
The Configurable SAT Solver Challenge (CSSC)
Hutter, F.; Lindauer, M.; Balint, A.; Bayless, S.; Hoos, H.H.; Leyton-Brown, K.

Citation
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H. H., & Leyton-Brown, K. (2017). The
Configurable SAT Solver Challenge (CSSC). Artificial Intelligence, 243, 1-25. Retrieved from
https://hdl.handle.net/1887/58269

Version: Not Applicable (or Unknown)
License:
Downloaded from: https://hdl.handle.net/1887/58269

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/58269

The Configurable SAT Solver Challenge (CSSC)

Frank Huttera, Marius Lindauera, Adrian Balintb, Sam Baylessc, Holger Hoosc,
Kevin Leyton-Brownc

aUniversity of Freiburg, Germany
bUniversity of Ulm, Germany

cUniversity of British Columbia, Vancouver, Canada

Abstract

It is well known that different solution strategies work well for different types
of instances of hard combinatorial problems. As a consequence, most solvers for
the propositional satisfiability problem (SAT) expose parameters that allow them
to be customized to a particular family of instances. In the international SAT
competition series, these parameters are ignored: solvers are run using a single
default parameter setting (supplied by the authors) for all benchmark instances
in a given track. While this competition format rewards solvers with robust
default settings, it does not reflect the situation faced by a practitioner who only
cares about performance on one particular application and can invest some time
into tuning solver parameters for this application. The new Configurable SAT
Solver Competition (CSSC) compares solvers in this latter setting, scoring each
solver by the performance it achieved after a fully automated configuration step.
This article describes the CSSC in more detail, and reports the results obtained
in its two instantiations so far, CSSC 2013 and 2014.

Keywords: Propositional satisfiability, algorithm configuration, empirical
evaluation, competition

1. Introduction

The propositional satisfiability problem (SAT) is one of the most prominent
problems in AI. It is relevant both for theory (having been the first problem
proven to be NP-hard [27]) and for practice (having important applications in
many fields, such as hardware and software verification [19, 72, 26], test-case
generation [79, 24], AI planning [53, 54], scheduling [28], and graph colouring [84]).
The SAT community has a long history of regularly assessing the state of the
art via competitions [50]. The first SAT competition dates back to the year

Email addresses: fh@cs.uni-freiburg.de (Frank Hutter),
lindauer@cs.uni-freiburg.de (Marius Lindauer), adrian.balint@uni-ulm.de (Adrian
Balint), sbayless@cs.ubc.ca (Sam Bayless), hoos@cs.ubc.ca (Holger Hoos),
kevinlb@cs.ubc.ca (Kevin Leyton-Brown)

Preprint submitted to Elsevier August 3, 2016

2002 [76], and the event has been growing over time: in 2014, it had a record
participation of 58 solvers by 79 authors in 11 tracks [13].

In practical applications of SAT, solvers can typically be adjusted to perform
well for the specific type of instances at hand, such as software verification
instances generated by a particular static checker on a particular software
system [3], or a particular family of bounded model checking instances [86]. To
support this type of customization, most SAT solvers already expose a range
of command line parameters whose settings substantially affect most parts
of the solver. Solvers typically come with robust default parameter settings
meant to provide good all-round performance, but it is widely known that
adjusting parameter settings to particular target instance classes can yield
orders-of-magnitude speedups [42, 55, 81]. Current SAT competitions do not
take this possibility of customizing solvers into account, and rather evaluate
solver performance with default parameters.

Unlike the SAT competition, the Configurable SAT Solver Challenge (CSSC)
evaluates SAT solver performance after application-specific customization, thereby
taking into account the fact that effective algorithm configuration procedures
can automatically customize solvers for a given distribution of benchmark in-
stances. Specifically, for each type of instances T and each SAT solver S, an
automated fixed-time offline configuration phase determines parameter settings
of S optimized for high performance on T . Then, the performance of S on T is
evaluated with these settings, and the solver with the best performance wins.

To avoid a potential misunderstanding, we note that for winning the compe-
tition, only solver performance after configuration counts, and that it does not
matter how much performance was improved by configuration. As a consequence,
in principle, even a parameterless solver could win the CSSC if it was very strong:
it would not benefit from configuration, but if it nevertheless outperformed all
solvers that were specially configured for the instance families in a given track,
it would still win that track. (In practice, we have not observed this, since the
improvements resulting from configuration tend to be large.)

The competition conceptually most closely related to the CSSC is the learning
track of the international planning competition (IPC, see, e.g., the description
by Fern et al. [31]1, which also features an offline time-limited learning phase on
training instances from a given planning domain and an online testing phase on a
disjoint set of instances from the same domain. The main difference between this
IPC learning track and the CSSC (other than their focus on different problems)
is that in the IPC learning track every planner uses its own learning method,
and the learning methods thus vary between entries. In contrast, in the CSSC,
the corresponding customization process is part of the competition setup and
uses the same algorithm configuration procedure for each submitted solver. Our
approach to evaluating solver performance after configuration could of course
be transferred to any other competition. (In fact, the 2014 IPC learning track
for non-portfolio solvers was won by FastDownward-SMAC [75], a system that

1http://www.cs.colostate.edu/~ipc2014/

2

http://www.cs.colostate.edu/~ipc2014/

employs a similar combination of general algorithm configuration and a highly
parameterized solver framework as we do in the CSSC.)

In the following, we first describe the criteria we used for the design of
the CSSC (Section 2). Next, we provide some background on the automated
algorithm configuration methods we used when running the competition (Section
3). Then, we discuss the two CSSCs we have held so far (in 2013 and 2014);
we discuss each of these competitions in turn (Sections 4 and 5), including the
specific benchmarks used, the participating solvers, and the results. We describe
two main insights that we obtained from these results:

1. In many cases, automated algorithm configuration found parameter settings
that performed much better than the solver defaults, in several cases
yielding average speedups of several orders of magnitude.

2. Some solvers benefited more from automated configuration than others; as
a result, the ranking of algorithms after configuration was often substan-
tially different from the ranking based on the algorithm defaults (as, e.g.,
measured in the SAT competition).

Finally, we analyze various aspects of these results (Section 6) and discuss the
implications we see for future algorithm development (Section 7).

2. Design Criteria for the CSSC

We organized the CSSC 2013 and 2014 in coordination with the international
SAT competition and presented them in the competition slots at the 2013 and
2014 SAT conferences (as well as in the 2014 FLoC Olympic Games, in which
all SAT-related competitions took part). We coordinated solver submission
deadlines with the SAT competition to minimize overhead for participants, who
could submit their solver to the SAT competition using default parameters and
then open up their parameter spaces for the CSSC.

We designed the CSSC to remain close to the international SAT competition’s
established format; in particular, we used the same general categories: industrial,
crafted, and random, and, in 2014 also random satisfiable. Furthermore, we used
the same input and output formats, the SAT competition’s mature code for
verifying correctness of solver outputs (only for checking models of satisfiable
instances; we did not have a certified UNSAT track), and the same scoring
function (number of instances solved, breaking ties by average runtime).

The main way our setup differed from that of the SAT competition was that
we used a relatively small budget of five minutes per solver run. We based this
choice partly on the fact that many solvers have runtime distributions with
rather long tails (or even heavy tails [35]), and that practitioners often use
many instances and relatively short runtimes to benchmark solvers for a new
application domain. There is also evidence that SAT competition results would
remain quite similar if based on shorter runtimes, but not if based on fewer
instances [44]. Therefore, in order to achieve more robust performance within a
fixed computational budget, we chose to use many test instances (at least 250 for
each benchmark) but relatively low runtime cutoffs per solver run (five minutes).

3

(We also note that a short time limit of five minutes has already been used in the
agile track of the 2014 International Planning Competition.) Due to constraints
imposed by our computational infrastructure, we used a memory limit of 3GB
for each solver run.

To simulate the situation faced by practitioners with limited computational
resources, we limited the computational budget for configuring a solver on a
benchmark with a given configuration procedure to two days on 4 or 5 cores (in
2014 and 2013, respectively). Our results are therefore indicative of what could
be obtained by performing configuration runs over the weekend on a modern
desktop machine.

2.1. Controlled Execution of Solver Runs

Since all configuration procedures ran in an entirely automated fashion,
they had to be robust against any kind of solver failure (segmentation faults,
unsupported combinations of parameters, wrong results, infinite loops, etc.). We
handled all such conditions in a generic wrapper script that used Olivier Roussel’s
runsolver tool [73] to limit runtime and memory, and counted any errors or limit
violations as timeouts at the maximum runtime of 300 seconds. We also kept
track of the rich solver runtime data we gathered in our configuration runs and
made it publicly available on the competition website.

2.2. Choice of Configuration Pipeline

To avoid bias arising from our choice of algorithm configuration method, we
independently used all three state-of-the-art methods applicable for runtime
optimization (ParamILS [47], GGA [1], and SMAC [46], as described in detail
in Section 3). We evaluated the configurations resulting from all configuration
runs on the entire training data set and selected the configuration with the
best training performance. We then executed only this configuration on the
test set to determine the performance of the configured solver. Except where
specifically noted otherwise, all performance data we report in this article is
for this optimized configuration on previously unseen test instances from the
respective benchmark set.

2.3. Pre-submission Bug Fixing

As part of the submission package, we provided solver authors with our
configuration pipeline, so that they could run it themselves to identify bugs
in their solver before submission (e.g., problems due to the choice of non-
default parameters). We also provided some trivial benchmark sets for this
pre-submission preparation, which were not part of the competition.

We did not offer a bug fixing phase after solver submission, except that we
ran a very simple configuration experiment (10 minutes on trivial instances) to
verify that the setup of all participants was correct.

4

2.4. Choice of Benchmarks

We chose the benchmark families for the CSSC to be relatively homogeneous
in terms of the origin and/or construction process of instances in the same
family. Typically, we selected benchmark families that are neither too easy (since
speedups are less interesting for easy instances), nor too hard (so that solvers
could solve a large fraction of instances within the available computational
budgets). We aimed for benchmark sets of which at least 20-40% could be solved
within the maximum runtime on a recent machine by the default configuration
of a SAT solver that would perform reasonably well in the SAT competition. We
also aimed for benchmark sets with a sufficient number of instances to safeguard
against over-tuning; in practice, the smallest datasets we used had 500 instances:
250 for training and 250 for testing.

We did not disclose which benchmark sets we used until the competition
results were announced. While we encouraged competition entrants to also
contribute benchmarks, we made sure to not substantially favor any solver by
using such contributed benchmarks.

3. Automated Algorithm Configuration Procedures

The problem of finding performance-optimizing algorithm parameter settings
arises for many computational problems. In recent years, the AI community
has developed several dedicated systems for this general algorithm configuration
problem [47, 1, 57, 46].

We now describe this problem more formally. Let A be an algorithm having
n parameters with domains Θ1, . . . ,Θn. Parameters can be real-valued (with
domains [a, b], where a, b ∈ R and a < b), integer-valued (with domains [i, j],
where i, j ∈ Z and i < j), or categorical (with finite unordered domains, such as
{red, blue, green}). Parameters can also be conditional on an instantiation of
other (so-called parent) parameters; as an example, consider the parameters of a
heuristic mechanism h, which are completely ignored unless h is chosen to be
used by means of another, categorical parameter. Finally, some combinations of
parameter instantiations can be labelled as forbidden.

Algorithm A’s configuration space Θ then consists of all possible combinations
of parameter values: Θ = Θ1 × · · · ×Θn. We refer to elements θ = 〈θ1, . . . , θn〉
of this configuration space as parameter configurations, or simply configurations.
Given a benchmark set Π and a performance metric m(θ, π) capturing the
performance of configuration θ ∈ Θ on problem instance π ∈ Π, the algorithm
configuration problem then aims to find a configuration θ ∈ Θ that minimizes

5

m over Π, i.e., that minimizes2

f(θ) =
1

|Π|
·
∑
π∈Π

m(θ, π).

In the CSSC, the specific metric m we optimized was penalized average runtime
(PAR-10), which counts runs that exceed a maximal cutoff time κmax without
solving the given instance as 10 · κmax. We terminated individual solver runs as
unsuccessful after κmax = 300 seconds.

We refer to an instance of the algorithm configuration problem as a configu-
ration scenario and to a method for solving the algorithm configuration problem
as a configuration procedure (or a configurator), in order to avoid confusion with
the solver to be optimized (which we refer to as the target algorithm) and the
problem instances the solver is being optimized for.

Algorithm configuration has been demonstrated to be very effective for op-
timizing various SAT solvers in the literature. For example, Hutter et al. [42]
configured the algorithm Spear [5] on formal verification instances, achieving
a 500-fold speedup on software verification instances generated with the static
checker Calysto [3] and a 4.5-fold speedup on IBM bounded model checking
instances by Zarpas [86]. Algorithm configuration has also enabled the develop-
ment of general frameworks for stochastic local search SAT solvers that can be
automatically instantiated to yield state-of-the-art performance on new types
of instances; examples for such frameworks are SATenstein [55] and Captain
Jack [81].

While all of these applications used the local-search based algorithm configu-
ration method ParamILS [47], in the CSSC we wanted to avoid bias that could
arise from commitment to one particular algorithm configuration method and
thus used all three existing general algorithm configuration methods for runtime
optimization: ParamILS , GGA [1], and SMAC [46].3 We refer the interested
reader to Appendix B for details on each of these configurators. Here, we only
mention some details that were important for the setup of the CSSC:

• ParamILS does not natively support parameters specified only as real-
or integer-valued intervals, but requires all parameter values to be listed
explicitly; for simplicity, we refer to the transformation used to satisfy
this requirement as discretization. When multiple parameter spaces were
available for a solver, we only ran ParamILS on the discretized version,
whereas we ran GGA and SMAC on both the discretized and the non-
discretized versions.

2An alternative definition considers the optimization of expected performance across a
distribution of instances rather than average performance across a set of instances [47]. What
we consider here can be seen as a special case where the distribution is uniform over a given
set of training instances. It is also possible to optimize performance metrics other than mean
performance across instances, but mean performance is by far the most widely used option.

3We did not use the iterated racing method I/F-Race [57], since it does not effectively
support runtime optimization and its authors thus discourage its use for this purpose (personal
communication with Manuel López-Ibáñez and Thomas Stützle).

