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Abstract
Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality.
We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical
characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived
from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological
age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total
intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group.
The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and
1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted
“brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD
patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d= 0.14, 95% CI: 0.08–0.20) compared with
controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission
status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed
subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between
groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical
value of these brain-PAD estimates.

Introduction

Major depressive disorder (MDD) is associated with an
increased risk of cognitive decline [1], metabolic dysregu-
lation [2], and cellular aging [3, 4], indicating that the
burden of MDD goes beyond mental ill-health and func-
tional impairment, and extends to poor somatic health [5],
and age-related diseases [6]. Moreover, MDD increases the
risk of mortality [7], and not only through death by suicide
[8]. Simultaneously, depression and aging have been linked

to poor quality of life and increased costs for society and
healthcare [9]. This underscores the importance of identi-
fying brain aging patterns in MDD patients to determine
whether and how they deviate from healthy patterns of
aging.

Current multivariate pattern methods can predict chron-
ological age from biological data (see Jylhava et al. [10] for
a review) with high accuracy. Similarly, chronological age
can be predicted from brain images, resulting in an
estimate known as “brain age” [11]. Importantly, by cal-
culating the difference between a person’s estimated
brain age and their chronological age, one can translate a
complex aging pattern across the brain into a single out-
come: brain-predicted age difference (brain-PAD). A posi-
tive brain-PAD represents having an “older” brain than
expected for a person of their chronological age, whereas a
negative brain-PAD signals a “younger” brain than expec-
ted at the given chronological age. Higher brain-PAD scores
have been associated with greater cognitive impairment,
increased morbidity, and exposure to cumulative
negative fateful life events [11, 12]. For a review
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summarizing brain age studies from the past decade, see
Franke and Gaser [13].

Prior studies from the Enhancing NeuroImaging Genet-
ics through Meta-analysis (ENIGMA)-MDD consortium
with sample sizes over 9000 participants have shown subtle
reductions in subcortical structure volumes in major
depression that were robustly detected across many samples
worldwide. Specifically, smaller hippocampal volumes
were found in individuals with earlier age of onset and
recurrent episode status [14]. In addition, different patterns
of cortical alterations were found in adolescents vs. adults
with MDD, suggesting that MDD may affect brain mor-
phology (or vice versa) in a way that depends on the
developmental stage of the individual [15]. Thus, subtle
structural brain abnormalities have been identified in MDD.
However, whether a diagnosis of MDD is associated with
the multivariate metric of brain aging in a large dataset, and
which clinical characteristics further impact this metric,
remains elusive.

Accumulating evidence from studies suggests that, at the
group level, MDD patients follow advanced aging trajec-
tories, as their functional (e.g., walking speed, handgrip
strength) [16] and biological state (e.g. telomeres, epige-
netics, mitochondria) [17–20] reflects what is normally
expected at an older age (i.e., biological age “outpaces”
chronological age) [21]. It is important to examine whether
biological aging findings in depression can be confirmed in a
large heterogeneous dataset consisting of many independent
samples worldwide, based on commonly derived gray matter
measures. Only a handful of studies have investigated brain-
PAD in people with psychiatric disorders, showing older
brain-PAD in schizophrenia (SCZ), borderline personality
disorder, and first-episode and at-risk mental state for psy-
chosis, yet findings were less consistent in bipolar disorder
(BD) (for an overview, see Cole et al. [22]).

Only three studies to date specifically investigated
machine-learning-based brain aging in MDD—using rela-
tively small samples of <211 patients, with inconsistent
findings of a brain-PAD of +4.0 years vs. no significant
differences [23–25]. The current study is the first to examine
brain aging in over 6900 individuals from the ENIGMA
MDD consortium (19 cohorts, 8 countries worldwide),
covering almost the entire adult lifespan (18–75 years). Our
additional aim was to build a new multisite brain age model
based on FreeSurfer regions of interest (ROIs) that gen-
eralizes well to independent data to promote brain age model
deployability and shareability. We hypothesized higher
brain-PAD in MDD patients compared with controls. We
also conducted exploratory analyses to investigate whether
higher brain-PAD in MDD patients was associated with
demographics (age, sex) and clinical characteristics such as
disease recurrence, antidepressant use, remission status,
depression severity, and age of onset of depression.

