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Abstract
Background: The capacity of respiring cultures of Saccharomyces cerevisiae to immediately switch
to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key
characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was
studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate
to two simultaneous perturbations: oxygen depletion and relief of glucose limitation.

Results: The shift towards fully fermentative conditions caused a massive transcriptional
reprogramming, where one third of all genes within the genome were transcribed differentially. The
changes in transcript levels were mostly driven by relief from glucose-limitation. After an initial
strong response to the addition of glucose, the expression profile of most transcriptionally
regulated genes displayed a clear switch at 30 minutes. In this respect, a striking difference was
observed between the transcript profiles of genes encoding ribosomal proteins and those encoding
ribosomal biogenesis components. Not all regulated genes responded with this binary profile. A
group of 87 genes showed a delayed and steady increase in expression that specifically responded
to anaerobiosis.

Conclusion: Our study demonstrated that, despite the complexity of this multiple-input
perturbation, the transcriptional responses could be categorized and biologically interpreted. By
comparing this study with public datasets representing dynamic and steady conditions, 14 up-
regulated and 11 down-regulated genes were determined to be anaerobic specific. Therefore, these
can be seen as true "signature" transcripts for anaerobicity under dynamic as well as under steady
state conditions.

Background
In the majority of industrial fermentation applications of
bakers' yeast (Saccharomyces cerevisiae), a high initial and

sustained capacity to ferment the available sugar is a
highly important characteristic, especially when the bio-
mass is introduced in an application environment with
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high sugar concentrations and/or absence of oxygen.
Despite several attempts [1-3], quantitative data concern-
ing the dynamics of the adaptation to such industrially
relevant fermentative conditions have not been obtained.
The majority of studies published to date on fermentative
capacity under defined conditions rely on the use of batch
or chemostat cultures [4-6]. The high specific growth rate
in batch cultures does not reflect typical industrial condi-
tions for aerobic cultivation of yeast biomass and has a
drastic impact on fermentative capacity [7]. In chemostat
cultures, which can be used in physiological studies to
specifically investigate the effect of individual culture
parameters, several physiological and transcriptional
responses to the availability of oxygen and/or glucose
have been identified [8-12]. However, in steady state che-
mostats dynamic responses to change in culture parame-
ters can not be observed. A perturbation of one parameter
in a chemostat cultivation results in a reproducible
dynamic response from a defined constant culture [13].
By means of such experimental set-up, short and long
term dynamics have been studied to pulses of low glucose
concentrations [14,15].

The goal of the present study was to investigate the
dynamic adaptation of S. cerevisiae to the industrially rel-
evant transition from aerobic, sugar-limited and respira-
tory growth to fully fermentative (i.e., anaerobic glucose-
excess) conditions and to dissect responses to the glucose
up-shift and onset of anaerobicity. To this end, aerobic
glucose-limited chemostat cultures grown at a moderate
specific growth rate (0.10 h-1) were exposed to two simul-
taneous perturbations: a rapid depletion of oxygen and an
increase of glucose concentration to a high value (40 g·l-

1). Physiological analysis confirmed that the chemostat
culture was fully respiratory before, and fully fermentative
after the shift. Global dynamic responses to this com-
bined perturbation were analyzed through genome-wide
transcription analysis.

Results and discussion
Physiological characterization
To invoke rapid and full induction of fermentative capac-
ity, respiratory, aerobic glucose-limited chemostat cul-
tures (D = 0.1·h-1) were shifted to fully fermentative
conditions by sudden depletion of oxygen and addition of
glucose. The glucose was added two min after sparging the
continuous culture with pure nitrogen, when the dis-
solved oxygen concentration had decreased from 75–80%
to 10–15% of air saturation (Fig. 1). This raised the glu-
cose concentration to 200 mM and ensured that the resid-
ual glucose concentration after 2 h of cultivation would
still be above 100 mM, thus maintaining strong glucose
catabolite repression throughout the experiment. (Fig.
2A) [16]. Indeed, the sudden shift to fermentative condi-
tions resulted in fully fermentative metabolism within the

first 5 min with CO2, ethanol and glycerol as the major
metabolic products (Fig. 2). This metabolic shift coin-
cided with an increasing specific glucose consumption
rate, up to 12-fold, over 2 h following the perturbation
(Fig. 2B). The specific ethanol production rate, which
under these anaerobic glucose-excess conditions reflects
the culture's fermentative capacity, steadily increased to
19.6 mmol ethanol·g-1·h-1 (Fig. 2B). While the overall
metabolic response was rapid and strong, the biomass
concentration, the cell count and the cellular protein con-
tent did not change significantly throughout the experi-
ment (Fig. 2C). During the two hours of the experiment,
the growth rate did not exceed the starting growth rate of
0.1 h-1. The biomass therefore only contributed to 5% of
the total carbon flux, while the main metabolic products
(i.e. carbon dioxide, ethanol and glycerol) accounted for
ca. 90% of the total carbon produced.

