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Large Molecular Gas Reservoirs in Ancestors of
Milky Way-Mass Galaxies 9 Billion Years Ago
C. Papovich1,2, I. Labbé3, K. Glazebrook4, R. Quadri1,2, G. Bekiaris4, M. Dickinson5, S. L. Finkelstein6, D. Fisher4, H. Inami5,7,
R. C. Livermore6, L. Spitler8,9, C. Straatman3, K.-V. Tran1,2

The gas accretion and star-formation histories of galaxieslike the
Milky Way remain an outstanding problem in astrophysics.1,2 Ob-
servations show that 8 billion years ago, the progenitors toMilky
Way-mass galaxies were forming stars 30 times faster than to-
day and predicted to be rich in molecular gas,3 in contrast with
low present-day gas fractions (<10%).4–6 Here we show detec-
tions of molecular gas from the CO(J=3–2) emission (rest-frame
345.8 GHz) in galaxies at redshiftsz=1.2–1.3, selected to have the
stellar mass and star-formation rate of the progenitors of today’s
Milky Way-mass galaxies. The CO emission reveals large molec-
ular gas masses, comparable to or exceeding the galaxy stellar
masses, and implying most of the baryons are in cold gas, not stars.
The galaxies’ total luminosities from star formation and COlumi-
nosities yield long gas-consumption timescales. Comparedto local
spiral galaxies, the star-formation efficiency, estimatedfrom the
ratio of total IR luminosity to CO emission, has remained nearly
constant since redshiftz=1.2, despite the order of magnitude de-
crease in gas fraction, consistent with results for other galaxies at
this epoch.7–10 Therefore the physical processes that determine the
rate at which gas cools to form stars in distant galaxies appear to
be similar to that in local galaxies.

Studies of the distribution of stellar ages and elemental abundances
in the Milky Way and M31 conclude most of their stars formed inthe
distant past, more than 7 billion years ago.11,12 This agrees with recent
work that shows star-formation in present-day galaxies with the mass of
the Milky Way peaked more than 8 billion years ago, atz>1,3 with star-
formation rates (SFRs) exceeding 30M⊙ yr−1, compared to a present
day SFR of 1.7±0.2M⊙ yr−1 for the Milky Way.13

Theoretical models explain periods of high star formation as a
result of rapid baryonic gas accretion from the intergalactic medium
(IGM), which leads to high cold gas concentrations in galaxies at
earlier times.14 These models predict that the gas settles into rota-
tionally supported, highly turbulent disks, which fragment to form
stars.15 Observations of star-forming galaxies atz>1 (stellar masses,
M∗>2×1010 M⊙) show evidence for gas-rich, rotating disks,16–19sup-
porting these theories. However, the situation is far from settled for
lower mass (M∗ ∼ 1010 M⊙), more common galaxies such as the pro-
genitors to the Milky Way. Some models predict that these galaxies
should experience early, rapid star formation, leaving lowgas fractions
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(<10%) at redshiftsz∼1.20 Others predict that the gas flows from the
IGM can perturb and disrupt the formation of disk instabilities, thereby
suppressing star formation in galaxies and extending star-formation
histories.21,22The first step to understand star formation in galaxies like
the Milky Way is to measure the amount of the cold gas in their pro-
genitors atz>1. As the gas is the fuel for star formation, the ratio of
the SFR to gas mass can test the physical processes in the models.23

With the greatly improved sensitivity offered by the Atacama Large
Millimeter Array (ALMA), we are able now to explore the evolution
of cold molecular gas in low mass galaxies at redshiftsz > 1. With
ALMA, we observed theJ=3 to 2 transition of CO in four galaxies with
the stellar mass and SFR expected of the main progenitors to present-
day Milky Way-mass galaxies at redshiftsz = 1.2− 1.3 selected from
deep imaging by the FourStar Galaxy Evolution (ZFOURGE) survey24

(see discussion in the Methods). Figure 1 shows the integrated emis-
sion from the COJ = 3 to 2 transition in these galaxies, where the
detections range in significance from 4.8–13.7σ (r.m.s.). The CO(3–2)
emission coincides with the spatial positions of the galaxies in Hubble
Space Telescope (HST) imaging (Figure 1); the small offsetsare con-
sistent with astrometric calibrations and ALMA beam smearing. Ta-
ble 1 gives the measured properties of these galaxies. The ALMA de-
tections of CO emission probe the molecular mass in galaxieswith the
stellar mass and SFRs that the main progenitor of the Milky Way was
expected to have∼8.5 billion years ago. This provides an important
extension of previous work, as the galaxies in our sample have lower
stellar masses and SFRs than have been generally possible tostudy at
these redshifts.10

