page 5/24 
 

Platelet concentrates were all prepared from pooled buffy coats, resuspended in plasma, and 

leukoreduced by filtration.14 For pathogen inactivation, 35 ml (500 µM) riboflavin was added 

to the pooled leukoreduced product, and exposed to ultraviolet light (wavelength 280 – 315 

nm) for 5 – 10 minutes depending on the volume of the concentrate (total dose 6.2 J/ml) 

according to the manufacturer’s instructions. Platelet products were stored with gentle 

agitation at 20-24°C up to five days in Canada and for a maximum of seven days in the 

Netherlands and Norway.14 The products were composed of five buffy coats in the 

Netherlands, four buffy coats in Norway, and four or five buffy coats in Canada. The actual 

platelet content in the bags largely overlapped between the countries. 14 An automated culture 

system was used to detect bacterial contamination, and products were issued as ‘negative-to-

date’. Platelet concentrates were γ-irradiated as per local protocol. In both treatment arms, 

patients received platelet transfusions prophylactically (platelet count-related prophylaxis, 

trigger 10x109/L or intervention-related prophylaxis, trigger 50x109/L) or as treatment of 

bleeding, using national and hospital guidelines. Red cell concentrates and plasma were 

transfused based on local protocols for transfusion thresholds and at the treating physicians’ 

discretion.  

 

Outcomes and clinical assessments 

The primary study outcome was the proportion of transfusion treatment periods in which the 

patient had a bleeding complication WHO grade ≥ 2. The transfusion treatment period started 

at the time of the first platelet transfusion after randomization and ended maximally 6 weeks 

after the first platelet transfusion, or for one of the following reasons: patient was no longer 

thrombocytopenic (> 7 days without requiring a platelet transfusion), hospital discharge, 

death, or request by the patient to discontinue (Figure S1 in the supplementary appendix). 

Secondary outcomes were 1- and 24-hour corrected count increments, the frequency of 

transfusion failures (defined as 1-hour corrected count increment < 7.5 and 24-hour corrected 

count increments < 4.5), percentage of days within a transfusion treatment period with 

bleeding grade ≥ 2, incidence of adverse transfusion reactions, transfusion requirement of red 

cells and platelets, platelet transfusion interval, and the proportion of patients with HLA 

alloimmunization. Data collection was performed by trained research staff at each site, and 

data were entered into the ProMISe (Project Manager Internet Server) database from two 

central research locations in Canada and the Netherlands. Bleeding symptoms, as well as all 
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other clinical- and transfusion-related data were monitored daily on all study patients, starting 

at randomization, up to a maximum of 6 weeks after the first platelet transfusion, or end of 

thrombocytopenia as defined above. The study was not blinded, and bleeding assessments 

were performed by trained non-blinded research personnel. Hence, an adjudication process 

was used to assign each patients bleeding status to minimize bias. Bleeding adjudication, 

using the WHO bleeding scale, was done by three independent adjudicators blinded to the 

treatment allocation, in addition to the use of an automated algorithm.15 For HLA antibody 

detection, samples were collected weekly during hospitalization up till day 28, and a ‘late’ 

sample at approximately day 56, and tested in the Luminex assay (Luminex Corp., Austin, 

Texas, USA) for presence of single antigen HLA-antibodies at the Blood Systems Research 

Institute (San Francisco, California, USA).16 

 

Statistical analyses 

A pilot study showed that on average 50% of patients have bleeding ≥ grade 2 during their 

thrombocytopenic phase, confirming findings of earlier large platelet transfusion studies.17-19 