Microarray data processing and general transcriptional 
response
To identify genome-wide transcriptional changes con-
nected to the induced metabolic adaptation, micro-array
analysis was performed on samples from two independ-
ent replicate steady-state chemostat cultures and on sam-
ples taken 5, 10, 30, 60 and 120 min after glucose
addition. The coefficient of variation between replicates
was below 20%, which is comparable with previous che-
mostat-based transcriptome analyses [10,11].

A first main concern was with normalization of these
microarray data from non-steady-state culture samples. In
previous transcriptome studies on steady-state chemostat
cultures using Affymetrix microarrays, setting the average
signal intensity of all probe-sets to a fixed value (also

Dissolved oxygen concentration during a shift to anaerobio-sisFigure 1
Dissolved oxygen concentration during a shift to 
anaerobiosis. Time zero corresponds with addition of glu-
cose. The concentration is given in percentage of air satura-
tion.

-4 -2 0 2 4 6
0

25

50

75

100

glucose pulse

switch air to N2

first sample

steady
 state

120

time (min)

d
is

so
lv

e
d
 O

2
 (

%
)

Page 2 of 14
(page number not for citation purposes)



BMC Genomics 2008, 9:100 http://www.biomedcentral.com/1471-2164/9/100
called global scaling) provided a good normalization
method [10,11]. As this normalization method might not
be appropriate for dynamic cultivation conditions, we
considered transcript levels of a few so-called 'house-keep-
ing' genes commonly used as loading standards for North-
ern analysis and quantitative RT-PCR. After global scaling,
the expression of ACT1, HHT2 and SHR3 (encoding
respectively, for actin, histone and endoplasmic reticulum
packaging chaperone protein) remained constant
throughout the experiment with a variation coefficient
around or below 20%. The stable transcript levels of
house-keeping gene expression obtained with a global
scaling approach indicated that no major changes in the
total mRNA pools occurred during the experiment, which
would require another type of normalization.

After global scaling, the significance of the changes in
transcript levels during the dynamic experiment was esti-
mated using the EDGE software (p-value threshold 0.005,

[17], see Methods section for details). A set of 1923 genes
was thus identified as being transcriptionally regulated in
response to combined oxygen depletion and glucose addi-
tion (Additional file 1). This large group of genes was
divided in several subgroups according to their expression
profiles. 607 genes whose transcript levels increased after
the perturbation were separated into four clusters accord-
ing to their initial and later response (Clusters A-D; Fig.
3). 1316 genes with reduced transcripts responded rapidly
to the perturbations (within 10 min) and were clustered
according to their secondary response (Clusters 1–6; Fig.
3). All clusters were subsequently searched for overrepre-
sentation of specific functional categories (as defined by
MIPS [18]), and of promoter elements corresponding to
specific transcriptional regulation networks (see Methods
section). Upon a first inspection, some of clusters, despite
subtle differences in their time-dependent transcript pro-
files, showed an overrepresentation of genes from the
same functional categories. These were pooled to further

Physiological responses of aerobic glucose-limited chemostat cultures to fully fermentative conditionsFigure 2
Physiological responses of aerobic glucose-limited chemostat cultures to fully fermentative conditions. Time 
zero represents the steady state value. A – Extracellular concentrations of glucose (black square), ethanol (black triangle), CO2 
(open square) and glycerol (black dot). Each time point represents the average of at least six independent replicates. B – Spe-
cific rates of glucose consumption (black square) and ethanol (black triangle), CO2 (open square) and glycerol (black dot) pro-
duction. C – Biomass dry weight (black square), whole cell protein (open square) concentrations and cell number (black 
triangle). D – Intracellular concentrations of trehalose (black square) and glycogen (open square). Each time point represents 
the average of at least two independent replicates.
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improve the enrichment analysis. Thus cluster A and B, as
well as 2 and 3, and also 4, 5 and 6 were pooled (Table 1
and 2), resulting in a final set of six different clusters.

Initial response
Sudden relief from glucose limitation enables yeast cells
to accelerate to a higher specific growth rate. Although
faster growth was not observed in the 2 h after the relief of
glucose limitation, over one third of the initially up-regu-
lated genes were related to protein synthesis (Fig. 3; clus-
ter A, B and C). This included a massive and fast up-
regulation of genes within clusters A and B that encode
components of the translational machinery, including
126 genes involved in rRNA synthesis, processing and
modification and 49 genes involved in ribosomal biogen-

esis (Table 1). Taking into account that the total RNA pool
mainly consists of rRNA [19], an up-regulation of rRNA
synthesis was confirmed by an increase of the RNA con-
tent of the biomass after the relief from glucose limitation
(Fig. 4).

