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SUMMARY
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have

explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary

ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines

and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance

spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic

inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important

differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between

primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine

applications requiring vascularization.
INTRODUCTION

Human induced pluripotent stem cells (hiPSCs) can be

derived by reprogramming somatic cells from any individ-

ual. The ability to derive different cell types of the body and

scale production has generated interest in their use in drug

discovery, disease modeling, and regenerative medicine

(Passier et al., 2016; Samuel et al., 2015; Shi et al., 2016).

DNA-free reprogramming methods, where the reprogram-

ming vectors are not integrated into the genome, are now

considered to show the lowest risk of targeting important

genes unintentionally. Sendai virus (SeV)-based reprogram-

ming in particular has been widely used to generate hiPSCs

from skin fibroblasts (FiPSCs), nasal epithelial cells, periph-

eral blood mononuclear cells (MNCs), and cells in urine

(UiPSCs) (Chen et al., 2013; Fusaki et al., 2009; Hildebrand

et al., 2016; Ono et al., 2012). Cells in human urine are

proving of increasing interest since they can be collected

non-invasively and thus from children or others preferring

not to donate blood or a skin biopsy. We and others

have generated endothelial cells (ECs) from hiPSC lines

from these different somatic cell types, including UiPSCs

(Cai et al., 2015; Orlova et al., 2014a; Patsch et al., 2015;

Rufaihah et al., 2013; Zhang et al., 2017). However, to

date there have been few direct comparisons with primary

human ECs in robust assays for assessing functionality, and

hiPSC-derived ECs (hiPSC-ECs) have not been compared

for line-to-line and batch-to-batch variability. This has

limited their utility in diseasemodeling and drug discovery,

particularly where isogenic controls for patient lines are
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not available since it may be difficult to distinguish line-

to-line ‘‘noise’’ from true, disease-related phenotypes.

Furthermore, widely available human umbilical vein ECs

(HUVECs) are often used in preference to hiPSC-ECs in bio-

assays since they are perceived as more robust, but func-

tional comparisons are rarely made (Iwata et al., 2017).

Exceptionally, we showed that the ability of HUVECs to

integrate into the developing vasculature (in zebrafish) is

inferior to that of hiPSC-ECs (Orlova et al., 2014a). Here,

we have undertaken direct side-by-side comparison of

hiPSC-ECs with primary ECs, such as human dermal blood

ECs (HDMECs) and HUVECs, in several widely used

functional in vitro and in vivo assays. Two independent

‘‘bead-based’’ methods were used for hiPSC-EC isolation:

CD34 + cells on day 6 of differentiation and CD31 + cells

on day 10. Multiple batches of ECs were compared among

a range of isogenic and non-isogenic hiPSC lines.

Barrier function was chosen as one assay that would

likely be comparable across a wide set of isogenic and

non-isogenic hiPSC-ECs in confluent cultures if the cells

were derived in the same way. Two principal mechanisms

contribute to the regulation of the EC barrier: transcellular

and paracellular permeability. Paracellular permeability, or

opening of inter-endothelial junctions, is linked to many

pathological processes, including acute vascular leak syn-

drome or sepsis, acute respiratory distress syndrome,

anaphylactic shock, and tumor angiogenesis. Impedance-

based techniques, such as electric cell-substrate impedance

sensing (ECIS), provide accurate and sensitive methods

to measure endothelial barrier function, including rapid
thor(s).
ns.org/licenses/by/4.0/).
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changes upon stimulation with barrier-disrupting agents,

such as thrombin or histamine or known barrier-elevating

agents, such as cyclic AMP (Stolwijk et al., 2014). Despite

many reports on the generation of hPSC-ECs, only a few

studies have evaluated barrier function using impedance

sensing (Adams et al., 2013; Patsch et al., 2015). Here, we

compared hiPSC-ECs with primary ECs in barrier function

assays that included examining the disruptive effects of

histamine and thrombin. These factors are known to

cause transient increases in endothelial permeability,

disassembly of inter-endothelial cell-cell junctions, and

decrease in barrier function in primary ECs.

Secondly, inflammatory responses were examined.

