
Comparing in vitro human liver models to in vivo human liver using
RNA-Seq
Gupta, R.; Schrooders, Y.; Hauser, D.; Herwijnen, M. van; Albrecht, W.; Braak, B. ter; ... ;
Caiment, F.

Citation
Gupta, R., Schrooders, Y., Hauser, D., Herwijnen, M. van, Albrecht, W., Braak, B. ter, …
Caiment, F. (2020). Comparing in vitro human liver models to in vivo human liver using
RNA-Seq. Archives Of Toxicology. doi:10.1007/s00204-020-02937-6
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3134844
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3134844


Vol.:(0123456789)1 3

Archives of Toxicology 
https://doi.org/10.1007/s00204-020-02937-6

IN VITRO SYSTEMS

Comparing in vitro human liver models to in vivo human liver using 
RNA‑Seq

Rajinder Gupta1  · Yannick Schrooders1 · Duncan Hauser1 · Marcel van Herwijnen1 · Wiebke Albrecht2 · 
Bas ter Braak3 · Tim Brecklinghaus2 · Jose V. Castell4 · Leroy Elenschneider5 · Sylvia Escher5 · Patrick Guye6 · 
Jan G. Hengstler2 · Ahmed Ghallab2,7 · Tanja Hansen5 · Marcel Leist8 · Richard Maclennan9 · Wolfgang Moritz6 · 
Laia Tolosa10 · Tine Tricot11 · Catherine Verfaillie11 · Paul Walker9 · Bob van de Water3 · Jos Kleinjans1 · 
Florian Caiment1

Received: 15 June 2020 / Accepted: 12 October 2020 
© The Author(s) 2020

Abstract
The liver plays an important role in xenobiotic metabolism and represents a primary target for toxic substances. Many dif-
ferent in vitro cell models have been developed in the past decades. In this study, we used RNA-sequencing (RNA-Seq) to 
analyze the following human in vitro liver cell models in comparison to human liver tissue: cancer-derived cell lines (HepG2, 
HepaRG 3D), induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs), cancerous human liver-derived assays 
(hPCLiS, human precision cut liver slices), non-cancerous human liver-derived assays (PHH, primary human hepatocytes) 
and 3D liver microtissues. First, using CellNet, we analyzed whether these liver in vitro cell models were indeed classified 
as liver, based on their baseline expression profile and gene regulatory networks (GRN). More comprehensive analyses using 
non-differentially expressed genes (non-DEGs) and differential transcript usage (DTU) were applied to assess the coverage 
for important liver pathways. Through different analyses, we noticed that 3D liver microtissues exhibited a high similarity 
with in vivo liver, in terms of CellNet (C/T score: 0.98), non-DEGs (10,363) and pathway coverage (highest for 19 out of 
20 liver specific pathways shown) at the beginning of the incubation period (0 h) followed by a decrease during long-term 
incubation for 168 and 336 h. PHH also showed a high degree of similarity with human liver tissue and allowed stable 
conditions for a short-term cultivation period of 24 h. Using the same metrics, HepG2 cells illustrated the lowest similarity 
(C/T: 0.51, non-DEGs: 5623, and pathways coverage: least for 7 out of 20) with human liver tissue. The HepG2 are widely 
used in hepatotoxicity studies, however, due to their lower similarity, they should be used with caution. HepaRG models, 
iPSC-HLCs, and hPCLiS ranged clearly behind microtissues and PHH but showed higher similarity to human liver tissue 
than HepG2 cells. In conclusion, this study offers a resource of RNA-Seq data of several biological replicates of human liver 
cell models in vitro compared to human liver tissue.
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Introduction

The liver plays a central role in metabolizing exogenous 
substances. After oral uptake xenobiotics pass through the 
digestive tract and enter the liver via the portal vein, where 

metabolism by phase I and II enzymes take place (Cribb 
et al. 2005). Xenobiotics or their metabolites may damage 
the liver with fatal consequences for the individual (Moeller 
et al. 2012). Therefore, it is important to identify compounds 
that cause hepatotoxic effects to avoid exposure to humans.

While the use of animal models has proven to be of great 
importance in biological research (Dey et al. 2010; Eric-
sson et al. 2013; Hau 2008; Simmons 2008), it remains 
challenging to translate the results to humans. Many drugs 
that showed great promise in animal testing failed safety 
assessment in clinical trials, e.g. emicizumab, zydelig, 
JCAR014, JCAR015, and Ad-RTS-hIL-12. To overcome 
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these limitations, human cell models have emerged as a 
viable alternative for efficacy, safety, and toxicity testing 
(DelRaso 1993; Godoy et al. 2013). These in vitro models 
do not just eliminate the species-specific variations but also 
have other advantages such as the requirement of only small 
amounts of the substance, relatively short testing periods, 
and the technically easy possibility to study mechanisms of 
toxicity, enzyme kinetics, and concentration–response rela-
tionships (DelRaso 1993; LeCluyse et al. 1996). Limitations 
using in vitro cell models are that differences between cells 
in vitro and in vivo may exist; moreover, relatively complex 
techniques are required to extrapolate from test compound 
concentrations in the culture medium in vitro to blood con-
centrations or doses in vivo (Albrecht et al. 2019; Sachinidis 
et al. 2019).

Several human liver cell models have been developed 
with an aim to resemble the in vivo situation as closely as 
possible (Gebhardt et al. 2003). HepaRG cells may be used 
for xenobiotic metabolism, toxicity studies, cytochrome 
P450 induction studies, and for analyzing genotoxic com-
pounds (Guillouzo et al. 2007; Kanebratt and Andersson 
2008). Primary human hepatocytes are still considered to 
represent a gold standard for hepatic biotransformation stud-
ies (Godoy et al. 2018; Gu et al. 2018), whereas HepG2 cells 
have been reported to represent a useful tool to study the 
regulation of drug-metabolizing enzymes (Wilkening et al. 
2003). In a review of different in vitro liver cell models, the 
advantages and disadvantages of the in vitro liver cell mod-
els have also been discussed (Soldatow et al. 2013). Though 
informative, these studies only give a superficial comparison 
as they are based on selected processes and components, 
whereas next-generation sequencing (NGS) technologies can 
be used to obtain an unbiased, holistic view.

