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Coulomb-blockade oscillations in a quantum dot
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Periodic oscillations as a function of gate voltage have been obseived 1n the conductance of a quantum dot defined 1n a
two-dimensional clection gas by three pairs of gates They are nterpreted as Coulomb-blockade oscillations  The
amplitude of the oscillations can be enhanced up to ¢/h n the quantum Hall cftect regime

The advent of epitaxial crystal-growth tech-
niques, which offer control down to the scale of
single atomic layers, has created new semicon-
ductor materials of extrcme purity. Advances in
nano-lithography allow these materials to be
structured into systems showing a variety of new
phenomena. An example is the quantized con-
ductance of a quantum point-contact [l, 2],
which is a constriction in the two-dimensional
electron gas (2DEG) in a GaAs—AlGaAs
heterostructure of width comparable to the
Fermi wavelength. The conductance quantiza-
tion has a direct analogy in the discretized opti-
cal transmission cross-section of an aperture or
slit [3].

Point contacts can be uscd in a variety of ways
[4]. In this paper we consider their use as tunnel
barriers for the study of transport through a
quantum dot which is wecakly coupled to two
clectron reservoirs [5-9]. At temperatures
ks T =<AFE, where AE is the average energy-level
separation in the quantum dot, transport ot non-
interacting electrons occurs by resonant tunnel-
ing. This is analogous to the resonant transmis-
sion of light through a Fabry—Perot interferome-
ter. If the capacitance C of the quantum dot is

small, however, the elcctrostatic energy e’/2C
required to add a single elementary charge to the
quantum dot can excecd the thermal energy
kT, at low temperaturcs. Tunneling then is
inhibited. This is known as the Coulomb block-
ade of tunneling, which has been studied exten-
sively in metallic tunnel junctions [10]. Due to
the large density of states, the discreteness of the
cnergy spectrum can be neglected in such sys-
tems. This is not the case for semiconductor
nanostructures, which allow a study of single
clectron tunncling in the quantum regime k7 <
AE [11]. In addition, the quantum Hall effect
regime is accessible in these systems.

A manifestation of the Coulomb blockade is
the appearance of oscillations in the conductance
as a function of gate voltage, at temperatures
above those expected for resonant tunneling of
non-interacting electrons. Such “*Coulomb-block-
ade oscillations’ in semiconductors were origin-
ally observed [12, 13] and identified [14] in dis-
ordercd quantum wires, where they result from a
break-up of thc narrow channel into a few seg-
ments separated by tunnel barriers. A theory for
the Coulomb-blockade oscillations in the quan-
tum regime k,T <AE has been developed re-
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cently [15, 16]. Here we present new experimen-
tal results on the Coulomb-blockade oscillations
in a quantum dot. In contrast to disordered
quantum wires, the tunnel barriers in a quantum
dot are created artificially, allowing for more
experimental control. One of our findings is that
by applying a strong magnetic field the amplitude
of the oscillations can be enhanced up to e/A.

The sample that we have used for our experi-
ments (fig. 1(a)) is based on a GaAs—-AlGaAs
heterostructure containing a 2DEG with a sheet
electron density of 2x 10" ecm™” and a mobility
of 2x10°cm®/Vs, at low temperatures. The
quantum dot is defined by means of electrostatic
depletion of the 2DEG using thrce pairs of
gates, as shown schematically in fig. 1(b). Two
adjustable tunnel barriers are formed by oppo-
site quantum point contacts (of 0.3 um lithog-
raphic width and 0.7 wm separation) defined by
gates (B, C) and (E, F). The number of elec-
trons confined in the quantum dot can be con-
trolled by two additional gates (A, D) (0.9 wm
apart). The gaps between the point-contact gates F
and the control gates arc approximately 0.2 um
wide, so that the quantum dot is formed before [
the point contacts are pinched off. The measure-
ments of the conductance were carried out using
an AC lock-in technique, with the sample moun-
ted in the mixing chamber of a dilution re- v
frigerator. The temperature was approximately ?
100 mK,, and the source-drain voltage was 10 pV.
The diagonal measurement configuration shown
in fig. 1(b) yields an effective two-terminal con- {b) D
ductance, even if a magnetic field is applied [4].