Genes in cluster C displayed a sustained, slower increase
of their transcript levels than those in clusters A and B.
37% of the genes in cluster C encoded ribosomal proteins.
The delay between the expression of ribosomal biogen-
esis/rRNA genes and ribosomal protein genes is in line
with previous observations indicating the existence of dif-
ferent regulatory mechanisms for these two groups of
genes [20-22]. Accordingly, PAC and RRPE regulatory ele-
ments were enriched in the promoter regions of genes in

Average time-dependent transcript profiles of clustered genesFigure 3
Average time-dependent transcript profiles of clustered genes. As described in Materials and Methods section, genes 
were clustered in 10 groups according to their initial and late transcriptional responses. Genes initially up-regulated were 
divided in 4 clusters called A, B, C and D, while down-regulated genes were allocated to clusters 1–6. Each line represents the 
average expression level of all genes in that cluster during the time course (0 (steady state), 5, 10, 30, 60 and 120 min). Abso-
lute intensity values were mean normalized for each gene and for each time-point over all 13 arrays. Error bars indicate the 
standard deviation in normalized expression values of all genes in the cluster.
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Table 1: Overrepresentation of MIPS functional categories in genes that were differentially transcribed in response to fully 
fermentative conditions. Clusters A&B, 2 & 3 and 4, 5 & 6 had similar expression pattern and similar enrichments, and were therefore 
pooled before the overrepresentation analysis. Enrichment was estimated by hypergeometric distribution analysis (cut-offs around 10-

5, see Materials and Methods); magnitude of the enrichment is indicated by the p-value.

MIPS_cat. A&B (283 genes) C (237 genes) D (87 genes)

nr. description nr of genesa nr of genesb p-value nr of genesb p-value nr of genesb p-value

01 METABOLISM 1531 38 3.8E-05
01.01 amino acid metabolism 243 28 2.6E-06 29 1.7E-08
01.01.06 metabolism of the aspartate family 64 13 4.5E-07
01.01.06.05.01 biosynthesis of methionine 14 5 1.0E-04
01.03 nucleotide metabolism 230 23 6.3E-05 23 1.2E-05
01.03.01 purine nucleotide metabolism 66 17 3.8E-09
01.03.01.03 purine nucleotide anabolism 29 13 7.4E-12
01.05.01 C-compound and carbohydrate 

utilization
510 18 1.4E-04

01.05.01.07.03 tetrahydrofolate-dependent C-1-
transfer

14 6 5.8E-06

11 TRANSCRIPTION 1036 126 9.4E-31
11.02.01 rRNA synthesis 56 12 4.4E-06
11.02.02 tRNA synthesis 39 9 3.8E-05
11.04 RNA processing 394 89 9.4E-42
11.04.01 rRNA processing 174 78 8.7E-62
11.06 RNA modification 65 19 2.1E-11
11.06.01 rRNA modification 17 9 1.0E-08

12 PROTEIN SYNTHESIS 511 63 1.7E-14 103 7.6E-53
12.01 ribosome biogenesis 343 49 8.5E-14 89 1.0E-54
12.01.01 ribosomal proteins 277 88 1.8E-62

14 PROTEIN FATE (folding, 
modification, destination)

14.07.02 modification with sugar residues 70 8 4.1E-06
14.07.02.01 O-directed glycosylation 16 4 5.2E-05

16 PROTEIN WITH BINDING 
FUNCTION

1049 82 4.6E-08

16.03 nucleic acid binding 346 47 2.0E-12
16.03.03 RNA binding 194 31 2.8E-10

20 CELLULAR TRANSPORT, 
TRANSPORT FACILITATION...

1038

20.01.13 lipid transport 43 5 3.3E-05
MIPS_cat. 1 (120 genes) 2 & 3 (577 genes) 4, 5 & 6 (617 genes)

nr. description nr of genesa nr of genesb p-value nr of genesb p-value nr of genesb p-value

01 METABOLISM 1531 193 4.3E-08 192 1.3E-05
01.05 C-compound and carbohydrate 

metabolism
510 89 2.6E-10 80 4.9E-06

01.05.01.01.01 sugar, glucoside, polyol and 
carboxylate catabolism

82 27 4.7E-09

01.06 lipid, fatty acid and isoprenoid 
metabolism

292 55 6.6E-07

01.06.01.07 isoprenoid metabolism 41 14 1.6E-05
01.06.01.07.11 tetracyclic and pentacyclic 

triterpenes biosynthesis
36 13 1.6E-05

02 ENERGY 360 112 5.1E-35 69 1.1E-08
02.10 tricarboxylic-acid pathway 31 11 4.7E-05 12 1.5E-05
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clusters A & B, whereas Rap1p/Sfp1p and Fhl1p motifs
were overrepresented in the promoter regions of cluster C
genes (Table 2). In addition to the translational machin-
ery, 57 genes involved in amino acid metabolism and 46
genes involved in nucleotide metabolism were up-regu-
lated. This was consistent with the overrepresentation of
Met32p [23], Gcn4p [24] and Bas1p [25] binding sites in
the promoter regions of these genes, and indicated the
need for synthesis of building blocks for transcription and
translation.

Among the 1316 genes with reduced expression, one clus-
ter comprising 122 genes showed rapid and strong repres-
sion (Cluster 1, Fig. 3). Although this cluster appeared
relatively heterogeneous, one functional category was
clearly enriched. It consists of seven transcription factor
genes (ACE2, PRP45, OAF1, GTS1, SWI5, MSN1 and

STB1) involved in various cellular functions, like fatty acid
oxidation, stress response and cell cycle progression [26-
31]. A large number of known targets of these transcrip-
tion factors were also present in the down-regulated clus-
ters (Additional file 2). Most of the remaining 1194
down-regulated genes were associated to metabolism and
energy generation. In addition, a large number of genes
involved in protein degradation (97 genes in total) were
down-regulated, indicating a decreased requirement for
proteolytic activity. Interestingly, 73 genes involved in
stress response were down-regulated, including 18 related
to oxidative stress response. This observation suggests that
anaerobicity per se does not evoke an immediate stress for
yeast.