The evolution of NGS over the years has revolutionized 
genomics and transcriptomics research (Van Dijk et al. 2014) 
making it affordable, fast, and precise. With NGS-based 
RNA-sequencing (RNA-Seq), it has now become possible to 
both identify and quantify RNA transcripts (Chu and Corey 
2012), even in the absence of any prior genomic knowledge 
(Van Dijk et al. 2014; Wang et al. 2009). Quantification of 
the transcript level, known as gene expression, can be ana-
lyzed in many different ways (Bae et al. 2016; Chen et al. 
2011; DelRaso 1993; Kvam et al. 2012) depending on the 
type of biological questions that need to be addressed. RNA-
Seq provides the exhaustive expression profile of all genes 
expressed in the cell and is not limited to a set of genes 
widely studied.

In this study, we compared healthy human liver tissue, 
further referred to as “in vivo liver” with in vitro liver cell 
lines often used in toxicology studies. For the bioinformat-
ics analysis, we used CellNet (Cahan et al. 2014a) which is 
a network biology-based computational platform to assess 
RNA-Seq expression data. In CellNet, consensus expression 

profiles of specific cells or tissue types were generated. For 
the ease of use, the authors have created transcriptome indi-
ces and annotation files of some cells/tissues by congregat-
ing publicly available RNA-Seq data for humans. We used 
these human indices and annotation files for comparing the 
liver in vitro cell models. Comparing the consensus expres-
sion data with the test cell models objectifies their similarity 
with different cells/tissues. CellNet also creates gene regula-
tory networks (GRN) that are derived from the expression 
profile. GRN is a network of genes that interact with each 
other to control-specific cell functions (Li and Davidson 
2009). GRNs can also be used to analyze similarities as they 
are specific for development, differentiation, and response to 
environmental cues (Godoy et al. 2015).

To study each component (genes and/or transcripts) indi-
vidually with equal weight, we also analyzed non-differen-
tially expressed genes (non-DEGs). Usually, differentially 
expressed genes (DEGs) between samples are analyzed to 
describe the differences between cell types, exposures, time 
points, or other influences (Kvam et al. 2012). Here, also 
the non-DEGs were analyzed to focus on the similarities 
between in vitro liver cell models and in vivo liver. The 
higher the number of non-DEGs the higher the similarity 
an in vitro model and the liver.

Gene expression levels from RNA-Seq data are usually 
obtained by summing the reads attributed to all transcript 
(or isoforms) variants for each given gene so that the change 
in the amount of expression of individual isoforms is not 
apparent. A previous consensus has been that the major-
ity of genes are regulated through their mRNA levels but 
NGS has shown that also the selection of individual spliced 
variants may change, while the sum of all isoforms remains 
unchanged. Moreover, the ENCODE project revealed 
through NGS that close to 95% of human multi-exon genes 
undergo alternative splicing (Carninci 2009) to form the 
gene transcripts. Gene transcripts are mRNAs that have dif-
ferent transcription start sites (TSSs), protein coding DNA 
sequences (CDSs), and/or untranslated regions (UTRs) but 
all are expressed from the same locus. Ensembl (Aken et al. 
2016) provides an extensive list of transcript types broadly 
categorized as protein coding, nonsense mediated decay, 
non-stop decay, and long as well as small non-coding RNA 
(https ://www.ensem bl.org/info/genom e/geneb uild/bioty 
pes.html). By RNA-Seq, quantified information of different 
transcripts of a gene can be obtained (Van Dijk et al. 2014) 
and changes in the fraction of each transcript, known as dif-
ferential transcript usage (DTU), can be studied to provide 
insights. These differences in the ratio of the expression of 
the transcripts can potentially alter the gene function and the 
mRNA regulation, stability, and localization (Matoulkova 
et al. 2012; Mayr 2016).

To our knowledge, previous studies have compared 
genome-wide expression only of individual cell models, 

https://www.ensembl.org/info/genome/genebuild/biotypes.html
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such as e.g. PHH and iPSC derived human hepatocyte-
like cells (Godoy et al. 2015, 2018); however, a systematic 
comparison of the most frequently applied in vitro liver cell 
models to human liver tissue has not yet been performed. 
Here, we studied different in vitro liver cell models at base-
line conditions, i.e. without any compound exposure: liver 
models derived from cancer cells (HepG2, HepaRG 3D), 
iPSC (induced pluripotent stem cells)-derived hepatocyte-
like cells, cancerous human liver-derived (hPCLiS, human 
precision cut liver slices), and non-cancerous human liver-
derived cultivated primary human hepatocytes (PHH) and 
3D liver microtissues. These cell models were compared to 
healthy in vivo liver assessed by NGS data.

Materials and methods

An overview of the analyzed samples, human liver tissue 
specimens in vivo and in vitro liver cell models is given in 
Table 1, detailed information on samples and protocols is 
available in Suppl. methods 1a-g, and details on samples 
selected after each filtration step are provided in Suppl. 
Table  1. For PHH, hPCLiS, and 3D liver microtissues 
expression data for multiple time points are available.

RNA sequencing

All samples from the in vitro liver cell models were ana-
lyzed by a standardized working pipeline that included the 
immediate transfer of cells and tissues into TRIzol™ after 
the cultivation periods as indicated in Table 1. RNA was 
extracted from these cell samples with a Qiagen miRNeasy 

Mini Kit (Cat # 217004). Additionally, DNase digest was 
performed with a Qiagen RNase-Free DNase Set (Cat # 
79254) to remove unwanted DNA. RNA quantity and qual-
ity were assessed by Qubit™ RNA HS Assay Kit (Cat # 
Q32855) and Agilent RNA 6000 Nano Kit (Cat #5067-1511) 
respectively and prepared for sequencing with the Lexogen 
SENSE mRNA-Seq Library Prep Kit V2 (Cat # 001.96). 
After library preparation was completed, the quality of 
the libraries was checked on an Agilent 2200 TapeStation 
using an Agilent High Sensitivity D5000 ScreenTape (Cat 
# 5067-5592) and library concentration was determined by 
Qubit™ dsDNA HS Assay Kit (Cat # Q32854) before pro-
ceeding to sequencing. While the healthy liver tissue sam-
ples were sequenced (paired-end, 150 bp) on an Illumina 
NovaSeq 6000® using a single S2 flowcell, the in vitro cell 
models were sequenced (paired-end, 100 bp) on Illumina 
HiSeq2000®.

