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The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or
chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative re-
sponses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persist-
ence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have
emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-
transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover,
homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we sum-
marize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching
in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact
the treatment of cardiovascular disease in the future.
...................................................................................................................................................................................................
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Introduction

The modulation of cellular phenotype is intimately intertwined with
organ function, repair upon injury, and the pathophysiology of dis-
ease.1–4 The cardiovascular system possesses numerous cell types,
such as vascular smooth muscle cells (VSMCs), endothelial cells
(ECs), monocytes and macrophages and cardiomyocytes, that are
conferred with the capacity to undergo phenotypic switches in re-
sponse to acute or chronic injury that serve to limit tissue damage
and restore proper cardiovascular function.3,5,6 However, these rep-
arative cellular phenotypes can also drive the onset, persistence, and
exacerbation of cardiovascular disease (CVD; Figure 1). An example
of this phenomenon is the pre-stenotic fibroproliferative response of

medial VSMCs as a result of endothelial denudation of the coronary
artery after percutaneous coronary interventions or in coronary ar-
tery bypass grafts due to procedure-related stress factors.3,7–9 In con-
trast to VSMCs, the cardiomyocyte adaptation to injury is
characterized by an increase in cell size (hypertrophy), enhancement
of protein synthesis, and more pronounced organization of the sarco-
mere.10 Another class of environment-induced phenotypic switches
that are critical in CVD pathogenesis are inflammatory cells. In par-
ticular, the differentiation of monocyte subsets into various highly
plastic macrophage phenotypes profoundly impacts atherosclerotic
lesion development and progression.5,11–14

Despite the knowledge that cellular phenotype switching is pivotal
for CVD development, the treatment of CVD has primarily focused on
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..combating proteins responsible for generating unfavourable lipid pro-
files. An excellent clinical example of this biology is represented by sta-
tins, which aside from their lipid-lowering capacity, skew ECs to an
atheroprotective phenotype by promoting their anti-inflammatory and
anti-thrombotic properties. Mechanistically, statins transcriptionally re-
press NF-jB signalling15 while simultaneously inducing shear-
responsive transcription factor Krüppel-Like Factor 2 (KLF2), driving
expression of anti-inflammatory markers such as trombomodulin and
eNOS.16,17 Simultaneously, statins activate microRNA (miRNA) ex-
pression profiles that are essential for the maintenance of EC health by
enhancing transcription and activity of anti-apoptotic and pro-
angiogenic AKT signalling pathways.18,19 Therefore, adaptations in cel-
lular function in disease settings are associated with dynamic changes at
the transcriptional and post-transcriptional levels, suggesting that thera-
peutic targeting of factors that drive these processes could shift cellular
phenotype from a disease-advancing to a regenerative state
(Figure 1).20–22

RNA-binding proteins (RBPs) are rapidly emerging as pivotal play-
ers in this biological script, as they are intimately involved in co-ordi-
nating all aspects of (patho)physiological RNA processing and gene
expression.22–25 In the past decade, extensive work has elucidated
the sequence to which many of these RBPs bind,26–31 enabling one to
identify putative RNA species specifically targeted by individual RBPs.
Importantly, this knowledge, when coupled with the recent

development of sophisticated delivery methods32 for RNA-based
therapeutics,33,34 provides the interesting possibility of modifying the
transcriptome by altering RBP expression or activity, or targeting spe-
cific RBP-mediated events, making it possible to direct molecular
pathways involved in disease pathogenesis.

The RNAissance: new insights into
genomic complexity

Remarkably, the human and roundworm genomes (and other less
complex organisms) encode similar numbers of genes (approxi-
mately 20 000),35 indicating that the number of encoded genes does
not directly determine organismal complexity. In the slipstream of
the development and utilization of revolutionary tools that enabled
scientists and clinicians to sequence (human) genomes and transcrip-
tomes, came the realization that organismal complexity evolved with
an increased capacity to regulate gene expression at the post-
transcriptional level. Following the human genome project, attempts
to better understand our genome culminated in the Encylopaedia of
DNA Elements (ENCODE), a project designed to identify the ‘func-
tional elements’ in the human genome.36 This worldwide collabora-
tive effort exponentially expanded our understanding of regulatory
elements in our genome that affect human health and disease, and

Figure 1 RNA-binding proteins (RBPs) control cellular phenotype changes that determine cardiovascular health and disease. Schematic depicting
cardiovascular diseases or complications (left panels) and associated cellular phenotype changes that influence their development (middle panels).
During these phenotypic conversions, RBPs have been established to mediate post-transcriptional events that dramatically impact (pre-)mRNA fate
(right panels), including alternative splicing, stability, localization, and translation. In atherosclerosis, this involves the adhesion of monocytes and their
conversion to macrophages at sites where the endothelium is damaged (top). The adoption of a fibroproliferative phenotype by VSMCs or perivascu-
lar stromal cells leads to vascular (re)stenosis and capillary rarefaction, respectively, whereas cardiac hypertrophy is associated with myocyte enlarge-
ment that results in thickening of the ventricular walls of the heart to ensure sufficient cardiac output.
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divided the genome more definitively into protein-coding and non-
protein-coding transcribed portions of our genomic DNA.36

