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Abstract The ability to revise one’s certainty or confidence in a preceding choice is a critical

feature of adaptive decision-making but the neural mechanisms underpinning this metacognitive

process have yet to be characterized. In the present study, we demonstrate that the same build-to-

threshold decision variable signal that triggers an initial choice continues to evolve after

commitment, and determines the timing and accuracy of self-initiated error detection reports by

selectively representing accumulated evidence that the preceding choice was incorrect. We also

show that a peri-choice signal generated in medial frontal cortex provides a source of input to this

post-decision accumulation process, indicating that metacognitive judgments are not solely based

on the accumulation of feedforward sensory evidence. These findings impart novel insights into the

generative mechanisms of metacognition.

DOI: 10.7554/eLife.11946.001

Introduction
The ability to detect errors is an essential feature of adaptive behavior, providing the basis for

adjusting or countermanding ongoing actions and optimizing future decision-making (David et al.,

2012; Fernandez-Duque et al., 2000; Fleming et al., 2012). Establishing the neurocomputational

principles underpinning this key metacognitive function is therefore a major imperative. Categorical

choices are thought to be made by integrating evidence over time into a decision variable that trig-

gers action upon reaching a criterion (Gold and Shadlen, 2007; Kelly and O’Connell, 2014;

Shadlen and Kiani, 2013; Smith and Ratcliff, 2004). Most theoretical models of metacognition pro-

pose that the same decision variable makes a key contribution to internal representations of choice

accuracy (de Martino et al., 2013; Heath, 1984; Kiani et al., 2014; Kiani and Shadlen, 2009;

Link, 2003; Moran et al., 2015; Pleskac and Busemeyer, 2010; Ratcliff and Starns, 2013;

Yu et al., 2015). However, there is considerable uncertainty regarding the precise nature of this

contribution.

Initial efforts to model metacognitive performance centered on the proposition that our confi-

dence in a choice is based on a read-out of the level the decision variable has reached at the time of

choice commitment (Heath, 1984; Kiani et al., 2014; Kiani and Shadlen, 2009; Link, 2003). How-

ever, the specification that the decision variable reaches a fixed threshold prior to commitment

means that these models cannot account for the fact that human participants can retrospectively cat-

egorize certain choices as erroneous even in the absence of external feedback (Rabbitt and Vyas,

1981; Rabbitt, 1966; Yeung et al., 2004). To take account of this kind of observation, alternative

theoretical models have been proposed in which metacognitive judgments can exploit additional

evidence that is accumulated after first-order commitment (Moran et al., 2015; Pleskac and Buse-

meyer, 2010; Yu et al., 2015). However, a definitive neurophysiological demonstration of post-
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decisional evidence accumulation has yet to be definitively provided in humans or other animals.

Moreover, it is unclear whether such a process would take the form of a simple continuation of first-

order evidence gathering (Moran et al., 2015; Pleskac and Busemeyer, 2010; Resulaj et al., 2009;

Yu et al., 2015) or might also be crucially dependent on higher-order representations of error likeli-

hood (Yeung et al., 2004).

While the last two decades have seen intensive research on the neural signatures of decision for-

mation in the non-human primate (Gold and Shadlen, 2007; Shadlen and Kiani, 2013), these ques-

tions have proven difficult to address because the pre-motor neurons that have been the focus of

much of this work (e.g. in area LIP) fall silent upon initiation of the decision-reporting action, thus

precluding measurement of post-decision activity and verification of its potential influence on meta-

cognition. Although post-commitment neural signatures have been described in humans

(Falkenstein et al., 1990; Gehring et al., 1993) and other animals (Ito et al., 2003;

Narayanan et al., 2013; Pardo-Vazquez et al., 2008) which show clear sensitivity to choice accuracy

and, in some cases, to the quality of metacognitive judgments (Boldt and Yeung, 2015;

Nieuwenhuis et al., 2001; O’Connell et al., 2007; Steinhauser and Yeung, 2010), these signals

have yet to be conclusively identified with post-decisional evidence integration. In the present study,

we exploited the uniquely supramodal nature of a recently characterized build-to-threshold decision

variable signal in the human brain (Kelly and O’Connell, 2013; O’Connell et al., 2012;

Twomey et al., 2015) to investigate the influence of post-decisional evidence accumulation on the

timing and accuracy of explicit error detection. Through a combination of electrophysiological data

analysis and computational modeling, we demonstrate that neural evidence accumulation does per-

sist after commitment to the first-order decision and that its rate determines the probability and tim-

ing of error detection. Additionally, we show that the rate of post-decision accumulation is not solely

the product of feedforward sensory inputs but is influenced by the output of medial frontal struc-

tures implicated in performance monitoring and executive control.

eLife digest Reflecting on our previous choices and accurately representing our confidence in

their accuracy allows us to detect, correct and learn from our errors. Yet, it remains poorly

understood how such “metacognition”, or thoughts about thoughts, occurs in the human brain. In

particular, a long-standing debate in this area of research concerns whether metacognitive

processes in the brain occur at the same time as those that determine the actual choice, or whether

they develop after the choice has been made and rely on different information.

Now, Murphy et al. have recorded brain activity in human volunteers who were carrying out a

simple task in order to explore metacognition. In short, the volunteers looked at colored words and

decided if each word matched its color (e.g., is the word ‘RED’ also written in a red font?). At the

same time, the volunteers chose whether or not to press a button depending on the specific color/

word combination shown, and most importantly reported whenever they noticed that they made an

error in the task.

This approach allowed Murphy et al. to chart the development of choices and detection of errors

as they occurred in the volunteers’ brains. This revealed that the metacognitive judgement about

each choice relied on information that was gathered after the point the initial choice was made.

Further analysis then suggested that this process relies, at least in part, on a signal generated in a

region at the front of the brain.

Together, these findings suggest that metacognitive decisions rely on processes that are similar

to those behind other decisions, but with a few important differences. Namely, the metacognitive

process plays out at a different point in time, and likely incorporates distinct sources of information.

Further work should aim to clarify the nature of these sources of information and describe their

specific contributions to the process.

DOI: 10.7554/eLife.11946.002
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Results

Task behavior
We analyzed 64-channel electroencephalographic (EEG) data [originally collected as part of

Murphy et al. (2012); see Materials and methods], from 28 human subjects performing a Go/No-Go

response inhibition task (Hester et al., 2005; Figure 1a). Subjects viewed a serial sequence of color

words, each presented for 0.4 s, with the congruency between font color and semantic content var-

ied across trials. The primary task was to execute a right-handed button press as quickly as possible

when the semantic content of the word and its font color were incongruent (Go trial), and to with-

hold this response when either the word presented on the current trial was the same as that pre-

sented on the previous trial (‘repeat’ No-Go) or when the meaning of the word and its font color

matched (‘color’ No-Go). Performance on paradigms of this nature can be readily understood in

Figure 1. Go/No-Go task and associated behavior. (a) Subjects’ primary task was to make a speeded manual

response (‘A’) to all incongruent color/word stimuli and to withhold from responding to congruent stimuli or when

the same word was presented on consecutive trials. Following any commission errors, they were instructed to

signal error detection as quickly as possible by pressing a secondary response button (‘B’). (b) Distribution of trial

types averaged across subjects. C = correct withhold, E = error, D = detected error, U = undetected error. Error

bars = s.e.m. (c) Histograms representing stimulus onset and detection response time (RTd) distributions on

detected error trials, aligned to error commission and pooled across all subjects.

DOI: 10.7554/eLife.11946.003

The following figure supplement is available for figure 1:

Figure supplement 1. ‘Repeat’ and ‘color’ No-Go stimuli did not differentially affect primary RT, RTd or decision

signal morphology on detected error trials.

DOI: 10.7554/eLife.11946.004
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terms of a race-to-threshold between two competing accumulation processes representing the evi-

dence in favor of a ‘Go’ or ‘Don’t Go’ decision (Gomez et al., 2007; Logan and Cowan, 1984).

If subjects failed to withhold the pre-potent response to either type of No-Go stimulus, they were

instructed to signal detection of this error as quickly as possible by pressing a secondary response

button. The timing of this error detection report was measured relative to the initial erroneous action

(detection response time; RTd). There were no significant differences in primary RT, RTd or electro-

physiological signal morphology between repeat and color No-Go trials (Figure 1—figure supple-

ment 1); therefore, we collapsed across both No-Go trial-types in all analyses.