Heterogeneity in inflammatory responses has been reported

among different vascular beds, and types of ECs (Aird,

2012). ECs play essential roles in regulating inflammation

by limiting leukocyte extravasation at the site of injury/

inflammation, as in the case of non-inflamed/healthy endo-

thelium, or facilitating extravasation upon local tissue

injury or inflammation. The leukocyte recruitment cascade

and molecular players that regulate these processes are well

characterized and include pro-adhesive receptors, such as E-

selectin, intercellular adhesion molecule-1 (ICAM-1), and

vascular cell adhesion molecule-1 (VCAM-1). These recep-

tors are upregulated on the EC surface and participate in

capturing and ‘‘rolling’’ leukocytes on the vessel wall, to

mediate firm adhesion (Hajishengallis and Chavakis,

2013; Nourshargh and Alon, 2014). The transmigration of

leukocytes is furthermediated via interplaywithhomotypic

cell adhesion receptors, such as vascular endothelial

cadherin (Ve-cadherin), junctional adhesion molecules

(JAMs), EC-selective adhesion molecule (ESAM), CD99,

and others (Nourshargh and Alon, 2014) that are expressed

between endothelial cell-cell junctions. Chronic inflamma-

tion contributes to many different pathological conditions,

such as cardiovascular and neurological and neurodegener-

ative disorders (Passier et al., 2016). Uncontrolled or sys-

temic inflammation results in severe pathological condi-

tions such as sepsis, or adverse drug responses. Thus,

careful assessment of inflammatory responses in hiPSC-
Figure 1. Differentiation of hiPSCs toward ECs
(A) Representative FACS plots and quantification of the percentage o
%VEC+ from three independent biological replicates are shown, erro
(B) Phase-contrast images of CD34+ and CD31+ hiPSC-ECs 3 days pos
(C) FACS analysis of surface marker expression on isolated CD34+ and
HDMECs at P4–P5). Black and color filled histograms are staining with
control.
(D) Quantification of surface marker expression on isolated CD34+ and
values are shown for three batches of CD31+ and CD34+ hiPSC-ECs, HU
for one of the donors) and HDMECs from a single donor. Error bars re
(E) Immunofluorescent analysis of EC markers VEC, CD31, and vWF o
100 mm.
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ECs is needed before decisions can be made on their utility

in future assays on, for example, the effects of genetic back-

ground on inflammatory responses in patient-specific

hiPSC-derived tissues or regenerative medicine.

We carried out extensive assessment of hiPSC-ECs from

multiple hiPSC lines and batches in all of the assays

described above (barrier function, transient disruption of

barrier, expression of inflammatory adhesive receptors,

and leukocyte adhesion under flow) and compared

them with primary ECs. Finally, angiogenic/vasculogenic

responses and the ability to form functional blood vessels

were compared in vitro and in vivo.
RESULTS

Differentiation of hiPSCs toward ECs

hiPSC lines were generated using SeV (Nishimura et al.,

2011), (Zhang et al., 2014). For differentiation toward

ECs, we used a protocol based on defined reagents without

serum, as previously described (Orlova et al., 2014a,

2014b). We examined the percentages of Ve-cadherin+

(VEC+) cells on day 6 and day 10 of differentiation and

found this was significantly higher on day 6 compared

with day 10 (Figure 1A), in agreement with our previous

findings (Giacomelli et al., 2017; Orlova et al., 2014a). In

order to isolate ECs, CD34 and CD31magnetic-bead-based

purification was used on day 6 and day 10 of differentia-

tion, respectively, as described previously (Giacomelli

et al., 2017; Orlova et al., 2014a, 2014b). ECs isolated either

on day 6 or day 10 displayed typical EC-like morphology

(Figure 1B). Fluorescence-activated cell sorting (FACS)

analysis of CD34+ and CD31+ hiPSC-ECs revealed their

comparable expression of known EC surface markers,

such as VEC, CD31, CD34, VEGFR2, CXCR4, VEGFR3,

CD73, and CD105 (Figures 1C and 1D). Expression of

VEC, CD31, CD73, and CD105 by CD34+ and CD31+

hiPSC-ECs was also similar to that in primary HUVECs

and HDMECs, while expression of CD34, CXCR4,

VEGFR2, and VEGFR3 was higher. Gene expression
f VEC+ cells at day 6 and day 10 differentiation of UiPSCs. Average
r bars represent ±SD. *p < 0.05.
t isolation. Scale bar represents 300 mm.
CD31+ hiPSC-ECs at passage 2 (P2) and primary ECs (HUVECs and
the antibody of interest; light gray histograms are relevant isotype

CD31+ hiPSC-ECs at passage 2 (P2). Median fluorescence intensity
VECs from three batches (two donors, and two independent batches
present ±SD.
n isolated CD34+ and CD31+ hiPSC-ECs (P2). Scale bar represents



profiling revealed a mixed arterial- and embryonic-like

identity in hiPSC-ECs with prominent expression of both

arterial markers, such as VEGFR2 (KDR) and SOX17, and

venous markers, such as COUPTFII (NR2F2) and APLNR.

However, expression of other well-established arterial

markers, such NOTCH1, NOTCH4, JAG1, NRP1, CX40

(GJA5), and EPHRINB2 (EFNB2), was lower than in human

umbilical artery ECs (HUAECs) (Figure S1A). Immunofluo-

rescent staining revealed inter-junctional localization of

VEC, CD31, and ZO1, and intracellular von Willebrand

factor (vWF) (Figures 1E and S1B), although overall vWF

levels were lower compared with primary ECs (Figure S1B).

Comparative Assessment of Barrier Function and Real-

Time Migration of Primary and hiPSC-ECs

Barrier function and EC migration were assessed by real-

time impedance spectroscopy with an integrated assay

of electric wound healing, shown schematically in Fig-

ure 2A. We first compared barrier function of ECs derived

from several independent hiPSC lines. HDMECs from one

donor, HUVECs from two independent donors, and two

independent batches for one of the donors were used.

Primary cells had comparable population doubling

times based on data from the cell provider thus avoiding

possible differences in growth rate affecting function.