6

Benchmark #Train #Test #Variables #Clauses Reference

SWV 302 302 68.9k± 57.0k 182k± 206k [4]
IBM 383 302 96.4k± 170k 413k± 717k [86]
Circuit Fuzz 299 302 5.53k± 7.45k 18.8k± 25.3k [23]
BMC 807 302 446k± 992k 1.09m± 2.70m [18]

GI 1032 351 11.2k± 17.8k 2.98m± 8.03m [68, 83]
LABS 350 351 75.9k± 75.7k 154k± 153k [69]

K3 300 250 262± 43 1116± 182 [11]
unif-k5 300 250 50± 0 1056± 0 –
5sat500 250 250 500± 0 10000± 0 [81]

Table 1: Overview of benchmark sets used in the CSSC 2013 tracks Industrial
SAT+UNSAT , crafted SAT+UNSAT , and Random SAT+UNSAT (from top to
bottom); k and m stand for factors of one thousand and one million, respectively.

• ParamILS and SMAC have been shown to benefit substantially from
multiple independent runs, since they are randomized algorithms. Given k
cores, the usual approach is simply to execute k independent configurator
runs and pick the configuration from the one with best performance on the
training set. GGA, on the other hand, can use multiple cores on a single
machine, and in fact requires these to run effectively. Therefore, given k
available cores per configuration approach, we used k independent runs of
each ParamILS and SMAC , and one run using all k cores for GGA.

• GGA could not handle the complex parameter conditionalities found in
some solvers; for those solvers, we only ran ParamILS and SMAC .

4. The Configurable SAT Solver Challenge 2013

The first CSSC4 was held in 2013. It featured three tracks mirroring those
of the SAT competition: Industrial SAT+UNSAT , crafted SAT+UNSAT , and
Random SAT+UNSAT . Table 1 lists the benchmark families we used in each of
these tracks, all of which are described in detail in Appendix A. Within each
track, we used the same number of test instances for each benchmark family,
thereby weighting each equally in our analysis.

4.1. Participating Solvers and Their Parameters

Table 2 summarizes the solvers that participated in the CSSC 2013, along
with information on their configuration spaces. The eleven submitted solvers
ranged from complete solvers based on conflict-directed clause learning (CDCL;
[10]) to stochastic local search (SLS; [40]) solvers. The degree of parameterization

4http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/

7

http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/

Solver # Parameters # Configurations Reference
c i r cond. original discretized disc. subset

Gnovelty+GCa 2 0 0 0 110 – – [29]
Gnovelty+GCwa 2 0 0 0 110 – – [29]
Gnovelty+PCL 5 0 0 0 20 000 – – [29]
Simpsat 5 0 0 0 2 400 – – [36]
Sat4j 10 0 0 4 2× 107 – – [14]
Solver43 12 0 0 0 5× 106 – – [6]
Forl-nodrup 44 0 0 0 3× 1018 – – [78]
Clasp-2.1.3 42 34 7 60 ∞ 1045 – [33]
Riss3g 125 0 0 107 2× 1053 – – [63]
Riss3gExt 193 0 0 168 2× 1082 – – [63]
Lingeling 102 139 0 0 1× 10974 1× 10136 2× 1039 [16]

Table 2: Overview of solvers in the Configurable SAT Solver Challenge (CSSC)
2013 and their parameters of various types (‘c’ for categorical, ‘i’ for integer, ‘r’
for real-valued’); ‘cond’ identifies how many of these parameters are conditional.
We also list the sizes of the configuration spaces provided by the solver developers
(original, discretized, and the subset of the discrete parameters). Solvers are
ordered by the total number of parameters they expose (c+ i+ r).

varied substantially across these submitted solvers, from 2 to 241 parameters.
We briefly discuss the main features of the solvers’ parameter configuration
spaces, ordering solvers by their number of parameters.

Gnovelty+GCa and Gnovelty+GCwa [29] are closely related SLS solvers. Both
have two numerical parameters: the probability of selecting false clauses randomly
and the probability of smoothing clause weights. The parameters were pre-
discretized by the solver developer to 11 and 10 values, yielding 110 possible
combinations.

Gnovelty+PCL [29] is an SLS solver with five parameters: one binary parameter
(determining whether the stagnation path is dynamic or static) and four numerical
parameters: the length of the stagnation path, the size of the time window
storing stagnation paths, the probability of smoothing stagnation weights, and
the probability of smoothing clause weights. All numerical parameters were
pre-discretized to ten values each by the solver developer, yielding 20 000 possible
combinations.

Simpsat [36] is a CDCL solver based on Cryptominisat [77], which adds additional
strategies for explicitly handling XOR constraints [37]. It has five numerical
parameters that govern both these XOR constraint strategies and the frequency
of random decisions. All parameters were pre-discretized by the solver developer,
yielding 2 400 possible combinations.

8

Sat4j [14] is full-featured library of solvers for Boolean satisfiability and opti-
mization problems. For the contest, it applied its default CDCL SAT solver with
ten exposed parameters: four categorical parameters deciding between different
restart strategies, phase selection strategies, simplifications, and cleaning; and
six numerical parameters pre-discretized by its developer.

Solver43 [6] is a CDCL solver with 12 parameters: three categorical parameters
concerning sorting heuristics used in bounded variable eliminiation, in definitions
and in adding blocked clauses; and nine numerical parameters concerning various
frequencies, factors, and limits. All parameters were pre-discretized by the solver
developer.

Forl-nodrup [78] is a CDCL solver with 44 parameters. Most notably, these
control variable selection, Boolean propagation, restarts, and learned clause
removal. About a third of the parameters are numerical (particularly most
of those concerning restarts and learned clause removal); all parameters were
pre-discretized by the solver developer.

Clasp-2.1.3 [33] is a solver for the more general answer set programming (ASP)
problem, but it can also solve SAT, MAXSAT and PB problems. As a SAT solver,
Clasp-2.1.3 is a CDCL solver with 83 parameters: 7 for pre-processing, 14 for the
variable selection heuristic, 18 for the restart policy, 34 for the deletion policy, and
10 for a variety of other uses. The configuration space is highly conditional, with
several top-level parameters enabling or disabling certain strategies. Clasp-2.1.3
exposes both a mixed continuous/discrete parameter configuration space and a
manually-discretized one.

Riss3g [63] is a CDCL solver with 125 parameters. These include 6 numerical
parameters from MiniSAT [30], 10 numerical parameters from Glucose [2], 17
mostly numerical Riss3G parameters, and 92 parameters controlling preprocess-
ing/inprocessing performed by the integrated Coprocessor [62]. The inprocessor
parameters resemble those in Lingeling [16], emphasizing blocked clause elim-
ination [51], bounded variable addition [65], and probing [61]. About 50 of
the parameters are Boolean, and most others are numerical parameters pre-
discretized by the solver developer. The parameter space is highly conditional,
with inprocessor parameters dependent on a switch turning them on alongside
various other dependencies. Indeed, there are only 18 unconditional parameters.
Finally, there are also seven forbidden parameter combinations that ascertain
various switches are turned on if inprocessing is used.

Riss3gExt [63] is an experimental extension of Riss3g . It exposes all of the
parameters previously discussed for Riss3g , along with an additional 11 Riss3G
parameters and 57 inprocessing parameters. Its developer implemented all
of these extensions in one week and did not have time for extensive testing
before the CSSC; therefore, he submitted Riss3gExt as closed source, making it
ineligible for medals. We discuss the results of this closed-source solver separately,

9

in Appendix C.

Lingeling [16] is a CDCL solver with 241 parameters (making it the solver with
the largest configuration space in the CSSC 2013). 102 of these parameters
are categorical, and the remaining 139 are integer-valued (76 of them with the
trivial upper bound of max-integer, 231 − 1). Lingeling parameterizes many
details of the solution process, including probing and look-ahead (about 25
mostly numerical parameters), blocked clause elimination and bounded variable
elimination (about 20 mostly categorical parameters each), glue clauses (about
15 mostly numerical parameters), and a host of other mechanisms parameterized
by about 5–10 parameters each. Lingeling exposes its full parameter space, a
discretized version of all parameters, and a subspace of only the categorical
parameters (102 of them).

4.2. Configuration Pipeline

We executed this competition on the QDR partition of the Compute Canada
Westgrid cluster Orcinus. Each node in this cluster was provisioned with 24 GB
memory and two 6-core, 2.66 GHz Intel Xeon X5650 CPUs with 12 MB L2 cache
each, and ran Red Hat Enterprise Linux Server 5.5 (kernel 2.6.18, glibc 2.5).

In this first edition of the CSSC, we were unfortunately unable to run GGA.
This was because it requires multiple cores for effective runtime minimization,
and the respective multiple-core jobs we submitted on the Orcinus cluster were
stuck in the queue for months without getting started. (Single-core runs, on the
other hand, were often scheduled within minutes.)

We thus limited ourselves to using ParamILS for the discretized parameter
space of each of the 11 solvers and SMAC for each of the parameter spaces that
solver authors submitted (as discussed above, 9 submissions with one parameter
space, 1 submission with two, and 1 submission with three, i.e., 14 in total). For
each of the nine benchmark families, this gave rise to 11 configuration scenarios
for ParamILS and 14 for SMAC , for a total of 225 configuration scenarios. Since
our budget for each configuration procedure was two CPU days on five cores
(five independent runs of ParamILS and SMAC , respectively), the competition’s
configuration phase required a total of 2250 CPU days (just over 6 CPU years).
Thanks to a special allocation on the Orcinus cluster, we were able to complete
this phase within a week.

Following standard practice, we then evaluated the configurations resulting
from all configuration runs on the entire training data set and selected the
configuration with the best training performance. We then executed only this
configuration on the test set to assess the performance of the configured solver.
This evaluation phase required much less time than the configuration phase.

We note that all scripts we used for performing the configuration and anal-
ysis experiments were written in Ruby and are available for download on the
competition website.

10

Rank Industrial SAT+UNSAT crafted SAT+UNSAT Random SAT+UNSAT

1st Lingeling Clasp-3.0.4-p8 Clasp-3.0.4-p8
2nd Riss3g Forl-nodrup Lingeling
3rd Solver43 Lingeling Riss3g

Table 3: Winners of the three tracks of CSSC 2013.

4.3. Results

For each the three tracks of CSSC 2013, we configured each of the eleven
submitted solvers for each of the benchmark families within the track and
aggregated results across the respective test instances. We show the winners in
Table 3 and discuss the results for each track in the following sections. Additional
details, tables, and figures are provided in an accompanying technical report [43].

We remind the reader that the CSSC score only depends on how well the
configured solver did and not on the difference between default and configured
performance. We nevertheless still cover default performance prominently in the
following results, in order to emphasize the impact configuration had and the
difference between the CSSC and standard solver competitions (e.g., the SAT
competition).

4.3.1. Results of the Industrial SAT+UNSAT Track

Our Industrial SAT+UNSAT track consisted of the four industrial bench-
marks detailed in Appendix A.1: Bounded Model Checking 2008 (BMC) [15],
Circuit Fuzz [23], Hardware Verification (IBM) [86], and SWV [4].

Figure 1 visualizes the results of the configuration process for the winning
solver Lingeling on these four benchmark sets. It demonstrates that even
Lingeling , a highly competitive solver in terms of default performance, can be
configured for improved performance on a wide range of benchmarks. We note
that for the easy benchmark SWV, configuration sped up Lingeling by a factor of
20 (average runtime 3.3s vs 0.16s), and that for the harder Circuit Fuzz instances,
it nearly halved the number of timeouts (39 vs 20). The improvements were
smaller for more traditional hardware verification instances (IBM and BMC)
similar to those used to determine Lingeling ’s default parameter settings.

Table 4 summarizes the results of the ten solvers that were eligible for
medals. From this table, we note that, like Lingeling , many other solvers
benefited from configuration. Indeed, some solvers (in particular Forl-nodrup and
Clasp-3.0.4-p8) benefited much more from configuration on the BMC instances,
largely because their default performance was worse on this benchmark. On the
other hand, Riss3g featured stronger default performance than Lingeling but
did not benefit as much from configuration.

Table 4 also aggregates results across the four benchmark families to yield
the overall results for the Industrial SAT+UNSAT track. These results show
that many solvers benefited substantially from configuration, and that some
benefited more than others, causing the CSSC ranking to differ substantially
from the ranking according to default solver performance; for instance, based

11

Results for CSSC 2013 Industrial SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100
C

o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) BMC
PAR-10: 302→ 282

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) Circuit Fuzz
PAR-10: 409→ 241

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) IBM
PAR-10: 694→ 692

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(d) SWV
PAR-10: 3.32→ 0.16

Figure 1: Speedups achieved by configuration of Lingeling. For each benchmark,
we show scatter plots of solver defaults vs. configured parameter settings.

#timeouts default → # timeouts configured (on test set) Rank
BMC Circuit Fuzz IBM SWV Overall def CSSC

Lingeling 28→ 26 39→ 20 69→ 69 0→ 0 136→ 115 4 1
Riss3g 32→ 30 20→ 18 70→ 69 0→ 0 122→ 117 1 2
Solver43 30→ 30 20→ 20 77→ 77 0→ 0 127→ 127 2 3
Forl-nodrup 50→ 36 33→ 23 69→ 69 0→ 0 152→ 128 5 4
Simpsat 38→ 35 26→ 24 70→ 69 0→ 0 134→ 128 3 5
Clasp-3.0.4-p8 66→ 42 26→ 17 71→ 71 0→ 0 163→ 130 6 6
Sat4j 70→ 70 36→ 30 77→ 76 1→ 0 184→ 176 7 7
Gnovelty+GCwa 291→ 285 301→ 295 295→ 295 244→ 215 1131→ 1090 10 8
Gnovelty+PCL 289→ 288 302→ 302 295→ 294 215→ 215 1101→ 1099 8 9
Gnovelty+GCa 291→ 290 300→ 302 295→ 295 243→ 217 1129→ 1104 9 10

Table 4: Results for CSSC 2013 competition track Industrial SAT+UNSAT. For
each solver and benchmark, we show the number of test set timeouts achieved
with the default and the configured parameter setting, bold-facing the better
one; we broke ties by the solver’s average runtime (not shown for brevity). We
aggregated results across all benchmarks to compute the final ranking.

12

Results for CSSC 2013 crafted SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100
C

o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) Graph Isomorphism (GI)
PAR-10: 362→ 65

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) Low Autocorrelation Binary
Sequence (LABS).