Subjects successfully withheld from responding on an average of 56.6% (±13.0) of No-Go trials,

and 68.0% (±16.7) of erroneous presses were followed by an error detection report (Figure 1b). Pri-

mary RT and RTd were not correlated across detected error trials (mean within-subject b = �0.05, s.

e.m. = 0.04; t27 = �1.4, p = 0.2). The median primary RTs for detected errors (457 ± 21 ms) were

faster than correct Go RTs (511 ± 22 ms; t27 = 5.5, p < 1 x 10�4), whereas undetected errors were

significantly slower than Go RTs (543 ± 28 ms; t27 = 2.9, p = 0.007; detected vs. undetected errors:

t27 = 5.8, p < 1 x 10�4).

A centro-parietal signature of first- and second-order evidence
accumulation
A series of recent studies of perceptual decision making have established that a decision variable

signal can be isolated in the human event-related potential (ERP) over centro-parietal scalp sites

(Kelly and O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015). This signal exhibits the

same decision-predictive dynamics that have been reported in single-unit recordings from a variety

of brain areas during perceptual decision formation (Gold and Shadlen, 2007; Shadlen and Kiani,

2013), including an evidence-dependent rate of rise and a threshold-crossing relationship with reac-

tion time. Another important feature of this signal is that it represents the evolving decision in a

domain-general fashion that is independent of motor requirements and indeed traces the decision

even when no overt decision-reporting action is required (O’Connell et al., 2012). Here, we

observed that the same centro-parietal positivity (CPP) was elicited by Go and No-Go stimuli (Fig-

ure 2—figure supplement 1). In what follows, we demonstrate that this signal encodes consecutive

build-to-threshold processes that determine both first-order choices and second-order error detec-

tion decisions on our task. Readers familiar with the human ERP literature will note that these two

processing stages incorporate stimulus- and response-evoked activity usually attributed to the

‘P300’ and ‘Pe’ components, respectively (see Discussion). We persist here with the label ‘CPP’

because it is less prescriptive about signal latency, eliciting conditions or measurement technique.

To probe the dynamics of the CPP and its relationship to the timing of the first-order decision

process, we split each subject’s Go-trial RT distribution into equal-sized fast, medium and slow bins

and plotted the average waveforms aligned to action execution for each bin. Consistent with previ-

ous observations (Kelly and O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015), the

CPP exhibited a gradual build-up with a rate that was inversely proportional to RT, and reached a

stereotyped amplitude at the time of first-order choice commitment (Figure 2a). Thus, first-order

performance on the Go/No-Go task was reliant on the same fundamental neural dynamics as have

been reported for conventional perceptual decision-making paradigms (Kelly and O’Connell, 2013).

Despite the fact that the median RTd was executed 560 ms after stimulus offset, precluding the

continued integration of feedforward sensory evidence in the period preceding error detection, the

CPP exhibited persistent post-commitment build-up on a subset of trials, continuing its positive tra-

jectory prior to an error detection report but gradually diminishing in amplitude following Go deci-

sions and undetected errors (Figure 2b; see Figure 3—figure supplement 1 for explicit comparison

of signals on Go and undetected error trials). Receiver operating characteristic (ROC) curve analysis

(see Materials and methods) conducted in discrete temporal windows along the entire signal time

course revealed that second-order performance could be reliably classified as early as 120 ms prior

to error commission (Figure 2c).

We next sought to characterize the relationship between the CPP and the timing of error detec-

tion by splitting each subject’s RTd distribution into three equal-sized bins and plotting the bin-aver-

aged waveforms aligned to both error commission and the error detection report. Mirroring our

observations for the first-order responses, the build-up rate of the second-order CPP was steeper on
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trials characterized by faster error detection, and it again reached a fixed amplitude immediately

prior to the error detection report (Figure 2d,e).

Taken together, these findings indicate that subjects engaged in evidence accumulation even

after the primary task response had been executed and leveraged the new information gained by

this process to make judgments about the accuracy of their preceding choices. However, CPP

dynamics during the post-commitment interval were qualitatively distinct from those observed dur-

ing the first-order decision process. While the positive build-up of the first-order CPP was invariant

to trial-type, tracing the emerging decision irrespective of whether the evidence favored a Go or

No-Go choice (Figure 2—figure supplement 1; see also Kelly and O’Connell, 2013), the second-

order CPP only increased after detected errors and not, on average, after correct Go responses or

undetected errors. Similarly, in a recent study that examined the post-commitment ‘Pe’ signal pre-

ceding graded confidence judgments (without interrogating this signal for accumulation-to-bound

characteristics), a monotonic relationship between signal amplitude and confidence was observed

whereby amplitude was greatest when subjects indicated very low confidence in the primary choice

Figure 2. A centro-parietal decision signal for first- and second-order decision-making. (a) Go-trial CPP waveforms aligned to primary task response

and sorted by RT into three equal-sized bins, and associated scalp topography. (b) CPPs again aligned to primary response, but separately for Go trials

and detected and undetected errors; gray running marker indicates significant detection effect (p < 0.05, paired t-test for detected vs. undetected).

Topography illustrates scalp distribution of error detection effect. (c) Time-course of detection-predictive activity estimated as the area under the ROC

curve. Permutation mean and significance threshold (1.96 s.d.) are marked as solid and dashed gray lines, respectively. (d) Detected-error CPP, aligned

to primary task response and subsequent error detection report; waveforms were sorted and binned by RTd. (e) Single-trial surface plot showing

temporal relationship between the CPP and RTd (curved black line); waveforms were pooled across subjects, sorted by RTd and smoothed over bins of

50 trials with Gaussian-weighted moving average. Vertical dashed lines in a and d represent median RTs. Gray markers at bottom of these plots

indicate time points when linear regression of RT on signal amplitude reached significance (p < 0.05); black markers indicate center of 150 ms time

windows in which regression of RT on signal slope reached significance (p < 0.05; one-tailed predicting steeper slope for faster RTs). Shaded gray areas

show latencies of all associated scalp topographies. All traces were baselined to pre-stimulus period. Shaded error bars = s.e.m.

DOI: 10.7554/eLife.11946.005

The following figure supplements are available for figure 2:

Figure supplement 1. The CPP aligned to stimulus onset, separately for Go and correctly withheld No-Go trials.

DOI: 10.7554/eLife.11946.006

Figure supplement 2. Early stimulus-evoked deflections affect first-order CPP amplitude on fast Go trials.

DOI: 10.7554/eLife.11946.007
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(Boldt and Yeung, 2015). Thus, rather than reflecting a continuation of the first-order decision pro-

cess, these data suggest that error detection decisions were based on the selective accumulation of

internal evidence that the previous choice was incorrect. In the following set of analyses, we investi-

gated whether a higher-order neural signal that has known sensitivity to choice accuracy might influ-

ence the error detection process.

Fronto-central theta oscillations and error detection behavior
A substantial literature incorporating several species and modes of neurophysiological measurement

has established that the posterior medial frontal cortex (pMFC) is highly responsive to variations in

performance accuracy (Carter et al., 1998; Ito et al., 2003; Narayanan et al., 2013;

Ridderinkhof et al., 2004) and its activity predicts neural and behavioral adaptation following error

commission (Cavanagh et al., 2009; Danielmeier et al., 2011; Ebitz and Platt, 2015;

Figure 3. Fronto-central �-band (2–7 Hz) oscillatory power predicts the accuracy and timing of error detection reports. (a) Time-frequency plot of fronto-

central power, aligned to the primary task response and averaged across detected error, undetected error and RT-matched go trials; black lines

enclose regions of significant power change relative to a pre-stimulus baseline (p < 0.01, paired t-test). Scalp topography shows � power averaged over

all trial types. (b) Response-aligned FC� waveforms separately for each trial type; gray trace is the condition-averaged ERP (arbitrarily scaled).