02.11 electron transport & membrane-ass. 
energy conservation

54 30 4.2E-18

02.13 Respiration 131 53 1.1E-22
02.13.03 aerobic respiration 74 38 5.2E-21
02.19 metabolism of energy reserves 53 16 2.4E-05
02.25 oxidation of fatty acids 9 6 3.5E-05
02.45.15 energy generation (e.g. ATP 

synthase)
18 9 1.5E-05

11 TRANSCRIPTION
11.02.03.04.01 transcriptional activator 42 7 1.2E-05

14 PROTEIN FATE (folding, modific., 
destination)

1167 173 1.6E-08

14.07.11 protein processing (proteolytic) 92 24 4.1E-07
14.13 protein degradation 264 61 3.6E-11
14.13.01 cytoplasmic and nuclear protein 

degradation
194 48 4.2E-10

14.13.01.01 proteasomal degradation 134 33 2.8E-07

20 CELLULAR TRANSPORT, 
TRANSPORT FAC.

1028

20.01.15 electron/hydrogen transport 76 24 2.3E-08
20.09 transport routes 695 98 4.2E-05

32 CELL RESCUE, DEFENSE AND 
VIRULENCE

559 77 7.4E-05

32.01 stress response 454 73 4.2E-07
32.01.01 oxydative stress response 56 18 10E-06
32.01.07 unfolded protein response (ER 

quality control)
74 16 7.6E-04

42 BIOGENESIS OF CELL. 
COMPONENTS

42.16 mitochondrion 170 38 9.0E-08 35 1.1E-05

a: amount of genes in the genome belonging to the specified functional category
b: amount of genes in the respective clusters or group of clusters belonging to the specified functional category

Table 1: Overrepresentation of MIPS functional categories in genes that were differentially transcribed in response to fully 
fermentative conditions. Clusters A&B, 2 & 3 and 4, 5 & 6 had similar expression pattern and similar enrichments, and were therefore 
pooled before the overrepresentation analysis. Enrichment was estimated by hypergeometric distribution analysis (cut-offs around 10-

5, see Materials and Methods); magnitude of the enrichment is indicated by the p-value. (Continued)
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Secondary response
As expected, the initial response to fully fermentative con-
ditions showed quite some overlap with published data-
sets for glucose pulses to aerobic cultures [14,32],
including induction of the translational machinery and
repression of the respiratory chain [33-35]. With this
study, we aimed to go beyond the primary response to see
how yeast adjusted to its altered growth environment.

We did not identify genes whose transcript levels continu-
ously increased or decreased in the 2 h following the per-
turbation. At 30 min after the shift, a pivotal point
appeared to be reached at which the transcript profiles
either indicated a reverse regulation mode (clusters A, B,
4, 5 and 6) or a stable mRNA level (clusters C, 2 and 3).

In this respect, a striking difference was observed between
the transcript profiles of genes encoding ribosomal pro-
teins and those encoding ribosomal biogenesis compo-
nents (Fig. 5). A steady transcript level after 30 min of
ribosomal proteins was indicative for a constitutive
requirement for translational building blocks to support
faster growth. In contrast, transcriptional up-regulated
genes involved in the synthesis, processing and modifica-
tion of the translational machinery appeared only to be
temporarily required for a rapid adaptation to the new
environmental conditions. In addition to the ribosomal
protein genes, genes involved in de novo purine biosynthe-
sis, methionine metabolism, and tetrahydrofolate-
dependent C1 metabolism were continuously transcribed
at an elevated level after 30 min. All three functional cate-

Table 2: Enrichment of transcription factors (TF) binding in clusters of genes that were differentially expressed in response to fully 
fermentative conditions. Clusters A & B, 2 & 3 and 4, 5 & 6 had similar expression pattern and similar enrichments, thereby these were 
analyzed together. Enrichment of TF binding according to the dataset of Harbison et al. [57] was given in p-value. Specific TF binding 
sites not present in the Harbison dataset (PAC, RRPE and Upc2p) were analyzed by using web-based software RSAT http://
rsat.ulb.ac.be/rsat/ and indicated in italics.

Transcription factor A&B C D
Name clustera binding motif nr of genesb nr of genesc enrichmentd nr of genesc p-value nr of genesc enrichmentd

Met32p B AAACTGTGG 22 6 2.94E-04
Gcn4p NC TGAsTCA 192 22 3.54E-05 20 2.54E-05
Bas1p NC TGACTC 36 14 1.19E-11
Rap1p NC CAyCCrTrCA 157 49 2.79E-33
Sfp1p NC AyCCrTACAy 51 25 5.25E-23
Fhl1p NC TGTAyGGrTG 203 72 3.54E-54
Gln3p NC GATAAGa 92 7 2.35E-04

PAC - wGmGATGAGv [22] 376 98 5.7
RRPE - TGAAAAwTTT [22] 535 110 4.2
Upc2p NC TCGTwhAG [42] 667 16 1.7