CO is the most luminous tracer of molecular hydrogen (H2), the
fuel for star formation. The CO specific intensity from theJ to J–
1 transition,ICO(J−[J−1]), is a function of both the gas density and
temperature. In high redshift galaxies, studies show that the average
excitation of CO(3–2) is similar to that of star-forming regions in the
Milky Way,27 and we assume an integrated Rayleigh–Jeans brightness
temperature line ratio,r31 = ICO(3−2)/ICO(1−0) × (1/3)2 = 0.66.26

The total CO luminosity in theJ=1 to 0 transition is thenL′
CO =

3.25 × 107 r−1
31 ICO(3−2) ν

−2
obs D

2
L (1 + z)−3 whereνobs is the fre-

quency (in GHz) of the CO emission in the observed frame andDL is
the luminosity distance in Mpc. Table 1 displays theL′(CO) values.
Using lower values ofr31 ∼ 0.4−0.5, as indicated by some other stud-
ies of star-forming galaxies atz∼1–2,27,28would increase theL′(CO)
values slightly but not change our conclusions.

The combination of the CO luminosity and the luminosity from
newly formed stars provides a crucial constraint on the star-formation
efficiency (SFE). We use the thermal IR luminosity (LIR, measured
over 8–1000µm in the rest frame), which originates from dust in dense
molecular clouds heated by young stars, and is directly proportional
to the total SFR. We measuredLIR for galaxies in our study using
model fits to fluxes measured fromSpitzer Space Telescope andHer-
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Figure 1 | Images of Milky Way Progenitors at redshiftsz = 1.2 to 1.3. The top panels show the ALMA images of the redshifted COJ=3–2 emission for each
galaxy. The inset bar shows a scale length of 3 arcseconds, and the hashed ellipse shows the size of the synthesized ALMA beam of each observation. The contours
denote the emission at 2 times the noise. The bottom panels show combined Hubble Space Telescope images at 0.78, 1.1, and 1.6 µm (approximately the rest-frame
U–,V –, andR–band emission). The contours denote ALMA CO(3-2) emissionwith levels at 2,2

√
2, and 4 times the noise. The inset bar shows a scale length of 1

arcsecond, which corresponds to a physical scale of 8.3–8.4kpc at these redshifts.

Table 1 | Properties of Progenitors of Milky-Way-Mass Galaxies atz = 1.2− 1.3

ZFOURGE zopt
a zCO

b R.A.c Decl.d ICO(3−2)
e L′

CO
f Mgas

† LIR
g M∗

‡

ID (deg.) (deg.) (Jy km s−1) (109 K km s−1 pc2) (1010 M⊙) (1011 L⊙) (1010 M⊙)
CDFS 467 1.220 1.221 53.05850−27.85678 0.11(0.05) 1.4(0.6) 0.55(0.19) 1.5(0.1) 2.2+0.4

−0.8

CDFS 4409 1.220 1.220 53.18124−27.76566 0.25(0.06) 3.3(0.8) 1.4 (0.4 ) 3.1(0.1) 1.7+0.3
−0.3

CDFS 6497 1.215 1.215 53.04564−27.72493 0.33(0.04) 4.3(0.6) 2.3 (0.3 ) 2.3(0.3) 2.0+0.3
−0.5

CDFS 8193 1.326 1.326 53.07405−27.69459 0.31(0.05) 4.9(0.8) 2.0 (0.4 ) 2.2 (0.3) 1.9+0.1
−0.2

Numbers in parentheses are1σ uncertainties. aRedshift from optical spectroscopy.25 bRedshift measured from ALMA CO(3–2) data (see
Methods). cRight Ascension anddDeclination (J2000).eCO(3–2) flux density.fCO luminosity, converted to the COJ=1 to 0 transition
assumingr31=0.66.26 †Total molecular gas mass inH2 (see Methods).gTotal IR luminosity from 8–1000µm (see Methods).‡Stellar mass
measurements (see Methods).
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Figure 2 | Star Formation Efficiency as a function of CO luminosity,
L′(CO). The star-formation efficiency is defined as the ratio of the total IR
luminosity (LIR) to L′(CO), whereL′(CO) is converted to the emission of
the J=1–0 transition. Thez = 1.2 − 1.3 galaxies in our sample are shown
as large red circles. Error bars denote1σ uncertainties. Other small symbols
denote control samples of star-forming galaxies, including local spiral galaxies
(open triangles), local ultraluminous IR galaxies (ULIRGS; crosses),29–31 high
redshift (z > 1) star-forming galaxies (cyan-filled squares), and high redshift
submillimetre galaxies (yellow-filled diamonds).10,32 The shaded regions show
the interquartile ranges of the star-formation efficiency for local normal spirals
and ULIRGs.