Topography illustrates scalp distribution of error detection effect. (c) Time-course of FC� detection-predictive activity quantified by the area under the

ROC curve. (d) Go-trial FC� waveforms and associated scalp topography, aligned to primary task response; single-trial waveforms were sorted by

primary RT and divided three equal-sized bins. (e) Detected-error FC� waveforms and topographies, aligned to both the primary task response (left)

and the subsequent error detection report (right); waveforms were sorted and binned by RTd. (f) Single-trial surface plot showing the temporal

relationship between the FC� power and RTd (curved black line). Conventions for b–f are the same as in Figure 2. All traces were again baselined to

the pre-stimulus period. Plots in a were calculated via wavelet convolution; all other plots show filter-Hilbert transformed data (see Materials and

methods).

DOI: 10.7554/eLife.11946.008

The following figure supplements are available for figure 3:

Figure supplement 1. Comparison of response-aligned CPP (a), fronto-central ERP (b) and FC� (c) signals on correct Go trials and undetected errors.

DOI: 10.7554/eLife.11946.009

Figure supplement 2. Broadband ERPs averaged over fronto-central electrodes FCz, F1 and F2 and aligned to the primary response, separately for Go

trials and detected and undetected errors.

DOI: 10.7554/eLife.11946.010

Figure supplement 3. Robustness of the FC� effects to primary RT differences and baselining regimes.

DOI: 10.7554/eLife.11946.011
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Narayanan et al., 2013; Sheth et al., 2012). These characteristics are thought to reflect the pMFC’s

role in coordinating the activity of task-relevant regions in the presence of increasing conflict

between incompatible actions (Botvinick et al., 2001; Carter and van Veen, 2007;

Cavanagh et al., 2009; Kerns et al., 2004), while the conflict signal generated in this brain region

has also been proposed to provide a reliable basis for subsequent error detection (Yeung et al.,

2004). Accordingly, we investigated the influence of pMFC on error detection decisions by interro-

gating a prominent oscillatory signature that provides a proxy for pMFC activity, fronto-central theta

power (FC�; 2–7 Hz; Cavanagh and Frank, 2014; Cavanagh et al., 2011; Cohen, 2014; Cohen and

Donner, 2013; Narayanan, et al., 2013).

Consistent with previous reports (Cavanagh et al., 2009; Cohen and Donner, 2013;

Narayanan et al., 2013), we observed a clear increase in FC� power following stimulus onset that

peaked after primary response execution (Figure 3a). The time-course of FC� did not distinguish

between correct Go responses and undetected errors (Figure 3—figure supplement 1) but under-

went a sharp positive deflection at approximately the time of errors that were subsequently

detected (Figure 3b). ROC analysis applied to single-trial FC� waveforms revealed strong detection-

predictive activity that, as with the CPP, achieved significant detection classification up to 120 ms

before initial error commission (Figure 3c). This sensitivity to error detection was not apparent in the

error-related negativity, a commonly investigated error-evoked ERP over fronto-central scalp

(Falkenstein et al., 1990; Gehring et al., 1993; Figure 3—figure supplement 2), and was not due

to condition-related differences in primary RT (Figure 3—figure supplement 3a).

We repeated the trial-binning analyses that were previously applied to the CPP, this time to

explore the relationship between the FC� signal and the timing of first- and second-order decision-

making. The amplitude of the FC� signal consistently distinguished between RT bins throughout

both decision intervals (Figure 3d,e,f). In keeping with previous observations (Cavanagh et al.,

2011; Cohen and Donner, 2013), pre-response FC� power was consistently lower on trials with

faster first-order RTs (Figure 3d). A reliable relationship also existed between pre-detection FC� on

detected errors and RTd, but here fast error detections were preceded by greater FC� power

(Figure 3e,f). The latter observation is consistent with the notion that peri-response pMFC activity

serves as a form of input to the second-order decision process and thereby influences the probability

and timing of error detection (Yeung et al., 2004). Next, we further explored this possibility by

examining the trial-by-trial prediction of RTd by different features of the FC� and CPP signals.

Signal interactions predict the timing of error detection
We quantitatively compared the independent contributions of the FC� and CPP signals to variation

in RTd via single-trial, within-subjects robust regressions, leveraging single-trial amplitudes, build-up

rates and peak latencies of the signals as predictors in successive models (see Materials and meth-

ods; see Figure 4 for measurement approach). As expected, single-trial FC� power was strongly

negatively related to RTd (t27 = –7.2, p < 1 x 10�6). Topographically, this effect was maximal over

fronto-central scalp (Figure 4a). In contrast, the pre-detection amplitude of the second-order CPP

did not reliably correlate with RTd (t27 = �1.9, p = 0.08; Figure 4—figure supplement 1a), consis-

tent with the aforementioned observation of a threshold-crossing effect prior to error detection. Sta-

tistical comparison of the associated regression weights indicated that FC� power was a better

predictor of RTd than CPP amplitude (t27 = 3.3, p = 0.003). The opposite pattern was apparent for

the build-up rates and peak latencies of both signals: CPP build-up rate (t27 = -�5.0, p < 1 x 10�4)

and latency (t27 = 4.9, p < 1 x 10–4, derived by permutation testing; see Materials and methods)

robustly predicted RTd with both effects maximal over centro-parietal scalp (Figure 4b,c), whereas

these features of the FC� signal did not reliably account for trial-by-trial variance in RTd (build-up

rate: t27 = –1.9, p = 0.07; latency: t27 = –0.7, p = 0.5; Figure 4—figure supplement 1b,c). Thus,

although a relationship between FC� build-up rate and the timing of error detection was clearly

observed in the trial-averaged waveforms (Figure 3e), single-trial regressions revealed that this

effect was only marginally significant when the contribution of CPP build-up rate was accounted for.

Formal comparisons of the regression weights confirmed that CPP build-up rate and peak latency

were superior predictors of RTd compared to the counterpart metrics derived from FC� (build-up

rate: t27 = 3.0, p=0.006; latency: t27 = 4.3, p = 0.0002).

Two additional features of our data point to an active role for FC� in the error detection process.

First, FC� power began to reliably predict the speed of error detection approximately 350 ms before
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Figure 4. Variance in the timing of error detection reports is explained by distinct single-trial metrics of FC� and CPP morphology. (a) Schematic

depicting the single-trial measurement windows for FC� power (purple) and CPP amplitude (green; left). Bar graphs (middle) show estimated effect

sizes from within-subjects robust multiple regressions of RTd on both amplitude metrics (error bars = s.e.m.), and the associated topography (inset

right) indicates the scalp distribution of the theta power effect. Scatterplot (right) illustrates the linear relationship between FC� power and RTd; points

and error bars are mean ± s.e.m. of data that were z-scored within subjects, pooled across subjects and grouped into 20 five-percentile bins. (b)

Measurement approach, regression-estimated effect sizes, topographic distribution and scatterplot representing the single-trial relationships between

RTd and signal build-up rates. (c) Similar plots representing the relationships between RTd and peak signal latencies. Points in the effect size plot

(middle) indicate observed effect sizes, solid and dashed lines highlight the mean and 95% confidence intervals, respectively, of permuted distributions

used for significance testing (see Materials and methods). Topographies are thresholded at p < 0.005 (a, b) and p < 0.0001 (c) for effect visualization.

The solid lines in all scatterplots are simple linear robust regression fits to the unbinned data. **p < 0.01; ***p < 0.001.

DOI: 10.7554/eLife.11946.012

The following figure supplement is available for figure 4:

Figure supplement 1. Scatterplots illustrating the linear relationships between RTd and second-order CPP amplitude (a), FC� build-up rate (b) and FC�

peak latency (c).

DOI: 10.7554/eLife.11946.013
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the CPP did (compare Figures 2d and 3c). Thus, internal fluctuations in FC� power that were inde-

pendent of the first-order evidence accumulation process reflected in the CPP were predictive of

subsequent error detection behavior. Second, we tested whether the single-trial relationship

between FC� and RTd (Figure 4a) was formally mediated by a direct effect of FC� on the rate of sec-

ond-order evidence accumulation by constructing a three-variable path model with FC� power as

the predictor, RTd as the outcome and CPP build-up rate as the mediator variable (see Materials and

methods). FC� was a reliable predictor of CPP build-up rate in this model (p = 0.0007) and the medi-

ation effect was significant (p = 0.0009), indicating that the rate of second-order evidence accumula-

tion partially mediated the observed relationship between medial frontal signaling and the speed of

error detection (Figure 5).