Data pre‑processing

The quality of the RNA-Seq raw data (fastq files) was ana-
lyzed using the Fastqc (version 0.10.1) (Langmead and 
Salzberg 2012) and after considering the quality of the 
sequences, tails of the sequences were trimmed of the bad 
quality of the sequences (twelve nucleotides) using Trim-
momatic (version 0.33) (Bolger et al. 2014). The sequences 
were mapped onto the Ensembl (Aken et al. 2016) human 
genome (version 84) using Bowtie2, (version 2.2.6) (Lang-
mead and Salzberg 2012), and gene and isoform (transcript) 
expression were calculated using RSEM (version 1.2.28) 
(Li and Dewey 2011). Using the sorted genome bam files 

Table 1  Overview of in vitro liver cell models used in this study

a Timepoint 0 h is time post-seeding
b Donor 1 (SBAD2) → 4 replicates; Donor 2 (SBAD3) → 2 replicates
c 3 samples from infants or children were removed

Cell line Cultivation 
period (in h)

No of replicates (biological/technical) Protocol and other details

Total Sequencing depth 
filtration

After bootstrapping (replicates most 
similar to in vivo healthy liver)

In vivo liver NA 27 24c 24 Suppl. methods 1(a)
PHH 0a 6 6 3 Suppl. methods 1(b)

24 6 6 3
iPSC-HLC 480 6b 3 3 Suppl. methods 1(c)
3D liver microtissues 0a 3 2 2 Suppl. methods 1(d)

168 3 3 3
336 3 3 3

HepG2 0a 7 7 3 Suppl. methods 1(e)
HepaRG 3D 0a 4 3 3 Suppl. methods 1(f)
hPCLiS 0a 4 4 3 Suppl. methods 1(g)

24 4 4 3
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from RSEM, annotation of the mapped reads was assessed 
by applying ALFA (Bahin et al. 2019).

The gene read counts, isoform read counts and isoform 
percentage from all in vivo and in vitro samples were taken. 
Gene read counts were used for finding the non-DEGs, then 
isoform count and percentage were used to analyze DTU. 
Calculation of non-DEGs and DTU is done for each cell 
model and all time-points, individually.

CellNet analyses

The fastq files were used for CellNet analysis. All the sub-
sequent steps were performed locally as explained in the 
CellNet protocol paper (Radley et al. 2017). We used the 
‘Human Jun_20_2017’ cnProc from the CellNet for analy-
ses. Two types of analyses were performed: comparing the 
consensus expression profile and GRN status. The consen-
sus expression profile per cell or tissue type is generated 
from publicly available RNA-Seq data and classification 
scores for the test samples are obtained. GRN created from 
the consensus expression profile give the GRN status when 
samples are compared against them. These are calculated 
by first computing the raw GRN status as the mean z-score 
of all genes in a C/T (cell/tissue) GRN, weighted by their 
importance to the associated C/T classifier. The raw GRN 
status is then normalized to the mean raw GRN status of the 
training data samples of the given C/T (Cahan et al. 2014b).

Bootstrapping

A different number of replicates (technical or biological) 
were present for all cell models. To eliminate this possi-
ble source of bias, we selected three replicates from each 
cell model which presented the highest similarity with the 
healthy in vivo liver (Table 1, Suppl. Table 1) based on the 
number of non-DEGs. In the case of 3D liver microtissues, 
only two replicates were taken instead of three, because the 
third replicate had very low coverage and was discarded at 
the sequencing depth filtration. These selected replicates 
were then used to calculate non-DEGs, DEGs, DTU, and 
other further analyses.

Non‑DEGs

The data were normalized by defining in vivo liver as one 
dataset and each in vitro liver model for each time point as 
an individual dataset (best three replicates were taken as 
explained above). Then each in vitro dataset was compared 
individually to the in vivo dataset for calculating the non-
DEGs using the ‘DESeq’ function from DESeq2 R-pack-
age (Love et al. 2014). The list of non-DEGs is obtained 
by filtering the results for q value (padj) > 0.05 and base-
mean > 10. These non-DEGs were mapped onto KEGG 

pathways (Kanehisa et al. 2004) using Pathview (Luo and 
Brouwer 2013), and in-house developed scripts were used 
to calculate the pathway coverage.

Differential transcript usage (DTU)

The change in the proportion of the transcripts expressed 
for a gene represents differential transcript usage. Isoform 
counts and percentages were calculated using RSEM. The 
isoform counts were normalized using DESeq2 as explained 
for gene reads for the selected replicates for each cell model. 
Considering the number of transcripts assessed, multiple fil-
tering steps were applied to remove the low expressed tran-
scripts (or noise), and transcripts expressed at a similar level 
from the control (in vivo) and test (in vitro) samples.

1. Low expression/noise:
  Isoforms that were expressed less than one in a mil-

lion reads in one dataset (test or control) were removed. 
These isoforms were removed, because their expression 
level was not sufficient to be considered above the noise 
at this sequencing depth. This filtration step was per-
formed on isoform counts.

2. Similar expression:
  Isoforms that differ less than equal to 10% between 

the average percentage of in vivo and in vitro samples 
were removed, because we were interested in looking 
for the isoforms having sufficient differential usage. This 
filtration step was performed on isoform percentages.

3. No expression in some samples:
  The isoforms that were not detected in more than 

20% of the samples in any one of the datasets (in vivo 
or in vitro) were discarded, as this would reduce the 
confidence in the samples that showed expression for 
those isoforms. If the number of samples for test or con-
trol were less than five, we imposed that the transcripts 
were detected in all samples. This filtration step was 
performed on isoform percentages.