Previously, it was established that about 1.2% of the human genome
codes for protein-encoding mRNA precursors, whereas an astound-
ing majority contains information allowing for the generation of a
large variety of non-protein-coding RNA species, including
microRNAs (miRs), long non-coding RNAs, piwi-interacting RNAs,
small nucleolar RNAs, and small nuclear RNAs.37,38 These non-pro-
tein-coding RNAs are widely considered to control the activation or
repression of gene expression in response to, e.g. developmental and
environmental cues such as aging, metabolic stress, cancer and inflam-
mation,39–44 whereas the cellular functions of an extensive list of
other non-protein-coding RNA species are currently unclear. This
review will focus on the regulatory role of RBPs and events they cata-
lyse, as the biology on non-coding RNAs in CVD has been detailed in
numerous outstanding reviews.38,44–48

RNA-binding proteins: directors
of post-transcriptional regulation

Concomitant with their transcription, nascent pre-mRNA molecules
are covered with a myriad of RBPs that collectively form ribonucleo-
protein structures (RNPs). The dynamic formation of these RNPs de-
termines all facets of RNA fate, including splicing, stability, cellular
localization, and rate of translation (Figure 2). It is estimated that the
human genome encodes more than 700 RBPs.26 These RBPs have
been divided into families based on evolutionarily conserved RNA-
binding motifs that confer the capacity to bind target RNAs in a
sequence-specific fashion.28,29,49,50 RBPs interact with target (pre-
)mRNAs at the 50- and 30-untranslated regions (UTRs), as well as at
non-coding (intronic) and coding (exonic) regions. Importantly, the
region to which a given RBP binds on a target (pre-)mRNA generally
influences the event that is catalysed, illustrating how these proteins
dynamically and spatially impact gene expression (Figure 2). Finally,
RBPs serve as global and cell-type-specific regulators of gene expres-
sion, where competition for access to target RNAs is determined by
expression levels of individual RBPs in health and disease.51–53

Given that splicing of pre-mRNAs markedly impacts mature
mRNA fate and the protein repertoire in healthy and diseased cells, it
is important to provide a brief overview of splicing biology. Firstly,
pre-mRNAs containing sequence encoding protein generally require
RBP-guided excision of intronic sequences by (i) constitutive splicing;
and/or (ii) alternative splicing, which when combined can lead to
functionally distinct mature mRNAs.52,54,55 Splicing requires the dy-
namic assembly of RBPs into the spliceosome, a highly organized
intra-nuclear structure consisting of RBPs and small RNA complexes,
called heterogeneous ribonucleoprotein particles (hnRNPs).55–57

The spliceosome also plays a central role in alternative splicing,52 as
the binding of RBPs to consensus sequences proximal to exons limits
spliceosomal accessibility to 50- and/or 30-splice junctions, promoting
the formation of splice variants (Figure 2).20,23,52,54 ‘Alternative’ splic-
ing occurs in an estimated 80–90% of protein-coding genes, with re-
cent estimates indicating that this process is responsible for
generating more than 200 000 unique protein-coding transcripts in
humans.58 Interestingly, although the core spliceosomal proteins are
expressed in almost all individual cell types, including anucleate

platelets,59 it is the differential expression and modifiable activity of
RBPs that has been pinpointed as defining tissue-specific splicing pat-
terns.20,54,60 Clinically relevant examples of alternatively spliced tran-
scripts that influence CVD risk are Troponin T,61 SERCA2a/b,62 and
CETP.63

RNA-binding proteins are also critically involved in embryonic de-
velopment of the cardiovascular system.64 The Mouse Genome
Information (MGI) database provides a comprehensive list of re-
ported gene ‘knockout’ mice and their associated phenotypes.65–67

Our assessment of this database uncovered a significant proportion
of mice with defects in cardiac- and/or vascular development as a re-
sult of validated RBP loss (Table 1). As foetal gene expression or splic-
ing programmes are often recapitulated in adult disease settings,68

we elected to analyse the relative expression, extracted from publi-
cally available data sets deposited in the NCBI Geo dataset server, of
validated RBPs in several specialized cell-types of the cardiovascular
system. This analysis clearly illustrates that a vast number of RBPs are
abundantly expressed and display cell-type-specific expression pro-
files (Figure 3, see Supplementary material online, Figure S1 and Table
S1). The heatmap in Figure 3 clearly shows the expression levels of in-
dividual RBPs discussed in the review, whereas Supplementary mater
ial online, Figure S1 shows the relative expression of more than 300
RBPs in numerous cell-types relevant in CVD (Supplementary mater
ial online, Table S1 provides all the raw data used to generate these
heatmaps).