Drift diffusion modelling of the second-order decision process
Informed by the above observations, we modeled error detection as a one-choice diffusion process

(Ratcliff and Van Dongen, 2011) by which noisy evidence that an error has been committed is accu-

mulated over time (at mean drift rate v with between-trial standard deviation h). Error detection is

achieved in the model once the evidence tally passes a threshold (a) whereas the temporal integra-

tion process terminates if this threshold is not reached by a time deadline, thereby resulting in an

undetected error (Figure 6a; Materials and methods). The decision to model second-order perfor-

mance in isolation was based on the observation that higher-order signals (FC�) play a prominent

role in determining second-order decision-making, thus indicating that the input to the primary deci-

sion process is not necessarily the same as the input to the second-order process (see Discussion).

For simplicity, we here focused on decomposing error detection behavior in isolation. This approach

served to further identify our electrophysiological signals with distinct features of post-commitment

evidence accumulation (evidential input, temporal integration) without requiring speculative assump-

tions about the relationship between first- and second-order decision processes.

The model fit the error detection data well, capturing the shapes of the group-level and single-

subject RTd distributions (Figure 6b; Table 1; Figure 6—figure supplement 1) as well as the con-

siderable heterogeneity in individuals’ capacities for accurate second-order evaluation (Figure 6c).

Figure 5. Mediation analysis. Path diagram depicts the relationships between nodes in a mediation model that

tested whether CPP build-up rate mediated the negative relationship between FC� power and RTd. Lines are

labeled with path coefficients, with s.e.m. shown in parentheses. FC� power (predictor, left) predicted CPP build-

up rate (mediator, middle), which in turn predicted RTd (outcome, right) controlling for FC� power. The upper-

middle coefficient indicates the formal mediation effect. The significant direct path between FC� power and RTd,

calculated controlling for the mediator, indicates partial mediation: CPP build-up rate did not explain all of the

shared variance between FC� and RTd. ***p < 0.001, bootstrapped.

DOI: 10.7554/eLife.11946.014

The following figure supplement is available for figure 5:

Figure supplement 1. Effects of trial binning on CPP build-up rate mediation effect.

DOI: 10.7554/eLife.11946.015
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We then used the best-fitting model parameters for each subject to generate simulated second-

order decision variable trajectories for detected and undetected errors. Despite minimal data-driven

constraint on the simulation process (see Materials and methods), the temporal evolution of the sim-

ulated time-series closely traced that of the second-order CPP (Figure 6d). By allowing a proportion

of trials to assume negative drift rate, the model additionally provides a parsimonious account of the

apparent downward trajectory of the CPP in the averaged waveforms after undetected errors.

The fitted model parameters were also correlated with key FC� and CPP signal characteristics

across subjects. We employed the per-subject ‘drift ratio’ (v/h) as a model-based estimate of each

individual’s error evidence strength (Ratcliff and Van Dongen, 2011; Materials and methods) and

found that this quantity was positively correlated with FC� power (r = 0.51, p = 0.007; Figure 6e). A

partial correlation analysis verified that this effect was still present (r = 0.52, p = 0.007) when � power

over bilateral posterior electrodes (P7/P8) was included as a covariate, indicating that it is not driven

by spurious global differences in oscillatory power (Cohen and Donner, 2013). Moreover, a multiple

regression to quantify the independent contributions of FC� and second-order CPP amplitude to

variance in drift ratio revealed a significant effect only for the former (bFC� = 0.47, p = 0.013;

bCPP = 0.21, p = 0.24). Conversely, drift ratio was correlated with the build-up rate (r = 0.47,

p = 0.013; Figure 6f) and peak latency (r = �0.52, p = 0.005; Figure 6g) of the second-order CPP,

whereas no such relationships were observed for FC� build-up rate (bFC� = �0.12, p = 0.53;

bCPP = 0.46, p = 0.017) or latency (bFC� = �0.10, p = 0.64; bCPP = �0.46, p = 0.042). We also note

that neither FC� power nor the build-up rate nor peak latency of the second-order CPP were corre-

lated across subjects with primary task behavior (withhold accuracy and primary RT on detected

error trials; all p > 0.1), thus highlighting the particular sensitivity of these metrics to second-order

decision-making. Additionally, these electrophysiological measures were not correlated with other

parameters of the computational model (all p > 0.1).

Second-order decision signals are independent of error reporting
requirements
Several lines of evidence indicate that the close relationship between the second-order CPP and

error detection signalling cannot be attributed to motor preparation or execution. First, we have

previously shown that the CPP that precedes a first-order perceptual decision is fully dissociable

from motor preparation signals and is observed even when no overt decision-reporting action is

required (O’Connell et al., 2012). Second, we observed no change in signal topography between

the pre- and post-choice phases (Figure 2d). Third, the temporally extended and variable build-up

of the second-order CPP excludes the possibility that our results can be attributed to the presence

of overlapping motor execution potentials. Finally, we asked a new cohort of 12 subjects to perform

the same Go/No-Go task but gave no instructions to report errors on half of the task blocks. FC�

and the CPP were clearly observed following these ‘no-report’ errors and, consistent with the fact

that no-report blocks contain a mixture of detected and undetected errors, linear contrasts con-

firmed that FC� and second-order CPP amplitudes were intermediate between their amplitudes fol-

lowing detected and undetected errors in the condition with self-initiated error reporting (FC�,

t11 = 4.2, p = 0.002; CPP, t11 = 6.9, p < 1 x 10–4; Figure 7).

Discussion
Our electrophysiological and model-based analyses demonstrate that neural evidence accumulation

continues after decision commitment to facilitate reflections on choice accuracy. This empirical

Table 1. Parameter estimates and goodness-of-fit of error detection diffusion model.

a tnd v h c
2

Mean 0.21 0.20 0.45 0.45 2.46

s.d. 0.12 0.08 0.30 0.30 2.33

�2 degrees of freedom = 1, critical value = 5.024.

24 of 28 �2 values were below the critical value.

DOI: 10.7554/eLife.11946.019
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Figure 6. Diffusion modelling of error detection behavior. (a) Schematic representation of the one-choice drift diffusion model. Noisy error evidence

accumulates over time at mean drift rate v until a threshold a is reached (light red traces) or a deadline on detection expires (gray traces). Drift rate is

normally distributed across trials with standard deviation h, and non-decision-related processing time is captured by tnd. Within-trial noise s is fixed at

0.1 (not shown). (b) Group-level model fit. Points from left to right represent the 0.1, 0.3, 0.5, 0.7 and 0.9 RTd quantiles, estimated from the data (black)

and generated by the model fit (gray). (c) Observed versus fitted error detection accuracy. Diagonal line is the identity line. (d) Group-average decision

variables reflecting the accumulation of error evidence, simulated using the best-fitting model parameters for each subject and overlaid on the grand-

average second-order CPP signals. Detected error traces are sorted by RTd into three equal-sized bins. CPPs are baselined to the 50 ms preceding

error. (e) Between-subjects relationship between FC� power and model-estimated drift ratio (v/h). Bar graph (inset) shows standardized regression

coefficients from a multiple regression that included CPP amplitude as an additional predictor. (f, g) Scatterplots and bar graphs highlighting between-

subjects relationships between drift ratio and signal build-up rates (f) and peak latencies (g). Although one extreme data point is apparent in f, this did

not exert disproportionate influence over the fitted regression line (studentized deleted residual < 1) and the correlation remained marginally

significant when it was removed (r = 0.37, p = 0.06). Error bars = s.e.m. *p < 0.05; **p < 0.01.

DOI: 10.7554/eLife.11946.016

The following figure supplements are available for figure 6:

Figure supplement 1. One-choice diffusion model fits for single subjects.

DOI: 10.7554/eLife.11946.017

Figure supplement 2. Between-subjects relationship between FC� power and model-estimated drift ratio (v/h) when a trial-averaged baseline was

applied to FC�.

DOI: 10.7554/eLife.11946.018
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observation has important implications for the ongoing debate on the mechanistic basis of

metacognition.