Isoforms deleted from the count dataset were removed 
from the percentages dataset and the ones deleted from the 
percentages were removed from the counts.

After the filtration steps, the genes left with only one iso-
form were removed from both datasets (counts and percent-
ages). The variance was calculated between the test and con-
trol samples for all the remaining transcripts using ANOVA 
in R. Isoform percentages were used to find the variance 
because percentages are linearly distributed (contrary to the 
RNA-Seq read count). It was filtered on p value < 0.01 as 
the calculation at the isoform level has a higher error rate.

The highest expressed isoform was identified (high-
est percentage) in the control samples for each gene and 
was compared with its expression profile in test samples. 



Archives of Toxicology 

1 3

The genes with different expression profiles (DTU) were 
removed from the non-DEGs and were named as non-
DEGsDTU−. The list of non-DEGsDTU− was mapped onto 
the KEGG pathways and pathway coverage was recalculated.

Results

RNA from totally of 27 liver tissue specimens from donors 
without liver diseases, further named “healthy in  vivo 
liver” and 46 samples from cultivated hepatocytes, cell 
lines, liver slices or iPSC-derived hepatocyte-like cells, 
so-called in vitro cell models, were sequenced on the Illu-
mina NovaSeq (PE, 150 bp) and the Illumina HiSeq 2000 
(PE, 100 bp), respectively. After removing the samples 
from children or infants for healthy in vivo liver specimens 
and filtering for sequencing depth 24 in vivo cell models, 
38 in vitro samples remained for further analysis (Suppl. 
Table 1). Since healthy human liver represents a very valu-
able resource, we generated sequences at very high depth 
(1.63*108) for community usage. However, to avoid cover-
age bias in our analysis with the in vitro samples (sequenced 
at a depth of 33.65*106), only the first 30 million reads of the 
fastq files obtained from the in vivo samples were used. We 
compared the full coverage and part of the data and found 
that the whole sample and sub-selection had similar distribu-
tion (Suppl. Figure 1).

All samples taken after initial filtration passed the ‘per 
base sequence quality’ metric of the Fastqc. The annotation 
of reads was assessed using ALFA. Median protein coding 
reads were 47.02%, 52.3%, 45.52%, 40.9%, 40.87%, 35.15%, 
and 47.16% for healthy liver tissue, 3D liver microtissues, 
HepaRG, HepG2, hPCLiS, PHH, and iPSC-HLC, respec-
tively (Suppl. Figure 2a and b). The samples that had lower 
protein coding and 3′UTR reads showed an increase in the 
intergenic and 5′UTR reads. Overall, the samples had simi-
lar distributions across different regions. Furthermore, the 
global similarity of the cell models was evaluated using 
pairwise Spearman’s correlation for normalized read counts 
(Fig. 1). The median (and standard deviation) of all pair-
wise correlation coefficients of the healthy liver tissue speci-
mens with the samples from 3D liver microtissues, HepaRG, 
HepG2, hPCLiS, PHH, and iPSC-HLC, were 0.87 (0.033), 
0.83 (0.008), 0.82 (0.013), 0.86 (0.014), 0.86 (0.014), and 
0.83 (0.01), respectively. The variation coefficients of 3D 
liver microtissues, HepaRG, HepG2, hPCLiS, PHH, and 
iPSC-HLC, were 3.87, 0.99, 1.57, 1.65, 1.59, and 1.22, 
respectively. Inter-replicate variation was observed predomi-
nantly in 3D liver microtissues (166_1 and 336_3) and PHH 
(024_1) cell models. It should be considered that interindi-
vidual variability contributes to the cell models obtained 
from different donors (healthy liver tissue specimens, 3D 

liver microtissues, hPCLiS, PHH), in contrast to the cell line 
derived cell models (iPSC-HLC, HepaRG, HepG2).

CellNet cell/tissue classification scores of RNA‑Seq 
expression profiles

Since the quality and global distributions of the samples 
were comparable, we next assessed their transcriptome 
expression to consensus profiles of different cells and tis-
sues. Using CellNet on the expression data of our liver 
in vivo and in vitro samples, we calculated classification 
scores (Fig. 2; Suppl. Table 2). CellNet classified all cell 
models as liver. We noticed that the iPSC-HLCs present 
the lowest CellNet classification score for the human liver 
and they still share some resemblance with embryonic stem 
cells (ESC). Among all the cell models, HepaRG 3D had 
the highest classification score for fibroblasts. The cancer 
cell models (HepG2 and HepaRG 3D) also exhibited low 
classification scores as compared to non-cancerous liver-
derived cell models, whereby the classification scores of 
HepaRG 3D were slightly higher compared to HepG2 cells 
but still much lower than the values for 3D liver microtis-
sues, hPCLiS, and iPSC-HLC. The human liver-derived 
models (3D liver microtissues, hPCLiS, and iPSC-HLC) 
did not show major differences among each other based on 
the CellNet classification score. Furthermore, at the level 
of GRNs (status score) (Suppl. Figure 3), similar results 
were obtained as for the consensus expression comparison 
(classification score). CellNet results can be used to find the 
extent of similarity and dissimilarity for the cell models but 
other approaches should be used to identify the differences 
at gene and transcript level. In this study, we explored non-
differentially expressed genes (non-DEGs) and differential 
transcript usage (DTU) to provide comprehensive compari-
sons between the cell models. However, to remove the bias 
caused by the different number of replicates from each cell 
model, we performed bootstrap analyses to guarantee that 
an identical number of replicates from each cell model was 
used (Fig. 3; Suppl. Table 1). The cell models had differ-
ing number of replicates, hence the number of combina-
tions of replicates, taken three at a time, also varied across 
cell models. The number of DEGs for 3D liver microtissues 
were 6315 (0 h), 9552 (168 h), and 9478 (336 h), for iPSC-
HLCs, it was 12,155 (480 h), and 11,790 for HepaRG 3D. 
For these cell models, only one combination of replicates 
per time point was obtained. For the remaining cell models, 
where the number of replicates were more than three after 
the initial filtration for quality, the average number of DEGs 
for PHH were ~ 9684 (0 h) and ~ 9508 (24 h), for hPCLiS the 
mean was ~ 12,499 (0 h) and ~ 12,815 (24 h), and for HepG2 
it was 13,070 (0 h). From these, the best three replicates 
were selected based on the number of non-DEGs, except for 
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3D liver microtissues 0 h, because one of the replicate was 
discarded for low coverage.

