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We study the ground state phases of Bose-Fermi mixtures in one-dimensional optical lattices with quantum
Monte Carlo simulations using the canonical worm algorithm. Depending on the filling of bosons and fermi-
ons, and the on-site intra- and interspecies interaction, different kinds of incompressible and superfluid phases
appear. On the compressible side, correlations between bosons and fermions can lead to a distinctive behavior
of the bosonic superfluid density and the fermionic stiffness, as well as of the equal-time Green functions,
which allow one to identify regions where the two species exhibit anticorrelated flow. We present here com-
plete phase diagrams for these systems at different fillings and as a function of the interaction parameters.

DOI: 10.1103/PhysRevA.78.033619

I. INTRODUCTION

The experimental realization of strongly correlated sys-
tems with ultracold gases loaded in optical lattices [1] has
generated tremendous excitement during recent years. Ini-
tially thought of as a way to simulate condensed matter
model Hamiltonians, such as the Bose-Hubbard Hamiltonian
[2], loading atoms on optical lattices has enabled the creation
of quantum systems that are unexpected in the condensed
matter context. Among these systems the realization of Bose-
Fermi mixtures in optical lattices [3-5], where the inter- and
intraspecies interactions can be tuned to be attractive or re-
pulsive [6], is a remarkable example of the scope of realiz-
able models.

Theoretical studies of Bose-Fermi mixtures in one-
dimensional lattices have been done for homogeneous
[7-13,17] and trapped [14—16] systems. Several approaches
have been used: Gutzwiller mean-field theory [14], strong
coupling expansions [8,17], bosonization [7,9], and exact
analytical [10] and numerical [11-13,16,17] studies. Re-
cently, a mixture of bosonic atoms and molecules on a lattice
was studied numerically [18]. The landscape of phases en-
countered is expansive, and includes Mott insulators, spin
and charge density waves, a variety of superfluids, phase
separation, and Wigner crystals. However, the phase diagram
in the chemical potential-interaction strength plane has not
yet been reported.

It is our goal in this paper to present a study of repulsive
Bose-Fermi mixtures in one-dimensional lattices that gener-
alizes previous studies, which focused on specific special
densities, to more general filling. After mapping the phase
diagram we will explore different sections in greater detail.
Since the particular case in which the lattice is half filled
with bosons and half filled with fermions has been carefully
studied in Ref. [11], we will instead concentrate here on two
cases: (i) when the number of bosons is commensurate with
the lattice size but the number of fermions is not, and (ii)
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when the sum of both species is commensurate with the lat-
tice size but the number of bosons and fermions are different.
Some of the phases present in these cases have been identi-
fied by Sengupta and Pryadko in their grand canonical study
in Ref. [12] and by Hébert et al. in the canonical study re-
cently presented in Ref. [13].

The Hamiltonian of Bose-Fermi mixtures in one dimen-
sion can be written as

H=—132, (b}, b+ bjbyy) — .2 (Fiofi+ fifier)
1 1

+ UBBE ﬁ?(ﬁ? -+ UBFE ﬁfﬁf’ (1)
! I

where b}"(b,) are the boson creation (destruction) operators
on site / of the one-dimensional lattice with L sites. Simi-
larly, f] (f,) are the creation (destruction) operators on site /
for spinless fermions on the same lattice. For these creation
and destruction operators ﬁf ¥ are the associated number op-
erators. The bosonic and fermionic hopping parameters are
denoted by 7z and ¢, respectively, and the on-site boson-
boson and boson-fermion interactions by Upp and Upgp. In
this paper we will consider the case tz=ty=1 (i.e., when the
boson and fermion hopping integrals are equal) and choose
tg=1 to set the scale of energy.