A prominent hypothesis is that confidence judgments are based on internal information available

at the time of choice commitment (Heath, 1984; Kiani et al., 2014; Kiani and Shadlen, 2009;

Link, 2003), and models that incorporate this assumption provide a good account of behavior when

choice and confidence are interrogated simultaneously. But the manner in which metacognitive eval-

uations are probed is likely to have a profound impact on how they are constructed in the brain.

Whether participating in a laboratory experiment or everyday activity, human decision-makers are

most often required to express or act upon their metacognitive evaluations some time after an initial

choice. Our results reveal that if the decision-maker is allowed to report delayed, self-initiated judg-

ments of their own performance, these judgments will incorporate new internal information available

after the point of commitment, even in the absence of continued sensory input. This process of

post-decision evidence accumulation has already been invoked by several computational models to

successfully account for delayed confidence judgments and changes-of-mind (Moran et al., 2015;

Pleskac and Busemeyer, 2010; Resulaj et al., 2009; Yu et al., 2015), while a parallel literature on

error detection has long debated the mechanistic basis of post-commitment information processing

(Rabbitt and Vyas, 1981; Rabbitt, 1966; Yeung et al., 2004; Yeung and Summerfield, 2012). Our

findings, however, represent the first definitive neurophysiological demonstration of post-decision

evidence accumulation. In so doing, we show that the critical neural dynamics that give rise to both

first- and second-order decisions are captured by a single brain signal, opening up new avenues for

basic and clinical investigations.

Comparison of pre- and post-decisional CPP dynamics highlighted an important qualitative dis-

tinction between the first- and second-order decision processes invoked by our paradigm. The first-

Figure 7. Second-order decision signals persist in the absence of error reporting demands. (a) Time-courses and

topographic distributions of FC� power from a new cohort that performed half of task blocks without any explicit

instruction to self-monitor performance (‘no-report’ blocks). Left topography is the average topographic

distribution of �-power after pooling all detected and undetected error trials from blocks with self-initiated error

detection reporting; right topography is � distribution averaged across all errors in no-report blocks. (b) Time-

courses and topographies of the second-order CPP component from the same cohort. Conventions are the same

as in (a). Shaded gray areas in left show latencies of associated scalp topographies. Shaded error bars = s.e.m.

DOI: 10.7554/eLife.11946.020
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order task required subjects to discriminate between the two possible stimulus categories (i.e. Go

versus No-Go), a process that can be understood in terms of competitive accumulation of evidence

in favor of each choice alternative (Gold and Shadlen, 2007; Gomez et al., 2007). We have previ-

ously shown that the CPP builds in response to evidence favoring each of the choice alternatives in

such contexts (Kelly and O’Connell, 2013; O’Connell et al., 2012) and accordingly, we observed

here that the same signal exhibited a gradual build-up prior to both Go and No-go choices. The sec-

ond-order task, by contrast, was more comparable to simple signal detection with detected errors

translating to hits and undetected errors translating to misses. Evidence accumulation mechanisms

have also been invoked to account for signal detection decisions (e.g. Deco et al., 2007;

Donner et al., 2009) but in this case the neural decision variable seems to increase towards a single

detection boundary and misses occur when this boundary is not reached (Carnevale et al., 2012;

Deco et al., 2007). Again, previous studies have shown that the CPP in such contexts exhibits a clear

ramp-up to threshold for hit decisions that is diminished or absent on miss trials (O’Connell et al.,

2012), and presently this effect was recapitulated for error detection decisions. Collectively, these

findings indicate that human decision-makers are capable of quickly engaging multiple decision pro-

cesses in succession that, although reliant on the same neural mechanism of evidence integration,

are constructed in qualitatively distinct ways.

Our results also offer important new insights into the nature of the input to the metacognitive

decision process. Several features of our results mark pMFC activation, as indexed by the power of

FC� oscillations, as a likely candidate for furnishing a source of this input. First, peri-response FC�

power was strongly predictive of subsequent error detection. Second, FC� power predicted error

detection speed from a particularly early latency relative to the CPP. Third, this predictive capacity

was formally mediated by the effect of FC� on the rate of second-order evidence accumulation, as

indexed by CPP build-up rate. Fourth, FC� correlated across-subjects with a model-based estimate

of the strength of the evidence that fed into the error detection process. This specification of an

important role for pMFC signaling in explicit error detection suggests that metacognitive decisions

are not solely based on the accumulation of sensory evidence but are also influenced by internally

generated higher-order signals.

While these observations accord with theoretical proposals that the pMFC provides a critical

input to the error detection process (Botvinick et al., 2001; Yeung et al., 2004), they are not deci-

sive about the specific nature of this input. One possibility is that pMFC furnishes a distinct source of

abstracted ‘error evidence’ that directly informs second-order judgments. Extensive data suggest

that �-band activity in pMFC signals the degree to which competing action plans are simultaneously

activated, commonly known as ‘conflict’ (Cavanagh and Frank, 2014; Cavanagh et al., 2011;

Cohen, 2014; 2013). Computational models have shown that a post-commitment conflict signal

alone would provide a reliable basis for error detection because its magnitude scales with error likeli-

hood and can reliably classify trial-to-trial performance accuracy (Yeung et al., 2004; see also

Charles et al., 2014). Such a causal role for pMFC-encoded conflict in second-order decision-making

would also provide a mechanistic explanation for the recent finding that manipulating effector-spe-

cific premotor activity both before and immediately after perceptual choice has clear effects on sub-

sequent confidence reports (Fleming et al., 2015). Alternatively, second-order decisions on our task

may receive their sole or primary evidence from visual short-term memory (Smith and Ratcliff,

2009) and pMFC may serve to modulate this process by strategically tuning processing in a global

network of task-relevant regions when conflict is detected (Cavanagh and Frank, 2014;

Danielmeier et al., 2011; Dehaene et al., 1998; Shenhav et al., 2013). Consistent with such a non-

specific influence on the post-decisional process, we found that the mediation of the FC�/RTd rela-

tionship by CPP build-up rate was partial, indicating that pMFC may have also influenced the speed

of error detection independently of its effect on the rate of evidence accumulation – perhaps via

effects on other parameters of the decision process like the response threshold (Cavanagh et al.,

2011) or motor execution time. The extent to which pMFC signaling directly modulates the second-

order evidence accumulation process can be established in future work by examining the impact of

pMFC perturbation on CPP dynamics (Hayward et al., 2004; Reinhart and Woodman, 2014;

Sela et al., 2012).

In contrast to other sequential sampling accounts of confidence judgments and changes-of-mind

which assume that first-order decisions and metacognitive judgments are both based on the same

evidence source (Moran et al., 2015; Pleskac and Busemeyer, 2010; Resulaj et al., 2009;
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Yu et al., 2015), our simple diffusion model of error detection behaviour is agnostic to the nature of

the evidence that drives the second-order decision process. The model thus accommodates sugges-

tions that pMFC, or indeed other neural signals, provide modulatory inputs or additional sources of

evidence that are multiplexed in a compound decision variable that determines second-order judg-

ments (Ullsperger et al., 2014; 2010). Of course, a corresponding limitation of our modelling frame-

work is that it does not specify the precise nature of the relationship between the first- and second-

order decision processes, and thereby fails to provide explicit accounts of some aspects of our

observed data. For example, our selective modelling of error detection behaviour does not provide

an explanation for the similarity of the post-response CPP signals on undetected errors and correct

Go trials. This similarity could perhaps be due to a common paucity of error evidence on both trial-

types. On the other hand, our analysis did reveal a post-response difference in frontal ERP morphol-

ogy between these trial-types (Figure 3—figure supplement 1) which suggests that they are at least

partially dissociable in terms of neural dynamics. Such unresolved questions emphasize that a central

goal of future research must be to build a unified model of decision-making that not only accounts

for the often complex relationships between first- and second-order behavior (Moran et al., 2015;

Pleskac and Busemeyer, 2010), but is also constrained by neurophysiological characterizations of

the post-decision accumulation process. Moreover, a remaining challenge will be to devise innova-

tive ways to manipulate the evidence that feeds into the second-order process in an effort to test

such a model and further corroborate our identification of the CPP with post-decisional

accumulation.