Here below, we will focus on some of the more recent develop-
ments and insights into RBP biology gained primarily from human and
mouse studies. Collectively, they illustrate the versatility of RBPs in
regulating key aspects of cardiovascular health and disease.

RNA-binding proteins in
cardiomyocytes: preserving heart
function and aiding in post-natal
heart remodelling

Insight into the differential expression of RBPs in the adult heart and
their critical regulatory role in cardiomyocyte pathophysiology has in
part been derived from studies assessing alternative splicing patterns
during foetal heart development69–71 and the discovery that cardio-
myocyte dysfunction is associated with a reversion to foetal mRNAs
and protein isoforms.68 In fact, foetal transcripts of key sarcomeric
genes, including cardiac troponin T, cardiac troponin I, myosin heavy
chain 7, and filamin C-c were found to be enriched in the setting of
human ischaemic cardiomyopathy, idiopathic dilated cardiomyopathy
(DCM) and aortic stenosis. Of note, in these aortic stenosis samples,
patient inclusion was based on high or low ejection fraction
(EF <50%), prompting the authors to postulate that splicing defects
could precede heart dysfunction.72 Interestingly, RBPs have also been
found to critically regulate splicing during cardiac remodelling post-
natally.69,73 The RBPs Celf1 and Muscleblind1 (MBNL) were found to
guide alternative splicing patterns in mice required immediately after
birth for the effective organization of transverse tubules and calcium
handling.69 Further along the developmental timeline, Serine/
Arginine-Rich Splicing Factor 1 (SRSF1; also known as ASF/SF2) was
found to guide the alternative splicing patterns required for
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maintaining electrical conductivity in mouse cardiomyocytes during
juvenile to adult transition, where in particular defects in CaMKIId
splicing resulted in severe excitation–contraction coupling defects,
triggering a hypercontractile phenotype.73

In the adult heart, changes in splicing patterns have also been
shown to perturb cardiomyocyte function. The expression levels of
several crucial splicing factors (SF1, ZRSR2, SRSF4, and SRSF5) are
potently repressed in dysfunctional, low EF cardiomyocytes, and dis-
play tight correlations with high EF cardiomyocytes (see
Supplementary material online, Figure S1). Other studies have identi-
fied that a reduction in expression levels of RNA-binding motif pro-
tein 20 (RBM20; or MATR3) can lead to DCM in humans. RBM20 is
most abundantly expressed in the human heart.74–76 Common single
nucleotide polymorphisms (SNPs) in a RBM20 exonal hotspot were
found to significantly associate with an increased risk of DCM due to
altered RBM20 expression in humans.74,75 This finding enabled Guo
et al.77 to discover that these genetic variants impair RBP20 function
in rats, directly affecting the splicing of a myriad of pre-mRNAs
involved in ion homeostasis, sarcomere organization, and diastolic
function, such as titin, tropomyosin I, and PDZ- and LIM-domain 5.
Genome-wide analyses of RBM20 RNA targets revealed that the
protein represses splicing by binding introns proximal to alternatively
spliced exons. These studies nicely illustrate how RBPs can orches-
trate pre-mRNA processing, thereby serving as molecular switches in
gene networks with essential cardiac functions.

The arrhythmias and dilated cardiomyopathies observed in type I
myotonic dystrophy (DM1) also illustrate how dysregulated splicing
can be causal for heart disease. Recently, expansion of CUG trinu-
cleotides in the 30 UTR of the DM protein kinase mRNA was found
to result in the nuclear retention of the mRNA in affected human car-
diomyocytes.78 Using genetically modified mice that similarly accumu-
late nuclear CUG-repeat-containing DM mRNAs, this CUG-repeat
expansion was found to trigger sequestration of the RBPs CUG-
binding protein 1 and CUG-binding protein 2, impairing their ability
to participate in splicing programmes required for the maintenance
of physiological cardiomyocyte function.78

Alongside splicing, RBPs also critically control mRNA transcript
abundance and translation of mature mRNAs into protein. For ex-
ample, expression (and splicing) of the voltage-gated sodium channel
SCN5A has recently been described to be regulated by the RBP
MBNL1 in cardiomyocytes,79,80 whereas the RBP PCBP2 was found
to inhibit angiotensin II-induced hypertrophy of cardiomyocytes by
promoting GPR56 mRNA degradation.81 Finally, a short QTc interval
and abbreviated action potential were observed in cardiomyocytes
derived from cold-inducible RNA-binding protein (CIRP)-deficient
rats.82 This phenotype was triggered by an increased transient-
outward potassium current due to decreased translation of the
KCND2 and KCND3 mRNAs. CIRP binding to mature RNAs
enhanced the translation of these essential ion channel subunits, illus-
trating how loss of this RBP is causal for defective voltage-gated

Figure 2 RNA-binding proteins (RBPs) serve as critical effectors and regulators of RNA fate by guiding gene expression post-transcriptionally. The
spatial interaction of RBPs with RNA species impacts the post-transcriptional event catalysed, be it: modifications of pre-mRNAs that alter mature
mRNA composition including splicing (A–C) and alternative polyadenylation (D); subcellular localization (E); RNA stability (F, G); or ribosome-medi-
ated translation of mature mRNAs (H). By co-ordinating these events, RBPs are intimately involved in determining the cellular transcriptome, and
thereby impact cellular phenotype and function in health and disease settings.
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..potassium channel function and reduced bioelectric activity in mam-
malian hearts.82

Collectively, these studies define an important co-ordinating role
for RBPs in foetal, juvenile, and adult hearts, while also demonstrating
how altered RBP levels can impact cardiac function in health and
disease.