It is useful to begin a discussion of the phase diagram
with an analysis of the zero hopping limit (15=1;=0) similar
to the one done by Fisher et al. in Ref. [19] for the purely
bosonic case. Consider a particular fermion occupation of
one fourth of the lattice sites, Np=L/4 fixed. Bosons can be
added up to Nzp=3L/4 without sitting on a site which is
already occupied by either a boson or a fermion. Therefore
the associated chemical potential w is small. What happens
when Np exceeds 3L/4 depends on the relative strength of
U BB and U BF-
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If Ugp is less than 2Upgp then the extra bosons sit atop of
the fermions and w jumps by Upr. The chemical potential
stays at this elevated value of Upgy until all the sites with
fermions also have a boson. At that point additional bosons
start going onto sites with a boson already, and w jumps to
2Upgp. Thus, in general, there are incompressible phases
where the boson chemical potential jumps both at commen-
surate pg=1,2,3,.... (as for the pure boson-Hubbard model)
and also at pg=1-pp,2—pr,3—-pF,.... For Ugp greater than
2Upp and less than 6Ugp the incompressible phases still start
at pp=1-pg but the following potential jumps are shifted up
by 1—pp. Turning on the hoppings 73, t; introduces quantum
fluctuations which will ultimately destroy these Mott pla-
teaus and introduce new, intricate phases.

II. CANONICAL WORM ALGORITHM

We perform quantum Monte Carlo simulations (QMC)
using a recently proposed canonical worm algorithm [20,21].
This approach makes use of global moves to update the con-
figurations, samples the winding number, and gives access to
the measurement of n-body Green functions. It also has the
useful property of working in the canonical ensemble. This
is particularly important for the present application since
working with two species of particles leads to two different
chemical potentials in the grand canonical ensemble. These
prove difficult to adjust such that the precise, desired fillings
are achieved. In our canonical simulations the Bose and
Fermi occupations are exactly specified and the chemical po-
tentials uz and wp are instead computed [22] via appropriate
numerical derivatives of the resultant ground state energy
[e.g., up=Eo(Ng+1)—E(Np)].

The canonical worm algorithm is a variation of the
Prokof’ev et al. grand-canonical worm algorithm [23].
Within the canonical worm approach one starts by writing

the Hamiltonian as H=V— f", where T is comprised of the
nondiagonal terms and is by necessity positive definite. The

partition function Z=Tr ¢ P takes the form

Z=Tr e PIT  I0T0 2)

=Tr e’B‘}E

n 0<m<---<7,<B

’i—‘(Tn) e 7A—‘(Tl)dTI Tt dTn’ (3)

where T(7)=e™Te~™. In order to sample expression (3) an
extended partition function is considered by breaking up the
propagator at imaginary time 7 and introducing a “worm

operator” W=§;ijk,wijk,bj'bjf}£fl that leads to Z(7)
=Tr e~ B-"HWe ™ Complete sets of states are introduced

between consecutive 7 operators to allow a mapping of the
one-dimensional (1D) quantum problem onto a two-
dimensional (2D) classical problem where a standard Monte
Carlo technique can be applied. Measurements can be per-
formed when configurations resulting in diagonal matrix el-

ements of W occur. This way unphysical movements are ex-
ploited to help explore the Hilbert space, but are ignored
when sampling for measurements.
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As with pure bosonic systems, the evolution of the boson
and fermion densities pg, pr with the associated chemical
potential wp, wp identifies Mott-insulating behavior [19]. A
jump in u signals a Mott phase where the compressibility
Kp=0dpp/ dug Or Kp=dpp/ dur vanishes.

Quantities of interest that we measure include the bosonic
superfluid density and the fermionic stiffness,

py=(WpLI2,

pr=(WpL2B. )

Here (W?) are the associated winding numbers. Correlations
between the bosonic and fermionic winding numbers [11] are
determined by the combinations,

pe={(Wp+ Wp)*LI2B,

po=((Wg— WF)2>L/2:8- (5)

In addition to the usual bosonic and fermionic Green func-
tion,

B _ ¢, T
G;;=(b;b)),

GL=(fif). (6)

we also measure the composite anticorrelated two-body
Green function

G=(bjbfif. )
In G¢

;j» the fermion and boson propagate in opposite direc-
tions (one from j to i and one from i to j).