A substantial literature has already investigated error-related electrophysiological signals in

human subjects and highlighted in particular a post-response centro-parietal ERP, labeled the Error

Positivity (Pe), that reliably discriminates between detected and undetected errors (Murphy et al.,

2012; Nieuwenhuis et al., 2001; O’Connell et al., 2007; Overbeek et al., 2005;

Ridderinkhof et al., 2009; Wessel et al., 2011). However, a consensus regarding the precise func-

tional significance of this signal has never been achieved. Although a series of recent studies have

demonstrated that Pe amplitude correlates with confidence in perceptual decisions (Boldt and

Yeung, 2015) and the criterion that subjects impose on error detection reports (Steinhauser and

Yeung, 2010) and have thereby associated this component with the general quality of the metacog-

nitive decision process [see also Steinhauser and Yeung (2012)], these studies could not identify

the Pe with a specific neural mechanism. The present study, by contrast, demonstrates that the post-

decisional CPP encodes a second-order decision variable that bears precisely the same dynamical

properties as have been reported for first-order decision signals in single-unit and population-level

neurophysiology, including an RT-predictive build-up rate and a boundary-crossing relationship to

response execution – properties that have never been previously reported for the Pe. Our use of a

self-initiated error detection report was a critical design feature in this regard because it facilitated

the interrogation of signal dynamics leading up to the moment of error detection; this has not been

possible in previous studies of the Pe, which enforced either delayed metacognitive reporting or

none at all. Where we have previously demonstrated that the pre-decision build-up of the CPP

encompasses activity that has traditionally been associated with the classic P300 or ‘P3b’ (Kelly and

O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015), an important implication of the

present findings is that the post-decision build-up of the CPP corresponds to the activity commonly

attributed to the Pe. Thus, our data suggest that the P3b and Pe reflect distinct stages of the same

neurophysiological process and point to a unifying mechanistic framework for understanding both

signals.

In conclusion, we have reported the first definitive neurophysiological demonstration that evi-

dence accumulation continues after the point of decision commitment and predicts the timing and

accuracy of subsequent error detection. This finding furnishes critical neurophysiological support for

theoretical accounts of metacognitive decision-making that have relied on the concept of post-deci-

sional accumulation. Moreover, we have shown that this process is informed by a higher-order neural

signal generated in medial frontal cortex, which suggests that metacognitive judgments are not

solely based on the feedforward accumulation of sensory evidence but also on representations of

conflict or error likelihood. Collectively, these results shed significant new light on the generative

mechanisms of metacognition and furnish new evidence that error detection, confidence judgments

and their neural substrates can be understood in terms of the same mechanistically principled frame-

work of evidence accumulation.
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Materials and methods

Subjects
All subjects were right-handed, had normal or corrected-to-normal vision, no history of psychiatric ill-

ness or head injury, reported no color-blindness, and refrained from ingesting caffeine on the day of

testing. They provided written informed consent, and all procedures were approved by the Trinity

College Dublin ethics committee and conducted in accordance with the Declaration of Helsinki. Sub-

jects received a gratuity of e20 for their participation.

Task procedures
Testing was performed in a dark, sound-attenuated room. Stimuli were presented using the ‘Presen-

tation’ software suite (NeuroBehavioural Systems, San Francisco, CA) and subjects responded with

the thumb of their right hand using a Microsoft ‘Sidewinder’ controller. During task performance,

subjects used a table-mounted head-rest which fixed their distance from the display monitor (51-cm

CRT operating at 85 Hz) at 80 cm for the entire task. They were instructed to maintain gaze at a cen-

trally-presented white fixation cross on a gray background. Color/word stimuli appeared 0.25˚ above
fixation.

Task version 1: self-initiated error detection reporting
The first version of the task was administered to thirty-two individuals, four of whom were excluded

from all analyses: one due to technical issues with the EEG recording, two with excessively poor task

accuracy (<30% withheld No-Go trials), and a further subject with no observable CPP component.

Thus, we analyzed a final sample of 28 subjects (13 male) for the primary study, with a mean age of

23.5 years (s.d. = 5.8). This pre-planned sample size is consistent with other electrophysiological

studies of decision-making from our lab that interrogated similar neural signals and invoked similar

analytical methods (Kelly and O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015).

Subjects were required to respond with a single ‘A’ button press on all Go trials, and to withhold

this response on both ‘repeat’ and ‘color’ No-Go trials (Figure 1). They were instructed to give equal

emphasis to the speed of their Go responses and the accuracy of their No-Go withholding. In the

event of any failure to withhold the pre-potent response to either type of No-Go stimulus, subjects

were required to signal detection of this error as quickly as possible by pressing a second ‘B’ button.

They were instructed to execute this error detection report even if they became aware of an error

after the onset of the following stimulus. Although such late error detections were rare (mean = 2.5

trials, s.d. = 2.4) and excluded from analysis, this instruction mitigated against the adoption of a

time-dependent decision criterion that may have obscured any threshold-like relationship between

second-order decision signals and the latency of error detection.

Each subject first completed a brief automated training protocol (Murphy et al., 2012), and was

then administered at least 8 blocks of the task. Where time constraints allowed, we administered

more blocks to increase the number of error trials available for analysis. On average, subjects com-

pleted 9.5 ± 0.8 blocks (range 8–10). Each block consisted of 224 word presentations, 200 of which

were Go stimuli and 24 of which were No-Go stimuli (12 repeat, 12 color). All stimuli were presented

for 0.4 s, followed by an inter-stimulus interval of 1.6 s. The duration of each block was therefore

approximately 7.5 minutes. Stimuli were presented in a pseudo-random order with a minimum of

three Go trials between any two No-Go trials.

Task version 2: half task blocks without error detection reporting
To establish the generality of the post-decisional signals observed under the previous task version to

situations in which decision-makers are not explicitly instructed to monitor their own performance,

we tested an independent cohort of sixteen individuals on a version of the Go/No-go task in which

error reporting instructions were manipulated. Four of these subjects were excluded from analysis

due to insufficient numbers of undetected errors (<6) for reliable EEG analysis, leaving a final sample

of twelve (5 male) with a mean age of 23.7 years (s.d. = 6.7). Although this sample size is lower than

that employed in the first study, we here limited our analyses to dependent measures with inherently

high signal-to-noise (trial-averaged waveforms) and this sample size is consistent with a previous

study of error detection using the same task employed presently (Hester et al., 2005). Task design
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and procedures were identical to those used for the previous version of the task, with the exception

that every subject was administered five task blocks with regular error detection reporting and five

‘no-report’ blocks in which subjects were not instructed to monitor for errors. The five blocks in each

condition were administered contiguously, and the order in which each condition was presented was

counter-balanced across subjects. Thus, half of the full sample performed the no-report blocks with-

out knowing that they would later be required to signal their errors. The presence of both FC� and

CPP signals in the no-report condition (Figure 7) did not depend on condition order.

EEG acquisition and preprocessing
Continuous EEG was acquired using an ActiveTwo system (BioSemi, The Netherlands) from 64 scalp

electrodes, configured to the standard 10/20 setup and digitized at 512 Hz. Eye movements were

recorded using two vertical electro-oculogram (EOG) electrodes positioned above and below the

left eye and two horizontal EOG electrodes positioned at the outer canthus of each eye. EEG data

were processed in Matlab (Mathworks) via custom scripting and subroutines from the EEGLAB tool-

box (Delorme and Makeig, 2004).

Eye-blinks and other noise transients were isolated and removed from the EEG data via indepen-

dent component analysis (ICA). Specifically, continuous data from each block were re-referenced to

channel Fz; data were high-pass filtered to 1 Hz, low-pass filtered up to 95 Hz and notch filtered to

remove 50 Hz line noise using a two-way least-squares FIR filter; noisy channels were identified by

visual inspection of signal variance and removed; data were segmented into temporally contiguous

epochs of 1 s duration; epochs containing values that violated amplitude (± 250 mV) and joint proba-

bility (± 4.5 s.d.; Delorme and Makeig, 2004) criteria were rejected; and, the remaining data were

subjected to temporal ICA using the infomax algorithm. The ICA weights yielded by this procedure

were then back-projected to the original continuous, unfiltered EEG data for the associated block.