The study was designed as a non-inferiority trial to test the null-hypothesis that pathogen-

inactivated platelet concentrates are worse than control platelets. The alternative hypothesis to 

be proven is that the pathogen-inactivated platelets perform similar to control platelets within 

a pre-specified margin with regard to the primary endpoint. Based on discussions with 

clinicians as well as another large study using bleeding as an endpoint we decided that a 12.5 

percentage point increase as the upper limit of the 95% confidence interval of the absolute 

difference in grade ≥ 2 bleeding between the treatment arms was an acceptable margin, 

acknowledging improved safety with regard to the transmission of pathogens.17 To assess the 

non-inferiority hypothesis with a power of 80%, as well as adjustment (alpha and beta-

spending) for predefined interim analyses required a sample size of 578 (289 per arm). For 

safety reasons, frequent interim analyses were performed after every 60 patient transfusion 

treatment period randomized using a flexible stopping rule based on alpha and beta spending 

functions, allowing stopping for non-inferiority or futility.20 Before unblinding and starting 

the final analyses, a statistical analysis plan was written and agreed upon by the steering 

committee. The analysis of the primary endpoint as well as the majority of secondary 

endpoints were performed using three approaches: intention-to-treat (ITT), the per-protocol 

population (PP) and the per-protocol-only population (PPO) (Table S1 in the supplementary 
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appendix). The primary effect parameter was estimated according to a generalized estimating 

equation (GEE) approach using a generalized linear model with identity link and 

independence working correlation. The dependent variable was the yes/no indicator of having 

at least one ≥ grade 2 bleed during a transfusion treatment period. Covariates in the model 

were the treatment arm, the treatment period number (dichotomized as first or later) and the 

interaction between these two covariates. The 1-hour and 24-hour corrected count increments 

were analyzed using a linear mixed model using a random intercept per patient and a random 

intercept per treatment period to take into account the correlations between transfusions 

within treatment periods as well as between treatment periods within patients. Covariates 

were treatment arm, the number of the transfusion within the treatment period, the interaction 

between both and the pre-transfusion count. The platelet transfusion interval was analyzed 

with a mixed Poisson model with the number of transfusions per treatment period as 

dependent variable, the treatment arm as covariate, the log of the duration of the treatment 

period as an offset parameter and a random intercept per patient. The other numerical 

secondary outcomes that were measured only once per treatment period were compared based 

on the mean value per group with a similar GEE approach as for the primary outcome only 

now using a general linear model. For the analysis of the alloimmunization data, for patients 

with multiple randomizations, only results of the first randomizations were used. Patients 

were considered to be alloimmunized if at least one sample during 56 days after 

randomization had a signal higher than 5 standard deviations above the normalized 

background signal. We calculated Kaplan Meier curves for time-to-alloimmunization and 

compared both groups using a risk ratio for cumulative event probabilities estimated at 60 

days. All statistical analyses were performed using IBM SPSS Statistics (version 23). 

 

Study oversight 

Safety aspects of the study were closely watched by a Data Safety Monitoring Board 

(DSMB). Interim analyses after every 60 randomized patients were evaluated by the DSMB. 

The study was monitored for quality and regulatory compliance. The monitoring frequency 

depended on inclusion rates and findings from earlier visits. The authors vouch for the 

integrity of the data and analyses reported. The study was sponsored by Sanquin Blood 

Supply and registered at the Netherlands National Trial Registry under number NTR2106, and 

also at clinicaltrials.gov under number NCT02783313.  
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RESULTS 

From November 2010 until April 2016, randomization of 567 transfusion treatment periods 

took place in 469 patients. In November 2015, after analyzing 433 treatment periods the 

DSMB advised to stop recruiting patients, as analysis of the intention-to-treat population 

permitted a conclusion of non-inferiority for the primary endpoint. In close collaboration with 

the ethics review board, since there were no safety issues involved, the steering committee 

decided to continue patient accrual in order to reach the originally planned power of the study 

for the secondary endpoints, especially alloimmunization. Of the randomized transfusion 

treatment periods, 11 were excluded from further analyses as the patient had an active grade ≥ 

2 bleeding (N = 8) at randomization, or there was a gross lack of study compliance (N = 3, 

Figure 1). The intention-to-treat analyses were thus performed on 556 transfusion treatment 

periods. For the per-protocol analyses the data set consisted of 425 treatment periods after 

excluding patients who actively bled on the day of the first transfusion or did not receive any 

transfusion or received > 25% off-protocol transfusions (Figure 1). Randomization 

successfully balanced the most important risk factors for bleeding (Table 1).  