The Fourier transforms of ij- and GiFj give the densities
ng(k) and np(k) in momentum space; n,(k) is the Fourier
transform of the composite two-body Green function Gf’/

We performed extensive checks of the code against other
quantum Monte Carlo simulations in the pure boson and pure
fermion cases, and against exact diagonalization and Lanc-
zos calculations for mixed systems on small lattices.

III. PHASE DIAGRAM IN THE ug-Ugr PLANE

We begin our determination of the phase diagram by cal-
culating the dependence of the density pz on chemical po-
tential wp, mapping out the extent that the Mott plateaus
described in the Introduction survive the addition of quantum
fluctuations 5, 1. We examine a system with a fixed Ugp
=10 and pp=1/4 and focus on the regions through pp
<3/2 and Ugr<5Upgp/2 in the phase diagram. The tz=15
=0 analysis suggests for Upr<<2Upp there will be plateaus
with compressibility k=0 at pg+pp=1 (i.e., pp=3/4) caused
by Ugr and at pg=1 caused by Upg. Figure 1 exhibits these
plateaus for Ugp=16 and tz=tp=1. The complete phase dia-
gram in the wp-Upp plane at fixed Upp=10 is obtained by
replicating Fig. 1 for different Uy, and is given in Fig. 2(a).
For weak Upp the phase diagram is dominated by the pg=1
plateau where the chemical potential jumps by 2Ugz—Upp
~2Ugp=20. As Upr increases, this plateau shrinks and fi-
nally terminates at Ugp=~2Upz=20. At the same time, the
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FIG. 1. (Color online) pg as a function of chemical potential z.
The fermion density is pr=1/4 and the interaction strengths are
fixed at Upp=10 and Upp=16. There are Mott plateaus at pg=1
—pr=3/4 and pp=1 as predicted by the tz=17=0 analysis. The
positions of the Mott lobes coincide for different lattice sizes L
=36,44 and temperatures $=32,48 to within our error bars, which
are smaller than the symbol size. The dependence of pg on up in the
absence of fermions is given for comparison.

plateau at pp=1-pp grows to Uzr=20. The explanation of
the labeling of the different phases (I-VI) will be given after
we discuss the superfluid response of the system. Figure 2(b)
shows the phase diagram in the ug and Upgp plane.

IV. SUPERFLUID RESPONSE AT pp+pp=1

After determining the positions of the Mott plateaus, we
examine the stiffness and Green functions. We take a “hori-
zontal” cut through Fig. 2(a) by fixing pg+pp=1 (pp=3/4)
and increasing Upp. In Fig. 3 we see that for Ugr=2Upp
=20 the interaction strength Ug is small enough that fermi-
ons and bosons can briefly inhabit the same site. Now, when
a boson visits the site of a neighboring fermion (or vice
versa) it is equally likely that the fermion will exchange as
for the boson to return to its original site. Through these
exchanges the bosons and fermions can achieve anticorre-
lated winding around the lattice. Thus, the bosonic superfluid
density and the fermionic stiffness are both nonzero and
identical [25]. However, as Uy increases past Ugp=~2Upg
=20 the cost of double occupancy becomes prohibitive. With
its benefits outweighed by energy penalties exacted by Ugp,
all anticorrelated “superfluidity” ceases. Pollet et al. [11]
have argued that this region exhibits phase separation. In-
deed we do detect a signal of phase separation through den-
sity structure factor. But the signal is weak, about 20 times
weaker than what we get at phase VI (next section), and
compressibility is close to zero, so we label this region as an
insulator.

From the results depicted in Fig. 3 one should notice that
while for quantities like the energy and Mott gap B=32 is
sufficiently low for L=32 to capture the ground state behav-
ior, for stiffnesses one requires much lower temperatures.