schel Space Observatory imaging covering 24–250µm (see Methods).
Table 1 displays these values. They spanLIR=(1.5 − 2.7)×1011 L⊙

(corresponding to SFRs of 15–30M⊙ yr−1). Uncertainties are≃0.2
dex (60%) and are dominated by systematics from differencesin the IR
model (see Methods).

Figure 2 shows the SFE, defined asLIR/L′(CO), as a function of
L′(CO) for thez=1.2–1.3 galaxies in our sample compared to control
samples. With ALMA we now probe efficiently the CO luminosities
of z > 1 star-forming galaxies a factor two lower than was possible
previously. The galaxies in our sample have SFEs typical of the up-
per range of both local spiral galaxies and more massive, high-redshift
star-forming galaxies. In such galaxies, star-formation occurs in ro-
tationally supported disks. In at least two of our galaxies,the CO(3–
2) spectra show strongly double–peaked line profiles (see Methods).
This and the apparent presence of spatial velocity shear (see Meth-
ods) observed in our analysis of the CO data suggests that thesame
may be true for all thez=1.2-1.3 galaxies in our sample. Therefore,
even though both the SFRs and gas fractions are substantially higher
in these distant galaxies, their star formation likely occurs in rotating
disks, where the physical processes governing the evolution of the gas
appears to be similar to that of spiral galaxies in the local Universe. In
contrast, the SFEs of more luminous, rarer objects (ULIRGs,QSOs,
and submillimetre galaxies [SMGs]) are significantly enhanced in the
local and distant Universe. A prevailing theory is that ULIRGs, QSOs,
and SMGs are a result of increased gas densities from major gas-rich
mergers.33 These conditions seem inconsistent with the galaxies in our
sample, suggesting that major mergers are not common amongst the
main progenitors of Milky Way-mass galaxies atz≃1.2–1.3.
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Figure 3 | The relation between the molecular gas fraction and total stellar
mass in galaxies atz = 1 − 1.5 compared to local galaxies. Here the gas
fraction is defined as the ratioMgas/(Mgas + M∗). The progenitors of Milky
Way-mass galaxies atz = 1.2 − 1.3 are denoted by large, red spirals. The red
bar shows the typical statistical uncertainty,≈30%.. Smaller, yellow circles show
other galaxies atz = 1 − 1.5.7,9,10 The smaller triangles show measurements
for local (z ∼ 0) galaxies with data from the literature, including COLD GASS6

(gray, upward triangles) and the HERA CO line excitation survey5 (black, down-
ward triangles). The region separated by vertical dashed lines shows the stellar
mass range of Milky Way–like galaxies at present.

The inverse of the SFE is proportional to the gas consumption
timescale, which corresponds to a range of 200 to 700 Myr for the
galaxies in our sample. In contrast, the consumption timescales for
ULIRGs, QSOs, and SMGs are less than 10 Myr.32 Star-formation
in the average, main progenitor of Milky Way galaxies atz=1.2–1.3
appears to be long lasting, and comparable to findings for other star-
forming disk galaxies at high redshifts.7–10,18

The CO luminosities imply very high molecular gas fractionsfor
the galaxies in our sample atz=1.2–1.3, where we adopt the ratio of
CO luminosity to mass inH2 gas (Mgas) for Galactic star-forming re-
gions because the SFEs are similar (see Methods). Table 1 lists these
values. Figure 3 shows the molecular gas fractions (fgas = Mgas /
(Mgas +M∗)) derived from CO observations as a function of the stel-
lar mass,M∗. While present day Milky Way–sized galaxies have low
gas fractions,fgas < 10%, the results from our sample imply that the
main progenitors to these galaxies atz = 1.2 − 1.3 have much higher
values: in three of the galaxies in our sample, the moleculargas mass
is greater than or equal to the stellar mass (fgas & 50%). This is con-
sistent with indirect gas fractions of galaxies at these redshifts inferred
from the thermal dust emission.18,34 This argues against models with
early, rapid gas consumption20 and favours longer lasting, feedback–
regulated star-formation.21–23