RNA-binding proteins in vascular
smooth muscle cells and
perivascular stromal cells:
governors of cellular phenotype
and function

Upon vascular injury, VSMCs undergo a well-established phenotypic
shift from a contractile to a fibroproliferative, migratory state

(Figure 1). This physiological response aids in repair of damaged ves-
sels.3 This VSMC-mediated damage response aids in the resolution of
initial damage,3,5 but is also tightly linked with pathophysiological situ-
ations including coronary artery disease, vascular(re)stenosis, athero-
sclerosis, and peripheral arterial disease.83–85 Surprisingly, the RBPs
that co-ordinate vital splicing events in genes involved in this pheno-
type switch, such as SM-myosin heavy chain,86 myosin light chain kin-
ase,87,88 smoothelin,89,90 tropomyosin,91,92 (meta)vinculin,93

calponin,94 and caldesmon,95,96 are largely unknown.
Studies investigating the consequences of knockout of the RBP

Quaking (QKI) revealed an embryonic lethal phenotype.97–99 In
keeping with the aforementioned frequent developmental defects in
the cardiac and vascular systems of RBP knockout mice, QKI-/- mice
displayed an inability to form vitelline vessels, along with defects
in pericyte ensheathment of nascent vessels and pericardial effu-
sion.97–99 More recently, QKI was found to play a critical role in the
human, adult vasculature,25 where VSMC dedifferentiation in re-
sponse to vessel injury was associated with increased QKI protein
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Relative expression of RBPs compared to other cell types Relative expression of RBPs within a cell type of interest

Log2 transformed probe intensities are plotted Linear probe intensity-values are plotted

Use for horizontal comparison: 

e.g. Cyan box: CIRBP, HNRNPA2B1, HNRNPL, ASF/SF1, QKI, MBNL1, 
CELF1 and MBNL2 are highly expressed in cardiomyocytes 

compared to other cell types

Use for vertical comparison: 

e.g. Cyan box: Within CD34+ stemcells, HNRNPA2B, CIRBP, HNRNPC, 
TRA2B and CELF2 are highly expressed as compared to other RBPs

Alternatively: Green box: TRA2A is differentially expressed 
between bronchial- vs aorta SMCs

Alternatively: Green box: MBNL3 and PTBP2 are poorly expressed 
in Aorta SMCs, cardiomyocytes, HUVECs and BVECs

Figure 3 RNA-binding protein (RBP) expression levels in various healthy and diseased vascular cells. Heatmap depicting relative expression levels
317 RBPs in various cell types that are associated with cardiovascular health and disease. Red and white shading depict low and high relative mRNA
expression levels, respectively. The heatmap was generated using online available data sets (NCBI Geo dataset server) which were all run on
Affymetrix GeneChipVR Human Genome U133 Plus 2.0 arrays to allow inter-array comparison (data set references as follows: bronchial SMCs;161

aortic SMCs;162 low and high EF cardiomyocytes;163 HUVECs;164 BVECs; CD34þ stem cells;165 CD16- and CD16þmonocytes;166 macrophages;167

platelets168). The data were subjected to robust multi-array averaging (RMA) for normalization using the Affymetrix expression console.
Subsequently, RNA-binding proteins were selected by cross-referencing the online RBP-database as published by Ray et al.,29 whereafter either linear
or Log2-transformed probe-intensities were plotted using R-studio software including the gplots algorithm for heatmap generation.
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levels. This augmentation of QKI enhanced the direct interaction
with the Myocardin pre-mRNA (Myocd), driving an alternative splic-
ing event that alters Myocd protein balance to a distinct
isoform (named Myocd_v1) that activates proliferative gene expres-
sion profiles in VSMCs [via serum response factor (SRF) and myocyte
enhancing factor 2-binding domains].25,100–102 After injury resolution
in mice, QKI protein levels subside and Myocd reverts to an isoform
that solely interacts with SRF (Myocd_v3), enhancing expres-
sion of contractile apparatus proteins and the restoration of VSMC
contractile function.25 Interestingly, the well-established role of
Myocd in the human heart, and abundant expression of QKI in cardi-
omyocytes (Figure 3), suggests that QKI could similarly regu-
late cardiomyocyte-mediated remodelling of the heart following
injury.