In vivo versus in vitro, using non‑differentially 
expressed genes

Normalized gene expression (mRNA profiles) of the in vitro 
cell models and in vivo liver were used to identify genes that 
are not differentially expressed (non-DEGs) (Fig. 4; Suppl. 
Table 3) to characterize which liver-like features the individ-
ual cell models possess. The numbers of non-DEGs of 3D 
liver microtissues (0 h) before cultivation was highest com-
pared to the other cell models but dropped below the cor-
responding numbers of PHH after long-term cultivation for 
168 and 336 h (Fig. 3). Similar numbers of non-DEGs were 
obtained for PHH before and after short-term cultivation 
for 24 h. The lowest numbers of non-DEGs were obtained 
for HepG2 and hPCLiS, while HepaRG and iPSC-HLC 

were intermediate. The highest overlap of non-DEGs was 
obtained between PHH before and after the cultivation 
period, illustrating that this system offers a relatively stable 
number of non-DEGs during short-term incubation for 24 h 
(Fig. 3). Moreover, a relatively large overlap of non-DEGs 
was obtained for iPSC-HLC and PHH.

To understand the effect on the biological processes, we 
then mapped all non-DEGs onto KEGG pathways (Suppl. 
Table 4a). Pathway mapping data can be used to study the 
specific processes/pathways of interest for each cell model 
and provide a metric of the similarity between liver tissue 
and the individual in vitro systems. Pathway coverage was 
calculated for the 20 liver pathways (Dufour et al. 2010) 
illustrated in Fig. 5 (Suppl. Table 5). Higher pathway cover-
age by non-DEGs implies higher similarity with the human 
liver.

3D liver microtissues (0 h) before the incubation period 
showed the highest coverage for most pathways but after 

Fig. 1  Spearman’s correlation plot. The Spearman’s correlation 
plot for normalized read counts of all in  vivo and in  vitro samples 
taken after first sample filtration. For healthy in vivo liver, the repli-
cate numbers are given. For all in vitro cell models, cultivation peri-

ods (000/024/168/336 h) and replicate numbers are indicated except 
iPSC-HLC. In the case of iPSC-HLC, the donor id (SABD2/3) and 
replicate number are given. The color bar indicates the Spearman cor-
relation coefficient of each pairwise correlation
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168 and 336 h of incubation, the coverage systematically 
dropped. In general, HepaRG 3D and HepG2 demonstrated 
a much lower coverage with HepG2 having the least. Excep-
tions were the high DNA repair functions of both tumor cell 

lines, with a relatively high coverage seen for base excision 
repair for HepaRG (68%) and nucleotide excision repair for 
HepG2 (59%). PHH showed a relatively high pathway cover-
age for all pathways and only small differences before (0 h) 

Fig. 2  CellNet C/T classification score. The classification score for 
in vivo and in vitro samples compared to the liver, embryonic stem 
cell (ESC), and fibroblast data of CellNet, represented as a heat map. 
For healthy in vivo liver, the replicate numbers are indicated. For all 
in  vitro cell models, time points (000/024/168/336  h) and replicate 

numbers are given except iPSC-HLC. In the case of iPSC-HLC, the 
samples are labeled as donor id (SABD2/3) and replicate number. 
The color bar represents the classification score as calculated by Cell-
Net

Fig. 3  Number of DEGs from combination of replicates during boot-
strapping. There were variable number of replicates for the cell mod-
els. This may result in incomparable statistical analyses of the cell 
models. Therefore, to address this concern, a bootstrap strategy was 

applied to select the replicates that had the least number of DEGs 
when compared to in vivo liver. Different colors of the bar graph rep-
resent various combinations of the replicates
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Fig. 4  Overlap and number of non-DEGs. The number of non-DEGs 
for all cell models obtained after comparing against in vivo samples 
shown as horizontal bar plots on the left. The overlap between all cell 
models is shown as the main graph, top 50 overlaps are shown. For 

each cell model, the best three replicates were chosen as explained 
in the Bootstrapping section under Materials and methods. Different 
colors are used to enhance the readability of the graph

Fig. 5  Pathway coverage of liver pathways by different cell mod-
els for the non-DEGs. The non-DEGs from all in  vitro cell models 
were mapped onto important pathways in the liver for cell processes, 

regrowth and regeneration, cancer, viral infection, immune response, 
drug and xenobiotics metabolism, repair, and toxicity
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and after (24 h) after the cultivation period. For the primary 
bile acid biosynthesis pathway, PHH showed an increase 
during the 24 h cultivation period. For cytochrome P450 
pathways, microtissues, PHH, and hPCLiS demonstrated 
a high coverage (metabolism of xenobiotics: hPCLiS 0 h: 
71%, 24 h: 79%, PHH 0 h: 79%, 24 h: 71% and drug metabo-
lism: hPCLiS 0 h: 78%, 24 h: 94%, PHH 0 h: 89%, 24 h: 
89%), hence presenting their metabolizing capacities for 
exogenous substances. While the number of pathways for 
which hPCLiS exhibited a low coverage, was six for 0 h and 
eight for 24 h, it also had the highest coverage for two path-
ways for 24 h (both cytochrome p450 pathways). IPSC-HLC 
also showed a high coverage for DNA repair pathways with 
highest on base excision repair (68%) and nucleotide exci-
sion repair (66%). For other DNA repair pathways, iPSC-
HLC also exhibited a higher coverage than HepaRG and 
HepG2 cell models.