PAR-10: 837→ 779

Figure 2: Speedups achieved by configuration of Clasp-3.0.4-p8 on the CSSC
2013 crafted SAT+UNSAT track. We show scatter plots of default vs. config-
ured versions of Clasp-3.0.4-p8 .

#TOs default → #TOs configured (on test set) Rank
GI LABS Overall def CSSC

Clasp-3.0.4-p8 42→ 6 97→ 90 139→ 96 2 1
Forl-nodrup 40→ 7 95→ 91 135→ 98 1 2
Lingeling 43→ 10 105→ 97 148→ 107 3 3
Riss3g 51→ 42 97→ 89 148→ 131 4 4
Simpsat 42→ 42 107→ 107 149→ 149 5 5
Solver43 66→ 65 90→ 87 156→ 152 6 6
Sat4j 62→ 57 110→ 104 172→ 161 7 7
Gnovelty+GCwa 180→ 180 195→ 154 375→ 334 8 8
Gnovelty+GCa 183→ 180 240→ 173 423→ 353 10 9
Gnovelty+PCL 179→ 178 199→ 183 378→ 361 9 10

Table 5: Results for CSSC 2013 competition track crafted SAT+UNSAT.
For each solver and benchmark, we show the number of test set timeouts
achieved with the default and the configured parameter setting, bold-facing
the better one. We aggregated results across all benchmarks to compute the
final ranking.

on default performance, the overall winning solver, Lingeling , would have only
ranked fourth.

4.3.2. Results of the crafted SAT+UNSAT Track

The crafted SAT+UNSAT track consisted of the two crafted benchmarks
detailed in Appendix A.2: Graph Isomorphism (GI) and Low Autocorrelation

13

Binary Sequence (LABS).
Figure 2 visualizes the improvements algorithm configuration yielded for the

best-performing solver Clasp-3.0.4-p8 on these benchmarks. Improvements were
particularly large on the GI instances, where algorithm configuration decreased
the number of timeouts from 42 to 6. Table 5 summarizes the results we obtained
for all solvers on these benchmarks, showing that configuration also substantially
improved the performance of many other solvers. The table also aggregates
results across both benchmark families to yield overall results for the crafted
SAT+UNSAT track. While Forl-nodrup showed the best default performance
and benefited substantially from configuration (#timeouts reduced from 135 to
98), Clasp-3.0.4-p8 improved even more (#timeouts reduced from 139 to 96).

4.3.3. Results of the Random SAT+UNSAT Track

The Random SAT+UNSAT track consisted of three random benchmarks
detailed in Appendix A.3: 5sat500 , K3 , and unif-k5 . The instances in 5sat500
were all satisfiable, those in unif-k5 all unsatisfiable, and those in K3 were mixed.

Table 6 summarizes the results for these benchmarks. It shows that the
unif-k5 benchmark set was very easy for complete solvers (although configuration
still yielded up to 4-fold speedups), that the K3 benchmark was also quite easy
for the best solvers, and that only the SLS solvers could tackle benchmark
5sat500 , with configuration making a big difference to performance.

Here again, our aggregate results demonstrate that rankings were substantially
different between the default and configured versions of the solvers: the three
solvers with top default performance were ranked 4th to 6th in the CSSC,
and vice versa. Figure 3 visualizes the very substantial speedups achieved by
configuration for the winning solver Clasp-3.0.4-p8 on K3 and unif-k5 , and for
the SLS solver Gnovelty+GCa on 5sat500 .

5. The Configurable SAT Solver Challenge 2014

The second CSSC5 was held in 2014. Compared to the inaugural CSSC in
2013, we improved the competition design in several ways:

• We used a different computer cluster,6 enabling us to run GGA as one of
the configuration procedures.

• We added a Random SAT track to facilitate comparisons of stochastic
local search solvers.

• We dropped the (too easy) SWV benchmark family and introduced four
new benchmark families, yielding a total of three benchmark families in
each of the four tracks, summarized in Table 7 and described in detail in
Appendix A.

5http://aclib.net/cssc2014/
6We executed this competition on the META cluster at the University of Freiburg, whose

compute nodes contained 64GB of RAM and two 2.60GHz Intel Xeon E5-2650v2 8-core CPUs
with 20 MB L2 cache each, running Ubuntu 14.04 LTS, 64bit.

14

http://aclib.net/cssc2014/

Results for CSSC 2013 Random SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) Gnovelty+GCa on
5sat500

PAR-10: 1997→ 77

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) Clasp-3.0.4-p8 on K3
PAR-10: 158→ 2.79

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) Clasp-3.0.4-p8 on unif-k5
PAR-10: 1.44→ 0.37

Figure 3: Speedups achieved by configuration on the CSSC 2013 Random
SAT+UNSAT track. We show scatter plots of default vs. configured solvers..

#TOs default → #TOs configured (on test set) Rank
5sat500 K3 unif-k5 Overall def CSSC

Clasp-3.0.4-p8 250→ 250 11→ 0 0→ 0 261→ 250 6 1
Lingeling 250→ 250 8→ 0 0→ 0 258→ 250 4 2
Riss3g 250→ 250 10→ 0 0→ 0 260→ 250 5 3
Solver43 250→ 250 6→ 3 0→ 0 256→ 253 2 4
Simpsat 250→ 250 4→ 4 0→ 0 254→ 254 1 5
Sat4j 250→ 250 7→ 5 0→ 0 257→ 255 3 6
Forl-nodrup 250→ 250 39→ 8 0→ 0 289→ 258 7 7
Gnovelty+GCwa 8→ 1 124→ 124 250→ 250 382→ 375 8 8
Gnovelty+GCa 163→ 4 124→ 124 250→ 250 537→ 378 9 9
Gnovelty+PCL 250→ 11 124→ 124 250→ 250 624→ 385 10 10

Table 6: Results for CSSC 2013 competition track Random SAT+UNSAT.
For each solver and benchmark, we show the number of test set timeouts
achieved with the default and the configured parameter setting, bold-facing
the better one. Results were aggregated across all benchmarks to compute
the final ranking. We broke ties by the solver’s average runtime. While we do
not show runtimes for brevity, the runtimes important for the ranking were
the average runtimes of the top 3 solvers on the union of K3 and unif-k5 :
1.58s (Clasp-3.0.4-p8), 4.20s (Lingeling), and 7.68s (Riss3g).

• We let solver authors decide which tracks their solver should run in.

• For fairness, for each solver, we performed the same number of configuration
experiments. (This is in contrast to 2013, where we performed the same
number of configuration runs for every configuration space of every solver,
which lead to a larger combined configuration budget for solvers submitted
with multiple configuration spaces).

• We kept track of all of the (millions of) solver runs performed during the

15

Benchmark #Train #Test #Variables #Clauses Reference

IBM 383 302 96.4k± 170k 413k± 717k [86]
Circuit Fuzz 299 302 5.53k± 7.45k 18.8k± 25.3k [23]
BMC 604 302 424k± 843k 1.03m± 2.30m [18]

GI 1032 351 11.2k± 17.8k 2.98m± 8.03m [68, 83]
LABS 350 351 75.9k± 75.7k 154k± 153k [69]
N-Rooks 484 351 38.2k± 37.4k 125k± 126k [67]

K3 300 250 262± 43 1116± 182 [11]
3cnf 500 250 350± 0 1493± 0 [12]
unif-k5 300 250 50± 0 1056± 0 –

3sat1k 250 250 500± 0 10000± 0 [81]
5sat500 250 250 1000± 0 4260± 0 [81]
7sat90 250 250 90± 0 7650± 0 [81]

Table 7: Overview of benchmark sets used in the CSSC 2014 tracks Industrial
SAT+UNSAT , crafted SAT+UNSAT , Random SAT+UNSAT , and Random
SAT (from top to bottom); k and m stand for factors of one thousand and one
million, respectively.

Solver # Parameters # Configurations Categories Ref.
c i r cond. discretized original

DCCASat+march-rw 1 0 0 0 9 9 Random [60]
CSCCSat2014 3 0 0 0 567 567 Random SAT [59, 60]
ProbSAT 5 1 3 4 1× 105 ∞ Random SAT [9]
Minisat-HACK-999ED 10 0 0 3 8× 105 8× 105 All categories [71]
YalSAT 16 10 0 0 5× 106 2× 1072 Crafted&Random SAT [17]
Cryptominisat 14 15 7 2 3× 1024 ∞ Industrial & Crafted [77]
Clasp-3.0.4-p8 38 30 7 55 1× 1049 ∞ All categories [33]
Riss-4.27 214 0 0 160 5× 1086 5× 1086 All but Random SAT [64]
SparrowToRiss 170 36 16 176 1× 10112 ∞ All categories [8]
Lingeling 137 186 0 0 1× 1053 2·101341 All categories [17]

Table 8: Overview of solvers in the CSSC 2014 and their parameters of various
types (‘c’ for categorical, ‘i’ for integer, ‘r’ for real-valued’); ‘cond’ identifies
how many of these parameters are conditional. For each solver, we also list the
sizes of the original configuration space submitted by solver developers and of
a discretized version, as well as the categories in which the solver participated.
Solvers are ordered by the number of parameters they expose (c+ i+ r).

configuration process and made all information about errors available to
solver developers after the competition.

5.1. Participating Solvers

The ten solvers that participated in the CSSC 2014 are summarized in Table 8;
they included CDCL, SLS and hybrid solvers. These solvers differed substantially
in their degree of parameterization, with the number of parameters ranging

16

from 1 to 323. We briefly discuss the main features of each solver’s parameter
configuration space, ordering solvers by their number of parameters.

DCCASat+march-rw [60] combines the SLS solver DCCASat with the CDCL
solver march-rw. It was submitted to the Random SAT+UNSAT track. Its only
(continuous) parameter is the time ratio of the SLS solver. This parameter was
pre-discretized to nine values.

CSCCSat2014 [59, 60] is an SLS solver based on configuration checking and
dynamic local search methods. It was submitted to the Random SAT track.
It features 3 continuous parameters that were pre-discretized to 7, 9, and 9
values each, giving rise to a total configuration space of 567 possible parameter
configurations. The parameters control the weighting of the dynamic local search
part and the probabilities for the linear make functions used in the random walk
steps.

ProbSAT [9] is a simple SLS solver based on probability distributions that
are built from simple features, such as the make and break of variables [9].
ProbSAT ’s 9 parameters control the type and the parameters of the probability
distribution, as well as the type of restart. ProbSAT was submitted to the
Random SAT track.

Minisat-HACK-999ED [71] is a CDCL solver; it was submitted to all tracks.
It has one categorical parameter (whether or not to use the Luby restarting
strategy) and 9 numerical parameters fine-tuning the Luby and geometric restart
strategies, as well as controlling clause removal and the treatment of glue clauses.
3 of these 9 numerical parameters are conditional on the choice of the Luby
restart strategy, and all numerical parameters were pre-discretized by the solver
developer. There are also 3 forbidden parameter combinations derived from a
weak inequality constraint between two parameter values.

YalSAT [17] is an SLS solver; it was submitted to the tracks crafted SAT+UNSAT
and Random SAT . It has 27 parameters that parameterize the solver’s restart
component (7 parameters) amongst many other components. 11 of the 27
parameters are numerical, with 6 of them having a trivial upper bound of
max-integer (231 − 1).

Cryptominisat [77] is a CDCL solver; it was submitted to the tracks Industrial
SAT+UNSAT and crafted SAT+UNSAT . It has 29 parameters that control
restarts (6 mostly numerical parameters), clause removal (7 mostly numerical
parameters), variable branching and polarity (3 parameters each), simplification
(5 parameters), and several other mechanisms. 2 of the numerical parameters
further parameterize the blocking restart mechanism and are thus conditional
on that mechanism being selected.

Clasp-3.0.4-p8 [33] is a solver for the more general answer set programming

17

(ASP) problem, but it can also solve SAT, MAXSAT and PB problems. It is
fundamentally similar to the solver submitted in 2013; changes in the new version
focused on the ASP solving part rather than the SAT solving part. As a SAT
solver, Clasp-3.0.4-p8 has 75 parameters, of which 7 control preprocessing, 14
variable selection, 19 the restart policy, 28 the deletion policy and 7 miscellaneous
other mechanisms. The configuration space is highly conditional, with several
top-level parameters enabling or disabling certain strategies. Finally, there are
also 2 forbidden parameter combinations that prevent certain combinations of
deletion strategies. Clasp-3.0.4-p8 exposes both a mixed continuous/discrete
parameter configuration space and a manually-discretized one. It was submitted
to all tracks.

Riss-4.27 [64] is a CDCL solver submitted to all tracks except Random SAT .
Compared to the 2013 version Riss3g , it almost doubled its number of param-
eters, yielding 214 parameters organized into 121 simplification and 93 search
parameters. In particular, it added many new preprocessing and inprocessing
techniques, including XOR handling (via Gaussian elimination [37]), and extract-
ing cardinality constraints [20]. Roughly half of the simplification parameters
and a third of the search parameters are categorical (in both cases most of
the categoricals are binary). The simplification parameters comprise about
20 Boolean switches for preprocessing techniques and about 100 in-processor
parameters, prominently including blocked clause elimination, bounded variable
addition, equivalance elimination [34], numerical limits, probing, symmetry break-
ing, unhiding [39], Gaussian elimination, covered literal elimination [66], and
even some stochastic local search. The search parameters parameterize a wide
range of mechanisms including variable selection, clause learning and removal,
restarts, clause minimization, restricted extended resolution, and interleaved
clause strengthening.

SparrowToRiss [8] combines the SLS solver Sparrow with the CDCL solver
Riss-4.27 by first running Sparrow, followed by Riss-4.27 . It was submitted
to all tracks. SparrowToRiss’s configuration space is that of Riss-4.27 plus 6
Sparrow parameters and 2 parameters controlling when to switch from Sparrow
to Riss-4.27 : the maximal number of flips for Sparrow (by default 500 million)
and the CPU time for Sparrow (by default 150 seconds). Also, in contrast to
Riss-4.27 , SparrowToRiss does not pre-discretize its numerical parameters, but
expresses them as 36 integer and 16 continuous parameters.