Importantly, we found that barrier function of SeV UiPSC

and FiPSC-derived CD31 + ECswas very similar (Figures 2B

and 2C). However, barrier function of CD34+ hiPSC-ECs

isolated on day 6, compared with ECs isolated at day 10,

was significantly lower compared with CD31+ hiPSC-

ECs derived from two independent (isogenic) clones of

one line, as well as another independent FiPSC line (Fig-

ures 2B and 2C). In addition, we further investigated bar-

rier function of different batches of CD31+ and CD34+

hiPSC-ECs. We found that independent batches of

CD31+ hiPSC-ECs isolated from three SeV hiPSC lines

were comparable, with no significant variation among

the batches (Figures S2A–S2C). On the other hand,

CD34+ hiPSC-ECs (day 6) had higher batch-to-batch vari-

ability (Figure S2D). Very little variation across primary

ECs was observed (Figure S2E). Thus, ECIS-based assess-

ment of barrier function of hiPSC-ECs is a useful and

reproducible quality control assay, particularly in

assessing ECs derived from independent hiPSC lines,

and independent batches of the same line. Furthermore,

CD31+ hiPSC-ECs that are isolated on day 10 are similar,

independent of line, genetic background, or batch, and

thus might be the most robust readout of disease

phenotype in patient hiPSC-ECs or in drug screening

applications. When compared with primary ECs, such as

HDMECs and HUVECs, CD31+ hiPSC-ECs exhibited

either similar, as in the case of FiPSC-ECs versus HDMECs,

or higher barrier when cultured in EGM-2 medium (Fig-
ure S2F). This is important, since, in contrast to primary

ECs with a limited lifespan, hiPSC-ECs can be derived

from any individual in unlimited numbers.

In addition, CD31+ and CD34+ hiPSC-ECs exhibited

high sensitivity to VEGF (Figure 2D). Interestingly,

although not observed in primary ECs, hiPSC-ECs

cultured in basal serum- and growth factor-free medium

exhibited increased barrier characteristics compared with

‘‘complete’’ growth medium containing serum (Figures

2D and 2E). Supplementation with VEGF (75 ng/mL)

significantly decreased the endothelial barrier, and this

was comparable with the complete growth culture

medium condition.Migration rates in the real-timemigra-

tion assay were lower in VEGF supplemented medium,

compared with complete growth medium (Figures 2F

and 2G). No significant difference was found in migration

rates of CD31+ and CD34+ hiPSC-ECs in complete growth

medium and VEGF supplemented medium (Figure 2G).

Thus, assessment of both barrier function and migration

are useful for validating hiPSC-EC functionality, including

quality control of independent EC batches, media formu-

lations, and protocols. Of clinical relevance, the assays

could be used to screen for compounds that alleviate or

aggravate VEGF sensitivity, an important mechanism

underlying disease pathology. Somatic cell source and

reprogramming methods tested here did not affect these

functional characteristics.