 

Bleeding 

In the intention-to-treat analysis, in 51% of the transfusion-treatment periods in the control 

arm the patient experienced a grade ≥2 WHO bleeding versus 54% in the intervention arm. 

The upper boundary of the 95% confidence interval of the difference between these two 

percentages did not exceed 12.5 percentage points, hence meeting the non-inferiority criterion 

(Table 2).  However, for the per-protocol analysis, 44% of patients receiving standard platelet 

products had a grade ≥2 bleeding, versus 52% in the intervention arm (Table 2).  The upper 

limit of the 95% confidence interval of this difference exceeded the prespecified limit, so the 

non-inferiority criterion was not met here (Figure 2). When looking at the percentage of 

bleeding days, there was no significant difference between the arms, irrespective of the 

analysis used. Also, when considering the highest bleeding grade, we saw no differences 

between the control and intervention arm. A further sub-analysis was performed for patients 

receiving only on-protocol transfusions, which showed similar outcome as compared to the 

per-protocol analysis (Table S2 in the supplementary appendix).  
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Transfusions 

Most platelet transfusions were given prophylactically (Table S3 and S4 in the supplementary 

appendix).  The pre-transfusion platelet count was about 15 x 109/L with no differences 

between the two arms. The platelet content in the products was about equal.13, 14 (Table S3 

and S4 in the supplementary appendix). Storage time was comparable, with 16 to 19% of the 

concentrates being stored for 6 or 7 days. The percentage of off-protocol transfusions in the 

intervention arm was 19.5% as compared to 11.6% in the control arm (p = 0.02). Off-protocol 

transfusions were denoted as “other”, and could consist of -for example- hyperconcentrated 

platelet products; platelets in additive solution in the control arm, and untreated platelets in 

the intervention arm. All transfusion increment parameters were significantly lower for 

pathogen-inactivated platelet concentrates versus untreated platelets. In the intervention arm, 

the count increments and corrected count increments were about 50% lower than the values in 

the control platelets arm, resulting in frequent transfusion “failures” (Table 3), a higher 

number of platelet transfusions and a shorter platelet transfusion interval (Table 4). There 

were no differences in the number of red cell- and plasma-units transfused in either arm, for 

both intention-to-treat and per-protocol analysis (Table 4).  

 

Safety: infections, (severe) adverse events, including transfusion reactions 

There were a considerable number of infectious complications, adverse events (AEs) and 

serious adverse events (SAEs), without differences between both study arms (Table S5 in the 

supplementary appendix). In both arms, one SAE was related to the platelet transfusion, an 

anaphylactic transfusion reaction to an off-protocol transfusion of platelets in additive 

solution in the control arm, and a transfusion-associated lung injury in the intervention arm 

(imputability possible). The percentage of transfusion reactions with imputability probable, 

possible, or certain was 2.8% in the control arm and 3.3% in the intervention arm. The 

majority of the transfusion reactions in both arms resulted in no or only minor morbidity.  

 

Alloimmunization 
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For the alloimmunization, we only included the first randomization transfusion treatment 

periods of patients (n=463). Excluding treatment periods with no or only one collected 

sample, as well as patients with HLA antibodies at the onset of their transfusion treatment 

period, resulted in 356 evaluable treatment periods in the per-protocol-only population 

(Control n = 177, Intervention n = 179). As shown in Figure 2, the number of patients 

developing HLA class I alloantibodies was similar: 6 in the control arm, as compared to 7 in 

the intervention arm (Risk ratio 1.00; 95% CI 0.34 – 2.98, p = 1.00). The intention-to-treat 

and per-protocol analyses are shown as supplemental material (Figures S2 and S3).  