The high molecular gas fractions and SFRs of thez=1.2–1.3 galax-
ies in our sample imply they will double their stellar mass within the
gas-consumption timescale. Therefore, atz∼1.2 these galaxies have
most, but not all, of the fuel needed to produce theM∗ ≃ 5×1010 M⊙

in stars in Milky Way-mass galaxies at present (see Figure 3). The av-
erage baryon accretion rate from the IGM must exceed 6M⊙ yr−1

at earlier times (z>1.2) to account for the galaxies’ total stellar and
molecular masses. In constrast, the galaxies need only acquire ∼30–
50% more baryonic mass fromz∼1 to the present (even accounting for
losses from stellar evolution), which corresponds to an average gas ac-
cretion rate of only∼1–2M⊙ yr−1. This reflects a dwindling supply
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of fresh baryonic gas. Therefore, Milky Way-mass galaxies appear to
accrete most of their gas atz>1.2, during the first few billion years of
history.
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METHODS

1 ZFOURGE Dataset
We selected the galaxies in our sample from the Fourstar Galaxy

Evolution (ZFOURGE) survey24. The main ZFOURGE survey ob-
tained very deep near-infrared imaging in five medium–band filters
(J1, J2, J3, Hs, Hl) from the FourStar instrument35 on the Mag-
ellan Baade 6.5 m telescope in the three southern fields covered by
CANDELS HST imaging.36,37 The ZFOURGE catalogues combine
the FourStar images with ancillary ground-based imaging (spanning
0.3 – 2.5µm), the CANDELSHST /ACS and WFC3 imaging, and
Spitzer/IRAC imaging (spanning 3.6 – 8.0µm). For this study, we
selected targets from the earlier, version 2.1 ZFOURGE catalogues.
These include photometric redshifts and stellar masses estimated from
the multiwavelength catalogues as described elsewhere.3,38 Of inter-
est here, the catalogues are complete for objects with limiting stellar
masseslogM/M⊙ ≥ 9.0 − 9.2 in the redshift range1.0 < z < 1.5,
well below the stellar masses of the typical progenitor of a Milky-Way-
mass galaxy.3

2 Selection of Milky-Way-Mass Galaxy Progenitors
We selected galaxies as targets for ALMA observations of the

CO(J=3 to 2) transition that have the typical stellar mass and SFRof
progenitors to Milky Way-mass galaxies atz = 1.2 − 1.3. We identi-
fied progenitors of galaxies with the present-day stellar mass of a Milky
Way-mass galaxy (M∗ = 5×1010 M⊙ atz = 0)13,39using abundance-
matching techniques.40 The progenitors to such galaxies had a median
stellar masslogM∗/M⊙ = 10.21 atz = 1.1−1.4.3 These abundance
matching methods give stellar mass≈0.2 dex lower than those selected
at constant co-moving number density at these redshifts.41 More re-
cent work shows that progenitors of Milky Way-mass galaxiesspan
a range of stellar mass atz = 1.2, with a 30th to 70th-tile range of
logM = 10.05 to 10.34, and a median value consistent with the me-
dian above.42 While observations of CO inz > 1 galaxies have probed
stellar masses down tologM∗/M⊙ > 10.4,10 these correspond to
the more massive progenitors of present-day Milky Way-massgalax-
ies. Our sample extends studies of the CO emission to the median
stellar mass of progenitors of present-day Milky Way galaxies.

We also selected galaxies with the typical SFRs of the Milky Way-
mass progenitors for observations with ALMA. In our previous work
we used deepSpitzer and Herschel imaging to measure an average
total IR luminosity,LIR = (2.0 ± 0.1) × 1011 L⊙, for all Milky
Way-mass progenitor galaxies in this redshift and stellar mass range in
ZFOURGE.3 This corresponds to a SFR= 21± 2M⊙ yr−1.

In summary, we used the following criteria to select targetsfor
ALMA:

1. Photometric redshift,1.1 < z < 1.4;
2. Stellar mass,−0.15 < logM∗/M⊙ − 10.2 < +0.15;
3. SFR,−0.15 < log SFR/M⊙ yr−1

− 1.3 < +0.15;
4. measured spectroscopic redshift.

The restrictions on photometric redshift, stellar mass, and SFR select
galaxies with stellar mass and SFR within 0.15 dex (i.e., within 40%)
of the expected median values of the progenitors to Milky Way-mass
galaxies.