Lingeling [17] is a successor to the 2013 version; it was submitted to the tracks
Industrial SAT+UNSAT and crafted SAT+UNSAT . Compared to 2013, Lin-
geling ’s parameter space grew by roughly a third, to a total of 323 parameters
(meaning that again, Lingeling was the solver with the most parameters). As
in 2013, roughly 40% of these parameters were categorical and the rest integer-
valued (many with a trivial upper bound of max-integer, 231 − 1). Notable
groups of parameters that were introduced in the 2014 version include additional
preprocessing/inprocessing options and new restart strategies.

18

Rank Industrial SAT+UNSAT crafted SAT+UNSAT Random SAT+UNSAT Random SAT

1st Lingeling Clasp-3.0.4-p8 Clasp-3.0.4-p8 ProbSAT
2nd Minisat-HACK-999ED Lingeling DCCASat+march-rw SparrowToRiss
3rd Clasp-3.0.4-p8 Cryptominisat Minisat-HACK-999ED CSCCSat2014

Table 9: Winners of the four tracks of CSSC 2014.

5.2. Configuration Pipeline

In the CSSC 2014, we used the configurators ParamILS , GGA, and SMAC .
For each benchmark and solver, we ran GGA and SMAC on the solver’s full
configuration space, which could contain an arbitrary combination of numerical
and categorical parameters. We also ran all configurators on a discretized version
of the configuration space (automatically constructed unless provided by the
solver authors), yielding a total of five configuration approaches: ParamILS -
discretized, GGA, GGA-discretized, SMAC , and SMAC -discretized. GGA could
not handle the complex conditionals of some solvers; therefore, for these solvers
we only ran ParamILS and the two SMAC variants.

Due to the cost of running a third configurator on nearly every configuration
scenario, we reduced the budget for each configuration approach from two CPU
days on five cores in CSCC 2013 to two CPU days on four cores in CSSC 2014. In
the case of ParamILS and SMAC , as in 2013, we used these four cores to perform
four independent 2-day configurator runs. In the case of GGA, we performed one
2-day run using all four cores. We evaluated the configurations resulting from
each of the 14 configuration runs (4 ParamILS -discretized, 4 SMAC -discretized,
4 SMAC , 1 GGA-discretized, and 1 GGA) on the entire training data set of the
benchmark at hand and selected the configuration with the best performance. We
then executed only this configuration on the benchmark’s test set to determine
the performance of the configured solver.

In the four tracks of the CSSC (Industrial SAT+UNSAT , crafted SAT+UNSAT ,
Random SAT+UNSAT , Random SAT) we had 6, 6, 5, and 6 participating solvers,
respectively, and since there were three benchmark families per track, we ended
up with (6 + 6 + 5 + 6)× 3 = 72 pairs of solvers and benchmarks to configure
them on. For each of these configuration scenarios, each of the 5 configuration
approaches above required four cores for 2 days, yielding a total computational
expense of 72× 5× 4× 2 = 2880 CPU days (close to 8 CPU years). Thanks to a
special allocation on the META cluster at the University of Freiburg, we were
able to finish this process within 2 weeks.

We note that all scripts we used for performing the configuration and analysis
experiments were written in Python (updated from Ruby in 2013) and are
available for download on the competition website.

5.3. Results

For each of the four tracks of CSSC 2014, we configured the solvers submitted
to the track on each of the three benchmark families from that track and
aggregated results across the respective test instances. We show the winners for

19

Results for CSSC 2014 Industrial SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) BMC
PAR-10: 222→ 221

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) Circuit Fuzz
PAR-10: 316→ 193

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) IBM
PAR-10: 697→ 694

Figure 4: Scatter plots of default vs. configured Lingeling , the gold-medal
winner of the Industrial SAT+UNSAT track of CSSC 2014.

#timeouts default → # timeouts configured (on test set) Rank
BMC Circuit Fuzz IBM Overall def CSSC

Lingeling 20→ 20 30→ 18 69→ 69 119→ 107 2 1
Minisat-HACK-999ED 22→ 22 21→ 19 70→ 70 113→ 111 1 2
Clasp-3.0.4-p8 44→ 30 18→ 12 71→ 71 133→ 113 4 3
Riss-4.27 39→ 26 20→ 22 72→ 72 131→ 120 3 4
Cryptominisat 40→ 37 31→ 20 70→ 69 141→ 126 5 5
SparrowToRiss 62→ 36 29→ 21 72→ 72 163→ 129 6 6

Table 10: Results for CSSC 2014 competition track Industrial SAT+UNSAT.
For each solver and benchmark, we show the number of test set timeouts
achieved with the default and the configured parameter setting, bold-facing
the better one. We aggregated results across all benchmarks to compute the
final ranking.

each track in Table 9 and discuss the results in the following sections. Additional
details, tables, and figures are provided in an accompanying technical report [48].

5.3.1. Results of the Industrial SAT+UNSAT Track

The Industrial SAT+UNSAT track consisted of three industrial benchmarks
detailed in Appendix A.1: BMC [15], Circuit Fuzz [23], and IBM [86]. Figure
4 visualizes the results of applying algorithm configuration to the winning
solver Lingeling on these three benchmark sets. It shows similar results as in
the Industrial SAT+UNSAT track of CSSC 2013: Lingeling ’s strong default
performance on ‘typical’ hardware verification benchmarks (IBM and BMC)
could only be improved slightly by configuration, but much larger improvements
were possible on less standard benchmarks, such as Circuit Fuzz .

Table 10 summarizes the results for all six solvers that participated in the
Industrial SAT+UNSAT track. These results demonstrate that, in contrast to
Lingeling , several solvers (in particular, Clasp-3.0.4-p8 , Riss-4.27 , and Sparrow-

20

Results for CSSC 2014 crafted SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) GI
PAR-10: 370→ 90

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) LABS
PAR-10: 755→ 804

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) N-Rooks
PAR-10: 705→ 5

Figure 5: Scatter plots of default vs. configured Clasp-3.0.4-p8 , the gold
medal winner of the crafted SAT+UNSAT track of CSSC 2014.

#timeouts default → # timeouts configured (on test set) Rank
GI LABS N-Rooks Overall def CSSC

Clasp-3.0.4-p8 43→ 9 87→ 93 81→ 0 211→ 102 5 1
Lingeling 11→ 5 101→ 104 3→ 0 115→ 109 1 2
Cryptominisat 43→ 24 95→ 89 2→ 1 140→ 114 3 3
Riss-4.27 43→ 30 91→ 88 2→ 0 136→ 118 2 4
Minisat-HACK-999ED 50→ 50 91→ 91 0→ 0 141→ 141 4 5
YalSAT 186→ 186 218→ 207 351→ 351 755→ 744 6 6

SparrowToRiss(disq.) 55→ 42 98→ 94 3→ 0 156→ 136 - -

Table 11: Results for CSSC 2014 competition track crafted SAT+UNSAT.
For each solver and benchmark, we show the number of test set timeouts
achieved with the default and the configured parameter settings, bold-facing
the better one. We aggregated results across all benchmarks to compute
the final ranking. SparrowToRiss was disqualified from this track, since it
returned ‘satisfiable’ for one instance without producing a model.

ToRiss) benefited largely from configuration on the BMC benchmark, but did not
reach Lingeling ’s performance even after configuration. Minisat-HACK-999ED
performed even better than Lingeling with its default parameters, but did not
benefit from configuration as much as Lingeling (particularly on the Circuit Fuzz
benchmark family).

5.3.2. Results of the crafted SAT+UNSAT Track

The crafted SAT+UNSAT track consisted of the three crafted benchmarks
detailed in Appendix A.2: Graph Isomorphism (GI), Low Autocorrelation Binary
Sequence (LABS), and N-Rooks . Figure 5 visualizes the improvements configura-
tion yielded on these benchmarks for the best-performing solver, Clasp-3.0.4-p8 .
The effect of configuration was particularly large on the N-Rooks instances, where

21

it reduced the number of timeouts from 81 to 0. Similar to the results from
CSSC 2013, configuration also substantially improved performance on the GI
instances, decreasing the number of timeouts from 43 to 9. In contrast to 2013,
an unusual effect occurred for Clasp-3.0.4-p8 on the LABS instances, where the
number of timeouts on the test set increased from 87 to 93 by configuration; we
study the reasons for this in more detail in Section 6.1.

Table 11 summarizes the results of all solvers on the crafted SAT+UNSAT
track, showing that the performance of many other solvers also substantially
improved on the benchmarks GI and N-Rooks , and only mildly (if at all) on the
LABS benchmark. The aggregate results across these 3 benchmark families show
that Lingeling had the best default performance, but only benefited mildly from
configuration (#timeouts reduced from 115 to 109), whereas Clasp-3.0.4-p8
benefited much more from configuration and thus outperformed Lingeling af-
ter configuration (#timeouts reduced from 211 to 102). Once again, we note
that the winning solver only showed mediocre performance based on its de-
fault: Clasp-3.0.4-p8 would have ranked 5th in a comparison based on default
performance.

5.3.3. Results of the Random SAT+UNSAT Track

The Random SAT+UNSAT track consisted of three random benchmarks
detailed in Appendix A.3: 3cnf , K3 , and unif-k5 . The instances in unif-k5 are
all unsatisfiable, while the other two sets contain both satisfiable and unsatisfiable
instances. Figure 6 visualizes the improvements achieved by configuration on
these benchmarks for the best-performing solver Clasp-3.0.4-p8 . Clasp-3.0.4-p8
benefited most from configuration on benchmark 3cnf , where it reduced the
number of timeouts from 18 to 0. For the other benchmarks, it could already
solve all instances in its default parameter configuration, but configuration helped
reduce its average runtime by factors of 3 (K3) and 2 (unif-k5), respectively.
Table 12 summarizes the results of all solvers for these benchmarks. We note
that solver DCCASat+march-rw showed the best default performance, and that
after configuration, it also solved all instances from the three benchmark sets,
only ranking behind Clasp-3.0.4-p8 because the latter solved these instances
faster.

5.3.4. Results of the Random SAT Track

The Random SAT track consisted of the three benchmarks detailed in
Appendix A.3: 3sat1k, 5sat500 and 7sat90. Figure 7 visualizes the improvements
configuration achieved on these benchmarks for the best-performing solver
ProbSAT . ProbSAT benefited most from configuration on benchmark 5sat500 :
its default did not solve a single instance in the maximum runtime of 300 seconds,
while its configured version solved all instances in an average runtime below 2
seconds! Since timeouts at 300s yield a PAR-10 score of 3000, the PAR-10 speedup
factor on this benchmark was 1 500, the largest we observed in the CSSC. On the
other two scenarios, configuration was also very beneficial, reducing ProbSAT ’s
number of timeouts from 24 to 0 (7sat90) and from 10 to 4 (3sat1k), respectively.
Table 13 summarizes the results of all solvers for these benchmarks, showing that

22

Results for CSSC 2014 Random SAT+UNSAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) 3cnf
PAR-10: 309→ 35

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) K3
PAR-10: 7.91→ 2.66

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) unif-k5
PAR-10: 0.74→ 0.30

Figure 6: Scatter plots of default vs. configured Clasp-3.0.4-p8 , the gold
medal winner of the Random SAT+UNSAT track of CSSC 2014.

#timeouts default → # timeouts configured (on test set) Rank
3cnf K3 unif-k5 Overall def CSSC

Clasp-3.0.4-p8 18→ 0 0→ 0 0→ 0 18→ 0 2 1
DCCASat+march-rw 1→ 0 0→ 0 1→ 0 2→ 0 1 2
Minisat-HACK-999ED 166→ 99 5→ 1 0→ 0 171→ 100 5 3
Riss-4.27 160→ 113 2→ 2 1→ 0 163→ 115 4 4
SparrowToRiss 126→ 126 8→ 1 0→ 0 134→ 127 3 5

Table 12: Results for CSSC 2014 competition track Random SAT+UNSAT.
For each solver and benchmark, we show the number of test set timeouts
achieved with the default and the configured parameter settings, bold-
facing the better one; we broke ties by the solver’s average runtime (not
shown for brevity, but the average runtimes important for tie breaking
were 13 seconds for configured Clasp-3.0.4-p8 and 21 seconds for config-
ured DCCASat+march-rw). We aggregated results across all benchmarks to
compute the final ranking.

next to ProbSAT , only SparrowToRiss benefited from configuration. Neither of
the CDCL solvers (Clasp-3.0.4-p8 and Minisat-HACK-999ED) solved a single
instance in any of the three benchmarks (in either default or configured variants).
For the other two SLS solvers, YalSAT and CSCCSat2014 , the defaults were
already well tuned for these benchmark sets. Indeed, we observed overtuning
to the training sets in one case each: YalSAT for 3sat1k and CSCCSat2014 for
7sat90. Overall, the configurability of ProbSAT and SparrowToRiss allowed them
to place first and second, respectively, despite their poor default performance
(especially on 5sat500, where neither of them solved a single instance with default
settings).

23

Results for CSSC 2014 Random SAT track

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(a) 3sat1k
PAR-10: 132→ 53

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(b) 5sat500
PAR-10: 3000→ 2

10−2 10−1 1 10 100

Default in sec.

10−2

10−1

1

10

100

C
o
n
fi
g
u
re

d
 i
n
 s

e
c.

2x

2x

10x

10x

100x

100x

300

300

timeout

tim
eo

ut

(c) 7sat90
PAR-10: 337→ 15

Figure 7: Scatter plots of default vs. configured ProbSAT , the gold medal
winner of the Random SAT track of CSSC 2014.

#timeouts default → # timeouts configured (on test set) Rank
3sat1k 5sat500 7sat90 Overall def CSSC

ProbSAT 10→ 4 250→ 0 24→ 0 284→ 4 4 1
SparrowToRiss 9→ 5 250→ 0 3→ 3 262→ 8 3 2
CSCCSat2014 2→ 2 0→ 0 3→ 6 5→ 8 1 3
YalSAT 6→ 7 0→ 0 5→ 5 11→ 12 2 4
Clasp-3.0.4-p8 250→ 250 250→ 250 250→ 250 750→ 750 5 5
Minisat-HACK-999ED 250→ 250 250→ 250 250→ 250 750→ 750 6 6

Table 13: Results for CSSC 2014 competition track Random SAT. For each
solver and benchmark, we show the number of test set timeouts achieved
with the default and the configured parameter settings, bold-facing the better
one; we broke ties by the solver’s average runtime (not shown for brevity).
We aggregated results across all benchmarks to compute the final ranking.