Methods

Samples

Nineteen cohorts from the ENIGMA MDD working group
with data from MDD patients and controls (18–75 years of
age) participated in this study. MDD was ascertained using
the clinician-rated the 17-item Hamilton Depression Rating
Scale (HDRS-17) in one cohort and diagnostic interviews in
all other cohorts. Details regarding demographics, clinical
characteristics, and exclusion criteria for each cohort may
be found in Supplementary Tables S1–3. Because the lit-
erature suggests differential brain developmental trajectories
by sex [26], we estimated brain age models separately for
males and females. Sites with less than ten healthy controls
were excluded from the training dataset and subsequent
analyses (for exclusions see Supplementary Material). In
total, we included data from N= 6989 participants,
including N= 4314 controls (N= 1879 males; N= 2435
females) and N= 2675 individuals with MDD (N= 986
males; N= 1689 females). All sites obtained approval from
the appropriate local institutional review boards and ethics
committees, and all study participants or their parents/
guardians provided written informed consent.

Training and test samples

To maximize the variation of chronological age distribution
and scanning sites in the training samples, and to maximize
the statistical power and sample size of patients for sub-
sequent statistical analyses, we created balanced data splits
within scanning sites preserving the chronological age dis-
tribution, Fig. 1a. The full motivation to our data partition
approach can be found in the Supplementary Material.
Structural brain measures from 952 males obtained from
16 scanners and 1236 female controls obtained from
22 scanners were included in the training samples. The top
panel in Fig. 1b shows the age distribution in the training
sample. A hold-out dataset comprised of controls served as
a test sample to validate the accuracy of the brain age
prediction model; 927 male and 1199 female controls from
the same scanning sites were included. Likewise, 986 male
and 1689 female MDD patients from the corresponding
scanning sites were included in the MDD test sample. The
two bottom panels in Fig. 1b show the age distributions
across the test samples.

Image processing and analysis

Structural T1-weighted scans of each subject were acquired
at each site. To promote data sharing and to maximize the
efficiency of pooling existing datasets, we used standar-
dized protocols to facilitate harmonized image analysis and
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feature extraction (N= 153) across multiple sites (http://
enigma.ini.usc.edu/protocols/imaging-protocols/). Cortical
parcellations were based on the Desikan/Killiany atlas [27].
Briefly, the fully automated and validated segmentation
software FreeSurfer was used to segment 14 subcortical
gray matter regions (nucleus accumbens, amygdala, cau-
date, hippocampus, pallidum, putamen, and thalamus), 2
lateral ventricles, 68 cortical thickness, and 68 surface area
measures, and total intracranial volume (ICV). Segmenta-
tions were visually inspected and statistically examined for
outliers. Further details on cohort type, image acquisition
parameters, software descriptions, and quality control may
be found in Supplementary Table S4. Individual level

structural brain measures and clinical and demographic
measures from each cohort were pooled at a central site to
perform the mega-analysis.

FreeSurfer brain age prediction model

To estimate the normative brain age models, we combined
the FreeSurfer measures from the left and right hemispheres
by calculating the mean ((left+ right)/2) of volumes for
subcortical regions and lateral ventricles, and thickness and
surface area for cortical regions, resulting in 77 features
(Supplementary Table S5). Using a mega-analytic
approach, we first estimated normative models of the