In vivo versus in vitro, using differentially expressed 
genes

While the non-DEGs illustrated the similarities between 
the in vitro cell models and the in vivo liver, we also com-
pared the differentially expressed genes (DEGs, q value 
(padj) < 0.05 and average counts > 10) to highlight the dif-
ferences. The volcano plots demonstrated the extent of per-
turbation in the genes for all cell models (Fig. 6a–j). The 
number of DEGs were the highest for HepG2 (9910) and 
lowest for 3D liver microtissues 000 (5169) (Fig. 6k, Suppl. 
Figure 4). The number of DEGs were also high, compa-
rable to HepG2, for hPCLiS both time points (0 h: 9837 
and 24 h: 9890). The complete list of DEGs from all cell 
models is provided in Suppl. Table 6. The overlap between 
the DEGs from all cell models in Suppl. Figure 4 shows 
that the highest overlap was between all cell models except 
both time points from PHH. An enrichment analyses was 
performed for the DEGs using GOrilla (Eden et al. 2009) 
(Suppl. Table 7). While iPSC, HepaRG and HepG2 demon-
strated the most perturbed GO functions, PHH had the least 
(Fig. 7). The highest overlap (19 GO functions) was between 
the iPSC and HepG2 cell models.

The DEGs were also mapped onto the pathways to check 
their coverage (Fig. 8). A higher coverage by DEGs means 
that the cell models share low similarity with healthy in vivo 
liver. It is important to mention here that the pathway cover-
age for the DEGs is not the inverse of the pathway coverage 
of non-DEGs, this is because different genes can make simi-
lar proteins. The pathways are proteins interacting with each 
other and due to ambiguity in protein-gene relationships, 
pathway mapping tools, frequently map more than one gene 
to a protein. The pathway coverage of the DEGs illustrated 
an opposite mapping trend than non-DEGs (Fig. 5) and cor-
rectly so. Overall HepG2, HepaRG, and hPCLiS illustrated 

the highest coverage whereas PHH and 3D liver microtissues 
showed lowest coverage and iPSC-HLCs had high for some 
and low coverage for other pathways. Pathway mappings 
on DEGs from all cell models for all human pathways are 
provided in Suppl. Table 4b.

The changes in the expression of genes, differentially 
expressed genes, can be linked to the fluctuations in the 
expression of different transcription factors (TFs). The 
Network influence score (NIS), defined by the expression 
of downstream regulated genes, for the transcription fac-
tors from all the cell models was calculated using CellNet 
(Suppl. Figure 5a–g). These differences were calculated with 
respect to the cell/tissue profiles of the CellNet. The results 
show that the transcription factor ATF5 had the highest per-
turbation for all cell models except the PHH where it was 
shown to be the least perturbed. In the case of PHH, NR1H4 
was the most affected factor. Moreover, in the case of PHH, 
ATF5 exhibited perturbation in the opposite direction than 
all other cell models. A similar analysis using the microar-
ray data for freshly extracted hepatocytes, PHH and hiPSC 
using the microarray data illustrated a different list of TFs 
being affected. However, different types of data used for the 
two studies (microarray and transcriptomics) might be the 
reason for this difference.

Furthermore, we also investigated how the cell models 
behaved over the incubation period. Three cell models, 
namely, PHH, hPCLiS, and 3D liver microtissues were 
incubated for different time durations. We computed the 
DEGs for each cell model over different time points (Fig. 9). 
PHH and hPCLiS show only very small variation in their 
expression profile over time, with a single gene differently 
expressed for PHH (0 h vs 24 h) and two DEGs for hPCLiS 
(0 h vs 24 h). 3D liver microtissues show a more important 
effect of time, with 684 DEGs between 0 and 168 h, 223 
between 0 and 336 h and 8 for 168 h vs 336 h. While 3D 
liver microtissues illustrated comparatively higher number 
of DEGs, it should also be acknowledged that the incubation 
period for 3D liver microtissues was much longer than PHH 
and hPCLiS. PHH and hPCLiS that had same incubation 
period showed only a few genes perturbed over time.

In vivo versus in vitro, using differential transcript 
usage

In the previous analyses, RNA-Seq data have been ana-
lyzed to identify differences between in vivo and in vitro 
cell models for the total gene expression generated by all 
isoforms of a gene. If the proportion of expression changes 
between different isoforms of a gene, total gene expression 
may remain constant. However, the different transcript usage 
(DTU) may nevertheless be relevant, because DTU may 
generate functionally different gene products. Differences 
in transcript expression (DTU) may be caused by alternative 
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splicing, preference for one transcription start site over the 
other, spatial availability of transcription factors, and other 
elements. In standard RNA-Seq analysis, gene expression is 
assessed by summing the expression of all the transcripts for 
a given gene, and then it conceals the genes regulated at the 

splicing level. Genes with significant differential usage (p 
value < 0.01) at transcript level were then removed from the 
list of non-DEGs, giving the non-DEGDTU− (Suppl. Table 8). 
An exhaustive list of DTU for all the cell models can also 
be found in the supplementary (Suppl. Table 9). The gene 

Fig. 6  Volcano plots for DEGs. a–j The DEGs from various cell 
models when compared with healthy in vivo liver. The black dots rep-
resent not differentially expressed, green dots down regulated and red 
dots up-regulated genes. The x-axis is the log2foldchange of the gene 
expression between the healthy and in  vitro cell models and y-axis 

is the p-adjusted (padj or q value). The horizontal yellow line cor-
responds to –log10 (0.05) where 0.05 is the threshold for padj and the 
vertical lines correspond to log2 foldchange <  − 1 and > 1. (K) Num-
ber of DEGs from each comparison
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Fig. 7  Overlap between the GO function for the DEGs. An enrichment analyses for the DEGs from all in vitro cell models was performed and 
the overlap for the resulting GO functions is presented. Different colors are used to enhance the readability of the graph

Fig. 8  Pathway coverage of liver pathways by different cell models 
for the DEGs. The DEGs from all in vitro cell models were mapped 
onto important pathways in the liver for cell processes, regrowth and 

regeneration, cancer, viral infection, immune response, drug and 
xenobiotics metabolism, repair, and toxicity
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for which transcripts had differential usage (DTU) should be 
removed from the non-DEGs to fine-tune the analyses. This 
was illustrated for the examples of four genes that were non 
-differentially expressed but display DTU for the in vitro 
cell models (Fig. 10). The highest expressed protein coding 
transcript of POLR2F (DNA-directed RNA polymerases I, 
II, and III subunit RPABC2) was mostly replaced by other 
protein coding transcripts. For GOLGA8B (Golgin subfam-
ily A member 8B) and ARHGAP21 (Rho GTPase-activating 
protein 21), it was predominantly replaced by non-coding 
transcripts. HSPA8 (Heat shock cognate 71 kDa protein) 
exhibited a different pattern, where the highest expressed 
protein coding transcript was replaced by other protein cod-
ing and non-coding transcripts. The highest expressed pro-
tein coding transcript in the case of POLR2F (52%) was 
reduced to < 2% in all cell models except hPCLiS 0 h (9%) 
while for HSPA8, it was reduced from 65 to < 3% for all 
except iPSC-HLC (25%). Similar trends can be seen for 
GOLGA8B and ARHGAP21 (Fig. 10).