The final selection criteria requires that the galaxies havea redshift
measured from spectroscopy. This ensures that the redshiftaccuracy
is sufficient for the redshifted CO(3–2) emission line to fall within the
frequency range of an ALMA spectral window. While the ZFOURGE
photometric redshifts are good (σz/(1 + z) < 1%)24, these are not
sufficient for this purpose.

Of the 24,690 galaxies in the full ZFOURGE catalogue, 39 satisfied
the first three selection criteria. At the time of our proposal for ALMA
for cycle 2 observations (2013 December), 7 galaxies satisfied all our

Supplementary Figure 1| SFR–stellar mass sequence for ZFOURGE galaxies
at 1.1 < z < 1.4. The shading increases with the number density of galaxies in
each bin. The “main sequence” of star-formation is indicated by the dashed line,
and has a slope of SFR∝ M∗.43 The large red stars indicate the four sources
selected as typical of main progenitors of Milky Way-mass galaxies atz = 1.2−
1.3 observed with ALMA here. The yellow circles indicate objects with 1.0 <
z < 1.5 with CO detections from PHIBSS.10

Supplementary Figure 2| IR Spectral Energy Distribution Model Fits to the
far-IR data. The yellow squares show theSpitzer 24µm, andHerschel 70, 100,
and 160µm flux densities measured for each object. Error bars are1σ uncertain-
ties. Downward triangles indicate3σ upper limits for sources detected with S/N
< 3 at that wavelength. The curves show model fits for the Rieke et al.44 (solid
lines) and Chary & Elbaz45 (dot–dashed lines), which bracket the range of values
for total IR luminosity,LIR.

Supplementary Table 1: Summary of Far-IR Flux Densities

ZFOURGE ID: 467 4409 6497 8193
Fν(24µm): 53 (4) 113 (5) 103 (12) 71 (12)
Fν(70µm): <1.2 <0.9 . . . <1.4
Fν(100µm): 1.1 (0.2) 1.2 (0.2) 1.3 (0.3) 1.0 (0.3)
Fν(160µm): <2.0 2.6 (0.3) <1.7 <2.1

Numbers in parentheses are1σ uncertainties. 24µm flux densities are
in units ofµJy. All other flux densities are in units of mJy, where 1µJy
= 10−3 mJy, and 1 mJy =10−26 erg s−1 cm−2 Hz−1. Upper limits are
3σ.
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Supplementary Table 2: Summary of ALMA observations

ZFOURGE Obs. Dates PMVb Tint
c Frequency Range Combined Beamd FWHMe σf

r.m.s.

IDa (mm) (min) (GHz) (km s−1) (mJy beam−1)
CDFS 467 (8769) 2015 Apr 7 3.2 37.3 140.9–156.6 3.′′5× 1.′′3, P.A. =−74.1◦ 240 (120) 0.42
CDFS 4409 (19996) 2015 Apr 7 3.6 37.3 140.9–156.6 2.′′4× 1.′′4, P.A. =−85.8◦ 440 (150) 0.42
CDFS 6497 (24956) 2015 May 2 1.0 37.8 141.3–156.9 2.′′7× 1.′′3, P.A. =−77.9◦,g 310 (50)g 0.33g

2015 May 2 1.5 37.8 141.3–156.9
CDFS 8193 (28279) 2015 Apr 6 4.6 41.8 134.5–149.5 2.′′8× 1.′′4, P.A. =−81.7◦ 54 (16) 0.48

aSource ID in the previous ZFOURGE v2.1 proprietary catalogues used to select targets for ALMA. The numbers in parentheses are the
ZFOURGE source ID in the public v3.4 catalogues.24 bEstimated precipitable water vapour.cOn-source integration time.dFWHM and ori-
entation of cleaned beam (numbers in parentheses are 1σ uncertainties). These are displayed graphically in figure 1. eThe FWHM of the
CO(3-2) line in the measured spectrum.fR.M.S. noise per channel measured in primary-beam corrected data.gFor this object, the beam size,
FWHM, and noise are measured from the combined, 2-epoch dataset.

selection criteria (including having a published spectroscopic redshift
in the literature).25 From these, we selected four objects offering some
contrast in SFR (spanning nearly 0.3 dex). For the analysis in this Let-
ter, we rederived stellar masses and uncertainties using FAST 46 with
an extended stellar population library (including a broader metallicity
range of0.2− 1.0 Z⊙ and a finer grid spacing of star-formation histo-
ries) compared to the one used for the ZFOURGE catalogues.24 These
stellar masses and 68% likelihood range are listed in Table 1, and are
consistent with those in the v2.1 and v3.4 ZFOURGE catalogues.