In fig. 2 we show experimental results of the
Coulomb-blockade oscillations as a function of A
the voltage V. applied to the control gates (A,
D), for six values of the magnetic field between
B =0and 3.75T. The ficld was oriented perpen-
dicular to the 2DEG. The point contacts were
adjusted to the tunneling regime (G <2e’/h, at

Fig 1 (a) Scanming-electron micrograph of the quantum dot
(b) Schematic top-view of the quantum dot Gates (B, C)
and (E, F) definc tunnel barriers ot adjustable transparency
Gates (A, D) contiol the number of electrons confined in the
quantum dot. The current contacts are labelled by I, I,, the
voltage contacts by V,, V, (¢) Equivalent circuit of the
quantum dot and the control gates (A, D)
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Fig. 2. Equivalent two-terminal conductance of the quantum
dot versus voltage on the control gates (A, D) (applied
rclative to one of the current contacts), for six values of a
perpendicular magnetic field. The voltages on the point-
contact gates (B, C) and (E, F) were kept fixed, at a value
such that the zero-field conductance of the individual point
contacts was below 2e”/h.

B =0). No oscillations were observed if either or
both point contacts were set to a conductance
above 2e’/h (at B =0), in agreement with ref.
[9]. All traces show a large number of oscilla-
tions which are nearly periodic in the gate vol-
tage. The period of the oscillations increases
slowly as the gate voltage is made more negative,
presumably because the size of the quantum dot
is decreased (thereby decreasing the mutual
capacitance of quantum dot and control gates).
Near V,,,. = —0.4 V the period of the B = 0 trace
is AV, =2.8 mV, while near V. = —0.7 Vit is
approximately 3.4 mV.

A magnetic field has almost no effect on the
period (less than a few percent for B <4 T), and
no spin splitting of the conductance peaks is
observed. An additional slow modulation with a
period of approximately 26 mV is observed for
Ve —0.6V at B=0.75T. At B=3.75T an
apparent doublet structure is seen in a small
voltage interval. These secondary effects, which
are not understood, are similar to those observed
in disordered quantum wires [13]. The gate vol-
tage at which the oscillations disappear, and the
conductance vanishes, increases monotonically
with increasing magnetic field. We attribute this
to a magnetic depopulation of the quantum dot.

The peak-to-valley amplitude of the oscilla-
tions does not exceed e/, and typically exhibits
a maximum for intermediate gate-voltages. They
are superimposed on a background conductance,
which increases slowly with gate voltage. We
attribute the V,, .-dependence of the amplitude
of the oscillations to the effect of the control
gates (A, D) on the transparency of the potential
barriers in the boundary of the quantum dot. At
more negative gate voltages, the tunnel barriers
in the point contacts become less transparent,
reducing the peak height. At less negative gate
voltages, the potential barriers in the gaps be-
tween the control and point-contact gates be-
come more transparent, increasing quantum fluc-
tuations in the charge of the quantum dot. This
leads to an increased background conductance,
and to conductance maxima exceeding e”/4 in the
zero-field trace. It is not yet clear whether this is
due to virtual tunneling processes [17, 18],
known to be important in metals if the conduct-
ance of the individual barriers is of the order of
e’/h, or to a cross-over from tunneling to ballistic
transport through the point contacts. A dynami-
cal treatment is required in our case of low
tunnel barriers, since the field across the barrier
changes during the tunnel process [19]. Similar
dynamic polarization effects are known to play a
role in large-area semiconductor tunnel junc-
tions, where they are related to an image-force
lowering of the barrier height.

The amplitude of the oscillations depends non-
monotonically on B. In the presence of a mag-
netic field the oscillations are quite spectacular,
of amplitude approaching e¢*/h (at B =3.75 T and
Ve = =052V, see fig. 2). Whereas the am-
plitude of the oscillations is enhanced, the back-
ground conductance is reduced, in such a way
that G < e’k in the entire conductance trace.