Fig. 1 Data partition
approach. a Schematic
illustration of features used and
data partition into training and
test samples, separately for
males and females. A full list of
features can be found in the
Supplementary Material. b Data
from control groups (blue) were
partitioned into balanced
50:50 splits within each
scanning site following random
sampling but preserving the
overall chronological age
distribution. Major depressive
disorder (MDD) groups are
shown in red. The top panel
illustrates the male (left) and
female (right) training samples.
The middle and bottom panels
show the male (controls: mean
[SD] in years, 43.1 [15.3];
MDD: 42.8 [13.1]) and female
test samples (controls: 39.4
[15.7]; MDD: 43.2 [14.0]). ICV
intracranial volume.
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association between the 77 average structural brain mea-
sures and age in the training sample of controls (separately
for males and females) using ridge regression, from the
Python-based sklearn package [28]. All brain measures
were combined as predictors in a single multivariate model.
To assess model performance, we performed tenfold cross-
validation. To quantify model performance, we calculated
the mean absolute error (MAE) between predicted brain age
and chronological age. The literature suggests nonuniform
age-related changes for cortical thickness, surface area, and
subcortical volumes [29], which is further supported by
empirical evidence showing that brain morphology is under
control of distinct genetic and developmental pathways
[30–33]. We therefore included all three feature modalities
in our brain age prediction framework. Of note, we also
tested whether reducing feature space by including only
single modalities (only cortical thickness vs. cortical surface
area vs. subcortical volume features) would improve model
fit, but this resulted in poorer performance accuracy than
combining all 77 features. Moreover, we also (1) estimated
a model including left and right hemisphere features sepa-
rately, (2) compared the ridge regression with other
machine-learning methods, and (3) regressed features on
ICV instead of including ICV as a separate feature, none of
which resulted in significantly superior prediction accuracy
(the results are provided in Supplementary Table S6).

Model validation

Model performance was further validated in the test sample
of controls. The parameters learned from the trained model
in controls were applied to the test sample of controls and to
the MDD test samples to obtain brain-based age estimates.
To assess model performance in these test samples, we
calculated (1) MAE, (2) Pearson correlation coefficients
between predicted brain age and chronological age, and (3)
the proportion of the variance explained by the model (R2).
To evaluate generalizability to completely independent test
samples (acquired on completely independent scanning
sites), we applied the training model parameters to control
subjects (males, N= 610; females, N= 720) from the
ENIGMA BD working group.

Statistical analyses

All statistical analyses were conducted in the test samples
only. Brain-PAD (predicted brain-based age—chron-
ological age) was calculated for each individual and used as
the outcome variable. While different prediction models
were built for males and females, the generated brain-PAD
estimates were pooled for statistical analyses.

Each dependent measure of the ith individual at jth

scanning site was modeled as follows:

(1) Brain-PADij= intercept+ β1(Dx)+ β2(sex)+ β3(age)
+ β4(age2)+ β5(Dx × age)+ β6(Dx × sex)+ β7(age ×
sex)+ β8(Dx × age × sex)+Uj+ εij

(2) Brain-PADij= intercept+ β1(Dx)+ β2(sex)+ β3(age)
+ β4(age2)+ β5(Dx × age)+ β6(Dx × sex) + Uj+ εij

(3) Brain-PADij= intercept+ β1(Dx)+ β2(sex)+ β3(age)
+ β4(age2)+Uj+ εij

Intercept, Dx (MDD diagnosis), sex, and all age effects
were fixed. The term Uj and εij are normally distributed and
represent the random intercept attributed to scanning site
and the residual error, respectively.

Following Le et al. [34], we posthoc corrected for the
residual age effects on the brain-PAD outcome in the test
samples by adding age as a covariate to our statistical
models. However, we found remaining nonlinear age effects
on our brain-PAD outcome [35], and included both linear
and quadratic age covariates as it provided significantly
better model fit to our data compared with models with a
linear age covariate only (χ2(2)= 9.73, p < 0.002). For more
details see Supplementary Material.

Within MDD patients, we also used linear mixed models
to examine associations of brain-PAD with clinical char-
acteristics, including recurrence status (first vs. recurrent
episode), antidepressant use at time of scanning (yes/no),
remission status (currently depressed vs. remitted), depres-
sion severity at study inclusion ((HDRS-17) and the Beck
Depression Inventory (BDI-II)), and age of onset of
depression (categorized as: early, <26 years; middle adult-
hood, >25 and <56 years; and late adulthood onset, >55
years). Analyses were tested two-sided and findings were
false discovery rate corrected and considered statistically
significant at p < 0.05.