Transcription factor 1 2&3 4,5&6
Name clustera binding motif nr of genesb nr of genesc p-value nr of genesc p-value nr of genesc enrichmentd

Nrg1p NC GGaCCCT 128 25 1.59E-04
Hap1p NC GGnnATAnCGs 73 25 1.75E-09
Msn2p 5 mAGGGGsGG 65 20 5.57E-07
Sut1p A GCsGsGnnsG 50 17 8.21E-07
Skn7p NC GnCnnGsCs 156 37 2.56E-08
Msn4p 5 mAGGGG 56 18 1.00E-06
Hsf1p NC TTCynnnnnnTTC 133 31 5.38E-07
Hap4p 3 GnCcAAtcA 54 16 1.31E-05
Ash1p NC yTGACT 20 7 1.29E-03
Sok2p NC TGCAGnnA 79 20 1.55E-05
Ume6p NC TAGCCGCCsA 132 28 1.33E-05
Rpn4p 3 GGTGGCAAA 93 21 1.60E-04
Mbp1p NC ACGCGT 165 44 1.75E-10
Swi6p NC CGCGAAAA 140 27 3.32E-04

a: presence of the transcription factor in one of the clusters; NC = transcription factor not significant changed over time
b: amount of genes in the genome belonging to the specified transcription factor
c: amount of genes in the respective clusters or group of clusters belonging to the specified transcription factor
d: enrichment represented by a p-value for the in-house analysis or a coverage coefficient (cluster coverage divided by genome coverage) for the 
analysis with RSAT tool
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gories have previously been correlated with each other,
and with a response to the decrease in the adenine nucle-
otide pool [14].

Also the initially down-regulated genes with a turning
point after 30 min could be divided in two groups: steady

pattern after 30 min (clusters 2 & 3) or again up-regulated
after 30 min (clusters 4, 5 & 6). During the course of the
experiment, the glucose concentration remained high and
hence, functional categories known to be repressed by glu-
cose were enriched among the clusters in which the tran-
script level remained low after 30 min. Regulatory factors
involved in regulation of the respiratory chain (HAP2,
HAP4 and HAP5) were down-regulated together with
their targets [36]. Stress-response genes also maintained
low transcript level during the experiment. In contrast,
transcripts of genes involved in lipid biosynthesis, reserve
carbohydrate metabolism and protein degradation
tended to increase again after 30 min. The large and coor-
dinated transcriptional up-regulation of the translational
machinery, specifically ribosomal proteins, comple-
mented an opposite transcriptional regulation pattern of
genes related to proteolytic activity. The down-regulation
of target genes of the Mbp1/Swi6 complex, involved in G1
to S transition [37], correlated with a delay in cell cycle
progression and correspondingly, a constant cell number
over the two h monitored.

Many genes involved in the metabolism of storage carbo-
hydrates (trehalose and glycogen) showed a decreased
transcript level after the perturbation. To further investi-
gate the observed changes in trehalose and glycogen
metabolism, intracellular levels of trehalose and glycogen
were measured. Both reserve carbohydrates were com-
pletely degraded within 30 min (Fig. 2D), consistent with
a post-transcriptional activation of trehalose and glycogen

The expression patterns of genes related to ribosomal proteins and ribosomal biogenesisFigure 5
The expression patterns of genes related to ribosomal proteins and ribosomal biogenesis. The left panel repre-
sents the fold change compared to time point zero of all significant initially up-regulated genes belonging to the category of 
ribosomal biogenesis (MIPS 12.01), but did not belong to the category of ribosomal proteins (MIPS 12.01.01). The right panel 
represents the fold change compared to time point zero of all significant up-regulated genes belonging to the category of ribos-
omal proteins (MIPS 12.01.01). The profile of each gene is reported as a grey line while the average expression (plus standard 
deviation) is represented by the thick black line.
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phosphorylases [38,39]. Physiological interpretation of
the trehalose and glycogen degradation however, is less
straightforward, since trehalose and glycogen are known
to be involved in flux regulation, stress response and cell
cycle [39].

Delayed responses related to anaerobiosis
Eighty-seven of the 1923 genes that showed a significantly
altered transcript level after the combined glucose pulse
and oxygen depletion only showed an increased transcript
level after 30 min (cluster D). One of the few functional
categories enriched within this group involved modifica-
tion by glycosylation (ALG7, GNT1, MNT4, OST5, PMT2,
PMT4, PMT5, SEC53 and SWP1). PMT2, PMT4 and PMT5
are specifically involved in O-linked mannosyl glycosyla-
tion, which is indispensable for cell wall integrity [40]. In
addition, this 'delayed response' cluster contained five of
the nine genes encoding anaerobically induced manno-
proteins (DAN1, DAN4, TIR1, TIR2 and TIR4) [41]. Two
other anaerobically induced mannoproteins (DAN2 and
DAN3) were initially down-regulated, whereas transcript
levels of the gene encoding the major cell wall mannopro-
tein (TIP1) did not significantly change at all.