All four galaxies selected for ALMA observations have properties
characteristic of the typical properties of progenitors toa Milky Way-
mass galaxy atz = 1.2−1.3. Supplementary Figure 1 shows the SFR–
stellar mass relation for galaxies from ZFOURGE with1.1 < z < 1.4.
Galaxies with the stellar mass and and SFR of the Milky Way-mass
progenitors lie on the star-forming “main sequence”,43 and this includes
the four galaxies we observed with ALMA. Therefore, they correspond
to a typical star-forming galaxy at these redshifts. Previous studies of
CO emission in galaxies at these redshifts have been limitedto higher
SFRs (&30M⊙ yr−1) and/or stellar masses (M∗>2.5×1010 M⊙)9,10.
As illustrated in Supplementary Figure 1, the observationsof our sam-
ple with ALMA provide an important extension compared to previous
studies. Furthermore, previous studies required up to 25 hrs of integra-
tion with IRAM PdBI to detect galaxies at these mass and SFR limits.10

Our ALMA observations required only≃40 min, demonstrating the ef-
ficacy of ALMA for this science.

3 Far–IR data and IR Luminosities
The ZFOURGE fields include imaging at far–IR wavelengths from

Spitzer/MIPS (24µm), Herschel/PACS (70, 100, and 160µm). Fluxes
are measured in these data using source detections based on prior lo-
cations of sources inHST /WFC3 F160W (1.6µm) data using meth-
ods identical to those described elsewhere.47–49 We measured flux un-
certainties and evaluated source completeness through extensive ar-
tificial object simulations, following the same proceduresdiscussed
elsewhere49,50 The 24–160µm flux densities for the four objects stud-
ied here are listed in Table S1. (Note that one source, ZFOURGE CDFS
4409, has no coverage by PACS 70µm).

In all cases, the IR flux densities and flux uncer-
tainties that we measure for our sources are consistent
with other published values,47,51 available on the WWW
(http://irsa.ipac.caltech.edu/data/Herschel/PEP). Inmany cases,
our measured flux densities at 70µm and 160µm have S/N<3. While
formally undetected, we include this information in our analysis as
it provides important constraints on the total IR emission from these
galaxies.

To measure total IR luminosities,LIR, we fit models of the IR spec-
tral energy distribution44,45,52to the flux densities in Table S1. Because

the data sample well the Wein side of the thermal emission, the con-
straints on the IR luminosity are quite robust. Supplementary figure 2
shows the fits using the Chary & Elbaz and Rieke et al. models,44,45

which bracket the range of values. The slight differences inIR spec-
tral energy distribution shape lead to systematically different IR lu-
minosities, whereLIR from the Rieke et al. templates are higher by
∆(logLIR) = 0.1–0.2 dex. We have also calculated IR luminosi-
ties ignoring data where objects are detected at<2σ, but this produces
changes in the IR luminosities by<15% in most cases. We therefore
adopt theLIR from the fits to the Rieke et al. models to all the IR data,
which we report in Table 1. If we instead adopt the results from the fits
to the Chary & Elbaz models, the star-formation efficiencies(SFEs)
would decline, and gas consumption timescales would increase for the
z = 1.2 − 1.3 galaxies in our sample studied here. This would bring
the SFEs further in line with local spiral galaxies, strengthening that
conclusion.

The total IR luminosities for thez=1.2–1.3 galaxies in our sample
spanLIR=(1.5 − 3.2)×1011 L⊙, as listed in Table 1. In these galax-
ies, most of the bolometric emission from star formation is emitted in
the thermal IR. In constrast, we measure that the rest-frameUV (un-
corrected for dust extinction) contributes only 4–6% to thetotal SFR
implied by theLIR in these galaxies. This is consistent with mean
values measured in local luminous IR galaxies.53

4 ALMA Observations and Data Reduction
Our Cycle 2 ALMA observations were taken between 2015 April 6

and 2015 May 2 in Band 4 with 36 antennas in the C34-2 configuration,
which provided a maximum baseline of 348.5 m. For each source, we
configured ALMA to observe in four spectral windows, 1.875 GHz per
window, and spanning frequencies 134.48 to 156.90 GHz (depending
on the expected frequency of the CO[3–2] transition for eachsource).
We centered the CO(3–2) line in one of the spectral windows assum-
ing the optical spectroscopic redshift from the literature.25 The ALMA
integrations ranged between 37.3 to 41.8 min on source. One source
(ZFOURGE CDFS 6497) was erroneously observed twice, and re-
ceived double the exposure time. The other spectral windowsprobe
the continuum of the line. Flux, phase, and band-pass calibrators were
also obtained. Supplementary Table 2 provides details about the obser-
vations for each source.