V. SUPERFLUID RESPONSE AT pp=1

Although it shares the property that kz=0 with the pg
+pr=1 lobe, a horizontal cut (Fig. 4) through the pz=1 Mott

PHYSICAL REVIEW A 78, 033619 (2008)

20 T T T : T '
: v
.l[l].ll ----- II-I.[I]‘ [ ]'
5 |
pe=1 L 3
210 | v -
i \
5 rm -
" pp=0.75 : :
. |. = I|]. .1— —T -- -—. {,;, r—.r"il —-m---m
@ O 5 10y, 15 20 25
40 b - -
30 + - : .
B U
=20t o i
=1
v PB
10 | ’,‘,;:[-‘-::I‘::'Ii’—'f{iH]l:‘:fii rrrr TS e el
e M  pg=0.75
ok = = ; [ I II[»I]HI— - I ----m- {Ifﬁn - -_
(b) 0 5 10 Ugs 15 20 25

FIG. 2. (Color online) Top panel: Phase diagram in the ugz-Ugp
plane for Upp=10 and pr=1/4 obtained by a sequence of plots such
as that in Fig. 1. The vertical line at Ugr=16 corresponds to the
coupling value in Fig. 1. Within the regions labeled pp=0.75 and
pp=1, the boson density is frozen even though the chemical poten-
tial varies. The pgp=1 lobe is pinched off at Ugr=~2Upp. The label-
ing of the phases is I, superfluid (p# 0, p}-# 0); II, anticorrelated
phase (pp# 0, pj-# 0, pp=p}); 11, anticorrelated phase/relay super-
fluid (pi#0, pr#0) (see the text for a detailed explanation); IV,
Mott insulator/Luttinger liquid (pp=0, pj# 0); V, insulator, p3=0,
pp=0; VI, phase separation. Bottom panel: Phase diagram in the
mp-Upp plane for Ugp=10 and pr=1/4. The upper boundary of
phase II is defined by the increase of energy when a boson is added
at filling pg+pp=1; this is approximately up=Ugr (for Ugp
<2Ugp), a line of slope 1 in the uz-Ugp plane and slope 0 in the
mp-Upp plane. A similar strong coupling analysis applies for the
other boundaries. (See also Fig. 13 and [8].)

lobe exhibits rather different superfluid response. This trajec-
tory initially lies within the Mott lobe and then emerges into
a region of nonzero compressibilities. As expected, the pla-
teau in pgy (Mott gap) indicates the bosons are locked into
place by the strong Upg, and as a consequence p,=0 (Fig. 4).
Throughout this boson Mott lobe the fermions are, however,
free to slide over the bosons and so pj. is nonzero. In this
region, as expected, the fermion compressibility «y is non-
ZEero.

The Bose-Fermi repulsion Ugr competes with Upp and, in
a window around Upgp=2Ugg, it is energetically equivalent
for a boson to share a site with another boson as with a
fermion. The Mott lobe is terminated and a superfluid win-
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FIG. 3. (Color online) “Horizontal” sweep, which is fixed den-
sities pp=3/4 and pp=1/4 and varying Ugp, through the phase
diagram of Fig. 2. As in Figs. 1 and 2, Ugg=10. Top panel: Both the
bosonic and fermionic species exhibit a finite stiffness at weak cou-
pling (region II of the phase diagram), which decays as Upgp in-
creases until insulating behavior occurs (region V of the phase dia-
gram). Bottom panel: Near Upp=0 both p}#0 and p] # 0 are very
similar. However, quickly after turning on Upgp, the correlated and
anticorrelated stiffness show that the bosons and fermions propa-
gate in opposite directions p} # 0, while p}=0.

dow opens for both species. Finally, for Upp>2Upp, it is
energetically unfavorable for a boson to share a site with a
fermion. We enter a region of phase separation where super-
flow for both species stops, but the compressibilities «z and
kp are nonzero. We also confirm phase separation through a
density structure factor. See also [13,17].

VI. SUPERFLUID RESPONSE AT GENERAL FILLING

Further insight into the physics of this phase diagram can
be obtained by measuring the superfluid response along the
same ‘“vertical” cuts through the phase diagram as done in
Figs. 1 and 2, in which pp is varied at fixed Upgp. In Figs. 5
and 6, we show the result. Distinctive densities in the latter
figures are pg=3/4 (so that pg+ppr=1) and pg=1. We discuss
first (Fig. 5) the case of Ugp=16, where increasing pg cuts
through both Mott lobes. The bosonic superfluid density van-
ishes at pp=1, dips at pgz+pr=1, and is nonzero above, be-
low, and between the lobes. The fermion superfluid density is