6. Post-Competition Analyses

While the previous sections focussed on the results of the respective com-
petitions, we now discuss several analyses we performed afterwards to study
overarching phenomena and general patterns.

6.1. Why Does Configuration Work So Well and How Can It Fail?

Several practitioners have asked us why automated configuration can yield
the large speedups over the default configuration we observed. We believe there
are two key reasons for this:

• No single algorithmic approach performs best on all types of benchmark
instances; this is precisely the same reason that algorithm selection ap-
proaches (such as SATzilla [85] or 3S [52]) work so well.

24

(a) N-Rooks (b) LABS

Figure 8: Training vs test PAR-10 scores of 100 random Clasp configurations
and the Clasp-3.0.4-p8 default.

• Solver defaults are typically chosen to be robust across benchmark fam-
ilies. For any given benchmark family F , highly parameterized solvers
can, however, typically be instantiated to exploit the idiosyncrasies of F
substantially better. (These improvements only need to generalize to other
instances from F , not to other benchmark families.)

However, algorithm configuration does not necessarily work in all cases. For
example, in the crafted SAT+UNSAT track of the CSSC 2014, we encountered a
case in which the configured solver performed somewhat worse than the default
solver: Clasp configured on benchmark family LABS timed out on 93 test
instances, whereas its default only timed out on 87 test instances (see also Figure
5b). Two obvious causes suggest themselves in the case of such a failure:

• insufficiently long configuration runs (which can result in worse-than-default
performance on the training set7); and/or

• overtuning on the training set that does not generalize to the test set.

We investigated the configuration of Clasp on LABS further after the competition,
and found that in this case both of these effects applied: In the CSSC, training
performance slightly deteriorated (86→ 87 timeouts); and the improved training
performance we found with a larger configuration budget8 afterwards (86→ 83
timeouts) also did not generalize to the test set (87→ 88 timeouts).

To contrast the conditions under which configuration can fail and under
which it works well, we compared the configuration of Clasp on benchmarks

7Worse-than-default performance on the training set is possible since configurators only
base their decisions on a subset of the training instances; that subset increases over time and
only reaches the full training set when the configuration process is given enough time.

8Specifically, we ran 32 SMAC runs for 10 days each.

25

LABS (87→ 93 test timeouts in the CSSC) and N-Rooks (81→ 0 test timeouts
in the CSSC). For this analysis, we sampled 100 Clasp configurations uniformly
at random and evaluated their PAR-10 training and test scores on both of
the benchmarks; Figure 8 shows the result. The first observation we make
directly based on the figure is that for N-Rooks, about 20% of the random
configurations outperform the default, whereas for LABS none of them do: the
default is simply very good to start with for LABS and thus much harder to
beat. Second, since several configurations are very good (i.e., fast) for N-Rooks,
configurators can make progress much faster (and also take full advantage of
adaptive capping to limit the time spent with poor configurations); indeed, in
the CSSC the configurators managed to perform about 8 times more Clasp runs
in the same time (2 days) for N-Rooks than for LABS (averaging about 14 400
vs. 1 800 runs). This explains why configurators require more time to improve
training performance on LABS . Third, to assess the potential for overtuning, we
studied how training and test performance correlate. Visually, Figure 8 shows
a strong overall correlation of PAR-10 training and test scores for both of the
benchmarks; Spearman correlation coefficients are indeed high: 0.99 (N-Rooks)
and 0.98 (LABS). However, for the top 20% of sampled configurations, the
correlation is much stronger for N-Rooks (0.98) than for LABS (0.49). This
explains why improvements on the LABS training set do not necessarily translate
to improvements on its test set.

6.2. Overall Configurability of Solvers

Some solvers consistently benefited more from configuration than others.
Here, we quantify the configurability of a solver on a given benchmark by the
PAR-10 speedup factor its configured version achieved over its default version,
computed on the set of instances solved by at least one of the two. We then
examine the relationship between configurability and number of parameters to
determine whether solvers with many parameters consistently benefited more or
less from configuration than solvers with few parameters.9

Figure 9 shows that configurability was indeed high for solvers with many
parameters (e.g., the variants of Lingeling , Riss, and Clasp), but that it did
not increase monotonically in the number of parameters: some solvers with
very few parameters were surprisingly configurable. For example, configuration
sped up the single-parameter solver DCCASat+march-rw by at least a factor
of four in all three benchmarks it was configured for, while the 4-parameter
solver CSCCSat2014 was not improved at all by configuration. Furthermore,
ProbSAT , which achieved the best single-benchmark performance improvement
(as previously discussed in Section 5.3.4), has only 9 parameters.

9Of course, it is simple to construct examples where a solver with a single parameter is
highly configurable (e.g., let the parameter have a poor default setting) or where a solver has
many parameters but does not benefit from configuration at all (e.g., a solver could expose
many parameters that are not actually used at all). The focus of our analysis is therefore on
the relationship between configurability and the number of parameters that a solver author
reasonably expected would be useful to expose.

26

100 101 102 103

#Parameters

10-1

100

101

102

103
S
p
e
e
d
u
p

gnoveltyGCwa

gnoveltyGCa

simpsat

gnoveltyPCL

satj

SolverFourtyThree

forlnodrup

clasp-cssc

rissg

lingeling

rissgExt

(a) CSSC 2013

100 101 102 103

#Parameters

10-1

100

101

102

103

S
p
e
e
d
u
p

DCCASat+march-rw

CSCCSat2014

probSAT

minisat-HACK-999ED

YalSAT

cryptominisat

clasp-3.0.4-p8

Riss-4.27

SparrowToRiss

lingeling

(b) CSSC 2014

Figure 9: Number of solver parameters vs. PAR-10 speedup factor of configured
over default solver. The speedup factor for each solver considers only instances
that were solved by at least one of the default solver and the configured solver.
Each symbol denotes one benchmark the solver was run on. Figure D.11 in the
appendix shows the same figure based on PAR-1 for comparison.

We note that the notion of configurability used here is strongly dependent on
the time budget available for configuration. In the next section, we investigate
this issue in more detail.

6.3. Impact of Configuration Budget

The runtime budget we allow to configure each solver has an obvious impact
on the results. In one extreme case, if we let this budget go towards zero, the
configuration pipeline returns the solver defaults (and we are back in the setting
of the standard SAT competition). For small, non-zero budgets, we can expect
solvers with few parameters to benefit from configuration more, since their
configuration spaces are easier to search. On the other hand, if we increase the
time budget, solvers with larger parameter spaces are likely to benefit more than
those with smaller parameter spaces (since larger parts of their configuration
space can be searched given additional time).

Figure 10 illustrates this phenomenon for the two top solvers in the Ran-
dom SAT+UNSAT track of CSSC 2014. With the competition’s configura-
tion budget of two days across 4 cores, Clasp-3.0.4-p8 performed better than
DCCASat+march-rw (both solved all test instances, with average runtimes of
13 vs. 21 seconds). In the extreme case of no time budget for configuration,
DCCASat+march-rw would have won against Clasp-3.0.4-p8 , since its default
version performed much better (2 vs. 18 timeouts), and, in fact, Figure 10a
shows that it required a configuration budget of at least 104 seconds to find

27

101 102 103 104 105

log10(time) [sec]

102

P
e
rf

o
rm

a
n
ce

Clasp

DCCASat+march-rw

(a) 3cnf

101 102 103 104 105

log10(time) [sec]

101

P
e
rf

o
rm

a
n
ce

(b) K3

101 102 103 104 105

log10(time) [sec]

100

101

102

P
e
rf

o
rm

a
n
ce

(c) unif-k5

Figure 10: Performance on the CSSC 2014 track Random SAT+UNSAT achieved
by configuration of DCCASat+march-rw (1 parameter) and Clasp-3.0.4-p8 (75
parameters) as a function of the configuration budget. For each of the solvers, we
plot mean ± one standard deviation of the PAR10 performance of the incumbent
configurations found by 4 runs of SMAC over time.

improving Clasp-3.0.4-p8 parameters for the 3cnf benchmark (where the default
version of Clasp-3.0.4-p8 produced 18 timeouts). While the configuration of
DCCASat+march-rw ’s single parameter had long converged by 104 seconds, the
configuration of Clasp-3.0.4-p8 ’s 75 parameters continued to improve perfor-
mance until the end of the configuration budget, and, in particular for the 3cnf
benchmark, performance would have likely continued to improve further if the
budget had been larger.

We thus conclude that the solver’s flexibility should be chosen in relation to
the available budget for configuration: solvers with few parameters can often
be improved more quickly than highly flexible solving frameworks, but, given
enough computational resources and powerful configurators, the latter ones can
typically offer a greater performance potential.

6.4. Results with an Increased Cutoff Time for Validation

Next to the overall time budget allowed for configuration, another important
time limit is the cutoff time allowed for each single solver run; due to our
limited overall budget, we chose this to be quite low: 300 seconds both for solver
runs during the configuration process and for the final evaluation of solvers on
previously unseen test instances.

Here, we study how using a larger cutoff time at evaluation time affects results,
mimicking a situation where we care about performance with a large cutoff time
but use a smaller cutoff time for the configuration process to make progress
faster. In fact, several studies in the literature (e.g., [42, 55, 82]) used a smaller
cutoff time for configuration than for testing, and we found that improvements
with a time budget around 300 seconds often lead to improvements with larger
cutoff times.

Table 14 shows the results we obtained when using a cutoff time of 5000
seconds for validation (the same as the SAT competition) for the Industrial
SAT+UNSAT track of CSSC 2014. Qualitatively, these results are quite similar

28

#timeouts default → # timeouts configured (on test set) Rank
BMC Circuit Fuzz IBM Overall def CSSC

Lingeling 10→ 10 6→ 3 66→ 65 82→ 78 1 1
Minisat-HACK-999ED 11→ 12 6→ 4 67→ 67 84→ 83 2 2
Riss-4.27 19→ 12 3→ 3 70→ 68 92→ 83 3 3
SparrowToRiss 19→ 14 3→ 3 70→ 69 92→ 86 4 4
Cryptominisat 20→ 18 9→ 4 66→ 64 95→ 86 5 5
Clasp-3.0.4-p8 31→ 18 3→ 3 70→ 69 104→ 90 6 6

Table 14: Results for CSSC 2014 competition track Industrial SAT+UNSAT ,
when final solvers are evaluated with a per-run cutoff time of 5000 seconds instead
of 300 seconds (as in Table 10). The ranking is the same for the default and config-
ured algorithms, but this can be attributed to chance as there are two ties in terms
of timeouts, which are only broken by average runtimes: Minisat-HACK-999ED
(513.7s) vs Riss-4.27 (520.5s), and SparrowToRiss (548.5s) vs Cryptominisat
(555.0s).

to those obtained with an evaluation cutoff time of 300s (compare Table 10),
with only few differences. As expected, given the larger cutoff time, all solvers
solved substantially more instances (especially for the BMC and Circuit Fuzz
benchmarks). Nevertheless, with a cutoff time of 5000 seconds, for all solvers, the
configured variant (configured to perform well with a cutoff time of 300 seconds)
still performed better than the default version, making us more confident that
configuration does not substantially overtune to achieve good performance on
easy instances only.

6.5. Results with a Single Configurator

While the CSSC addressed the performance of SAT solvers rather than
the performance of configurators, we have been asked whether our complex
configuration pipeline was necessary, or whether a single configurator would have
produced similar or identical results. Indeed, counting the choice of discretized vs
non-discretized parameter space, our pipeline used five configuration approaches
(ParamILS -discretized, GGA, GGA-discretized, SMAC -discretized, and SMAC).
Thus, if one of these approaches had yielded the same results all by itself, we
could have reduced our overall configuration budget five-fold.

To determine whether this was the case, we evaluated the solver performance
we would have observed if we had used each configuration approach in isolation.
For each configuration scenario and each approach, we computed the PAR-10
slowdown factor over the CSSC result as the PAR-10 achieved with the respective
approach, divided by the PAR-10 of the approach with best training performance
(which we selected in the CSSC). If a configuration approach achieves a PAR-10
slowdown factor close to one, this means that it gives rise to solver performance
close to that achieved by our full CSSC configuration pipeline. For each solver,
we then computed the geometric mean of these factors across the scenarios it
was configured for.

29

Training Test
SMAC-d SMAC-c PILS GGA-d GGA-c SMAC-d SMAC-c PILS GGA-d GGA-c

DCCASat+march-rw 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CSCCSat2014 1.0 1.0 1.0 3.0 1.6 1.0 1.0 1.0 1.6 1.0
ProbSAT 1.0 1.2 1.1 – – 1.0 1.5 1.1 – –
Minisat-HACK-999ED 1.2 1.1 1.2 1.5 2.0 0.9 1.0 1.0 1.0 1.8
YalSAT 1.2 2.2 2.0 18.1 18.5 1.1 0.6 1.8 6.6 12.3
Cryptominisat 1.1 1.2 1.4 3.4 3.9 1.0 1.3 1.4 3.5 4.1
Clasp-3.0.4-p8 1.1 1.5 1.9 – – 1.2 0.9 1.5 – –
Riss-4.27 1.1 1.1 1.4 10.5 10.1 1.2 0.9 1.1 6.0 7.4
SparrowToRiss 1.3 1.1 2.0 – – 1.1 1.0 1.8 – –
Lingeling 1.5 1.6 1.4 – 77.2 1.4 1.0 1.3 – 30.5

Table 15: Geometric mean of PAR-10 slowdown factors over the CSSC result
(i.e., over using the oracle best of our five configuration approaches), computed
across the CSSC 2014 scenarios for which the respective solver was submitted.
Note that on the training set 1.0 is a lower bound for this metric, while on
the test set values smaller than 1.0 are possible if one configuration generalizes
better than another. Entry ‘–’ denotes that GGA was incompatible with the
configuration space (see Appendix B.2 for details).

Table 15 shows that both SMAC variants performed close to best for all
solvers, meaning that we would have achieved similar results had we only used
SMAC in the CSSC. ParamILS yielded the next best performance, followed
by GGA. Full results can be found in the accompanying technical report [48].
Despite SMAC ’s strong performance, we believe it will still be useful to run
several configuration approaches in future CSSCs, both to ensure robustness
and to assess whether some configuration scenarios are better suited to other
configuration approaches.