An investigation at this level revealed major changes in 
transcript usage for all in vitro cell models (Fig. 5). After 
removing the DTUs from the non-DEGs, termed as non-
DEGsDTU− (Fig.  3), their count and pathway coverage 

decreased. As for non-DEGs, a similar trend can be seen 
for non-DEGsDTU− in terms of pathway coverage. Pathway 
mapping data of non-DEGsDTU− for each cell model for all 
KEGG pathways are also provided to investigate queries per 
cell model and/or pathway (Suppl. Table 3b).

Discussion

Different in vitro liver cell models have been developed for 
studying the effects of toxic compounds in humans. In the 
past, these models have been evaluated time and again for 
specific processes and components, giving a limited over-
view (Guillouzo et al. 2007; Soldatow et al. 2013; Wilkening 
et al. 2003), however, a systematic comparison of RNA-
Seq data is not yet available. We compared these models at 
baseline gene expression using RNA-Seq. While in vivo and 
in vitro samples were sequenced on different platforms (Illu-
mina NovaSeq 6000® and HiSeq 2000®, respectively), it is 
important to consider that both samples were produced using 
the same library preparation method, and both Illumina 
sequencers produced comparable results. The in vivo sam-
ples were sequenced with longer reads (150 bp) compared 

Fig. 9  Volcano plots for differentially expressed genes (DEGs) from 
comparison of incubation periods for the cell models. RNA-Seq data 
was available for different time points for PHH (0 and 24 h), hPCLiS 
(0 and 24  h), and 3D liver microtissues (0, 168, and 336  h). DEGs 
were computed between different incubation times for each cell 
model. a–e Volcano plots for the DEGs computed for different com-
parisons. The black dots represent not differentially expressed, green 

dots down regulated and red dots up-regulated genes. The x-axis is 
the log2 foldchange of the gene expression between the healthy and 
in vitro cell models and y-axis is the p-adjusted (padj or q value). The 
horizontal yellow line corresponds to –log10 (0.05) where 0.05 is 
the threshold for padj and the vertical lines correspond to log2 fold-
change <  − 1 and > 1. f Number of DEGs from each comparison
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to cell samples (100 bp) but this cannot be expected to cause 
larger differences in the data as the read length higher than 
50 bp does not drastically impact the outcome (Chhangawala 
et al. 2015; Rizzetto et al. 2017). Once a read’s position can 
be mapped unambiguously, longer reads do not add much 
value in a quantification-based analysis (Stark et al. 2019).

As expected, in comparison to the human in vivo liver, 
the highest pairwise spearman’s correlation was shown by 
the non-cancerous human liver-derived cell models, such 
as 3D liver microtissues and PHH. The cancer-derived cell 

models and iPSC-HLCs were still classified liver based on 
CellNet analysis but obtained the lowest classification scores 
using the human liver as reference. CellNet provides an easy 
and direct way to compare the cell models but it uses single-
end (SE) reads for building the consensus expression profiles 
and GRNs (Radley et al. 2017) to accommodate more data 
available in public domains. However, SE sequences have 
poor coverage and low resolution of the 3′ end of the tran-
scripts as compared to paired-end sequences. Thus, further 
approaches besides CellNet are required.

Fig. 10  Examples of four non-DEGs that show major differential 
transcript usage (DTU). Transcript usage illustrated for four genes 
that were not differentially expressed at the gene level (non-DEGs) 
but had differential transcript usage (DTU). The most expressed pro-

tein coding transcript in vivo is replaced by other protein coding and/
or non-coding transcripts a POLR2F, b HSPA8, c GOLGA8B, and d 
ARHGAP21
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Therefore, we analyzed non-DEGs to focus on similar-
ities between the in vivo and in vitro samples. Based on 
the number of non-DEGs and pathway coverage, 3D liver 
microtissues initially showed a high similarity with the liver 
in vivo but during the cultivation period of 168 and 336 h, 
the number of non-DEGs decreased. The largest deviation 
from the results obtained by CellNet was obtained with the 
hPCLiS and iPSC-HLC samples. Based on the results of 
CellNet, hPCLiS showed a high level of similarity with 
in vivo liver but using non-DEGs a relatively low resem-
blance was observed. On the other hand, for iPSC-HLC, 
CellNet predicted poor similarity but non-DEGs demon-
strated a higher degree of similarity. The difference between 
results obtained by CellNet and analysis of non-DEGs could 
be due to differences in the level of lowly expressed genes 
which may gain more weight in the analysis of non-DEGs 
than in CellNet due to downsampling in CellNet (Radley 
et al. 2017). Furthermore, with DEGs, the highest similarity 
was observed for 3D liver microtissues and PHH, and lowest 
for HepG2 and hPCLiS 000 for the enrichment analysis and 
pathway coverage.