Increased expression of the RBP HuR was also observed in the set-
ting of neointimal hyperplasia, vein graft specimens, and fibromuscular
dysplasias of the human kidney, which all represent clinical manifest-
ations of enhanced VSMC proliferation.103 Furthermore, HuR was
found to stimulate VSMC-mediated vasoconstriction, as the inter-
action of this stabilizing RBP with the 30 UTR of the sarco/endoplas-
mic reticulum Ca2þpump (SERCA2b)104 and angiotensin receptor
type 1 (AT-1R) mRNAs enhanced Ca2þ influx and angiotensin II bind-
ing, respectively.105–107 Interestingly, Paukku et al.107 identified that
subjects with type 2 diabetes-associated hyperinsulinaemia have
increased HuR protein levels, leading to enhanced AT-1R protein lev-
els in VSMCs. This provided novel mechanistic insight into factors
that increase CVD risk in patients with type II diabetes, namely via ac-
tivation of the renin–angiotensin–aldosterone system.107 Given the

....................................................................................................................................................................................................................

Table 1 RNA-binding protein deficiencies in mice resulting in vascular and/or cardiac developmental defects (pre- and
post-natal)

RBP Binding domain MGI ID Phenotype description References

Vascular phenotype

QKI KH 3033861 Lack of SMaA in blood vessel, vascular remodelling incomplete, decreased

complexity of brain vasculature, abnormal heart morphology, pericardial

effusion, irregular vitelline artery

98

ANKRD17 KH 1932101 Haemorrhages, impaired vascular smooth muscle cell development, im-

paired vascular integrity, and growth retardation

169

SHARPIN RanBP ZF 1856699 Perturbed angiogenesis, tortuous dilated capillaries in dermis 170

ZFP36 CCCH ZF 2652418 Reduced blood pressure, vascular inflammation, reduced relaxation upon

acetylcholine, EC dysfunction

171, 172

ZFP36L2 CCCH ZF 4360890 Overt gastrointestinal haemorrhage, decreased leucocyte number 173

G3BP1 RRM 3604716 Intracranial haemorrhaging 174

HNRNPD RRM 3693617 Kidney haemorrhage, altered macrophage function 175

MSI1 RRM 2450917 Intracerebral haemorrhage 176

ELAV1/HuR RRM 5316082 Decreased angiogenesis after hind limb ischaemia, abnormal placental laby-

rinth vasculature

177, 178

3847912

TRA2B RRM 4450921 No vasculogenesis 179

UHMK1 RRM 3832867 Accelerated neointima and more VSMCs after femoral wire injury 180

PABPC4 RRM 4364054 Decreased circulating cholesterol, HDL, and free fatty acid levels 181

Cardiac phenotype

PPARGC1A RRM 3511352 Increased or decreased heart weight, accelerated cardiac dysfunction after

aortic constriction, decreased cardiac output, decreased heart rate

182, 183

3522468

RCAN2 RRM 3641543 No cardiac hypertrophy upon phenylephrin/angiotensin II infusions, protec-

tion against volume overload, increased myocardial damage after ischae-

mia reperfusion injury

184

SRSF2 RRM 3036846 Extensive fibrosis, myofibril disarray, dilated cardiomyopathy evident after

5 weeks, decreased ventricle muscle contractility

185

PPARGC1B RRM 3757705 Decreased heart rate elevation after dobutamine 186

SRSF1 RRM 3766573 Hypoplastic pulmonary trunk, signs of tetralogy of fallot complex, ventricu-

lar septal defects, overriding aortic valve, transposition of great arteries,

suppulmonary stenosis

187

SPEN RRM 2667509 Defects in the formation of the cardiac septum and muscle 188

RNA-binding protein deficiency is associated with cardiovascular developmental defects. Defective vascular and cardiac development as a result of RBP loss in various mouse
models are detailed in this table. The RBPs have been grouped based on their RNA-binding domains for clarity. Data were obtained from the Mouse Genome Information
(MGI) database from Jackson Laboratories and RBP knockout mice were selected by cross-referencing the online RBP database as published by Ray et al.29 Human RBP names
were extracted from http://cisbp-rna.ccbr.utoronto.ca/bulk_archive.php (1 December 2016), thereafter cross-referenced with the MP:0005385 mammalian phenotype ‘cardio-
vascular phenotype system’ from the MGI database to screen for a CVD defect.
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considerable attention gained for the combinatorial use of
angiotensin-converting enzyme-inhibitors with AT-1R blockade for
the effective management of blood pressure,108,109 these studies col-
lectively illustrate how RBPs intracellularly impact VSMC-mediated
vasoconstriction by determining cell-surface availability of the angio-
tensin receptor.