7. Conclusion

In this article, we have described the design of the Configurable SAT Solver
Challenge (CSSC) and the details of CSSC 2013 and CSSC 2014. We have
highlighted two main insights that we gained from this competition:

1. Automated algorithm configuration often improved performance substan-
tially, in several cases yielding average speedups of orders of magnitude.

2. Some solvers benefited more from automated configuration than others,
leading to substantially different algorithm rankings after configuration
than before (as, e.g., measured by the SAT competition).

Also, the configuration budget influenced which algorithm would perform best,
and with the competition budget of 2 days on 4–5 cores, algorithms with larger
parameter spaces exhibited more capacity for improvement.

30

These conclusions have interesting implications for algorithm design: if
an algorithm is likely to be applied across a range of specialized applications,
then it should be made flexible by parameterization of its key mechanisms and
components, and this flexibility should be exploited by automated algorithm
configuration. Our findings thus challenge the traditional approach to solver
design that tries to avoid having too many algorithm parameters (since these
parameters complicate manual tuning and analysis). Rather, they promote
the design paradigm of Programming by Optimization (PbO) [41], which aims
to avoid premature design choices and to rather actively develop promising
alternatives for parts of the design that enable an automated customization to
achieve peak performance on particular benchmarks of interest. Indeed, in the
CSSC, we have already observed a trend towards PbO, as evidenced by the
introduction of a host of new parameters into state-of-the-art solvers, such as
Riss-4.27 and Lingeling , between 2013 and 2014.

Finally, there is no reason why a configurable solver competition should
be appropriate and insightful only for SAT. On the contrary, similar events
would be interesting in the context of many other challenging computational
problems, such as answer set programming, constraint programming or AI
planning. Another interesting application domain is automatic machine learning,
where algorithm configuration can adapt flexible machine learning frameworks
to each new dataset at hand [80, 32]. We believe that for those and many other
problems, similar findings to those we reported here for CSSC would be obtained,
leading to analogous conclusions regarding algorithm design.

Acknowledgements

Many thanks go to Kevin Tierney for his generous help with running GGA,
including his addition of new features, his suggestion of parameter settings
and his conversion script to read the pcs format. We also thank the solver
developers for proofreading the description of their solvers and their parameters.
For computational resources to run the competition, we thank Compute Canada
(CSSC 2013) and the German Research Foundation (DFG; CSSC 2014). F.
Hutter and M. Lindauer thank the DFG for funding this research under Emmy
Noether grant HU 1900/2-1. H. Hoos acknowledges funding through an NSERC
Discovery Grant.

References

References

[1] Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic
algorithm for the automatic configuration of algorithms. In Gent, I. (Ed.), Proceedings
of the Fifteenth International Conference on Principles and Practice of Constraint
Programming (CP’09), volume 5732 of Lecture Notes in Computer Science, (pp.
142–157). Springer-Verlag.

31

[2] Audemard, G. & Simon, L. (2009). Predicting learnt clauses quality in modern
SAT solvers. In [21], (pp. 399–404).

[3] Babić, D. & Hu, A. (2007). Structural abstraction of software verification conditions.
In Damm, W. & Hermanns, H. (Eds.), Proceedings of the international conference on
Computer Aided Verification (CAV’07), volume 4590 of Lecture Notes in Computer
Science, (pp. 366–378). Springer.

[4] Babić, D. & Hu, A. J. (2008). Exploiting shared structure in software verification
conditions. In Yorav, K. (Ed.), Proceedings of the International Conference on
Hardware and Software: Verification and Testing (HVC’08), volume 4899 of Lecture
Notes in Computer Science, (pp. 169–184). Springer.

[5] Babić, D. & Hutter, F. (2007). Spear theorem prover. Solver description, SAT
competition.

[6] Balabanov, V. (2013). Solver43. In [7], (pp.8̃6).

[7] Balint, A., Belov, A., Heule, M., & Järvisalo, M. (Eds.). (2013). Proceedings of
SAT Competition 2013: Solver and Benchmark Descriptions, volume B-2013-1 of
Department of Computer Science Series of Publications B. University of Helsinki.

[8] Balint, A. & Manthey, N. (2014). SparrowToRiss. In [13], (pp. 77–78).

[9] Balint, A. & Schöning, U. (2012). Choosing probability distributions for stochastic
local search and the role of make versus break. In [25], (pp. 16–29).

[10] Bayardo Jr., R. J. & Schrag, R. (1997). Using CSP look-back techniques to solve
real-world SAT instances. In Kuipers, B. & Webber, B. (Eds.), Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI’97), (pp. 203–208).
AAAI Press.

[11] Bayless, S., Tompkins, D., & Hoos, H. (2014). Evaluating instance generators by
configuration. In Pardalos, P. & Resende, M. (Eds.), Proceedings of the Eighth Inter-
national Conference on Learning and Intelligent Optimization (LION’14), Lecture
Notes in Computer Science. Springer-Verlag.

[12] Bebel, J. & Yuen, H. (2013). Hard SAT instances based on factoring. In [7], (pp.
102).

[13] Belov, A., Diepold, D., Heule, M., & Järvisalo, M. (Eds.). (2014). Proceedings of
SAT Competition 2014: Solver and Benchmark Descriptions, volume B-2014-2 of
Department of Computer Science Series of Publications B. University of Helsinki.

[14] Berre, D. L. & Parrain, A. (2010). The Sat4j library, release 2.2, system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7, 59–64.

[15] Biere, A. (2007). The AIGER and-inverter graph (AIG) format. Available at
fmv.jku.at/aiger.

[16] Biere, A. (2013). Lingeling, Plingeling and Treengeling entering the SAT competi-
tion 2013. In [7], (pp. 51–52).

[17] Biere, A. (2014). Yet another local search solver and Lingeling and friends entering
the SAT competition 2014. In [13], (pp. 39–40).

32

fmv.jku.at/aiger

[18] Biere, A., Cimatti, A., Claessen, K. L., Jussila, T., McMillan, K., & Somenzi,
F. (2008). Benchmarks from the 2008 hardware model checking competition
(HWMCC’08). Available at http://fmv.jku.at/hwmcc08/benchmarks.html.

[19] Biere, A., Cimatti, A., Clarke, E., Fujita, M., & Zhu, Y. (1999). Symbolic
model checking using SAT procedures instead of BDDs. In Proceedings of Design
Automation Conference (DAC’99), (pp. 317–320).

[20] Biere, A., Le Berre, D., Lonca, E., & Manthey, N. (2014). Detecting cardinality
constraints in CNF. In Sinz, C. & Egly, U. (Eds.), Proceedings of the Seventeenth In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT’14),
volume 8561 of Lecture Notes in Computer Science, (pp. 285–301). Springer-Verlag.

[21] Boutilier, C. (Ed.). (2009). Proceedings of the 22th International Joint Conference
on Artificial Intelligence (IJCAI’09).

[22] Breimann, L. (2001). Random forests. Machine Learning Journal, 45, 5–32.

[23] Brummayer, R., Lonsing, F., & Biere, A. (2012). Automated testing and debugging
of SAT and QBF solvers. In [25], (pp. 44–57).

[24] Cadar, C., Dunbar, D., & Engler, D. R. (2008). Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings
of the 8th USENIX conference on Operating systems design and implementation
(OSDI’08), volume 8, (pp. 209–224).

[25] Cimatti, A. & Sebastiani, R. (Eds.). (2012). Proceedings of the Fifteenth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’12),
volume 7317 of Lecture Notes in Computer Science. Springer-Verlag.

[26] Clarke, E., Kroening, D., & Lerda, F. (2004). A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (pp. 168–176).
Springer.

[27] Cook, S. (1971). The complexity of theorem proving procedures. In Harrison, M.,
Banerji, R., & Ullman, J. (Eds.), Proceedings of the Third Annual ACM Symposium
on the Theory of Computing (STOC’71), (pp. 151–158). ACM.

[28] Crawford, J. & Baker, A. (1994). Experimental results on the application of
satisfiability algorithms to scheduling problems. In Proceedings of the national
conference on Artificial Intelligence (AAAI’94), (pp. 1092–1097). AAAI Press/MIT
Press.

[29] Duong, T.-T. & Pham, D.-N. (2013). gNovelty+GC: Weight-Enhanced Diversifi-
cation on Stochastic Local Search for SAT. In [7], (pp. 49–50).

[30] Eén, N. & Sörensson, N. (2003). An extensible SAT-solver. In Giunchiglia, E. &
Tacchella, A. (Eds.), Proceedings of the Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT’03), volume 2919 of Lecture Notes in
Computer Science, (pp. 502–518). Springer.

[31] Fern, A., Khardon, R., & Tadepalli, P. (2011). The first learning track of the
international planning competition. Machine Learning, 84 (1-2), 81–107.

33

http://fmv.jku.at/hwmcc08/benchmarks.html

[32] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter,
F. (2015). Efficient and robust automated machine learning. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., & Garnett, R. (Eds.), Proceedings of the 29th International
Conference on Advances in Neural Information Processing Systems (NIPS’15).

[33] Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188, 52–89.

[34] Gelder, A. V. (2005). Toward leaner binary-clause reasoning in a satisfiability
solver. Annals of Mathematics and Artificial Intelligence, 43 (1), 239–253.

[35] Gomes, C., Selman, B., Crato, N., & Kautz, H. (2000). Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reasoning.,
24 (1-2), 67–100.

[36] Han, C.-S. & Jiang, J.-H. (2012a). Simpsat 1.0 for sat challenge 2012. In Balint,
A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., & Sinz, C. (Eds.), Proceedings
of SAT Challenge 2012: Solver and Benchmark Descriptions, volume B-2012-2 of
Department of Computer Science Series of Publications B, (pp.5̃9). University of
Helsinki.

[37] Han, C.-S. & Jiang, J.-H. (2012b). When Boolean satisfiability meets Gaussian
elimination in a simplex way. Computer Aided Verification, 410–426.

[38] Han, H. & Somenzi, F. (2009). On-the-fly clause improvement. In [56], (pp.
209–222).

[39] Heule, M. J., Jrvisalo, M., & Biere, A. (2011). Efficient CNF simplification based
on binary implication graphs. In [74], (pp. 201–215).

[40] Hoos, H. & Stützle, T. (2004). Stochastic Local Search: Foundations & Applications.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[41] Hoos, H. H. (2012). Programming by optimization. Commun. ACM, 55 (2), 70–80.

[42] Hutter, F., Babić, D., Hoos, H., & Hu, A. (2007). Boosting verification by
automatic tuning of decision procedures. In O’Conner, L. (Ed.), Formal Methods in
Computer Aided Design (FMCAD’07), (pp. 27–34). IEEE Computer Society Press.

[43] Hutter, F., Balint, A., Bayless, S., Hoos, H., & Leyton-Brown, K. (2014). Results
of the Configurable SAT Solver Challenge 2013. Technical Report 276, University of
Freiburg, Department of Computer Science.

[44] Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Tradeoffs in the empirical
evaluation of competing algorithm designs. Annals of Mathematics and Artificial
Intelligenc (AMAI), Special Issue on Learning and Intelligent Optimization, 60 (1),
65–89.

[45] Hutter, F., Hoos, H., & Leyton-Brown, K. (2011a). Bayesian optimization with
censored response data. In NIPS workshop on Bayesian Optimization, Sequential
Experimental Design, and Bandits. Published online.

34

[46] Hutter, F., Hoos, H., & Leyton-Brown, K. (2011b). Sequential model-based
optimization for general algorithm configuration. In Coello, C. (Ed.), Proceedings
of the Fifth International Conference on Learning and Intelligent Optimization
(LION’11), volume 6683 of Lecture Notes in Computer Science, (pp. 507–523).
Springer-Verlag.

[47] Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An
automatic algorithm configuration framework. Journal of Artificial Intelligence
Research, 36, 267–306.

[48] Hutter, F., Lindauer, M., Bayless, S., Hoos, H., & Leyton-Brown, K. (2014).
Results of the Configurable SAT Solver Challenge 2014. Technical Report 277,
University of Freiburg, Department of Computer Science.

[49] Hutter, F., Xu, L., Hoos, H., & Leyton-Brown, K. (2014). Algorithm runtime
prediction: Methods and evaluation. Artificial Intelligence, 206, 79–111.

[50] Järvisalo, M., Berre, D. L., Roussel, O., & Simon, L. (2012). The international
SAT solver competitions. AI Magazine, 33 (1).

[51] Järvisalo, M., Biere, A., & Heule, M. J. (2010). Blocked clause elimination. In
Esparza, J. & Majumdar, R. (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, volume 6015 of Lecture Notes in Computer Science, (pp.
129–144). Springer Berlin Heidelberg.

[52] Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011).
Algorithm selection and scheduling. In Lee, J. (Ed.), Proceedings of the Seventeenth
International Conference on Principles and Practice of Constraint Programming
(CP’11), volume 6876 of Lecture Notes in Computer Science, (pp. 454–469). Springer-
Verlag.

[53] Kautz, H. & Selman, B. (1996). Pushing the envelope: Planning, propositional
logic, and stochastic search. In Shrobe, H. & Senator, T. (Eds.), Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI’96), (pp. 1194–1201).
AAAI Press.

[54] Kautz, H. & Selman, B. (2014). Unifying SAT-based and graph-based planning.
In [13], (pp. 318–325).

[55] KhudaBukhsh, A., Xu, L., Hoos, H., & Leyton-Brown, K. (2009). SATenstein:
Automatically building local search SAT solvers from components. In [21], (pp.
517–524).

[56] Kullmann, O. (Ed.). (2009). Proceedings of the Twelfth International Conference
on Theory and Applications of Satisfiability Testing (SAT’09), volume 5584 of Lecture
Notes in Computer Science. Springer.

[57] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The
irace package, iterated race for automatic algorithm configuration. Technical report,
IRIDIA, Université Libre de Bruxelles, Belgium.

[58] Lourenço, H., Martin, O., & Stützle, T. (2003). Iterated local search. In Handbook
of Metaheuristics (pp. 321–353). Springer New York.

35

[59] Luo, C., Cai, S., Wu, W., & Su, K. (2012). Focused random walk with configuration
checking and break minimum for satisfiability. In Bessiere, C. (Ed.), Proceedings
of the Ninth International Conference on Principles and Practice of Constraint
Programming (CP’13), volume 4741 of Lecture Notes in Computer Science, (pp.
481–496). Springer-Verlag.