Comparison of Barrier Disruption in Primary and

hiPSC-ECs

Barrier disruption was examined as shown schematically in

Figure 3A. For these experiments, hiPSC-ECs first formed

confluent monolayers in complete growth medium, the

medium was replaced by EGM-2 for at least 12 hr (which

is compatible with the wound healing assay), and then

theywere serum starved in EBM-2medium for an additional

2–3 hr, since hiPSC-ECs exhibited very poor responses to

known permeability factors in complete growth medium

(data not shown). EGM-2mediumwas chosen as it is widely

used for primary ECs. Surprisingly, we found that neither

CD31 + or CD34+ hiPSC-ECs were responsive to histamine

(Figures 3B and 3C). HDMECs, on the other hand, exhibited

a very pronounced and rapid drop in barrier resistance as

early as 1 min post stimulation. Less prominent decreases

were also observed in HUVECs, but this was not significant

compared with stimulation with control medium

(compound free) (Figures 3B, 3C, and S3A). Stimulation of

hiPSC-ECswith thrombin decreased the endothelial barrier,

although only at higher concentrations (0.1 U/mL) (Figures

3B, 3C, S3B, and S3C). Comparison of CD31+ and CD34+

hiPSC-ECs revealed similar barrier disruption in response

to thrombin. Despite the relatively low dosage of thrombin,

hiPSC-ECs failed to recover the barrier, in contrast to
Stem Cell Reports j Vol. 10 j 1642–1656 j May 8, 2018 1645
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Figure 2. Comparative Assessment of Barrier
Function and Real-Time Migration of Primary
and hiPSC-ECs
(A) Schematic illustration of ECIS barrier func-
tion assessment and real-time migration of
hiPSC-ECs.
(B) Representative absolute resistance of the EC
monolayer in complete EC growth medium is
shown. Error bars are shown as ±SD of three to
four independent wells from representative
biological experiments.
(C) Quantification of absolute resistance values
at 4,000 Hz in complete EC growth medium.
Values are presented as average means from a
minimum of three independent biological ex-
periments. Error bars are shown as ±SD of three
independent biological experiments. *p < 0.01,
***p < 0.001.
(D) Mean absolute resistance from of the EC
monolayer in complete EC growth medium or
serum-free medium supplemented with VEGF
(75 ng/mL) is shown. Error bars are shown as
±SD of average values from three independent
biological experiments.
(E) Quantification of absolute resistance at
4,000 Hz of the EC monolayer in complete EC
growth medium or serum-free medium
supplemented with VEGF (75 ng/mL). Error bars
are shown as ±SD of three independent bio-
logical experiments. *p < 0.05, **p < 0.001.
(F) Mean speed of migration (dC/dt) determined
as a change in capacitance at 64,000 Hz over the
time after electric wound healing in complete EC
growth medium or serum-free medium supple-
mented with VEGF (75 ng/mL). Error bars are
shown as ±SD of average values from three in-
dependent biological experiments.
(G) Quantification of migration rates deter-
mined as a time upon closing the wound (dC/
dt>(�0.1 nF/hr)) of hiPSC-ECs in real-time
wound healing assay in EC monolayer in com-
plete EC growth medium or serum-free medium
supplemented with VEGF (75 ng/mL). Error bars
are shown as ±SD of three independent bio-
logical experiments. *p < 0.05.
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Figure 3. Comparison of Barrier Disruption in Primary and hiPSC-ECs
(A) Schematic illustration of workflow for ECIS barrier disruption assessment.
(B) Changes in normalized resistance of the EC monolayer upon stimulation with histamine (50 mM) and thrombin (0.05 U/mL and 0.1 U/
mL). Stimulation time point is set as t = 0. Normalized resistance is shown as a representative plot of one representative independent
experiment. Error bars are shown as ±SD of three to four independent wells.
(C) Quantification of minimal normalized resistance upon stimulation with histamine (50 mM) and thrombin (0.05 U/mL and 0.1 U/mL).
Control stimulation with equal volume of medium without the compound is shown in Figure S3. Compound-mediated (filled bars) reduction
in barrier function is compared with alteration of barrier upon control stimulation (empty bars). Error bars are shown as ±SD from three
(n = 3) independent biological experiments. *p < 0.05, **p < 0.001, ***p < 0.0001.
primary ECs. In summary, we found that hiPSC-ECs re-

sponded to higher concentration of thrombin (0.1 U/mL)

and were not responsive to histamine at the concentrations

that disrupt the barrier in HDMECs (50 mM), or even higher

(up to 200 mM, data not shown).
Comparison of Junctional Integrity in Primary and

hiPSC-ECs

EC barrier function and paracellular permeability are

dependent on interaction between proteins that form

cell-cell junctions, mainly tight junctions (TJs) and
Stem Cell Reports j Vol. 10 j 1642–1656 j May 8, 2018 1647



adherens junctions (AJs) (Giannotta et al., 2013; Komarova

et al., 2017). We therefore examined organization of TJs

and AJs in serum-starved hiPSC-ECs and primary ECs

before and after 30 min stimulation with thrombin

(0.05 U/mL and 0.1 U/mL). This time point was chosen

as it coincided with the maximum decrease in barrier func-

tion evident in impedance measurements. ECs were

stained with zonula occluden-1 (ZO1) and VEC to visualize

TJs and AJs, respectively, and counterstained with F-actin

to reveal cortical actin and formation of actin stress fibers

upon junction disassembly. Primary ECs showed robust re-

sponses to thrombin (0.05 and 0.1 U/mL) associated with

loss of cortical actin and formation of actin stress fibers

with opening of the cell junctions (Figures 4A, 4B, S4A,

and S4B), as expected from impedance measurements.

Notably, hiPSC-ECs responded only to higher concentra-

tions of thrombin (0.1 U/mL) (Figures 4C, 4D, S4C, and

S4D). Furthermore, when compared in a quiescent

(serum-starved) state, CD31+ hiPSC-ECs showed highly

organized TJs and AJs that were similar to those in

HDMECs, while CD34+ hiPSC-ECs had less organized TJs

and AJs with morphology more similar to that observed

in HUVECs.

Comparison of Inflammatory Response in Primary

and hiPSC-ECs

hiPSC-ECs were first assayed for responses to pro-inflam-

matory agents, such as tumor necrosis factor alpha

(TNFa), lipopolysaccharide, and interleukin 1b (IL1b; Fig-

ure S5 and data not shown). TNFa and IL1b induced rapid

upregulation of E-selectin with peak expression 6 hr post

treatment in some but not all of the hiPSC-ECs examined.