 

DISCUSSION 

Using WHO bleeding as a primary outcome, we compared pathogen-inactivated platelet 

products using riboflavin and ultraviolet light, with standard plasma-stored platelet products 

in a multicenter, international randomized controlled trial using a non-inferiority design. The 

percentages of bleeding patients is in the same order of magnitude as other large randomized 

platelet transfusion trials, though somewhat higher as compared to the other two trials testing 

riboflavin/ ultraviolet  light treated platelets, indicating that bleeding symptoms were 

accurately captured in the participating sites.10,11, 17, 18 Although in the intention-to-treat 

analysis the  non-inferiority criterion was met,  the per-protocol analysis showed a slight 

increase in grade ≥ 2 bleeding complications in the intervention arm, and the upper limit of 

the 95% confidence interval of the difference crossed the margin of 12.5 percentage points. 

As has been recently discussed by Mauri and D’Agostino, in non-inferiority trials both the 

intention-to-treat as well as the per protocol analysis have important merits as well as pitfalls. 

Reporting both is considered to be the standard with similar results in both supporting the 

robustness of the findings.21  In our study in the intention-to-treat analysis, both off-protocol 

transfusions as well as the inclusion of bleeding complications occurring between 

randomization and the first on study platelet transfusion likely resulted in a diluting effect to 

the advantage of the intervention arm. However, the per-protocol analysis might be hampered 

by selection bias. It is conceivable that excluding patients with active bleedings at the day of 

the first on-study transfusion resulted in a bias to the advantage of the control arm by 

removing patients with a bleeding tendency.  A modified PP analysis, not excluding patients 

with active bleeding, reduced the difference with regard to bleeding complications between 

both populations slightly, though still not meeting the non-inferiority criterion.  
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With regard to secondary bleeding endpoints, there were no differences between both study 

arms. Importantly, though the numbers are small, no differences were observed in severe 

bleeding complications, pertinent to daily clinical practice. There were no differences with 

regard to the consumption of red cell concentrates or plasma, considered to be surrogate 

markers for clinically significant bleeding complications.   

The small detrimental effect on hemostasis seen in de per protocol analysis is in concordance 

with the conclusions of the most recent Cochrane analysis on pathogen reduction as well as 

the outcome of the recently published EFFIPAP study, which compared amotosalen- 

ultraviolet A treated platelets with platelets in plasma as well as platelet additive solution.8, 22 

The observed increase in bleeding complications is likely due to the detrimental effects on 

platelet function induced by pathogen reduction as has been shown in vitro for all the 

currently available pathogen reduction techniques.23,24   

All transfusion increment parameters were in favor of the control arm, which translated to a 

higher usage of platelet products in the intervention arm because the transfusion trigger is met 

sooner, with an increase of approximately 1 product per patient. This is as expected, recently 

published clinical studies comparing pathogen reduced platelet concentrates with untreated 

platelets also report higher platelet transfusion need.11, 22  Possibly, the lower corrected count 

increments are also due to the effects on platelets induced by pathogen inactivation, described 

for several pathogen inactivation methods .22, 25,26  This subject should be the basis for future 

research.  

As expected in this population, there was a high number of adverse and serious adverse 

events, with only two serious adverse events related to a platelet transfusion. In the 

intervention arm a possible transfusion related acute long injury (TRALI) was reported. All 

platelet products in plasma can cause a TRALI, and since pathogen inactivation does not 

target proteins, such an occurrence is not unexpected.  In contrast to recently published animal 

studies, pathogen inactivation treatment did not result in a reduction of HLA class I 

alloimmunization.7, 27 As the percentage of immunized patients is low in both arms, this result 

may be completely explained by randomness. Additionally, the discrepancy between animal 

and human studies may be explained by the administration of untreated red blood cells in 

patients in both arms, which did not occur in the animal experiments. The recently published 

data of the IPTAS trial also reported comparable low rates of HLA class I antibodies.28 