In addition to non-DEGs and DEGs, we also explored 
DTU thus highlighting the genes which are not differentially 
expressed on the gene level but exhibited significant differ-
ential usage of isoforms on the transcript level. The change 
in the amount of expression of the different transcript types 
in the cell models provided another metric to distinguish 
liver similar and dissimilar cell models. The analysis of the 
DTU first resulted in reduced numbers of non-differentially 
expressed genes (non-DEGsDTU) and hence pathway cover-
age. While globally the results of pathway coverage were 
similar to non-DEGs, studying the DTUs helped in identi-
fying the genes which were differentially spliced between 
the in vivo liver and the in vitro system, notably by having 
a dominant protein coding or non-coding transcript(s). An 
important point worth mentioning here is that in our meth-
odology, we used a stricter p value cut-off in the case of 
DTU (0.01), because isoform mapping is known to induce 
a higher false-positive rate (Rehrauer et al. 2013; Soneson 
et al. 2016). The evaluation of the DTUs aid in identify-
ing the regulation control of expression of different protein 
coding and non-coding transcripts and conservation of the 
function of the proteins which otherwise remains oblivious 
at the gene level, as illustrated for the four exemplary genes 
in Fig. 7: these four genes are responsible for the process of 
transcription to protein trafficking and localization. First, 
POLR2F is a component of RNA polymerases I, II, and III 
which plays an important role in transcription (Kershnar 
et al. 1998), while HSPA8 which is involved in a wide variety 
of cellular processes and also takes care of protein folding, 
transport, and proteolysis (Stricher et al. 2013). GOLGA8B 
and ARHGAP21 are responsible for maintaining the Golgi 
apparatus (Dubois et al. 2005; Sousa et al. 2005) and were 

shown to be differentially expressed at the transcript level. 
The differential expression of these genes implies that the 
functions of the Golgi (modifying, sorting, and packaging of 
proteins for secretion) may be perturbed. The present results 
show that the 3D liver microtissues (0 h) demonstrate a par-
ticularly high Spearman correlation, CellNet classification 
score, GRN status, number of non-DEGs, non-DEGsDTU−, 
and pathway coverage. During the cultivation period, these 
values decrease. It should, however, be considered that cul-
tivation periods of 168 and 336 h are relatively long and it 
is difficult to maintain in vivo like properties for such long 
periods. For short-term incubation of 24 h PHH represent an 
adequate system, since the CellNet classification score, GRN 
status, number of non-DEGs, non-DEGsDTU−, and pathway 
coverage remained almost unchanged during the cultiva-
tion period. Therefore, in agreement with previous studies 
(Grinberg et al. 2014, 2018), cultivated primary hepatocytes 
seem to represent an adequate system for short-term experi-
ments to identify genome-wide expression changes. Over 
the incubation period, the non-DEG pathway coverage for 
primary bile acid biosynthesis increased for PHH. This is 
in agreement with previous studies showing that isolated 
hepatocytes establish bile canaliculi and express bile acid 
excretion carriers at their apical membranes during the first 
24 h in culture (Godoy et al. 2016; Reif et al. 2015). While 
the hPCLiS cell models exhibited lower similarity with 
in vivo liver compared to microtissues and PHH, this may 
be explained by the location of extraction of the tissue from 
the liver cancer patients.

HepG2 cells lost numerous functions compared to pri-
mary hepatocytes. Nevertheless, they are used for in vitro 
studies as they represent a relatively inexpensive, easy to 
handle cell line. These present a higher intermodal variabil-
ity, probably because the cancer cells under uncontrolled cell 
division accumulate mutations over time. The same holds 
for HepaRG cells that still show slightly more non-DEGs 
than HepG2 cells but are less similar to in vivo liver tissue 
as PHH or microtissues. Several recent studies reported that 
HepaRG 3D models mimic in vivo liver (Ott et al. 2017; 
Ramaiahgari et al. 2017; Takahashi et al. 2015) but these 
studies did not perform an RNA-Seq based comparison to 
human liver tissues.

The use of human iPSCs as a renewable source for the 
generation of human hepatocytes holds great promise as 
non-transformed hepatocytes from individuals with mul-
tiple genetic backgrounds could be generated. However, 
consistent with other publications (Godoy et al. 2015, 
2018; Heslop and Duncan 2019), we here found that iPSC-
derived hepatocyte-like cells still show major differences 
compared to liver tissue and primary human hepatocytes. 
CellNet analysis of the RNA-seq expression profiles of 
human-iPSC-HLCs demonstrated that the iPSC progeny 
shows a low CellNet classification score for the human 
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liver. Moreover, they still share a resemblance with embry-
onic stem cells and exhibit some overlap with the expres-
sion profiles of the intestine and colon cells/tissue (Suppl. 
Table 2), as previously described in other studies (Godoy 
et  al. 2015). Additionally, non-DEGs and non-DEG-
DTU− were identified by comparing the mRNA profiles of 
the iPSC-HLCs with in vivo liver expression data. With 
around 7118 non-DEGs and 7087 non-DEGDTU− iPSC-
HLCs demonstrated an even higher similarity to human 
liver tissue than hPCLiS, HepaRG, and HepG2 but ranged 
clearly behind microtissues and PHH. However, when 
mapping onto liver pathways selected from KEGG, the 
iPSC-HLCs showed only a relatively low pathway cover-
age. Taken together, the results illustrate that iPSC-derived 
cells performed better than the cancer models (HepG2 and 
HepaRG) and in some cases even better than hPCLiS as 
well. Though these results suggest that they exhibit some 
similarity to in vivo liver, there are still significant hurdles 
to overcome before iPSC-derived hepatic progeny reach a 
high similarity to real hepatocytes. Different strategies to 
improve HLC differentiation may include chemical engi-
neering of the culture media (Siller et al. 2015), the use of 
3D organoid cultures and microfluidic systems to recreate 
the in vivo hepatocyte niche and to allow the manipulation 
of oxygen gradients and the delivery/removal of specific 
factors (Ong et al. 2017; Takebe et al. 2013). In addition, 
as several TFs are highly differentially expressed between 
iPSC-HLCs and in vivo liver, another way to improve 
iPSC-HLCs maturation could be by up/downregulation of 
these misregulated TFs (Suppl. Figure 5f) (Godoy et al. 
2015, 2018). It is important to consider that these results 
were obtained from baseline comparisons and, while ana-
lyzing or deriving hypothesis from these results, it should 
be kept in mind that their response to stress and/or expo-
sure to chemicals still has to be elucidated.
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