HUVECs exhibited robust upregulation of E-selectin upon

TNFa and IL1b treatment, as expected. Furthermore,

ICAM-1 upregulation in hiPSC-ECs was more prominent

after 6 hr of TNFa treatment, and comparable with

HUVECs. ICAM-1 was similarly induced in hiPSC-ECs

and HUVECs 24 hr post treatment with either TNFa or

IL1b. Upregulation of VCAM-1 was not observed in

hiPSC-ECs, in contrast to HUVECs. All subsequent experi-

ments were performed using TNFa, as it was the most

potent pro-inflammatory agent in hiPSC-ECs. CD31+ and

CD34+ hiPSC-ECs exhibited similar induction of E-selectin

and ICAM-1 6 hr and 12 hr post stimulation, although this

was lower than inHUVECs (Figures 5A–5D). The 12 hr time

point was specifically chosen, as it was optimal for pre-

stimulation of ECs for leukocyte adhesion studies. In order

to investigate whether hiPSC-ECs can be used to study

endothelial-leukocyte interactions, we established an assay

to assess leukocyte adhesion under flow in a commercial

system with eight parallel microchannels. hiPSC-ECs or

primary ECs were seeded into the microfluidic channels

and leukocyte perfusion was precisely controlled by a
1648 Stem Cell Reports j Vol. 10 j 1642–1656 j May 8, 2018
microfluidic pump. Adhesion of human leukocytes to

ECs was investigated under flow at venous shear stress

(0.5 dyn/cm2). Leukocytes were perfused for 5 min,

followed by additional perfusion for 5 min with culture

medium to wash away all non-specifically attached cells.

Pre-treatment of ECs with TNFa for 12 hr increased leuko-

cyte adhesion significantly comparedwith non-treated ECs

(Figure 5E and Video S1). CD31+ and CD34+ hiPSC-ECs

were similar with respect to the numbers of adherent leuko-

cytes per field, although HUVECs had significantly higher

numbers (Figure 5F). These data showed that CD31+ and

CD34+ hiPSC-ECs exhibit comparable inflammatory re-

sponses in vitro, and can potentially be used to study leuko-

cyte cell interactions, although perhaps with less adhesion

‘‘strength’’ than HUVECs.

Comparison of Primary and hiPSC-ECs in an In Vitro

Vasculogenesis Assay

Wenext examined the ability of CD31+ and CD34+ hiPSC-

ECs to form a two-dimensional vascular plexus in vitro

compared with primary ECs, as described previously (Even-

sen et al., 2009; Orlova et al., 2014a). We observed that

hiPSC-ECs were more sensitive to the source of stromal

cells than primary ECs. To identify the most reliable stro-

mal cells to support hiPSC-EC sprouting in vitro, we

screened several batches of CD31-cells from the differenti-

ating hiPSC cultures (hiPSC-pericytes [hiPSC-Ps]; Orlova

et al., 2014a), primary human bone marrow stromal cells

(BMSCs), and human cardiac fibroblasts (huCFs). Some-

what unexpectedly, huCFs supported hiPSC-EC sprouting

better than other stromal cells (Figures 6B, S6C, and S6D).

By contrast, BMSCsweremost potent in supporting sprout-

ing of primary HUVECs and HDMECs compared with

CD31-hiPSC-Ps (CD31-hiPSC-P) and huCFs (Figures S6A

and S6B), although they supported sprouting of hiPSC-

ECs poorly (Figures S6C and S6D). Therefore, huCFs were

selected as the preferred stromal cell to compare hiPSC-

ECs and primary ECs. In this assay, we thus co-cultured

huCFs with CD31+ and CD34+ hiPSC-ECs, HUVECs, and

HDMECs (Figures 6B–6D). Interestingly, under these

conditions, CD31+ hiPSC-ECs formed very dense sprout-

ing networks with total vessel lengths and numbers of

junctions significantly higher than CD34+ hiPSC-ECs,

HUVECs, or HDMECs (Figure 6D). CD34+ hiPSC-ECs

were more similar to HUVECs and formed denser vascular

networks than HDMECs, although these were less orga-

nized and had thinner sprouts compared with HUVECs.