[60] Luo, C., Cai, S., Wu, W., & Su, K. (2014). Double configuration checking in
stochastic local search for satisfiability. In Brodley, C. & Stone, P. (Eds.), Proceedings
of the Twenty-eighth National Conference on Artificial Intelligence (AAAI’14), (pp.
2703–2709). AAAI Press.

[61] Lynce, I. & Marques-Silva, J. P. (2003). Probing-based preprocessing techniques
for propositional satisfiability. In 15th IEEE International Conference on Tools with
Artificial Intelligence, (pp. 105–110). IEEE Computer Society.

[62] Manthey, N. (2012). Coprocessor 2.0–a flexible CNF simplifier. In [25], (pp.
436–441).

[63] Manthey, N. (2013). The SAT solver RISS3G at SC 2013. In [7], (pp. 72–73).

[64] Manthey, N. (2014). Riss 4.27. In [13], (pp. 65–67).

[65] Manthey, N., Heule, M. J., & Biere, A. (2013). Automated reencoding of Boolean
formulas. In Biere, A., Nahir, A., & Vos, T. (Eds.), Hardware and Software:
Verification and Testing, volume 7857 of Lecture Notes in Computer Science, (pp.
102–117). Springer Berlin Heidelberg.

[66] Manthey, N. & Philipp, T. (2014). Formula simplifications as DRAT derivations.
In Lutz, C. & Tielscher, M. (Eds.), KI 2014: Advances in Artificial Intelligence,
volume 8736 of Lecture Notes in Computer Science, (pp. 111–122). Springer Berlin
Heidelberg.

[67] Manthey, N. & Steinke, P. (2014). Too many rooks. In [13], (pp. 97–98).

[68] Mugrauer, F. & Balint, A. (2013a). SAT encoded graph isomorphism benchmark
description. In [7].

[69] Mugrauer, F. & Balint, A. (2013b). SAT encoded low autocorrelation binary
sequence (labs) benchmark description. In [7].

[70] Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., & Shoham, Y. (2004).
Understanding random SAT: Beyond the clauses-to-variables ratio. In M. Wallace
(Ed.), Proceedings of the Tenth International Conference on Principles and Practice
of Constraint Programming (CP’04), volume 3258 of Lecture Notes in Computer
Science (pp. 438–452). Springer-Verlag.

[71] Oh, C. (2014). Minisat hack 999ed, minisat hack 1430ed and swdia5by. In [13],
(pp.4̃6).

[72] Prasad, M., Biere, A., & Gupta, A. (2005). A survey of recent advances in SAT-
based formal verification. International Journal on Software Tools for Technology
Transfer, 7 (2), 156–173.

36

[73] Roussel, O. (2011). Controlling a solver execution with the runsolver tool. Journal
on Satisfiability, Boolean Modeling and Computation, 7 (4), 139–144.

[74] Sakallah, K. A. & Simon, L. (Eds.). (2011). Proceedings of the Fourteenth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’11),
volume 6695 of Lecture Notes in Computer Science. Springer.

[75] Seipp, J., Sievers, S., & Hutter, F. (2014). Fast downward SMAC. Planner
abstract, IPC 2014 Planning and Learning Track.

[76] Simon, L., Berre, D. L., & Hirsch, E. (2005). The SAT2002 competition report.
Annals of Mathematics and Artificial Intelligence, 43, 307–342.

[77] Soos, M. (2014). CryptoMiniSat v4. In [13], (pp.2̃3).

[78] Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to crypto-
graphic problems. In [56], (pp. 244–257).

[79] Stephan, P., Brayton, R., & Sangiovanni-Vencentelli, A. (1996). Combinational
test generation using satisfiability. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15, 1167–1176.

[80] Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013). Auto-WEKA:
combined selection and hyperparameter optimization of classification algorithms.
In I.Dhillon, Koren, Y., Ghani, R., Senator, T., Bradley, P., Parekh, R., He, J.,
Grossman, R., & Uthurusamy, R. (Eds.), The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’13), (pp. 847–855).
ACM Press.

[81] Tompkins, D., Balint, A., & Hoos, H. (2011a). Captain jack: New variable selection
heuristics in local search for SAT. In [74], (pp. 302–316).

[82] Tompkins, D., Balint, A., & Hoos, H. (2011b). Captain jack: New variable
selection heuristics in local search for SAT. In [74], (pp. 302–316).

[83] Torán, J. (2013). On the resolution complexity of graph non-isomorphism. In
M. Järvisalo & A. Van Gelder (Eds.), Proceedings of the Sixteenth International
Conference on Theory and Applications of Satisfiability Testing (SAT’13), volume
7962 of Lecture Notes in Computer Science (pp. 52–66). Springer-Verlag.

[84] van Gelder, A. (2002). Another look at graph coloring via propositional satisfiability.
In Proceedings of Computational Symposium on Graph Coloring and Generalizations
(COLOR-02), (pp. 48–54).

[85] Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32,
565–606.

[86] Zarpas, E. (2005). Benchmarking SAT solvers for bounded model checking. In
Bacchus, F. & Walsh, T. (Eds.), Proceedings of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT’05), volume 3569 of Lecture
Notes in Computer Science, (pp. 340–354). Springer.

37

Appendix A. Benchmark Sets Used

We mirrored the three main categories of instances from the SAT competition:
industrial, crafted, and random. In 2014, we also included a category of satisfiable
random instances from the SAT Races. For each of these categories, we used
various benchmark sets, each of them split into a training set to be used for
algorithm configuration and a disjoint test set.

For each category, to weight all benchmarks equally, we used the same number
of test instances from each benchmark; these test sets were subsampled uniformly
at random from the respective complete test sets.

All benchmarks are summarized in Tables 1 and 7 in the main text.

Appendix A.1. Industrial Benchmark Sets

SWV. This set of SAT-encoded software verification instances consists of 604
instances generated with the CALYSTO static checker [4], used for the verification
of five programs: the spam filter Dspam, the SAT solver HyperSAT, the Wine
Windows OS emulator, the gzip archiver, and a component of xinetd (a secure
version of inetd). We used the same training/test split as Hutter et al. [42],
containing 302 training instances and 302 test instances. We used this benchmark
set in the 2013 CSSC. (In 2014, we only used it for preliminary tests since it is
quite easy for modern solvers.)

Hardware Verification (IBM). This set of SAT-encoded bounded model checking
instances consists of 765 instances generated by Zarpas [86] These instances
were originally selected by Hutter et al. [42] as the instances in 40 randomly-
selected folders from the IBM Formal Verification Benchmarks Library. We used
their original training/test split, containing 382 training instances and 383 test
instances. We used this benchmark set in both the 2013 and 2014 CSSCs.

Circuit Fuzz. These instances were produced by a circuit-based CNF fuzzing
tool, FuzzSAT [23] (version 0.1). As FuzzSAT was originally designed to produce
semi-realistic test cases for debugging SAT solvers, the majority of the instances
it produces are trivial; however, occasionally, it produces more challenging
instances. The CircuitFuzz instances were found by generating 10,000 FuzzSAT
instances and removing all those that could be solved within one second by
Lingeling . This instance generator was originally described in detail by Bayless
et al. [11]; we used the 300 instances from that paper as the training set (except
one quite easy instance, ‘fuzz 100 25433.cnf’, which was dropped unintentionally
by a script) and produced 585 additional instances using the same method, to
form a testing set. We used this benchmark set in both the 2013 and 2014
CSSCs. We used these instances as part of the industrial track since they are
“structured in ways that resemble (at least superficially) real-world, circuit-derived
instances” [11]; a case could, however, also be made for them to be part of the
crafted or random track.

38

Bounded Model Checking 2008 (BMC). This set of SAT instances was derived
by unrolling the 2008 Hardware Model Checking Competition circuits [18]. Each
of these instances is a sequential circuit with safety properties. Each circuit was
unrolled to 50, 100, and 200 iterations using the tool aigunroll (version 1.9.4)
from the AIGER tools [15]. We omitted trivial instances that were proven SAT
or UNSAT during the unrolling process. While we used the entire set in 2013,
in 2014 we removed the 60 instances provided by Intel in order to allow us to
publicly share the instances.

Appendix A.2. Crafted Benchmark Sets

Graph Isomorphism (GI). These instances were first used in the 2013 SAT
Competition [68] and were generated by encoding the graph isomorphism problem
to SAT according to the procedure described by Torán [83]. Given two graphs
G1 and G2 with n vertices and m edges (for whom the isomorphism problem
is to be solved) the generator creates a SAT formula with n2 variables and
O(n) + O(n3) + O(n4) clauses. Consequently, the generated instances can
contain very many clauses. The 2 064 SAT instances in this set were generated
from different types of graphs, with the number of vertices n ranging from 10
to 1296.10 We split the instances uniformly at random into 1 032 training and
1 032 test instances; in both the 2013 and 2014 CSSCs, we only used 351 of the
test instances.

Low Autocorrelation Binary Sequence (LABS). This set contains 651 low-
autocorrelation binary sequence (LABS) search problems that were encoded to
SAT problems by first encoding them as pseudo-Boolean problems and then as
SAT problems. Instances from this set were first used in the SAT Competition
2013 in the crafted category [69]. We split this benchmark set uniformly at
random into 350 training and 351 test instances, and used it in both the 2013
and 2014 CSSCs.

N-Rooks. These 835 instances [67] represent a parameterized unsatisfiable varia-
tion of the well-known n-queens problem, in which the task is to place n queens
on a chess board with n× n fields such that they do not attack each other. In
the variation considered here, the (unsatisfiable) problem is to either place n+ 1
rooks or n+ 1 queens on a board of size n× n. Additional constraints enforc-
ing that there is a piece in each row/column/diagonal make it easier to prove
unsatisfiability, and these constraints can be enabled or disabled by generator
parameters. We used the generator new-Dame provided by Norbert Manthey
to generate instances with n ∈ [10, 50], using all rooks or all queens, using six
different problem encodings, and using all combinations of enabling/disabling
all types of constraints. We then removed trivial instances, ending up with 835

10Note that the larger graphs have varying node degrees, and that each node can only match
with other nodes of the same degree; this allows the encoding to generate much fewer clauses
than in the worst case of equal node degrees.

39

instances. For the CSSC 2014, we selected 484 training instances uniformly at
random and used the remaining 351 as test instances.

Appendix A.3. Random Benchmark Sets

K3. This is a set of 600 randomly-generated 3-SAT instances at the phase
transition (clause to variable ratio of approximately 4.26). It includes both
satisfiable and unsatisfiable instances. The set includes 100 instances each with
200 variables (853 clauses), 225 variables (960 clauses), 250 variables (1066
clauses), 275 variables (1172 clauses), 300 variables (1279 clauses), and 325
variables (1385 clauses). These 600 instances were generated by Lin Xu using the
random instance generator from the 2009 SAT competition, and were previously
described by Bayless et al. [11]. We employed their uniform random split into
300 training and 300 test instances, using all 300 test instances in the CSSC
2013 (random track) and only a subset of 250 test instances in the CSSC 2014
(random track).

3cnf. This is a set of 750 random 3-SAT instances (satisfiable and unsatisfiable)
at the phase transition, with 350 variables and 1493 clauses. These instances
were generated by the ToughSAT instance generator [12] and split into 500
training and 250 test instances uniformly at random. We used this benchmark
set in the 2014 CSSC (random track).

unif-k5. This set contains only unsatisfiable 5-SAT instances generated uniformly
at random with 50 variables and 1 056 clauses (a clause-to-variable ratio sharply
on the phase transition). The instances were generated by the uniform random
generator used in the SAT Challenge 2012 and SAT Competition 2013, with
satisfiable instances being filtered out by running the SLS solver ProbSAT . We
used this benchmark set in both the 2013 and 2014 CSSCs (random track).

3sat1k. This is a set of 500 3-SAT instances at the phase transition, all satisfi-
able. Each instance has 1000 variables and 4260 clauses. These instances were
previously described by Tompkins et al. [81]. We used their uniform random
split into 250 training and test instances in the 2013 CSSC (random track) and
in the 2014 CSSC (random satisfiable track).

5sat500. This set contains 500 5-SAT instances generated uniformly at random
with a clause-to-variable ratio of 20. Each instance is satisfiable and has 500
variables and 10000 clauses. This set was first used for tuning the SAT solver
Captain Jack and other SLS solvers [81]. We used the original uniform random
split into 250 training and test instances in the 2014 CSSC (random satisfiable
track).

7sat90. This set contains 500 7-SAT instances generated uniformly at random
with a clause-to-variable ratio of 85. Each instance is satisfiable and has 90
variables and 7650 clauses. This set was also first used for tuning the SAT solver
Captain Jack and other SLS solvers [81]. We used the original uniform random
split into 250 training and test instances in the 2014 CSSC (random satisfiable
track).

40

Appendix A.4. Instance Features Used for these Benchmark Sets

As described in Appendix B.3, SMAC can use instance features to guide
its search. Such instance features have predominantly been studied in the work
on SATzilla for algorithm selection [70, 85] and in machine learning models for
predicting algorithm runtime [49]. These features range from simple summary
statistics, such as the number of variables or clauses in an instance, to the results
of short, runtime-limited probes with local search solvers. In the context of
algorithm configuration, we can afford somewhat more expensive features than
for algorithm selection since we only require them on the training instances (not
the test instances) and can compute them once, offline. Nevertheless, we kept
feature computation costs low to not add substantially to the time required for
algorithm configuration.

For the instance sets where we already had available instance features from
previous work, we used those features. In particular, we used the 138 features
described by Hutter et al. [49] for the datasets SWV , IBM , 3sat1k , 5sat500 , and
7sat90 . For the set unif-k5 , we did not compute features since these instances
were very easy to solve even with algorithm defaults (note that SMAC also
worked very well without features). For the other datasets, we computed a
subset of 119 features, including basic features and feature groups based on
survey propagation, clause learning, local search probing, and search space size
estimates.11

Appendix B. Configuration Procedures

This appendix describes the configuration procedures we used in more detail.
Configurators typically iterate the following steps: (1) execute the target algo-
rithm on one or more instances with one or more configurations for a limited
amount of time; (2) measure the resulting performance metric and (3) decide
upon the next target algorithm execution. Beyond the key question of which
configuration to try next, configurators also need to decide how many runs and
which instances to use for each evaluation, and after which time to terminate
unsuccessful runs. ParamILS, SMAC , and GGA differ in how they instantiate
these components.