Numbers of countries, hospitals, patients, the large number of platelet transfusions and the 

large number of observed days are the main strengths of this study, contributing to the 

generalizability of conclusions regarding the clinical efficacy of pathogen-inactivated buffy-
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coat platelets in thrombocytopenic hematology patients. Despite efforts to reduce this, the 

main weakness of our study is the significant number of patients with off-protocol 

transfusions. Since our study has shown a mildly reduced hemostatic efficacy as well as a 

significant impact on transfusion increments, to implement or not to implement pathogen-

inactivated platelet products really depends on the balance of increased safety for known and 

unknown pathogens, which varies between countries worldwide, and the clinical effects that 

pathogen inactivation causes to the platelet product. Health-economic arguments should also 

be taken into account. Clearly there is room and need to improve the current techniques of 

platelet pathogen inactivation. Indeed replacing plasma by novel additive solutions has 

recently shown promising results.29 Moreover a clinical trial using pathogen inactivation in 

apheresis platelets, potentially contributing to a decreased risk in alloimmunization, is about 

to start.   
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Table 1 Patient characteristics  

 

  

    

  Control Intervention 

  n = 279 n = 277 

    

Male/female n / n 191 / 88 188 / 89 

Age Years, mean ± SD 54 ± 12 54 ± 12 

Body surface area m2, mean ± SD 1.97 ± 0.25 2.00 ± 0.24 

Enlarged spleen n (%) 17 (6.1)† 31 (11) 

Multiple inclusions n (%) 57 (20) 39 (14) 

Diagnosis    

  Acute myeloid leukemia n (%) 132 (47) 133 (48) 

  Acute lymphoblastic leukemia n (%) 25(9.0) 24 (8.6) 

  Mantle cell lymphoma n (%) 13 (4.7) 14 (5.0) 

  Non-Hodgkin’s lymphoma n (%) 41 (15) 38 (14) 

  Multiple myeloma n (%) 43 (15) 45 (16) 

  Chronic leukemia n (%) 3 (1.1) - 

  Other n (%) 22 (7.9) 23 (8.3) 

Treatment    

  Remission induction chemotherapy n (%) 119 (43) 116 (42) 

  Consolidation chemotherapy n (%) 32 (12) 35 (13) 

  Autologous stem cell transplantation n (%) 101 (36) 103 (37) 

  Allogenic stem cell transplantation n (%) 25 (9.0) 16 (5.8) 

  Other n (%) 2(0.7) 7 (2.5) 

Laboratory values at randomization    

  Platelet count 109/L, mean ± SD 87 ± 100 79 ± 75 

  Hemoglobin g/L, mean ± SD 81 ± 29 82 ± 24 

  Activated partial thromboplastin time s, mean ± SD 29 ± 7.9 29 ± 8.7 

  Prothrombin time s, mean ± SD 12 ± 2.2 12 ± 1.9 

  Fibrinogen g/L, mean ± SD 3.7 ± 1.3 3.6 ± 1.4 

Medication and medical history    

  Anticoagulant/antiplatelet therapy n (%) 30 (11) 31 (11) 

  Bleeding n (%) 67 (24) 72 (26) 

  Infection n (%) 26 (9.3) 27 (10) 

  Prior platelet transfusions n (%) 181 (67) 162 (60) 

  Prior red cell transfusions n (%) 197 (71) 191 (69) 

  Prior stem cell transplant procedures n (%) 22 (7.9)† 9 (3.2) 

  Prior pregnancies n (%) 61 (22) 66 (24) 

n = number of transfusion treatment periods; SD = Standard deviation; †p < 0.05 
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Table 2  

Bleeding complications (intention to treat analysis) 

  Control Intervention  

No. of transfusion treatment periods  279 277  

Primary endpoint     

WHO grade 2, 3 or 4 bleeding#  143 (51%) 150 (54%)  

No. of days from randomization to first grade 2, 3, or 4 bleeding median (IQR) 5 (2-8)  5.5 (2-9)  

     

Percentage of days with grade 2, 3, or 4 bleeding$  median (IQR) 3 (0-14) 5 (0-15)  

 No. of days with grade 2, 3, or 4 bleeding median (IQR) 1 (0-2) 1 (0-2)  