Since hiPSC-ECs exhibited embryonic-like characteristics

and had a more prominent arterial-like phenotype, we

also examined expression of the nuclear transcription

factor SOX17. We found that SOX17 marked hiPSC-EC

nuclei in the co-culture system, but not nuclei, of

primary ECs (Figure 6C). Finally, independent batches of



Figure 4. Comparison of Junctional Integrity in Primary and hiPSC-ECs
(A–D) Junctional integrity in primary cells and hiPSC-ECs was analyzed using tight junctional marker (ZO1) counterstained with F-actin in
HUVECs (A), HDMECs (B), CD34+ hiPSC-ECs (C), and CD31+ hiPSC-ECs (D) upon control stimulation with medium only (�) or thrombin (TH;
0.05 U/mL and 0.1 U/mL) for 30 min. Disassembly of cell junctions and reorganization of cortical actin and actin stress fiber formation was
observed in HUVECs and HDMECs upon thrombin (0.05 U/mL and 0.1 U/mL) stimulation. CD34+ hiPSC-ECs and CD31+ hiPSC-ECs showed robust
response upon thrombin (0.1 U/mL) stimulation. Adherents junctions visualized with VEC and counterstained with F-actin are shown in
Figure S4. Representative pictures are shown fromexperiments performedwith three batchesof CD31+and CD34+hiPSC-ECs, HUVECs from three
batches (two donors, and two independent batches for one of the donors), and for HDMECs a single donor. Scale bar represents 50 mm.
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Figure 5. Comparison of Inflammatory Responses in Primary and hiPSC-ECs
(A) FACS analysis of surface expression of E-selectin, ICAM-1, and VCAM-1 in untreated cells (black filled histograms) or after 6 hr of
treatment (red filled histograms) with TNFa (10 ng/mL).
(B) FACS analysis of surface expression of E-selectin, ICAM-1, and VCAM-1 in untreated cells (blue filled histograms) or after 12 hr of
treatment (red filled histograms) with TNFa (10 ng/mL).
(C) Quantification of surface expression of E-selectin and ICAM-1 on CD34+ and CD31+ after 6 hr of treatment with TNFa (10 ng/mL). Error
bars are shown as ±SD of three independent biological experiments.
(D) Quantification of surface expression of E-selectin and ICAM-1 on CD34+ and CD31 + after 12 hr of treatment with TNFa (10 ng/mL).
Error bars are shown as ±SD of three independent biological experiments.
(E) Assessment of leukocyte adhesion under flow. Representative images of adhesion of leukocytes (green) to non-treated (control) or
TNFa-treated (12 hr, 10 ng/mL) CD31+ and CD34+ hiPSC-ECs, and HUVEC. Scale bar represents 250 mm.
(F) Quantification of leukocyte adhesion per field to TNFa-treated CD31+ and CD34+ hiPSC-ECs, and HUVEC. Data are shown as ±SD
(CD31 +, n = 5; CD34 +, n = 4; HUVEC, n = 2); ns, not significant.
CD31+ and CD34+ hiPSC-ECs were very similar, in agree-

ment with our previous results (Figure 6D).

Comparison of Primary and hiPSC-ECs in an In Vivo

Vasculogenesis Assay

We next tested the in vivo functionality of hiPSC-ECs and

their ability to form functional, perfused vessels in a het-

erotopic in vivo differentiation assay, described previously

(Sacchetti et al., 2016). We first examined the potential of
1650 Stem Cell Reports j Vol. 10 j 1642–1656 j May 8, 2018
CD31+ hiPSC-ECs co-transplanted with BMSCs to inte-

grate into vessels in vivo. CD31+ hiPSC-ECs were mixed

with BMSCs and growth factor-reduced Matrigel in

different ratios: 1 million hiPSC-ECs and 1 million BMSCs

(1:1), 2 million hiPSC-ECs with 1 million BMSC (2:1), and

vice versa (1:2). Formation of vascular networks containing

red blood cells, indirectly suggesting vascular perfusion,

was observed at all cell ratios tested (Figure S7), although,

overall, the 2:1 ratio gave the best result and was similar
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(legend continued on next page)
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Figure 7. Comparison of CD31+ and CD34+ hiPSC-ECs in an In Vivo Vasculogenesis Assay
(A) H&E images of Matrigel plugs. Representative images of Matrigel plugs with CD31+ hiPSC-ECs and CD34+ hiPSC-ECs co-transplanted
with CD31-hiPSC-Ps (1:2). Scale bar represents 75 mm.
(B and C) Representative images of Matrigel plugs with CD31+ hiPSC-ECs and CD34+ hiPSC-ECs co-transplanted with CD31-hiPSC-Ps.
IHC with pan-specific (red) and anti-human (green) CD31 antibody or overlay (orange). Scale bar represents 100 mm.
(D) Quantification of vascular density using pan-specific CD31 (pan-CD31) in Matrigel plugs CD31+ hiPSC-ECs and CD34+ hiPSC-ECs
co-transplanted with CD31-hiPSC-Ps (n = 3).
(E) Quantification of vascular density using human-specific CD31 (hu-CD31) in Matrigel plugs CD31+ hiPSC-ECs and CD34+ hiPSC-ECs
co-transplanted with CD31-hiPSC-Ps (n = 3).
to Matrigel transplants containing a 1:1 ratio of HUVECs

and BMSCs. We next compared the in vivo potential of

CD34+ and CD31+ hiPSC-ECs (2 million cells) co-trans-

planted with CD31-hiPSC-P (1 million) (2:1 ratio), derived

as described previously (Orlova et al., 2014b). Interestingly,

both CD31+ and CD34+ hiPSC-ECs formed perfused

vascular networks, as indirectly suggested by the presence

of red blood cells on immunohistochemistry (IHC) sections
(C) Representative immunofluorescent images of an in vitro vasculoge
with anti-CD31 (red), SOX17 (white), and DAPI (blue). Higher magni
(D) Quantification of EC sprouting network at day 10 of the co-cultur
vessel length and total number of junctions are shown. Automatically
cultures were used for quantification. Data are shown as ±SD. ****p
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(Figure 7A). The presence of human ECs was confirmed

with human-specific and pan-specific (human and mouse)

antibody against CD31 (Figures 7B and 7C). Vascular den-

sity appeared higher in the Matrigel plugs containing

CD34 + cells compared with CD31 + cells, although this

was not statistically significant (Figures 7D and 7E). There-

fore, we concluded that both CD31+ and CD34+ hiPSC-

ECs can form functional blood vessels in vivo although
nesis sprouting assay at day 10 of the co-culture. ECs are visualized
fication is shown in the framed area. Scale bar represents 500 mm.
e. Quantification was performed with Angiotool software. The total
stitched images (103 objective, 4 3 4 focus planes) from six co-
< 0.0001.