PHYSICAL REVIEW A 78, 033619 (2008)
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FIG. 4. (Color online) Same “horizontal cut” as Fig. 3 except at
commensurate density for the boson species alone pp=1 and pg
=1/4. Top panel: The bosons are insulating at weak Upgp within this
Mott lobe of commensurate bosonic filling (region IV of the phase
diagram). However, the fermions are free to flow on the uniform
boson background and have nonzero stiffness. Upon emerging from
the lobe, at Ugp=~2Upgp, py becomes nonzero in a window where
the two repulsions work against each other. After the peak, the
system becomes phase separated and pj and pj. go to zero. Bottom
panel: The correlated and anticorrelated stiffnesses are essentially
equal throughout the weak coupling because the flow is dominated
by fermions. However, in the window the anticorrelated stiffness
increases beyond the correlated stiffness in a weak simulacrum of
phase II (as discussed in the text).

never driven to zero in this cut, and only dips at the special
value pp=3/4 where the commensurate total density works
against superfluidity. In the case of Upr=24, Fig. 6, as pg
increases we cut through only the pgp=3/4 lobe. Here the
superfluid density is pushed to zero for the entire region be-
tween pp=3/4 and pp=1, and is nonzero without.

We now fill in the labeling of the phase diagram of Fig. 2.
A gapless superfluid phase (I) with (p # 0 and pj. # 0) exists
at low filling of the lattice pg+pr<<1. When the combined
filling of the two species becomes commensurate, an anticor-
related (II) phase appears in which pp#0 and py#0, but
pp=py- This phase is characterized by superflow of the two
species in opposite directions and is gapped to the addition
of bosons or fermions. The usual bosonic Mott insulator,
phase IV, occurs at commensurate boson densities. However,
it can be melted by increasing Uy since the jump in bosonic
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FIG. 5. (Color online) “Vertical” sweep across pg at pp=1/4,
Upp=10, and Upp=16. Top panel: The boson superfluid density
changes much less as B is increased from =32 to S=108 in the
superfluid phase I at p3<<3/4 and pg>1 than for phase III 3/4
<pp<1. This is a hallmark of the “relay” superfluid discussed in
the text. Bottom panel: The correlated winding decreases to zero at
pp=3/4 while the anticorrelated winding remains finite. As pp is
increased beyond 3/4 the correlated winding increases and over-
takes the anticorrelated winding. This is another sign of the relay
superfluid.

chemical potential (Mott gap) is reduced to 2Ugz—Ugp.
There is no jump in wup. Eventually quantum fluctuations
break this gap and superflow is allowed. When Ug, exceeds
2Upp, all superflow stops and we enter the insulating region
V of the phase diagram.

We speculate that the nature of the superfluidity in the
narrow phase III, which exists between the two Mott lobes is
an unusual “relay” process. It is similar to the usual super-
fluid which exists between Mott lobes in the single species
model, in that pj#0. However, the temperature scale at
which superfluid correlations build up is dramatically re-
duced. This occurs because the bosons can exhibit superflow
only by traveling along with a fermion partner, and being
handed off from fermion to fermion in order to wind around
the entire lattice. The point is that because 2Upgy exceeds Ugp
the bosons doped into the lattice above pg=1-pp=3/4 are
forced to sit on a fermion. They cannot hop off, but the
fermion can move since it has already paid Ugp to share a
site with a boson. Now, the fermions cannot pass each other
once a fermion riding atop bosons runs into a fermion alone
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FIG. 6. (Color online) Vertical sweep across pg at pp=1/4,
Upp=10, and Upr=24. Unlike the case for the weaker coupling
Upr=16 in Fig. 5, both superfluid densities vanish in the insulating
region of the Mott lobe at commensurate total filling.

on a site. The fermion without a boson cannot move out of
the other fermion’s way either. However, the boson sharing a
site with the mobile fermion can then hop to the immobile
fermion at no energy cost. Thus, the boson is passed from
one fermion to the other, granting it mobility. Signatures of
this phase are the lower value of the temperature at which the
superfluid density builds up, that pj>p}, and more corre-
lated winding than anticorrelated. However, there is nothing
preventing lone fermions from acting as in the anticorrelated
superfluid phase. Unfortunately this means that potential sig-
nals are masked. While we do see some of these signatures
(Fig. 5) in the specified region, the numbers are not com-
pletely conclusive and will require further investigation.