In keeping with the central role that perivascular stromal cells play
in ensheathing nascent microvessels and stabilizing existing microves-
sels, it is critical for these cells to regulate the expression of cell–cell
adhesion proteins, along with growth factors that stimulate the main-
tenance of these interactions.110,111 Moreover, it is well-established
that CVD is associated with the disappearance of microvessels
(microvessel rarefaction), as a result of progressive perivascular stro-
mal cell loss that is associated with a pro-fibrotic phenotypic shift to a
myofibroblastic state.112 This phenotypic conversion is tightly
coupled with capillary destabilization, pathological angiogenesis, and
ultimately microvascular rarefaction. Several RBPs have been intim-
ately linked with maintenance of EC–perivascular stromal cell inter-
actions, or mediating a shift to the destabilizing myofibroblast
phenotype, including HuR, which was found to drive excessive angio-
genesis by stabilizing the vascular endothelial growth factor (VEGF)
mRNA.113 Muscleblind (MBNL-1) was also shown to bind to the 30

UTR of the SRF mRNA, enhancing expression of this transcription
factor that guides perivascular stromal cells differentiation into myofi-
broblasts in mice.114 Moreover, MBNL-1 was also found to directly
influence alternative splicing of calcineurin Ab114, a protein phosphat-
ase that activates T-cell-mediated responses to injury. Importantly,
the resultant constitutively active Calcineurin Ab1 isoform was found
to be enriched in both mouse cardiac fibroblasts114 and cardiomyo-
cytes after myocardial infarction (MI).115

These findings suggest that CVD progression could be limited by
developing strategies that target RBPs such as HuR, MBNL-1, and
QKI or splicing events mediated by these proteins, with the goal of
rendering VSMCs quiescent.

RNA-binding proteins in
endothelial cells: alternating
between function and dysfunction

The activation of ECs by inflammatory stimuli triggers endothelial
dysfunction and accelerates CVD onset.116,117 This pro-atherogenic
state is greatly increased in patients with risk factors such as diabetes,
renal failure, hypercholesterolaemia, and high blood pressure. Statins
have proved to effectively ameliorate endothelial dysfunction in com-
bination with their lipid-lowering effects.16

Similar to VSMCs, ECs play a critical role in regulating vascular
tone, as EC activation is tightly coupled with a decrease in nitric oxide
(NO) bio-availability that triggers vasoconstriction.118–120 The ex-
pression and activity of eNOS, the main enzyme responsible for syn-
thesizing free NO by ECs, is modulated by the shear-responsive and
atheroprotective transcription factor KLF2.17,121–124 KLF2 mediates
these effects by binding to the promoter region of shear-responsive
genes, including the RBPs QKI and HuR.125,126 Further evidence that
RBPs directly impact eNOS expression, and thereby activity, has
been derived from computational analyses27,28 and experimental

studies investigating RBP function in human ECs. Another means by
which RBPs impact eNOS biology is through hnRNP L, a protein that
by co-ordinating eNOS pre-mRNA alternative splicing triggers the
generation of a truncated, dominant negative eNOS isoform.127,128

Despite evidence indicating that these alternative eNOS isoforms af-
fect NO production, the pathophysiological relevance and conse-
quences on EC function in patients with CVD are at present
unknown. Nonetheless, these studies pinpoint an important role for
RBPs in maintaining the quiescent EC phenotype.

Another hallmark of the healthy endothelium is the maintenance
of barrier function, which requires the formation of tightly linked
adherens junctions on adjacent ECs, ensuring the low permeability of
the vessel to circulating solutes, proteins, and cells. Strikingly, reports
regarding the post-transcriptional regulation of adherens junction
proteins are limited. Recently, we discovered that the RBP QKI is
highly expressed in quiescent human ECs in vivo, and that the specific
abrogation of this RBP markedly impaired the capacity to form a
high-resistance endothelial monolayer in human ECs and in mice.125

Mechanistically, QKI appears to be essential for maintaining barrier
function by interacting with quaking response elements in the 30

UTRs of mature b-catenin and VE-cadherin mRNAs, ensuring suffi-
cient translation to restrict vascular permeability.125

RNA-binding proteins have also been implicated in the post-
transcriptional regulation of several other vital EC-derived factors,
including VEGF,129,130 endoglin,131 and HIF1a132. Along with pivotal
roles in tumour-accelerating angiogenesis,133–135 changes in the abun-
dance and splicing of these pre-mRNAs have also been linked with
the development of CVD. An isoform of RBP76 (DRBP76/NF90)
was found to bind to the 30 UTR of the VEGF mRNA, enhancing
VEGF production by human ECs,130 whereas changes in SRSF1 levels
in senescent ECs altered VEGF and endoglin pre-mRNA splicing.131

More recently, a pivotal role for HuR in guiding angiogenesis has
been strengthened based on the finding that it enhances translation
of the human VEGF mRNA129 while also working in unison with pol-
ypyrimidine tract binding protein (PTB) to enhance translation of
HIF1a by binding to distinct sites on the human HIF1a mRNA,
namely the 50- and 30 UTRs, respectively.132 Although the mechanism
by which these factors drive CVD is incompletely understood, a po-
tential explanation linking their established role in cancer biology and
CVD is that they could stimulate the formation of vasa vasorum in
large vessels. This could accelerate lesion formation as it enhances
the supply of essential nutrients and pro-atherogenic factors to sites
of vessel injury.