the transplantation conditions and stromal cell source

might need further optimization when comparing with

primary ECs.
DISCUSSION

Since the initial discovery of hiPSCs, directed differentia-

tion protocols to form specific cell types in defined condi-

tions have significantly improved. With regard to ECs,

many protocols have been developed that result in fairly

high percentages of ECs that vary from 30% to 80% of

the differentiated cell population (Bao et al., 2015; Patsch

et al., 2015; Zhang et al., 2017). Furthermore, defined

matrices, such as recombinant vitronectin and laminin,

have also been used (Nguyen et al., 2016; Zhang et al.,

2017). ECs can be purified and conveniently cryopreserved

for immediate use after thaw in various functional assays

(Orlova et al., 2014b). In the present study, we carried out

functional assays on hiPSC-ECs at the same passage 2

(P2), which made the biological replicates highly compara-

ble without the need for internal normalization within the

assay, as demonstrated. Nevertheless, despite their poten-

tial utility, primary ECs are still preferred to hiPSC-ECs in

vascular research and assays, likely due to apparent differ-

ences in their developmental and differentiation states.

hiPSC-ECs are indeed more similar to embryonic ECs,

based on their marker and gene expression profiles (Orlova

et al., 2014a; Rufaihah et al., 2013; Vazão et al., 2017). How-

ever, this can have advantages for certain applications,

such as screening for embryonic vascular toxicity (Vazão

et al., 2017), and perhaps modeling tumor vasculature,

since it is also considered immature. Recent work by our

group and others has focused on differentiating hiPSC to

ECs of the more prominent vascular beds and tissue-

specific ECs, such as arterial, venous, and cardiac ECs, as

well as so-called EC colony-forming cells (Giacomelli

et al., 2017; Ng et al., 2016; Palpant et al., 2017; Prasain

et al., 2014; Zhang et al., 2017). Taken together, these find-

ings contribute to enhancing the value of hiPSC-ECs in

imminent applications such as drug discovery and regener-

ative medicine. However, understanding exactly how

hiPSC-ECs are similar to or differ fromprimary ECs through

side-by-side comparisons in standard assays is essential for

their wider acceptance. An important first step is to identify

conditions that support both primary and hiPSC-ECs. This

is preferably based on defined cell culture growth medium;

synthetic matrices (Nguyen et al., 2017); and, as necessary,

common stromal cell types in co-culture for vasculogenesis

assays. Several groups have investigated the impact of the

developmental origin of pericytes and smooth muscle

cells on vasculogenesis by HUVECs (Bargehr et al., 2016;

Kumar et al., 2017). Here, we examined the interaction of
hiPSC-ECs with stromal cells and report that they have

much more stringent stromal cell requirements. For

instance, BMSCs were very poor in supporting of sprouting

of hiPSC-ECs compared with HUVECs in vitro and to a

lesser extent in vivo, and different stromal cell to EC ratios

might be required for efficient vascularization. Although

differences in interaction of hiPSC-ECs and primary ECs

with the stromal cells have not been addressed here, this

would be of interest in future studies.

Comparison of barrier function and inflammatory

responses between ECs differentiated from independent

isogenic and non-isogenic (non-integrating/DNA-free)

hiPSC lines revealed high similarity between independent

EC batches. This demonstrates that hiPSCs are a highly

consistent source of donor-specific ECs so that genetically

induced changes in these features might be regarded as

disease-specific phenotypes even in the absence of an

isogenic control. Although we found that CD31+ hiPSC-

ECs isolated at day 10 of differentiation were more similar

to each other than early CD34+ hiPSC-ECs isolated at day

6, this could be due to slight differences in (dynamic) differ-

entiation states, and variable delays less prominent on day

10. Therefore, despite a shorter differentiation protocol

and the highly proliferative state of CD34+ hiPSC-ECs,

the longer protocol would be preferred for producing

more robust batches of ECs for disease modeling purposes.

In addition, examination of barrier function across a wide

set of hiPSC-ECs revealed that CD31+ hiPSC-ECs had

tighter barriers than either CD34+ hiPSC-ECs or primary

ECs, like HUVECs and HDMECs. Unexpectedly, hiPSC-

ECs did not respond to histamine, a known barrier-

disrupting compound. These data contrast with those

previously for hiPSC-ECs (Adams et al., 2013) but were

highly consistent between all lines here. However, there

was a difference in the timing of barrier reduction: Adams

et al. (2013) showed a delayed response approximately

30 min to 1 hr post stimulation, which also contrasts with

reports of other groups for histamine-mediated decreases

in endothelial barrier function (Aman et al., 2012; Szulcek

et al., 2014; van Nieuw Amerongen et al., 1998). However,

both CD31+ andCD34+ hiPSC-ECs did show a pronounced

response to relatively low doses of thrombin (0.1 U/mL),

with barrier function significantly and non-reversibly

altered. The thrombin concentration used here was also

significantly lower compared with a previous report, where

20 U/mL was used (Patsch et al., 2015). This may have been

dictated by different culture and stimulation conditions but

our specific aim was to carry out the assays as would nor-

mally be done using primary ECs where both 0.05 and

0.1 U/mL thrombin are reportedly sufficient for barrier

disruption. In addition to rapid barrier-disrupting agents

(histamine and thrombin), we also found that hiPSC-

ECs were very sensitive to VEGF, which resulted in a
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pronounced decrease in the barrier in all hiPSC-ECs exam-

ined. Furthermore, no significant difference was found in

migration rates between CD31+ and CD34+ hiPSC-ECs.