We reduced the data with CASA (Common Astronomy Software
Applications54) version 4.5.0-REL with the calibration script supplied
by the National Radio Astronomy Observatory (NRAO). We thenran
the cleaning algorithm with natural weighting. For the spectral window
containing the CO(3–2) line, we reduced the data with channels of 25
km s−1 and 75 km s−1 with a cell size of0.′′2. The angular sizes of
the cleaned beam FWHM are given in Table S2, and this cell sizegives
6–7 cells along the semi-minor axis of the beam.
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ZFOURGE CDFS 467

Supplementary Figure 3| Spectra of CO(3–2) for thelogM∗/M⊙≃ 10.2 galaxies at redshiftsz = 1.2 to 1.3.In each panel, the spectra are shown in 25 km s−1

channels. For objects ZFOURGE 467 and 4409, the heavier-lined spectra are in 75 km s−1 channels to improve S/N. The yellow-shaded regions indicate channels
where postive emission is detected at the expected locationof the line. In each panel, the velocity is measured relativeto the expected location of the line from the
optical spectroscopic redshift. There are two fits to each CO(3–2) line. The green line shows a model with a single Gaussian. The red line shows a model with two
Gaussians.

We also attempted to measure the continuum for each galaxy by
cleaning and combining the spectral windows excluding channels ex-
pected to have CO emission. We failed to detect any signal of the con-
tinuum; we also therefore made no correction for the continuum to the
CO line fluxes.

Supplementary figure 3 shows the spectra of the CO(J=3–2) emis-
sion for the four galaxies. For each galaxy, there is positive emission in
the channels at the expected location of the CO(3–2) line. Todetermine
the peak of emission we fit the spectra with models using single- and
double-Gaussians. The velocity offsets between the CO redshift and
redshift from the optical spectroscopy range from−30 to +100 km
s−1. This is consistent with uncertainties in the redshift measurements.

We created total intensity maps of the CO(3–2) lines in each
galaxy by combining the channels showing positive emissionaround
the expected position of each line. We also created first moment
(velocity) and second moment (velocity dispersion) maps tostudy
galaxy gas dynamics. From the primary-beam-corrected, total intensity
maps, we measured integrated flux densities for the CO(3–2) transition,
ICO(3−2), for each galaxy in our sample using the two-dimensional
profile fitting tool in CASA. These are presented in Table 1, and range
from ICO(3−2)=0.11–0.33 Jy km s−1. While the S/N of the integrated
values in Table 1 range from 2.3–7.7, the detection significance (mea-
sured from the peak of the emission) is much higher, where theS/N
ranges from 4.8 to 13.7.

As discussed in the next section, the ALMA spectra in Supple-
mentary figure 3 show evidence for complex velocities, except for
ZFOURGE CDFS 467, where the data quality is lower. The spectrum
of this object does show tentative, weak emission to the blueside of
the systemic redshift (at velocities−400 to−200 km s−1). However,
the integrated emission from these channels is not significant, having a
S/N of≃2.0 at the peak. When the emission from the blue-side chan-
nels is summed with that on the red side (where the object is detected),
it lowers the overall significance of the detection from 4.8 to 3.0. We
therefore do not include this emission in the analysis of this object.
However, including it would increase the CO luminosity by a factor of
1.6, making it more consistent with the other objects in the sample.

5 Velocity Shear in CO Emission
Our analysis of the spectra of the CO(3–2) emission in the four

z = 1.2 − 1.3 galaxies in our sample in Supplementary figure 3
shows that in many cases a double–Gaussian model fits better repro-
duce the data than the single–Gaussian models. This is consistent with
the expected signature of rotation. Further evidence comesfrom ob-
servations of velocity shear in the galaxies: some galaxiesshow spa-
tial variations in their velocity components. For three of the galaxies
with the strongest emission, (ZFOURGE CDFS 4409, 6497, 8193) we
measured total CO(3–2) intensity maps separately from the channels
blueward (approaching) and redward (receding) relative tothe velocity
with the minimum emission between the peaks. Two of these galaxies
(ZFOURGE 6497 and 8193) show velocity shear (in the third object the
signal–to–noise is too low to centroid robustly the two separate com-
ponents). Supplementary figure 4 shows there are spatial offsets in the
centroids of the emission in the red and blue components in these galax-
ies. While the beam size precludes accurate modelling of thevelocity
shear, the spatial variations are consistent with rotation.