RNA-binding proteins in
monocytes and macrophages: co-
ordinating inflammatory
responses to injury

In acute and chronic disease settings, circulating monocytes are
exposed to diverse stimuli that generally triggers their activation into
pro-inflammatory phenotype,136,137 followed by their homing to sites
of tissue injury and differentiation into macrophages. As cellular dif-
ferentiation is tightly coupled with the dynamic regulation of mRNA
stability, splicing patterning, and mRNA localization, RBPs are ideally
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positioned to post-transcriptionally co-ordinate events that deter-
mine monocyte and macrophage function. Indeed, AU-rich element
binding proteins (ARE-BPs) have long been known to tightly control
the expression of a plethora of cytokines and chemokines in mono-
cytes and macrophages, including TNF-a, GM-CSF, M-CSF, IL-1b, IL-
6, IL-10, and IFN-c.138 The RBP-mRNA interaction at AREs encoded
in the 30 UTR of these target (pre-)mRNAs139 triggers rapid mRNA
decay.140 More recently, diversification of cytokine-regulating RBPs
was made with the discovery that the Roquin RBPs specifically bind
to stem-loop structures [termed constitutive decay elements
(CDEs)] in the 30 UTR of target mRNAs in mice.141 The 30 UTR of
mouse TNF-a mRNA contains such a CDE, conferring Roquin with
the capacity to bind to and destabilize the mRNA. Importantly, al-
though these experiments were performed in mice, interaction of
the human Roquin-1 and -2 isoforms with an mRNA containing a
CDE was recently confirmed by X-ray crystallography.142 As such, in
concert with ARE-BPs, Roquins are likely responsible for ensuring a
limited window of TNF-a expression in response to tissue injury in
humans. These studies indicate that the induction, as opposed to tar-
geting of certain RBPs, could serve as a novel approach for repressing
the inflammatory component of atherosclerosis.143

Very recently, four SNPs were identified proximal to the QKI locus,
revealing a nominally significant association with incident MI and coron-
ary heart disease (CHD).144 This two-stage full genome-wide associa-
tion studies (GWAS) analysis of more than 64 000 individuals (with
3898 MI cases and 5465 CHD cases) pinpointed QKI as a novel pre-
dictive locus for incident CHD in prospective studies.144 Although the
authors did not detail the pathophysiological mechanism for this associ-
ation, the recent discovery that QKI mRNA and protein are induced in
macrophages of advanced human plaques, and that depletion of QKI
protein in primary human monocytes significantly impaired: (i) mono-
cyte adhesion and migration, (ii) differentiation into pro-inflammatory
macrophages, and (iii) foam cell formation in vitro and in vivo, suggest
that this RBP plays a central role in guiding inflammatory processes that
accelerate CHD. Transcriptome analysis of monocytes and macro-
phages derived from a unique QKI haploinsufficient individual suggests
that this phenotypic conversion is reliant on QKI-mediated changes in
pre-mRNA splicing and mRNA transcript abundance.145 Collectively,
these studies indicate that RBPs such as QKI can post-transcriptionally
guide pro-inflammatory macrophage identity and function.

Therapeutic targeting of RNA-
binding protein-mediated events:
harnessing the power of RNA
regulation in human disease

Strategies geared towards augmenting gene expression represent a
powerful means of correcting decreases in the abundance of tran-
scripts that encode proteins required to limit disease progression.
Recently, adenoviral-associated virus (AAV) vectors have regained
their status as a plausible means of achieving this therapeutic goal,146

as these minimally immunogenic and non-integrative vectors can in-
crease expression levels of selected genes by infecting both dividing
and non-dividing cardiac cells based on the existence of several viral
serotypes, whereas their small size allows for the efficient delivery to

the myocardium via coronary arteries.146,147 Alternatively, retro-
grade delivery into the coronary sinus and a surgical recirculation
method have recently been implemented to enhance cardiomyocyte
expression of SERCA2a in pigs and sheep, respectively. More re-
cently, AAV has also been used to drive exogenous expression of
heme oxygenase I148 and VEGF-B149 in pigs and dogs, respectively.
These pre-emptive studies effectively limited cardiac ischaemia148

and tachy-pacing induced heart failure,149 respectively. Attempts to
treat established CVD using AAV in the form of Mydicar (Celladon;
now Eiger Biopharmaceuticals) initially yielded promising results for
SERCA2a enzymatic replacement therapy in clinical trials.150

However, the Phase IIb clinical trial failure of Mydicar is being attrib-
uted to an inability of the AAV to deeply penetrate the myocardial
tissue mass, indicating that direct intramyocardial injection or coron-
ary sinus delivery method could increase the likelihood of success in
the future.150 Importantly, AAVs could also be tailored to specifically
encode beneficial splice variants of genes, such as the full-length
SCN5A splice variant (as opposed to the truncated SCN5A splice
variant), which could limit arrhythmias by maintaining cardiac
Naþcurrents and thereby electric conduction velocity in the
heart.79,151 Furthermore, the introduction of promoter regions that
induce expression solely in response to injury could broaden the ap-
plicability of AAVs as a means of correcting decreased cardiac-
protective gene expression in a spatiotemporal fashion.