A strongly anaerobiosis-related character of the genes in
cluster D was not only suggested by the presence of the
abovementioned genes involved in cell wall maintenance,
but additionally by the presence of several genes involved
in lipid transport (AUS1, FAA4 and DNF2), heme biosyn-
thesis (HEM13; Rox1p repressed), sterol metabolism and
regulation (ARE1, HES1 and NCP1), and cell wall biosyn-
thesis (EXG2). Accordingly, a high number of genes con-
tained AR1 elements in their promoter (Table 2),
indicating a role of Upc2p [9,42]. The delayed up-regula-
tion of these 'anaerobic genes' indicated that the response
to anaerobiosis is slow compared to the fast response to
the relief from glucose limitation (clusters A, B and C).

Dissecting the response to anaerobiosis
The response to the anaerobic shift described in this study
was compared with a dataset from a previously published
study [20,21], in which the transcriptional response of
batch cultures was monitored for several generations after
a shift from aerobic to anaerobic conditions. Surprisingly,
only 51 genes were overlapping with the significant up-
regulated genes of our study. Half of these resided in our
delayed response cluster D, which contains many anaero-
biosis-related genes. The absence of a glucose pulse in the
study of Lai et al. [20,21] explains the absence of genes
encoding components of the translational machinery
among the up-regulated genes in their dataset. Similarly,
the large group of genes related to protein degradation
found in the present study was not observed among the
down-regulated genes identified by Lai et al. [20,21]. A
strong overlap (464 genes) was found between the down-

regulated genes identified in the two studies. Most of this
overlap resided in the constitutively low expressed clusters
2 & 3 of our study (45% of the genes overlapped), which
include many genes related to oxidative stress response.
The majority of genes within the functional category Stress
Response responded slower in the anaerobic shift study of
Lai et al. [20,21] than in our study which included a step-
up of the glucose concentration. Hence, we conclude that
the observed regulation of stress response correlated with
the relief from growth limitation rather than with a mere
depletion of oxygen.

Anaerobic "signature" transcripts
In an attempt to identify robust 'signature transcripts' that
show a consistent response to anaerobiosis, the set of sig-
nificantly responding genes in this dynamic study was
compared with several datasets from glucose pulses and
aerobic-to-anaerobic shift experiments (Fig. 6)[14,20,32].
457 genes of the 607 genes up-regulated in this study were
previously identified in two other glucose-induced stud-
ies. Sixty-seven of the 150 non-overlapping genes resided
within the delayed response of cluster D, indicating that
more than 70% of the genes within cluster D were not
responding to glucose. Twenty of these 150 genes are also
up-regulated in the aerobic-to-anaerobic shift study of Lai
et al. and can therefore been seen as specifically anaerobi-
osis-responsive (Fig. 6). These 20 anaerobic genes are
involved in cell wall maintenance (DAN/TIR genes and
related glycolysations), in membrane composition
(WSC4, DAL5 and FET4) and metabolism (HEM13,
MET13, ARE1, AUS1 and NCP1). Interestingly, 17 of
those 20 genes resided in cluster D, and 12 genes con-
tained the Upc2-binding promoter element (TCGTTTA),
which earlier was associated with about 1/3 of anaerobic
genes [9]. Transcription factor Upc2 has been reported to
be strictly regulated by heme and sterol levels [43]. The
delayed response of the anaerobic genes was likely due to
the almost complete absence of growth during the experi-
ment, thus sterol levels may not have been depleted rap-
idly through dilution over newly formed cells. A similar
comparison with the down-regulated genes in our study
resulted in 46 commonly responding genes (Fig. 6). The
majority of the anaerobic down-regulated genes had func-
tions related to mitochondrial function or oxidative stress
response, of which 13 genes contained a Hap1 or Hap2/
3/4/5 binding element [36,44]. Heme levels are likely to
respond rapidly to the depletion of oxygen from the cul-
ture, consistent with the fast response of the anaerobically
down-regulated genes.

The use of transcripts as a diagnostic tool for biotechno-
logical applications has been proposed previously
[8,11,45]. Based on steady-state cultivation experiments, a
consistent response to anaerobiosis had been determined
by analyzing aerobic and anaerobic chemostat cultures
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grown under different nutrient limitations (carbon-,
nitrogen-, phosphorus-, and sulfur limitation), resulting
in 65 anaerobically up-regulated and 90 down-regulated
genes [11]. Surprisingly, only 14 up-regulated genes and
11 down-regulated genes were also found in both our
dynamic study and the dynamic study of Lai et al.. There-
fore, these can be seen as true "signature" transcripts for
anaerobicity both within dynamic and steady state condi-
tions (Table 3).