Next, independent components representing stereotyped artifactual activity such as eye blinks, sac-

cades and individual electrode artifacts were identified by visual inspection and discarded, and the

ICA-pruned data were low-pass filtered to 35 Hz. No high-pass filter was applied. Previously-identi-

fied noisy channels were then interpolated via spherical spline interpolation, and the data were re-

referenced to the common average. Data epochs were extracted from 2.5 s before to 3.5 s after

stimulus onset on each trial (thus minimizing edge artifacts during spectral analysis) and baseline-cor-

rected to the 0.3 s interval preceding stimulus onset. Subsequent epoch rejection employed a

dynamic window with a fixed start time of �0.3 s relative to stimulus onset and an end time that

depended on the primary RT of each trial: the window ended at RT + 1.2 s for go trials and unde-

tected errors, and RT + 0.2 s + the slowest RTd of the current participant for detected errors; end

time was truncated to +2 s relative to stimulus onset if the window encroached upon onset of the

subsequent stimulus on any trial. Epochs were rejected from all further analysis if any scalp channel

exceeded ±100 mV at any point within this trial-specific window. Detected error trials on which RTd
followed next-trial onset were also excluded. Lastly, all EEG data were converted to current source

density (Kayser and Tenke, 2006) to increase spatial selectivity and minimize volume conduction

(Kelly and O’Connell, 2013; Twomey et al., 2015).

A previous paper by our group investigated the relationship between the Pe component (referred

to here as the second-order CPP) and error detection using the same data and reported a strong

correlation between Pe peak latency and RTd (Murphy et al., 2012). However, we did not consider

the influence of Pe build-up rate on performance, we did not establish functional equivalence

between the Pe and CPP and we did not consider the contribution of FC� to error detection (see

below). In fact, in that paper we reported a reliable negative association between RTd and Pe ampli-

tude immediately prior to error detection that is inconsistent with the presently reported results and

difficult to reconcile with the proposal that the Pe reflects the accumulation of evidence toward a

fixed decision bound. Two critical methodological distinctions between Murphy et al. and the pres-

ent study account for this discrepancy. First, whereas Murphy et al. implemented a high-pass tempo-

ral filter, the present study did not. High-pass filtering is problematic in the current context because

it is likely to attenuate CPP amplitude to a greater degree on trials with long RTs since decision-

related neural activity is drawn out over a longer time frame on such trials. Second, the present study

used a spatial filter to reduce the overlap with other temporally coincident signals because in recent

work we demonstrated that boundary-crossing effects at response can be obscured by spatial over-

lap of the CPP with anticipatory signals emanating from frontal sites (Kelly and O’Connell, 2013;
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Twomey et al., 2015). Addressing these issues enabled us to make a variety of important new

observations that extend our previous results in several significant ways: we provide the first demon-

stration of the critical build-to-threshold relationship between the second-order CPP and RTd that is

characteristic of an evolving decision variable; we show that this component interacts with a frontal

conflict signal to determine the probability and timing of error detection; and, we leverage computa-

tional modelling to further identify this component with the second-order evidence accumulation

process.

Fronto-central theta (FC�; 2–7 Hz) power was measured in two ways. First, EEG data were decom-

posed into their time-frequency representation via complex Morlet wavelet convolution (between 2

and 12 cycles per wavelet, linearly increasing across 90 linear-spaced frequencies from 1 to 30 Hz)

and the resulting power estimates were normalized by the decibel (dB) transform (dB = 10*log10[-

power/baseline]). The baseline consisted of across-trial average power during the 0.3 s preceding

stimulus onset, calculated and applied separately within each trial-type (Go, undetected error,

detected error). This approach yielded a condition-averaged time-frequency plot that allowed us to

select channels and frequency boundaries for FC� analysis in a manner that was orthogonal to any

potential trial-type effects. Black lines in this plot (Figure 3a) enclose regions in which contiguous

time-frequency pixels were significantly different from the pre-stimulus baseline at p < 0.01, for at

least 400 ms and at least 5 consecutive frequency bins. Second, power estimates for all subsequent

FC� analyses were derived by band-pass filtering the EEG data from 2 to 7 Hz (using the fir1 Matlab

function to construct a narrow two-way least squares FIR filter kernel), Hilbert-transforming the fil-

tered data to derive the analytic signal, and then converting to power. Compared to wavelet convo-

lution this filter-Hilbert method affords greater control over the frequency characteristics of the

filter, though in practice the results from both methods were qualitatively very similar. As for the pre-

vious wavelet-based approach, analyses were conducted on power estimates that were dB-normal-

ized using a condition-specific trial-averaged pre-stimulus baseline, thus leaving within-condition

trial-by-trial fluctuations in baseline power intact. Complementarily, the reported between-subjects

FC� correlation (Figure 6e) was conducted on unbaselined power estimates, thus leaving between-

individual differences in baseline FC� power intact. Both within- and between-subjects variation in

baseline power emerged to be sources of variance contributing to the respective effects (Figure 3—

figure supplement 3c-e; Figure 6—figure supplement 2). We also verified that the main effect of

error detection on FC� remained unchanged when no baseline was applied (Figure 3—figure sup-

plement 3b).

Analysis of electrophysiological decision signals
First- and second-order trial-averaged CPP signals were measured as the average voltage per m2

from three centro-parietal electrodes centered on the region of maximum component amplitude in

the grand-average response-locked topography (Pz, P1, P2), and were low-pass filtered up to 10 Hz

for analysis and display. FC� was measured as the average power across six fronto-central electro-

des, also centered on the topographic maximum (FCz, FC1, FC2, Cz, C1, C2). The relationships

between RT and signal build-up rates and amplitudes were examined for the CPP on go trials

(Figure 2a), the second-order continuation of this signal on detected errors (Figure 2d), and FC� on

both trial-types (Figure 3d,e). Analysis of Go-trial dynamics was restricted to trials with primary RTs

> 350 ms (leading to the exclusion of 17.4 ± 12.1% of trials per subject) because the amplitude of

the CPP signal was affected by visual-evoked potentials that coincided with the evolution of the

decision-related activity on quicker trials (Figure 2—figure supplement 2). For each participant, sin-

gle-trial waveforms were sorted into 3 equal-sized bins according to RT (primary RT for Go trials,

RTd for detected errors) and averaged. To establish the timing of the relationship between signal

build-up rate and RT, we measured the temporal slope of each signal in each subject’s bin-averaged

waveforms using a sliding window of 150 ms, covering the entirety of both response- and detection-

aligned waveforms. Build-up rate was computed as the slope of a straight line fitted to the signal

within each temporal window, and a linear contrast was applied to this metric across RT bins. The

centers of windows that were characterized by a significant group-level contrast in the expected

direction (linear decrease in build-up rate with increasing RT; p < 0.05, one-tailed) are marked by a

black running line in the associated plots. To establish the timing of the relationship between signal

amplitude and RT, we conducted a linear contrast of amplitude as a function of RT bin for each tem-

poral sample. Samples characterized by contrasts that deviated from zero at the group level (p <
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0.05, two-tailed) are marked by a gray line in the associated plots. This sample-wise approach was

also employed to characterize the effect of error detection on the amplitude of both centro-parietal

(Figure 2b) and FC� (Figure 3b) signals.

For FC� and CPP ROC curve analyses (Figure 2c; Figure 3c), single-trial waveforms for detected

and undetected errors were pooled across all subjects and the area under the ROC curve was calcu-

lated for the average of each signal within discrete peri-error time windows (window width of 20 ms,

moving in 20 ms increments, from �0.4 to +0.6 s relative to error). Significant deviations in classifica-

tion accuracy from chance levels were determined via permutation testing (1000 iterations with ran-

dom trial reassignment conserving individual detected versus undetected error proportions).

All further single-trial analyses of the second-order CPP leveraged waveforms that were low-pass

filtered to 6 Hz to increase signal-to-noise. Single-trial amplitude was defined as the mean power

from –0.1 to +0.4 s relative to error commission for FC� and the mean signal in the 0.2 s preceding

error detection for the CPP (Figure 4a). Single-trial build-up rate was measured as the slope of a

straight line fitted to each waveform using the interval 0 to +0.2 s for FC� and +0.1 to +0.3 s for the

CPP, both relative to error commission (Figure 4b). Single-trial peak latency was measured as the

time of maximum signal amplitude relative to error commission within a dynamic measurement win-

dow with a start time of �0.1 s for FC� and +0.1 s for the CPP, and an end time of the RTd for that

trial +0.15 s (Figure 4c). In cases where trials were initially assigned the minimum possible latency

given the above constraints, the window start time was adjusted to be the earliest latency at which

the waveform next became positive-going.