To combat increases in inflammatory and fibroproliferative gene ex-
pression commonly observed in CVD, short-interfering RNA-based
approaches are currently being extensively employed in the (pre-)clin-
ical forum (see RNA-based clinical trial review34). As their safety profile
and mechanism by which they function are well-established, these
could represent an excellent means of ameliorating RBP expression, al-
though the hierarchical positioning of these proteins as global regula-
tors of the transcriptome could elicit undesirable off-target effects.
Therefore, computational mining of transcriptomic databases in cardio-
vascular centres worldwide could uncover splice variants that are en-
riched in diverse cardiovascular complications, enabling the design of
small interfering RNAs (siRNAs) that could specifically target disease-
advancing splice variants (thereby reducing production of encoded
protein isoforms), representing a novel and highly effective means of
targeting in a cell type-specific fashion. Although several methods are
currently being employed to deliver siRNAs in humans,34 the develop-
ment of lipid-based formulations for the effective transport of siRNAs,
miRNAs and antagomiRs is regarded as essential for the broad applic-
ability of RNA-based therapeutic approaches in the clinical setting, and
has been prioritized by the pharmaceutical industry.32

Aberrant splicing, as a result of genetic mutations that alter either
RBP function or the splice sites these proteins recognize, is becoming
increasingly recognized as a major contributor to human disease,
including CVD.152–154 The use of antisense oligonucleotides (AONs)
to correct these RNA-based defects has been applied extensively at
the drug developmental level,33,155 conferring the capacity to skip
one or more exons or restore/disrupt the transcript reading frame
(Figure 2).155,156 Importantly, these biotools have gained widespread
attention as a result of their therapeutic potential for Duchenne’s
muscular dystrophy (drisapersen and etiplerisen; GlaxoSmithKline
plc. and Sarepta Therapeutics Inc., respectively) and spinal muscular
atrophy (nusinersen; Ionis Pharmaceuticals & Biogen Inc.). Of note,
etiplerisen has recently been granted accelerated FDA approval
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whereas nusinersen filing for FDA approval is imminent. Despite
these successes in correcting splicing dysregulation in rare genetic
diseases, ventures into the cardiovascular field are limited. This is par-
ticularly surprising given the identification of numerous CVD-
associated splicing events, such as troponin T in cardiomyocytes,157

oxidized low-density lipoprotein receptor 1 in macrophages,154

VEGF in ECs,158 and myocardin in VSMCs.25 Recently, an AON-
based approach was used to correct the A-band truncating mutation
of Ser14450fsX4 in exon 326 of titin,159 a protein that plays a critical
role in sarcomere organization and passive elasticity in cardiomyo-
cytes. Importantly, missense mutations in human titin, including trun-
cations as described above,159 have been found to responsible for
25% of familial DCM cases and 18% of sporadic DCM cases. By forc-
ing excision of exon 326 in patient-specific cardiomyocytes ex vivo,
myofibril assembly was improved, and similar studies with the
truncation-correcting AON in mice revealed a correction of DCM
phenotype.159 Further evidence that AONs could represent a potent
means of limiting CVD progression can be found in their recent appli-
cation to correct autoimmunity in mice as a result of defective
NLRP3.160 Interestingly, the inflammasome protein complex plays a
critical role in promoting cytokine maturation and inflammation in
myeloid cells, including macrophages. As such, the in vivo correction
of an alternative splice acceptor site160 (as detailed in Figure 2) in
macrophages by Thygesen et al. represents an important step to-
wards similar AON-based interventions in human myeloid cells, and
potential therapeutic application in humans.

Collectively, the continued development of DNA- and RNA-
based approaches designed to alter the transcriptome could result in
the generation of novel therapies that harness RBP-mediated proc-
esses, and significantly impact the treatment of CVD in the future.

Conclusions and future
perspectives

In conclusion, cells undergo functional adaptations at sites of injury
that serve to limit tissue damage and restore proper tissue function
and structure. These remodelling and regenerative responses in af-
fected cells are tightly coupled with dynamic changes in gene expres-
sion patterns that necessitate RBPs to determine the fate of nascent
RNAs. In doing so, RBPs have emerged as potent effectors and regula-
tors of cellular function in (patho)physiological settings. In light of our
expanding insight into the diversity and complexity of protein-coding
and non-protein-coding RNA transcripts, as well as the critical role
played by an ever-expanding number of RBPs involved in processing
these transcripts, our understanding of the human genome has broad-
ened significantly. Importantly, this ‘RNAissance’ has unleashed a
revolution in drug development, leading to numerous RNA-based
therapies that are currently being explored in diverse pre-clinical ani-
mal studies and clinical trials. The potential inclusion of these novel
therapeutic modalities could represent an important broadening of
our medical arsenal in combating CVD in the 21st century.
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