Taken together, the CO spectra and spatial separation of theap-
proaching and receding velocity components provide reasonable evi-
dence for rotation in thez = 1.2 − 1.3 galaxies in our sample. While
the presence of double-peaked velocity structures in the COspectra
could be expected for merging systems, we consider this unlikely for
two reasons. First, theHST morphologies of the galaxies in our sam-
ple (see Figure 1) show no indications of double nuclei, which would
be expected if a merger was responsible for the CO velocity structure.
Second, the galaxies in our sample lie on the “main-sequence” of the
SFR–M∗ relation (Supplementary figure 1), and they show no indi-
cations of merger–induced starbursts on their star-formation efficien-
cies,LIR/L′(CO) (Figure 2). Direct confirmation of rotation in these
galaxies would require higher spatial resolution kinematic data which
is possible from ALMA in larger configurations, but requiresconsider-
ably more exposure time.

6 Molecular Gas mass from CO emission
The observed CO luminosity is proportional to the total coldmolec-

ular gas mass,Mgas. At the temperatures and pressures of the ISM in
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Supplementary Figure 4| CO(3–2) maps of two galaxies with velocity shear: spatial offsets in their velocity components. The contours show the CO(3–2) emis-
sion from the blue-shifted (approaching) and red-shifted (receding) emission. The contours are overdrawn on the HST/WFC3 F160W images from CANDELS.36,37

our galaxies, we expect that most of the gas exists in the molecular
phase,55 and therefore the molecular gas accounts for the majority of
baryons in the gas phase. The constant of proportionality (the gas-
mass–to–light ratio),αCO, is given by

αCO = Mgas/L
′(CO). (1)

Based on theLIR/L′(CO) ratios, the conditions in thez=1.2–1.3
galaxies in our sample appear similar to normal star-forming regions
and star-forming disk galaxies, which show values ofαCO ∼ 4 M⊙

(K km s−1 pc2)−1,32 and traces the total amount of molecular gas in-
cluding a correction for helium.56 The CO–to–molecular gas conver-
sion factor isα=4.3M⊙ (K km s−1 pc2)−1 for star-forming regions
in the Galaxy and in “normal” star-forming galaxies.56 The galaxies in
our sample haveLIR/L′(CO) ratios consistent with other normal star-
forming galaxies (see figure 2). We therefore adoptαCO = 3.6 M⊙

(K km s−1 pc2)−1 found to apply to normal star-forming (more mas-
sive) galaxies at these redshifts, and contains a calibration uncertainty
of 22%.7

There is evidence that the CO–to–molecular gas ratio,αCO, varies
with metallicity, Z, where the values in the discussion above corre-
spond to Solar values,Z=Z⊙. Theoretical work predicts thatαCO ∝

Z−0.5,57,58 while empirical measurements at redshiftsz > 1 suggest
a possible steeper relation,αCO ∝ Z−1.2 to Z−1.8.59 If the galax-
ies in our ALMA sample haveZ<Z⊙, one may expect an increase
in αCO. Work on the stellar-mass—metallicity (M∗–Z) relation at
0.9 < z < 1.3 shows that star-forming galaxies in the mass range
of our sample should have metallicities between 0.6–1.0Z⊙.60–62 This
implies a higherαCO (and higher gas masses) by at most a factor of
∼2. This would correspond to even more dramatic evolution in the gas
fraction fromz ∼ 1.3 to the present for Milky-way mass galaxies. For
this reason, we adopt the (more conservative) CO–to-molecular gas ra-
tio for Solar metallicity,αCO = 3.6 M⊙(K km s−1 pc2)−1, as stated
in the discussion above.

7 Conventions
Throughout, we assume a Chabrier initial mass function63 when

deriving stellar masses and SFRs. For all cosmological calculations,
we assumeΩm = 0.3, ΩΛ = 0.7, andH0 = 70 km s−1 Mpc−1, con-
sistent with the recent constraints from Planck64 and the local distance
scale.65
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