Examination of inflammatory responses further revealed

that both CD31+ and CD34+ hiPSC-ECs responded to

TNFa in a similar manner to HUVECs and were capable

of upregulating major pro-inflammatory adhesive recep-

tors, such as E-selectin and ICAM-1. However, no upregula-

tion of VCAM-1 was observed in any hiPSC-ECs examined,

in contrast to primary ECs. These data also differ from pre-

vious reports (Adams et al., 2013; Patsch et al., 2015; Vazão

et al., 2017). Primary ECs were also shown to exhibit

differential upregulation of VCAM-1, much like ECs from

different organs such as different compartments of the

kidney vasculature, where there is prominent VCAM-1

expression in arteriolar endothelium but not in glomerular

endothelium (Asgeirsdottir et al., 2012; Scott et al., 2013).

Further examination of leukocyte adhesion under physio-

logical flow revealed that CD31+ and CD34+ hiPSC-

ECs were comparable, although less pro-adhesive, than

HUVECs. Any inconsistences between ECs could be due

to the developmental and tissue identity.

Overall, hiPSC-ECs have a number of advantages as

model systems over primary ECs: (1) the possibility to

derive large batches with very high numbers of high qual-

ity ECs from the same donor, all with the similar features to

primary ECs; (2) high barrier functions compared with

other peripheral ECs; and (3) inflammatory responses in

which ECs and monocytes can be derived (isogenically)

from the same donor. Present hurdles for hiPSC-ECs

compared with primary ECs include (1) lower expression

of pro-inflammatory adhesive receptors, such as E-selectin

and lack of VCAM-1 induction; and (2) limited maturity

(for instance, with lower expression of vWF, which might

be a shortcoming in modeling certain genetic conditions).

In the future, we expect the functional assays we have

described will be useful in comparing hiPSC-ECs from

more advanced differentiation protocols in which cells

have more prominent venous- or tissue-specific identities,

important in modeling genetic and other diseases associ-

ated with particular vascular beds.

In summary, we have provided here comprehensive

characterization and line-to-line and batch-to-batch

comparisons of hiPSC-ECs. We demonstrated that barrier

function and inflammatory responses are highly consistent

between different healthy hiPSC-EC lines, and therefore

can be considered as a benchmark for standardization of

functionality across different lines.
EXPERIMENTAL PROCEDURES

Details are provided in Supplemental Experimental Procedures.
1654 Stem Cell Reports j Vol. 10 j 1642–1656 j May 8, 2018
hiPSC Lines and Maintenance
The following SeV reprogrammed hiPSCs lines were used in

this study: FiPSC line generated from fibroblast (FiPSC line

LUMC0020iCTRL), as described previously (Zhang et al.,

2014), and hiPSCs from urine-derived cells (UiPSC lines):

LUMC0054iCTRL (additional information available in public

databases: http://hpscreg.eu/cell-line/LUMCi001-A and http://

hpscreg.eu/cell-line/LUMCi001-A-1). hiPSCs were cultured on

Matrigel-coated plates in mTeSR-1 or recombinant vitronectin-

coated plates in TeSR-E8, all from STEMCELL Technologies,

according to the manufacturer’s instructions.

Differentiation of hiPSCs toward ECs
hiPSCs were maintained in mTeSR-1 or mTeSR-E8 and differenti-

ated toward ECs using previously published protocols (Orlova

et al., 2014b, 2014a).

Characterization of CD34+ and CD31+ hiPSC-ECs
Basic characterization of hiPSC-ECs, such as FACS analysis, immu-

nofluorescence, and gene expression analyses, was performed as

previously described (Orlova et al., 2014b).

Assessment of hiPSC-EC Functionality in an In Vivo

Vasculogenesis Assay
The Matrigel plug assay was performed as previously described

(Sacchetti et al., 2016). Experiments with hiPSC-ECs and BMSCs

were carried out in compliance with relevant Italian laws and

institutional guidelines for animals and all procedures were Insti-

tutional Animal Care and Use Committee approved. Experiments

with hiPSC-ECs and CD31-hiPSC-P were approved by the Leiden

University Medical Center animal experimental committee and

the Commission Biotechnology in Animals of the Dutch Ministry

of Agriculture.

Statistical Analysis
Statistical analyses were conducted with GraphPad Prism

7 software. One-way ANOVA with Tukey’s multiple comparison

for the analysis of three or more groups or Mann-Whitney test

for analysis of two groups were used. The data are reported as

mean ± SD.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, one table, and one video and can be

found with this article online at https://doi.org/10.1016/j.stemcr.
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