Bleeding details     

Highest grade of bleeding     

  None or grade 1  136 (49%) 127 (46%)  

  Grade 2  131 (47%) 139 (50%)  

  Grade 3  6 (2%) 5 (2%)  

  Grade 4  6 (2%) 6 (2%)  

WHO = world health organization; IQR=interquartile range 

# difference: 3 percentage points, 95% CI (-6 to 11), p-value for non-inferiority 0.012 

  after correcting for stratification factors (center, diagnosis AML/non-AML and treatment phase conventional/stem cell):  

  difference: 1 percentage points, 95% CI (-6 to 9), p-value for non-inferiority 0.002  

$ p-value for superiority of mean percentages 0.535 

 

 

Bleeding complications (per protocol analysis) 

  Control Intervention  

No. of transfusion treatment periods  220 205  

Primary endpoint     

WHO grade 2, 3 or 4 bleeding#  97 (44%) 107 (52%)  

No. of days from first transfusion to first grade 2, 3, or 4 bleeding median (IQR) 3 (1-5) 3 (1-5)  

     

Percentage of days with grade 2, 3, or 4 bleeding$ median (IQR)  0 (0-15) 4 (0-17)  

 No. of days with grade 2, 3, or 4 bleeding median (IQR) 0 (0-2) 1 (0-2)  

Bleeding details     

Highest grade of bleeding     

  None or grade 1  123 (56%) 98 (48%)  

  Grade 2  87 (40%) 102 (50%)  

  Grade 3  4 (2%) 2 (1%)  

  Grade 4  6 (3%) 3 (2%)  

WHO = world health organization; IQR=interquartile range 

# difference:8 percentage points, 95% CI (-2 to 18), p-value for non-inferiority 0.19  

  after correcting for stratification factors (center, diagnosis AML/non-AML and treatment phase conventional/stem cell):  

  difference: 10 percentage points, 95% CI (1 to 19), p-value for non-inferiority 0.29  

$ p-value for superiority of mean percentages 0.538 

 

 

  



Van der Meer, Ypma, et al; Page 19/24 
 

Table 3  

Platelet transfusion increment (intention to treat)     

  Control Intervention  

No. of platelet transfusions  1568 1659  

     

Efficacy parameters     

CI-1 hour 109/L mean ± SD  25 ± 14 (n=848) 13 ± 8 (n=997)  

CCI-1 hour mean ± SD 13 ± 7 (n=848) 8 ± 5  (n=997) p-value<0.001 

CI-24 hour 109/L mean ± SD  14 ± 14 (n=953) 8 ± 9 (n=1007)  

CCI-24 hour mean ± SD 7 ± 7  (n=953) 4 ± 4 (n=1007) p-value<0.001 

Transfusion failure     

CCI-1 hour < 7.5 failure rate    median (IQR) 0 (0-0.08)  0.5 (0.09-0.75) p-value<0.001 

CCI-24 hour < 4.5 failure rate    median (IQR) 0 (0-0.33) 0.50 (0.20-0.83) p-value<0.001 

CCI-24 hour ≤ 0 failure rate    median (IQR) 0 (0-0) 0 (0-0.08) p value=0.013 

CI = Count increment; CCI = Corrected count increment; SD = Standard deviation  

 

 

Platelet transfusion increment (per protocol) 

  Control  Intervention  

No. of platelet transfusions  1395 1391  

 

Efficacy parameters 

    

CI-1 hour mean ± SD 109/L 25 ± 14 (n=796) 12 ± 8 (n=868)  

CCI-1 hour mean ± SD 13 ± 7 (n=796) 7 ± 4  (n=868) p-value<0.001 

CI-24 hour mean ± SD 109/L 14 ± 14 (n=895) 7 ± 8  (n=897)  

CCI-24 hour mean ± SD 8 ± 7  (n=895) 4 ± 4  (n=897) p-value<0.001 

Transfusion failure     

CCI-1 hour < 7.5 failure rate    median (IQR) 0 (0-0.02)  0.50 (0.16-0.89) p-value<0.001 

CCI-24 hour < 4.5 failure rate    median (IQR) 0 (0-0.33) 0.50 (0.18-0.93) p-value<0.001 

CCI-24 hour ≤ 0 failure rate    median (IQR) 0 (0-0) 0 (0-0.02) p value=0.014 

CI = Count increment; CCI = Corrected count increment; SD = Standard deviation  
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Table 4.  