Let us now estimate the relevant energies in
the problem. The area of the quantum dot in the
relevant gate-voltage regime is estimated at A =
0.4 x 0.6 um’ (assuming that the lateral deple-
tion length equals half the lithographical width of
the point contacts). In the absence of a magnetic
field, this implies AE ~2/p,,A =30 pneV, where
P,p is the two-dimensional density of states (for
one spin direction). Our experimental observa-
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tion of oscillations up to T=0 9K mmplies an
activation energy of the conductance mimma of
about 4k, T=0 3 meV Clearly, this excludes an
interpretation of the oscillations 1n terms of re-
sonant tunneling of non-interacting electrons
This conclusion 1s supported further by the ab-
sence of spin sphtting n a magnetic field The
charging energy ¢”/C can be esimated from the
self-capacitance of a flat circular disk of diameter
d, C=4dged=~3x10 '°F (¢,=13 and d=
0 6 um) Our estimate ¢/C=05meV explams
the large activation energy of the conductance
minmma 1n the experiment, as we now discuss

As shown m ref [20], the condition for a
conductance peak due to resonant tunneling in
the presence of charging effects 1s (at 7=0)

62

EA=Ey+(N=}) & =edut Er, (M
where N 1s the number of electrons 1n the quan-
tum dot, E, the Fermu energy of the reservorrs,
and ¢ = Pyonor. T @y, that part of the poten-
tial difference between the quantum dot and the
reservolirs which 1s due to the fixed charge on the
ionized donors and a vanable charge on the gate
(@15 a rational function of the capacitance matrix
elements of the system) The energy E, of the
Nth level 1s measured relative to the conduction
band bottom in the quantum dot The effective
energy level separation AE*=AFE + e’/C for
transport 1s enhanced and regulated by the
charging energy The activation energy of the
mimma 18 JAEY [15] Since in our experiment
¢’/C>AE, this explains our observation of
periodic oscillations in the conductance at tem-
peratures much above those expected for reson-
ant tunnehing of non-interacting electrons In
addition, the spin degeneracy of the effective
energy levels 1n the quantum dot 1s lifted by the
charging energy, explaining the absence of spin
splitting of the oscillations, even n a strong
magnetic field

Whereas the temperature dependence of the
Coulomb-blockade oscillations 1s determined by
the total capacitance C of the quantum dot, the
pertod 15 determined by the smaller mutual
capacitance C_ . of the quantum dot and the
control gates (A, D) We represent the system ot

quantum dot, control gates, and 2DEG leads by
the equvalent crcuit of fig 1(c) (the mutual
capacitance between the quantum dot and the
point-contact gates 1s absorbed in C,,,) Using
simple electrostatics, one finds a=C,, /C,
where C=C_, + Cy, Since the control gates
affect primarily the quantum dot and not the
reservolrs, Ep can be assumed to be constant
Equation (1) then imphes a period*®

e AE
A = [1 + = } 2
¢g11e Céllc e /C ( )

In the case AE <e’/C the period 1s constant,
even 1f the level separation 1s non-uniform

In the experiment, the estimated level separa-
tion AE between spin-degenerate levels 1s only
5% of ¢*/C From the period of the oscillations
we find CE“L:5><1O_l7 F, an order of mag-
nitude smaller than C The increase of the period
for V_ . approaching —07V thus suggests a
decreased dot-gate capacitance C,,,., which 1s
not unreasonable 1in view of the lateral depletion
technique used The period 1s found to be almost
independent of the magnetic field, indicating that
C, .. does not depend strongly on the magnetic
field The effect of the magnetic field on the
energy levels 1in the quantum dot may be large,
but this does not strongly affect the period of the
oscillations 1 our experiment, since AE <e’/C

In conclusion, we have observed periodic os-
cillations 1n the conductance of a quantum dot as
a function of gate voltage From the fact that
these oscillations are observed at relatively high
temperatures, compared to the energy level
separation in the quantum dot, we conclude that
they are Coulomb-blockade oscillations, rather
than oscillations due to resonant tunneling The
period of the oscillations 1s 1n qualitative agree-
ment with theoretical estimates The effect of a
magnetic field on the amphtude of the oscilla-
tions and the background conductance remains
to be understood

* We note that the controlicd gate voltage V, ,_ 1s the electro
chemical potential difference between gates and leads
rather than the electrostatic potential difference ¢,,,, How

ever the change in Fermi energy in the (metal) gates 1s
neghgible within one period and therefore AV, . =Ad¢
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