VII. MOMENTUM DISTRIBUTION FUNCTIONS

To further explore the nature of the phases we turn to the
momentum distributions for the bosons, fermions, and anti-
correlated pairing—Figs. 7-12. Each plot is made at S
=108 and corresponds to the parameter choices: I, Ugp=16
and Np=20; II, Upp=16 and Np=27; IIl, Ugr=16 and Ny
=32; IV, Ugp=16 and Nz=36; V, Upr=30 and Nz=27; VI,
Uprp=28 and Ng=36. In the superfluid phase (I), there is a
peak in the boson distribution and a plateau in the fermion
distribution, implying quasicondensation in the bosonic sec-
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FIG. 7. (Color online) 1, Ugp=16, Upg=10, B=108, and Ny
=20; momentum distributions for bosons and fermions, and Fourier
transform of the anticorrelated pairing [n,(k)] Green function. The
sharp peak in bosonic momentum distribution indicates the pres-
ence of a quasicondensate, while fermions have a plateau indicating
Luttinger liquidlike behavior with a clear Fermi momentum, a prop-
erty that is also shared by the composite fermions described by the
anticorrelated pairing.

tor and Luttinger liquidlike behavior in the fermionic one. In
the anticorrelated phase (II) there is neither of the former
behaviors, but the Fourier transform of the anticorrelated
pairing Green function has a clear Fermi momentum show-
ing Luttinger-type physics of the composite fermions
(formed by pairing a fermion and a boson) [11,24]. The relay
superfluid phase (III) displays momentum distributions that
are similar to the ones of superfluid phase (I). Next, in the
Mott-insulator/Luttinger liquid phase (IV) one can see a
clear Fermi momentum in the bare fermion ng(k) and a very
smooth behavior of ng(k) and n,(k), which show that their
real space Green function counterparts are decaying expo-
nentially. In the insulating phase (V) all the correlations de-
cay exponentially and their corresponding momentum distri-

4 T T T
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| e ]
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2 - -
3
c
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50000000
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-t -n/2 0 n/2 n
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FIG. 8. (Color online) II, Ugp=16, Ugp=10, B=108, and Ny
=27. Bosons do not have a peak at k=0 and the Fermi momentum
is washed out, both reflecting the onset of short range one-particle
correlations. On the other hand, the plateau in the Fourier transform
of the anticorrelated pairing shows that the composite fermions
formed by pairing a fermion and a boson have a well defined Fermi
momentum [11].
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FIG. 9. (Color online) III, Ugp=16, Ugp=10, B=108, and Ny
=32. Qualitatively, this picture is similar to Fig. 7—we have a peak
in the bosonic momentum distribution and a plateau in the fermi-
onic and anticorrelated pairing momentum distributions, all indicat-
ing power-law decaying correlations of their corresponding real
space Green functions.

bution functions are smooth functions of k. In the case of
phase separation (VI) the bosonic momentum distribution is
similar to the superfluid, while fermionic distribution is simi-
lar to that of an insulator.

VIII. CONNECTION TO PREVIOUS
THEORETICAL WORK

As reviewed in the Introduction, there is extensive theo-
retical literature on Bose-Fermi mixtures. We now make
more detailed contact with previous work, first by comparing
our results to the strong coupling phase diagram of Lewen-
stein et al. (LSBF) [8]. Figure 13 combines our results and
those of LSBF. Besides the quantitative agreement, we note
the following correspondences: LSBF’s region O0sspu<1 is
analogous to our 0= <20, and Osa=<1 to our 0= Upp
<20. Furthermore, our phase II (anticorrelated phase) corre-
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FIG. 10. (Color online) IV, Ugr=16, Upp=10, B=108, and Ny
=36. There is no sharp peak in ng(k) and a plateau in ng(k) is
present. This phase is a Mott insulator for bosons and Luttinger
liquid behavior for the fermions. In this case the composite fermi-
ons do not exhibit a Fermi momentum.
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FIG. 11. (Color online) V, Ugr=30, Ugp=10, B=108, and Ny
=27. The momentum distribution functions in this case exhibit the
behavior expected from an insulator, i.e., no sharp peak in ng(k), no
plateau in ng(k), and no Fermi edge in n,(k).