Transfusion requirement (intention to treat). 

  Control Intervention  

No. of transfusion treatment periods  279  277   

     

No. of red cell transfusions  median (IQR) 4 (2-7) 4 (2-6) p-value=0.135 

No. of plasma transfusions median (IQR) 0 (0-0) 0 (0-0) p-value=0.842 

PLT transfusion interval1  mean hours (95% CI)  83 (77-91)  71 (67-77) p-value=0.002 

No. of PLT transfusions per transfusion 

treatment period 

median (IQR) 4 (2-7) 5 (2.5-7.5) p value=0.328 

IQR = Interquartile range; PLT = Platelet; SD = Standard deviation; 1using all treatment periods via mixed Poisson model 

 

Transfusion requirement (per protocol). 

  Control Intervention  

No. of transfusion treatment periods  220  205   

     

No. of red cell transfusions  median (IQR) 3 (2-6) 3 (2-5) p-value=0.34 

No. of plasma transfusions  median (IQR) 0 (0-0) 0 (0-0) p-value=0.59 

PLT transfusion interval1  mean hours (95% CI)  91 (83-100)  71 (67-77) p-value<0.001 

No. of PLT transfusions per transfusion 

treatment period  

median (IQR) 3 (2-6.75) 5 (3-7.5) p-value=0.085 

 IQR = Interquartile range; PLT = Platelet; SD = Standard deviation; 1using all treatment periods via mixed Poisson model) 
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Figure legends 

Figure 1. Flow diagram of the study. In total, 567 randomizations occurred in 469 patients. 

The intention-to-treat analysis set consisted of all transfusion treatment periods in which the 

patient met the in- and exclusion criteria. In the event of >25% off-protocol transfusions or no 

transfusions, these episodes were analyzed ‘as randomized’. For the intention-to-treat  

analysis, the first day of observation was the day of randomization. The per-protocol set 

consisted of all ‘on-protocol’ episodes, i.e. episodes in which the percentage of off-protocol 

transfusions exceeded 25% before the first ≥ grade 2 bleeding event or episodes without 

transfusions were excluded. For the per-protocol analysis, the first day of observation was the 

day of the first platelet transfusion. The per-protocol-only analysis set consisted of all 

transfusion treatment periods in which only on-protocol transfusions are administered before a 

grade ≥2 bleeding occurred; the first day of observation was the day of the first platelet 

transfusion. 

 

Figuur 2. Non inferiority plot comparing the difference in percentage of transfusion 

treatment periods with world health organization grade 2,3,4 bleeding in the 

intervention – and control –arm. The point estimates of the difference in percentage points 

and their 95% confidence intervals are displayed for the intention- to- treat analysis and the 

per –protocol analysis. The dotted vertical line shows the predefined margin of 12.5 

percentage points. For the intention –to-treat analysis the non- inferiority criterion is met. For 

the per-protocol analysis the 95% confidence interval exceeds the margin of 12.5% points, the 

non- inferiority criterion is not satisfied.   

 

Figure 3. Kaplan - Meier analysis HLA-class I alloimmunization.  This figure shows the 

time to the appearance of HLA-class I alloantibodies in the PPO population (i.e. a signal 

higher than 5SD above the normalized background signal in the Luminex assay). 
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Figure 1. Flow diagram of the study.  
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Figuur 2. Non inferiority plot comparing the difference in percentage of transfusion treatment 

periods with world health organization grade 2,3,4 bleeding in the intervention – and control –

arm.  
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Figure 3.  Kaplan-Meier analysis HLA alloimmunization.  

 

 

 

 

 