Appendix B.1. ParamILS: Local Search in Configuration Space

ParamILS [47], short for iterated local search in parameter configuration
space, generalizes the simple (often manually performed) tuning approach of
changing one parameter at a time and keeping changes if performance improves.
While that simple tuning approach is a local search that terminates in the
first local optimum, ParamILS carries out an iterated local search [58] that
applies perturbation steps in each local optimum o in order to escape o’s basin

11The code for computing these features is available at http://www.cs.ubc.ca/labs/beta/

Projects/EPMs/.

41

http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
http://www.cs.ubc.ca/labs/beta/Projects/EPMs/

of attraction and carry out another local search that leads to another local
optimum o′. Iterated local search then decides whether to continue from the
new optimum o′ or to return to the previous optimum o, thereby performing a
biased random walk over locally optimal solutions. ParamILS only supports
categorical parameters, so numerical parameters need to be discretized before
ParamILS is run.

ParamILS is an algorithm framework with two different instantiations that
differ in their strategy of deciding how many runs to use to evaluate each
configuration. The most straightforward instantiation, BasicILS (N), resembles
the approach most frequently used in manual parameter optimization: it evaluates
each configuration according to a fixed number of N runs on a fixed set of
instances. While this approach is simple and intuitive, it gives rise to the
problem of how to set the number N . Setting N to a large value yields slow
evaluations; using a small number yields fast evaluations, but the evaluations
are often not representative for the instance set Π (for example, if we choose
N runs we can cover at most N instances, even if we only allow a single run
per instance). The second ParamILS instantiation, FocusedILS, solves this
problem by allocating most of its runs to strong configurations: it starts with a
single run per configuration and incrementally performs more runs for promising
configurations. This means that it can often afford a large number of runs for the
best configurations while rejecting most poor configurations based on a few runs.
There is also a guarantee that configurations that were ‘unlucky’ can be revisited
in the search, allowing for a proof that FocusedILS—if run indefinitely—will
eventually identify the configuration with the best performance on the entire
training set.

Finally, ParamILS also implements a mechanism for adaptively choosing the
time after which to terminate unsuccessful target algorithm runs. Intuitively,
when comparing the performance of two configurations θ1 and θ2 on an instance,
and we already know that θ1 solves the instance in time t1, we do not need to
run θ2 for longer than t1: we do not need to know precisely how bad θ2 is, as long
as we know that θ1 is better. More precisely, each comparison of configurations
in ParamILS is with respect to an instance set Πsub ⊂ Π, and evaluations of
θ2 can be terminated prematurely when θ2’s aggregated performance on Πsub

is provably worse than that of θ1. In practice, this so-called adaptive capping
mechanism can speed up ParamILS ’s progress by orders of magnitude when the
best configuration solves instances much faster than the overall maximal cutoff
time [47].

For all experiments in this paper, we used the FocusedILS variant of the most
recent publicly available ParamILS release 2.3.712 with default parameters.

Appendix B.2. GGA: Gender-based Genetic Algorithm

The Gender-based Genetic Algorithm (GGA) [1] is a configuration procedure
that maintains a population of configurations and proceeds according to an

12http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

42

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

evolutionary metaphor, evolving the population over a number of generations in
which pairs of configurations mate and produce offspring. GGA also uses the
concept of gender : each configuration is labeled with a gender chosen uniformly
at random, and when configurations are selected to mate there are separate
selection pressures for each gender: configurations from the first gender are
selected based on their empirical performance, whereas configurations from the
other gender are selected uniformly at random. The second gender thus serves
as a pool of diversity, countering premature convergence to a poor parameter
configuration.

Unlike ParamILS ’ local search mechanism, GGA’s recombination operator
for combining the parameter values of two parent configurations can operate
directly on numerical parameter domains, avoiding the need for discretization.

Like ParamILS , GGA implements an adaptive capping mechanism, elegantly
combining it with a parallelization mechanism that lets it effectively use multiple
processing units. GGA only ever evaluates configurations in the selection step
for the first gender, and its strategy is to evaluate several candidates in parallel
until the first one succeeds. Here, the number of configurations to be evaluated
in parallel is taken to be identical to the number of processing units available,
#units.13

Like the FocusedILS variant of ParamILS , GGA also implements an “inten-
sification” mechanism for increasing the number of runs N it performs for each
configuration over time. Specifically, it keeps N constant in each generation,
starting with small Nstart in the first generation, and linearly increasing N up
to a larger Ntarget in generation Gtarget and thereafter; Nstart, Ntarget, and
Gtarget, are parameters of GGA.

For all experiments in the CSSC, we used the most recent publicly available
version of GGA, version 1.3.2.14 GGA’s author Kevin Tierney kindly provided a
script to convert the parameter configuration space description for each solver
from the competition’s pcs format15 to GGA’s native xml format. This script
allowed us to run GGA for all solvers except those with complex conditionals.

Next to the parameters #units, Nstart, Ntarget, and Gtarget mentioned above,
free GGA parameters include the maximal number of generations, Gmax and
the size of the population, Psize. The setting of these parameters considerably
affects GGA’s behaviour and also determines its overall runtime (when run
to completion). If there is an external fixed time budget (as in the CSSC),
these parameters can be modified to ensure that GGA does not finish far
too early (thus not making effective use of the available configuration budget)
while simultaneously ensuring that runs do not take far too long (in which
case configuration would be cut off in one of the first generations, where the
search is basically still random sampling). It is thus important to set GGA’s

13This coupling of adaptive capping and parallelization is the reason that GGA should not
be run on a single core if the objective is to minimize runtime.

14https://wiwi.uni-paderborn.de/dep3/entscheidungsunterstuetzungssysteme-und-

operations-research-jun-prof-dr-tierney/research/source-code/
15http://aclib.net/cssc2014/pcs-format.pdf

43

https://wiwi.uni-paderborn.de/dep3/entscheidungsunterstuetzungssysteme-und-operations-research-jun-prof-dr-tierney/research/source-code/
https://wiwi.uni-paderborn.de/dep3/entscheidungsunterstuetzungssysteme-und-operations-research-jun-prof-dr-tierney/research/source-code/
http://aclib.net/cssc2014/pcs-format.pdf

parameters carefully. We set the following parameters to values hand-chosen
by Kevin Tierney for the CSSC (leaving all other parameters at their default
values): #units = 4, Psize = 50, Gtarget = 75, Gmax = 100, Nstart = 4,
Ntarget = #(training instances in the scenario).16

We performed a post hoc analysis, which suggests that these parameters may
yet not be optimal: GGA often finished relatively few generations within its
configuration budget. It might thus make sense to use a smaller value of Ntarget
in the future to reduce the number of instances considered per configuration.
However, this means that GGA would never consider all instances and may
overtune as a result. How to best set GGA’s parameters is therefore an open
research question.

Appendix B.3. SMAC: Sequential Model-based Algorithm Configuration

In contrast to the model-free configurators ParamILS and GGA, SMAC [46]
is a sequential model-based algorithm configuration method, which means that
it uses predictive models of algorithm performance [49] to guide its search for
good configurations. More specifically, it uses previously observed 〈configuration,
performance〉 pairs 〈θ, f(θ)〉 to learn a random forest of regression trees (see, e.g.,

[22]) that express a function f̂ : Θ→ R predicting the performance of arbitrary
parameter configurations (including those not yet evaluated) and then uses this
function to guide its search. When instance characteristics xπ ∈ F are available
for each problem instance π, SMAC uses observed 〈configuration, instance
characteristic, performance〉 triplets 〈θ, xπ, f(θ, π)〉 to learn a function ĝ : Θ×
F → R that predicts the performance of arbitrary parameter configurations on
instances with arbitrary characteristics. These so-called empirical performance
models [49] are then marginalized over the instance characteristics of all training

benchmark instances in order to derive the function f̂ that predicts average
performance for each parameter configuration: f̂(θ) = Eπ∼Πtrain [ĝ(θ, π)] .

This performance model is used in a sequential optimization process as follows.
After an initialization phase, SMAC iterates the following three steps: (1) use
the performance measurements observed so far to fit a marginal random forest
model f̂ ; (2) use f̂ to select a promising configuration θ ∈ Θ to evaluate next,
trading off exploration in new parts of the configuration space and exploitation
in parts of the space known to perform well; and (3) run θ on one or more
benchmark instances and compare its performance to the best configuration
observed so far.

SMAC employs a similar criterion as FocusedILS to determine how many
runs to perform for each configuration, and for finite configuration spaces in
the limit it also provably converges to the best configuration on the training

16Actually, due to a miscommunication, we first ran experiments with Ntarget = 2000,
obtaining somewhat worse results than reported here. After double-checking with Kevin
Tierney we then re-ran everything with the correct value of Ntarget that depended on the
number of training instances in each configuration scenario. We only report these latter results
here.

44

set. Unlike ParamILS, SMAC does not require that the parameter space be
discretized.

When used to optimize target algorithm runtime, SMAC implements an
adaptive capping mechanism similar to the one used in ParamILS . When this
capping mechanism prematurely terminates an algorithm run we only observe a
lower bound of the algorithm’s runtime. In order to construct predictive models
of algorithm runtime in the presence of such so-called right-censored data points,
SMAC applies model-building techniques derived from the survival analysis
literature [45].

Appendix C. Hors-Concours Solver Riss3gExt

So far, we have limited our analysis to the ten open-source solvers that com-
peted for medals. Recall that one additional solver, Riss3gExt , only participated
hors concours. It was not eligible for a medal, because it had been submitted as
closed source, being based on a highly experimental code branch of Riss3g that
had not been exhaustively tested and was therefore likely to contain bugs.

As discussed in Section 2.1, our experimental protocol included various
safeguards against such bugs: we measured runtime and memory externally,
compared reported solubility status against true solubility status where this was
known, and checked returned models when an instance was reported satisfiable.
Our configuration pipeline detected and penalized these crashes automatically,
enabling the configuration procedures to continue their search and find Riss3gExt
configurations with no or few crashes. In fact, the final best configurations
identified by our configuration pipeline performed very well and would have
handily won both the industrial and the crafted track of the CSSC 2013 had
Riss3gExt been submitted as open source: in the industrial track, it only left 82
problem instances unsolved (compared to 115 for Lingeling); and in the crafted
track only 44 (compared to 96 for Clasp-3.0.4-p8). Even though most of the
instances Riss3gExt did not solve were due to it crashing, all of these were ‘legal’
crashes that simply did not output a solution (such as segmentation faults). In
particular, we never observed Riss3gExt to produce an incorrect output for a
CSSC test instance with known satisfiability status.

However, empirical tests with benchmark instances are of course no substitute
for formal correctness guarantees, and even seasoned solvers can have bugs.
Indeed, after the competition, Riss3gExt ’s developer found a bug in it (in on-
the-fly clause improvement [38]) that caused some satisfiable instances to be
incorrectly labeled as unsatisfiable.17 This being the case, it was fortunate that
Riss3gExt was ineligible for medals.

While empirical testing on benchmark instances, as done in a competition,
can never guarantee the correctness of a solver, in future CSSCs, we consider
tightening solubility checks on the benchmark instances used, by either limiting
the benchmark sets to contain only instances with known satisfiability status or

17Personal communication with Riss3gExt ’s developer Norbert Manthey.

45

100 101 102 103

#Parameters

10-1

100

101

102

103
S
p
e
e
d
u
p

rissgExt

lingeling

rissg

clasp-cssc

forlnodrup

SolverFourtyThree

satj

simpsat

gnoveltyPCL

gnoveltyGCwa

gnoveltyGCa

(a) CSSC 2013

100 101 102 103

#Parameters

10-1

100

101

102

103

S
p
e
e
d
u
p

lingeling

SparrowToRiss

Riss-4.27

clasp-3.0.4-p8

cryptominisat

YalSAT

minisat-HACK-999ED

probSAT

CSCCSat2014

DCCASat+march-rw

(b) CSSC 2014

Figure D.11: Same as Figure 9, but using PAR-1 instead of PAR-10 score.

to require (and check) proofs of unsatisfiability, as in the certified UNSAT track
of the SAT competition.

Appendix D. Additional results with PAR-1 score

Figure D.11 visualizes runtime speedups obtained for each solver, counting
timeouts at the cutoff time as the cutoff time itself (PAR-1). Compared to
the PAR-10 results in Figure 9, speedups with PAR-1 are up to a factor of ten
smaller for benchmark/solver combinations with many timeouts for the default,
but otherwise results are qualitatively similar.

46

	1 Introduction
	2 Design Criteria for the CSSC
	2.1 Controlled Execution of Solver Runs
	2.2 Choice of Configuration Pipeline
	2.3 Pre-submission Bug Fixing
	2.4 Choice of Benchmarks

	3 Automated Algorithm Configuration Procedures
	4 The Configurable SAT Solver Challenge 2013
	4.1 Participating Solvers and Their Parameters
	4.2 Configuration Pipeline
	4.3 Results
	4.3.1 Results of the Industrial SAT+UNSAT Track
	4.3.2 Results of the crafted SAT+UNSAT Track
	4.3.3 Results of the Random SAT+UNSAT Track

	5 The Configurable SAT Solver Challenge 2014
	5.1 Participating Solvers
	5.2 Configuration Pipeline
	5.3 Results
	5.3.1 Results of the Industrial SAT+UNSAT Track
	5.3.2 Results of the crafted SAT+UNSAT Track
	5.3.3 Results of the Random SAT+UNSAT Track
	5.3.4 Results of the Random SAT Track

	6 Post-Competition Analyses
	6.1 Why Does Configuration Work So Well and How Can It Fail?
	6.2 Overall Configurability of Solvers
	6.3 Impact of Configuration Budget
	6.4 Results with an Increased Cutoff Time for Validation
	6.5 Results with a Single Configurator

	7 Conclusion
	Appendix A Benchmark Sets Used
	Appendix A.1 Industrial Benchmark Sets
	Appendix A.2 Crafted Benchmark Sets
	Appendix A.3 Random Benchmark Sets
	Appendix A.4 Instance Features Used for these Benchmark Sets

	Appendix B Configuration Procedures
	Appendix B.1 ParamILS: Local Search in Configuration Space
	Appendix B.2 GGA: Gender-based Genetic Algorithm
	Appendix B.3 SMAC: Sequential Model-based Algorithm Configuration

	Appendix C Hors-Concours Solver Riss3gExt
	Appendix D Additional results with PAR-1 score