The independent contributions of FC� and the CPP toward RTd were examined via single-trial

within-subjects robust regression (O’Leary, 1990). For signal amplitude, the equation RTd = b0 +

b1*FC�Amp + b2*CPPAmp yielded fitted regression coefficients representing the linear relationships

between RTd and both single-trial theta power (b1) and CPP amplitude (b2). For build-up rate and

peak latency, two further models were constructed by replacing the predictor variables where

appropriate. All coefficients in a given model were estimated simultaneously via type III sum of

squares. RTd was log-transformed and peak signal latency was square root-transformed to normalize

their respective distributions before coefficient estimation. Variance inflation factors for all predictors

across all models were <1.8, indicating weak multi-collinearity. For the amplitude and build-up rate

metrics, effect sizes of the fitted b coefficients (effect size t = b/s.e.m.) were tested for group-level

statistical significance via one-sample t-test (H0: effect size = 0) and contrasted via paired t-test (H0:

effect size1 � effect size2 = 0). For the latency metric, our use of a dynamic measurement window

that was determined by single-trial RTd ensured an arbitrary positive correlation between single-trial

signal latency and RT. To test for effect significance, we thus compared the observed effect sizes

derived from the above regression model to the expected values of the same effect size metrics

computed in the case in which signal latencies were randomly chosen from anywhere within each tri-

al’s measurement window. This process was repeated 1,000 times per subject to derive subject-spe-

cific permuted distributions of the FC� and CPP latency effects, against which we tested for

statistical significance. The above procedures for amplitude, build-up rate and latency effects were

also repeated on an electrode-by-electrode basis to construct topographic representations of where

these effects were strongest on the scalp (Figure 4). For the latency analysis, the trial-by-trial timing

of the peak positivity or negativity was extracted for each electrode, depending on whether the

trial-averaged amplitude at that electrode in the 0.3 s preceding the error detection report was

above or below zero, respectively.

We employed mediation analysis (M3 toolbox for Matlab; http://wagerlab.colorado.edu/tools) to

establish whether second-order CPP build-up rate mediated the relationship between FC� power

and RTd (Figure 5). For this analysis, we measured CPP build-up rate from �0.3 to �0.1 s relative to

error detection report in order to minimize the temporal overlap between the FCq and CPP meas-

ures, though the results were very similar when the original error-aligned measurement window for

build-up rate was employed. Single-trial values for each measure were z-scored within-subjects and

pooled across-subjects. To mitigate the low signal-to-noise ratio inherent in correlating two noisy

single-trial electrophysiological metrics, average values for each of FC�, CPP build-up and RTd were

computed in bins of 12 trials that were grouped after sorting trials in order of increasing RTd. Media-

tion effects at larger bin sizes were of comparable magnitude (Figure 5—figure supplement 1). For

CPP build-up rate to be considered a significant mediator, it was required to reach statistical signifi-

cance in three tests: it must be related to the predictor (FC�), it must be related to the outcome
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(RTd) while controlling for the predictor, and the mediation effect (evaluating whether some covari-

ance between predictor and outcome can be explained by the mediator) must be significant. Signifi-

cance of the associated path coefficients was assessed via bias-corrected bootstrap tests with

10,000 samples (Wager et al., 2008).

Diffusion modelling
Second-order behavioral data (error detection accuracy and RTd) were decomposed into latent deci-

sion-making parameters via a novel application of the one-choice drift diffusion model (Ratcliff and

Van Dongen, 2011; Figure 6a). Noisy evidence for an error was assumed to accumulate over time

at drift rate n until a decision bound a was met, at which point error detection was achieved. The

moment-to-moment noise in the evidence is determined by the s parameter, which refers to the

standard deviation of a zero-mean Gaussian distribution from which random increments to the deter-

ministic component of the accumulation process (represented by n) are drawn. As is common in fits

of the drift diffusion model to data, s was fixed at 0.1 in order to scale all other parameters in the

model across individuals. Drift rate was assumed to be normally distributed across trials with a stan-

dard deviation h, and all non-decision-related processing was assigned to a non-decision time

parameter tnd. The inclusion of the h parameter accorded with previous one-choice model fits to

first-order behavior which suggested that variability in drift rate is necessary to account for the vari-

ous observable shapes of hazard function in one-choice data (Ratcliff and Van Dongen, 2011). We

made the additional assumption that the temporal integration process terminated if a was not

reached by a time deadline, thereby resulting in an undetected error. A deadline on post-decision

accumulation also features in a prominent model of fast changes of mind in decision-making

(Resulaj et al., 2009) and was a free parameter in that study. Here, we estimated the subject-specific

detection deadline empirically in order to retain a degree of freedom when assessing model fit: any

extreme outliers (> mean + 3.5 s.d.) were trimmed from each subject’s RTd distribution and the

deadline was defined as the slowest remaining RT per subject. This procedure yielded an average

deadline of 1.17 s relative to initial error commission (±0.19; range 0.81 to 1.47 s).

Two additional assumptions were made when plotting simulated decision variables derived from

the best-fitting model parameters (Figure 6d), both of which were informed by characteristics of the

second-order CPP. First, 90 ms of each subject’s fitted tnd parameter was allotted to post-threshold

response preparation, and any residual tnd determined the length of the delay between error com-

mission and the start of evidence accumulation. Second, the decision variable was subject to a linear

decay to baseline over the 300 ms after the decision bound was reached.

There is no analytical solution for RT distributions with negative drift rate, which can result from

including h in the one-choice model (Ratcliff and Van Dongen, 2011). The model was therefore

implemented as a simulation using a random walk approximation to the diffusion process with

15,000 iterations per distribution at 1 ms step size. In order to fit the model to the observed data for

each subject, five RT quantiles (0.1, 0.3, 0.5, 0.7, 0.9) were computed from that subject’s RTd distri-

bution and the proportions of all error trials (detected + undetected) lying between those quantiles

were multiplied by the total number of error trials to yield observed values (O). Thus, the defective

cumulative probability distribution of error detection reports was used to derive per-quantile trial

frequencies, which allowed the model to simultaneously fit both RTd and error detection accuracy.

We then calculated the model-estimated proportions of trials that lay between these RT quantiles,

and these were multiplied by the number of actual observations to yield the model-derived

expected values (E). A c2 statistic S(O – E)2/E was computed and the parameters of the model were

adjusted by a particle swarm optimization routine (Birge, 2003) to minimize this value iteratively (30

particles, set at pseudorandom starting points in parameter space). Initial attempts at parameter

estimation indicated that the particle swarm approach tended to be more robust to local minima

than the commonly-used Simplex minimization routine.

As described elsewhere (Ratcliff and Van Dongen, 2011), the one-choice diffusion model suffers

from a parameter identifiability problem whereby different estimates of the v, h and a parameters

can produce similar goodness of fit but vary in magnitude by as much as 2:1. However, the ratio of

v/h remains invariant across different model fits. We therefore employed this ‘drift ratio’ quantity,

which is analogous to d’ in classic signal detection theory (Ratcliff and Van Dongen, 2011), as our

model-based estimate of the quality of the evidence feeding into each subject’s error detection

decision process. In the reported between-subjects correlations (Figure 6e,f,g), drift ratio was
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correlated against summary electrophysiological measures for each subject. Amplitude and peak

latency measures were calculated by averaging across single-trial estimates of these metrics on

detected error trials, derived via the same measurement windows that were used for the previous

within-subjects regression analyses. In an effort to increase the signal-to-noise of the build-up rate

metric, per-subject build-up rate for each signal was defined as the slope of a linear fit to the aver-

age error-locked waveform on detected error trials, within a window that started at a subject-specific

signal onset time obtained by visual inspection and ended at the subject-specific peak signal latency.

One outlier data point with an absolute studentized deleted residual value > 4 in all bivariate corre-

lations was excluded from the reported analyses, though all relationships remained at least margin-

ally significant when this subject was included (all p < 0.06).
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