Conclusion
We have studied the induction of yeast fermentative
capacity by switching a fully respiratory culture to fully
fermentative conditions. The aerobic glucose-limited che-
mostat culture with a low specific growth rate became, as
seen in the physiology measures, fully fermentative for the
entire experiment due to a rapid depletion of oxygen and
addition of a high glucose concentration (40 g·l-1). The
shift caused a massive transcriptional reprogramming,
where one third of all genes within the genome were tran-
scribed differentially. Our study demonstrates that,
despite the complexity of this multiple-input perturba-

Specific anaerobic genes determined by comparison between different dynamic studies with a glucose up-shift or shift from aerobic to anaerobicFigure 6
Specific anaerobic genes determined by comparison between different dynamic studies with a glucose up-shift 
or shift from aerobic to anaerobic. Up- or down-regulated genes of two different microarray studies with glucose pulses 
[14,32] were compared to the up-regulated genes within clusters A to D or to the down-regulated genes within clusters 1 to 
6. The 150 up-regulated and 507 down-regulated genes not present in the previous glucose pulses [14,32] were compared with 
respectively 144 up-regulated and 201 down-regulated genes determined in the study of Lai et al. [20]. The heat maps repre-
sent the anaerobic specific genes given in fold change compared to time point zero.
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tion, the transcriptional responses could be categorized
and biologically interpreted. This required clustering of
genes that shared discernable time-dependent responses
to the perturbation, followed by a systematic analysis of
overrepresented gene categories and upstream regulatory
elements. This approach revealed that this reprogram-
ming of the transcriptome was mostly driven by relief
from the glucose-limitation, exemplified by preparation
for faster growth (induction of ribosomes, nucleotide bio-
synthesis and amino acids biosynthesis) and glucose
repression of various metabolic pathways. Contrary to
previous observations [9,12], but as argued by Lai et al
[20,21], the apparent relief from stress clearly indicates
that anaerobicity per se does not evoke a stress in yeast.

A recent study by our group [14] studied transcriptional
responses in the first five min after a glucose pulse to aer-
obic, glucose limited chemostat cultures. While that study
revealed important and virtually instantaneous transcrip-
tional events after imposition of a relief from glucose lim-
itation, the present study shows that transcriptional
reprogramming continues well beyond this 5 min period.
Interestingly, most responses changed character after the
30 minutes point. This is clearly illustrated by the differ-
ence between the expression pattern of genes encoding
ribosomal proteins versus genes encoding components
for ribosomal biogenesis. Therefore, we have used this
experimental set-up for further studying molecular details
governing the observed differences in the regulatory
mechanisms of the various groups of genes (manuscript
in preparation).

One exception to the binary response mechanism
observed around 30 minutes is presented by the anaerobic
induction response, which appears only after the initial
response to the glucose pulse. Most of the genes specifi-
cally induced by anaerobiosis are related to cell wall and
plasma membrane remodeling. This is in contrast with Lai
et al. where this response was only apparent after one gen-
eration [21]. The time span of anaerobic remodeling is
therefore significantly shorter during a shift to complete
fermentative metabolism on high glucose. By comparing
this study with public datasets representing dynamic and
steady conditions, the determined group of anaerobic
"signature transcripts" will be better suited for use as a
diagnostic tool in biotechnological applications.

Most of the transcriptional changes were due to sensitivity
to the carbon supply. Still, the observed minor changes in
transcripts for glycolytic enzymes cannot explain the 12-
fold increase in flux through glycolysis under these condi-
tions. Therefore we are presently studying the central car-
bon metabolism under such dynamic conditions by a
multilevel approach, where transcripts, enzyme activities,
metabolites and fluxes will be integrated. Hence, we will
try to understand in more detail the regulatory mecha-
nisms controlling fermentative capacity in yeast.

Methods
Strain and media
The S. cerevisiae strain used in this study was a pro-
totrophic haploid reference strain CEN.PK113-7D
(MATa) [46]. Stock cultures were grown at 30°C in shake
flasks containing 100 ml of synthetic medium with 20 g
of glucose per liter.

The synthetic medium contained per liter of demineral-
ized water 5 g of (NH4)2SO4, 3 g of KH2PO4, 0.5 g of
MgSO4·7H2O, 0.15 ml of silicon antifoam (BDH), and
trace element concentrations according to Verduyn et al.
[47]. After heat sterilization of the medium for 20 min at
120°C, a filter-sterilized vitamin solution [47] was added.
The concentration of glucose in the reservoir medium was
7.5 g·l-1. This glucose was added to the synthetic medium
after separate heat sterilization at 110°C.

Chemostat cultivation
CEN.PK113-7D (MATa) was grown at 30°C in 2-l biore-
actors (Applikon) with a working volume of 1.5 l via an
electrical level sensor. Removal of effluent from the center
of the culture ensured that biomass concentrations in the
effluent line differed by less than 1% from those in the
culture [48]. The dilution rate was set at 0.10 h-1. The pH
was measured on-line and kept constant at 5.0 by the
automatic addition of 2 M KOH using an Applikon ADI
1030 Biocontroller. A stirrer speed of 800 rpm and air
flow of 0.75 liter·min-1 were applied to keep the dis-
solved-oxygen concentration, as measured with an oxygen
electrode, above 60% of air saturation in all chemostat
cultivations performed. Steady-state samples were taken
after ~10 volume changes to avoid strain adaptation due
to long-term cultivation [49,50]. Biomass dry weight,
metabolite, dissolved oxygen, and gas profiles were con-
stant over at least three volume changes.

Table 3: "Signature" transcripts for anaerobicity within dynamic and steady conditions.