sponds to LSBF’s phase ﬁFL (Fermi liquid of composite fer-
mions formed by one bare fermion and bosonic hole); our
phase IV (Mott insulator/Luttinger liquid) to LSBF’s phase
I, (Fermi liquid); and finally, our phase III (anticorrelated
phase/relay superfluid) to LSBF’s phase Iy, (density wave
phase). These three phases have similar qualities and occur
approximately at the same locations at our and LSBF’s phase
diagrams.

Both calculations suggest the existence of composite par-
ticles. Our phase V (insulator) corresponds to LSBF’s phase
IIzp, a region of fermionic domains of composite fermions
formed by one bare fermion and bosonic hole. There is one
case when the phases do not seem to correspond well,
namely, LSBF’s phase Ilgz which is a superfluid of compos-
ite fermions formed by one bare fermion and bosonic hole.
Our results (Fig. 3) instead suggest that in this region of
Upr>2Upgp, the superfluid densities vanish, or are very
small.
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FIG. 12. (Color online) VI, Ugp=28, Ugz=10, B=108, and
Np=36. This is phase separation. The boson momentum distribution
function has a peak indicating that there may be a kind of superflow
in their separate area. Fermions, on the other hand, behave as an
insulator. The n,(k) curve indicates that the coupling between
bosons and fermions is weak, as we would expect in phase
separation.
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FIG. 13. (Color online) A comparison of our phase diagram
(Fig. 2) with the strong coupling boundaries. Symbols and dashed
lines are the results of the present QMC work, while the solid lines
are for tp=1=0. Unsubscripted Roman symbols denote our phases
while subscripted Roman symbols are the labeling of Lewenstein et
al. [8].

IX. EXPERIMENTAL ISSUES

Albus et al. [14] have given the correspondence between
Hubbard model parameters Upgg, Ugp,tp,tr and experimen-
tally controlled parameters. Upp and Upf are determined by
the optical lattice depth, laser wavelength, and harmonic os-
cillator lengths, as well as by the scattering lengths agp and
agp, which can be tuned by traversing a Feshbach resonance.
Similarly, the hoppings tz and ¢ follow from the lattice
depth and atomic masses. It is possible to choose experimen-
tally reasonable values of these parameters to correspond to
the energy scales chosen in our paper. For example, follow-
ing Albus et al., for a 87Rb , 40K mixture and laser wavelength
600 nm, agz=100ay, agr=123.74a,, and V,=0.7614 in units
of boson recoil energy, with lé =17.04 nm, we get in units of
tg: tg=1, tp=2, and Upp=Upgp=10. In this paper we have
used rz=tr=1, which would be accessible in mixtures with
mg=mpg such as 0K K.

X. CONCLUSIONS

In conclusion, we have mapped out the boson density-
interaction strength phase diagram of Bose-Fermi mixtures.
The Mott lobe at commensurate total density has nontrivial
superfluid properties, where the two components of super-
flow can be nonzero and anticorrelated, or both vanish. Like-
wise the Mott lobe at commensurate bosonic density has
vanishing boson superflow and nonzero fermion stiffness. pj,
is nonzero upon emerging from this lobe where the balance
between boson-boson and boson-fermion repulsions opens a
superfluid window, with anticorrelated superflow. The super-
fluidity between the two Mott regions may be of a different
type where the bosons travel along with the fermions (chosen
to have relatively low density in this work). As a conse-
quence, the superfluid onset temperature is significantly re-
duced. Finally, we have discussed the signatures of the above
phases in the momentum distribution function of fermions
and bosons, which can be measured in time of flight experi-
ments.
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