Genes

Up-regulated ARE1, AUS1, DAN1, DAN4, EUG1, FET4, HEM13, PAU6, PMT5, TIR2, TIR4, YSR3
Down-regulated ADI1, COX7, HMX1, MBA1, MSF1, NDE1, PRP12, YDL086W, YGL101W, YIR035C, YLR108C
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Perturbation experiments
Anaerobic glucose-pulse experiments were started by
sparging the medium reservoir of the fermentor of a
steady-state glucose-limited aerobic chemostat culture
(airflow of 0.5 liter·min-1) with pure nitrogen gas (Hoek-
Loos, Schiedam, <5 ppm O2). Norprene™ tubing and
butyl septa were used to minimize oxygen diffusion into
the anaerobic cultures [51]. Two min after nitrogen sparg-
ing and just before adding the glucose, the medium-sup-
ply and effluent-removal pump was switched off. The 200
mM (60 g of glucose monohydrate in 60 ml water) glu-
cose pulse was injected aseptically through a rubber sep-
tum. Samples were taken 5, 10, 30, 60 and 120 min
following glucose addition.

Analytical methods
The exhaust gas was cooled by a condenser connected to a
cryostat set at 2°C and dried with a Permapure™ dryer
(Inacom Instruments) before analysis of the O2 and CO2
concentrations with a Rosemount NGA 2000 analyzer.
The gas flow rate was determined with an Ion Science Saga
digital flow meter.

Acetate, ethanol, glycerol, and glucose concentrations in
supernatants were determined by HPLC analysis with a
Bio-Rad Aminex HPX-87H column at 60°C. The column
was eluted with 5 mM sulfuric acid at a flow rate of 0.6 ml
min-1. Acetate was detected by a Waters 2487 dual-wave-
length absorbance detector at 214 nm. Glucose, ethanol
and glycerol were detected by a Waters 2410 refractive
index detector.

Culture dry weights were determined as described in [52]
while whole cell protein determination was carried out as
described in [53]. Cell numbers were counted by a Coulter
counter (Multisizer II; Beckman Coulter) by using a 50
µm aperture.

Trehalose and glycogen
Trehalose and glycogen concentration measurements
were performed as described previously [54] in duplicate
measurements on two independent replicate cultures.
Glucose was determined using the UV-method based on
Roche kit no. 0716251.

Total RNA
Samples were collected during the pulse, washed three
times with cold 5% trichloroacetic acid and the pellet is
stored at -20°C. The samples were resuspended in 3% per-
chloric acid and heated at 90°C for 30 min. After centrif-
ugation, the supernatant was mixed with 37%
hydrochloric acid, containing 10 g l-1 orcinol monohy-
drate (crystalline, Sigma-Aldrich, Germany) and 5 g l-1

iron(III) chloride hexahydrate. The mixture was heated at
90°C for 20 min before measuring absorbance at 660 nm

[55]. Absorbance values were related to a concentration
(expressed as µg·ml-1) using a calibration curve of a
standard yeast RNA solution (Sigma-Aldrich, Germany).

Microarrays processing and analysis
Sampling of cells from chemostats, probe preparation,
and hybridization to Affymetrix Genechip® microarrays
were performed as described previously [10]. The results
for each time point after the perturbation (5, 10, 30, 60
and 120 min) were derived from two independently cul-
tured replicates, while steady state data were derived from
three independent chemostats. The complete dataset
therefore comprised 13 arrays.

Acquisition and quantification of array images and data
filtering were performed using Affymetrix GeneChip®

Operating Software version 1.2. Before comparison, all
arrays were globally scaled to a target value of 150 using
the average signal from all gene features. To eliminate
insignificant variations, genes with expression values
below 12 were set to 12 and genes for which maximum
expression was 20 over the 13 arrays were discarded. From
the 9335 transcript features on the YG-S98 arrays, a filter
was applied to extract 6383 yeast open reading frames, as
previously described [8]. To represent the variation in the
measurements, the coefficient of variation was calculated
as the mean deviation divided by the mean [8]. The array
data used in this study can be retrieved at Genome Expres-
sion Omnibus [56] with series number GSE8187.

For additional statistical analyses, Microsoft Excel running
the EDGE (version 1.1.208) add-in was used [17] for a
time course differential expression analysis. To determine
the genes called significantly changed according to EDGE
a p-value of 0.005 was used. K-means clustering of the
genes with significantly changed expression levels was
subsequently performed using Genedata Expressionist®

Pro (version 3.1). The k-means algorithm used positive
correlation as distance metric. The maximum number of
iterations was set to 1000. Initially, the algorithm was run
with k equal to 2, dividing the genes into an up- and a
down-regulated cluster. Each cluster was then clustered
again using k-means with k ranging from 2 to 10. The
optimal k-value, i.e. 4 for the initially up-regulated and 6
for initially down-regulated genes, were based on the
explained variance between clusters and the overrepresen-
tation of functional categories (for detailed explanation
please refer to Additional file 3).

Each cluster was consulted for enrichment in functional
annotation and significant transcription factor (TF) bind-
ing (experimentally identified by Harbison et al. [57]) as
described previously [58]. In addition, specific TF binding
sites not present in the Harbison dataset were analyzed by
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using web-based Regulatory Sequence Analysis Tools
[11,59].
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