Finally, to gain more insight into the importance of
features for making brain age predictions we (1) calculated
structure coefficients (i.e., Pearson correlations between
predicted brain age and each feature) in the test samples
only for illustrative purposes, (2) explored single modality
(either subcortical volumes or cortical thickness or cortical
surface area features) trained models, and (3) perturbed
features (either subcortical volumes or cortical thickness
or cortical surface area) by setting their values to zero
in the test samples and examining the changes in perfor-
mance [36].

Results

Brain age prediction performance

Supplementary Fig. S1 and Supplementary Table S7 illus-
trate the systematic bias in brain age estimation and the
correction we applied. Within the training set of controls,
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under cross-validation, the structural brain measures pre-
dicted chronological age with a MAE of 6.32 (SD 5.06)
years in males and 6.59 (5.14) years in females. When
applying the model parameters to the test samples of con-
trols, the MAE was 6.50 (4.91) and 6.84 (5.32) years for
males and females, respectively. Similarly, within the MDD
group, the MAE was 6.72 (5.36) and 7.18 (5.40) years for
males and females, respectively. Figure 2 shows the

correlation between chronological age (y-axis) and pre-
dicted brain age (x-axis) [37] in the cross-validation training
sample (males r= 0.85, p < 0.001 and females r= 0.854, p
< 0.001, both R2= 0.72), out-of-sample controls (males r=
0.85, p < 0.001; R2= 0.72 and females r= 0.83, p < 0.001;
R2= 0.69), and MDD test samples (males r= 0.77, p <
0.001; R2= 0.57 and females r= 0.78, p < 0.001; R2=
0.59), and the generalization to completely independent
healthy control samples of the ENIGMA BD working group
(MAE= 7.49 [SD 5.89]; r= 0.71, p < 0.001; R2= 0.45 for
males and MAE= 7.26 [5.63]; r= 0.72, p < 0.001; R2=
0.48, for females). Prediction errors were also plotted per
site and age group for subjects from the ENIGMA MDD
(Supplementary Figs. S2–5) and BD working group (Sup-
plementary Figs. S6 and S7).

Added brain aging in MDD

Uncorrected mean brain-PAD scores were −0.20 (SD 8.44)
years in the control and +0.68 years (SD 8.82) in the MDD
group. Individuals with MDD showed +1.08 (SE 0.22)
years higher brain-PAD than controls (p < 0.0001, Cohen’s
d= 0.14, 95% CI: 0.08–0.20) adjusted for age, age2, sex,
and scanning site (Fig. 3). In Addition, we found significant
main effects for age (b=−0.28, p < 0.0001) and age2 (b=
−0.001, p < 0.01). Our analyses revealed no significant
three-way interaction between diagnosis by age and by sex,
nor significant two-way interactions (diagnosis by age or
diagnosis by sex). Of note, since there were no significant
interactions with age or age2 and MDD status, and the
residual age effects in the brain-PAD estimates did not
influence our primary finding. Given that our model showed
higher errors in individuals >60 years, we performed a
sensitivity analysis by including only participants within the
range of 18–60 years age. Here, we found a slightly
increased effect of diagnostic group (MDD+ 1.16 years
[SE 0.24] higher brain-PAD than controls [p < 0.0001,
Cohen’s d= 0.15, 95% CI: 0.09–0.21]).

The relative importance of thickness features

All features, except the mean lateral ventricle volume, and
entorhinal and temporal pole thickness showed a negative
correlation with predicted brain age, and are visualized in
Fig. 4. Widespread negative correlations with average cor-
tical thickness and surface area were observed, although
thickness features resulted in stronger negative correlations
(mean Pearson r [SD]: −0.44 [0.21]) than surface area
features (−0.17 [0.08]). On average, subcortical volumes
were slightly less negatively correlated to predicted brain
age as thickness features (−0.34 [0.34]). Single modality
models and ICV performed worse than a combined model
including all modalities (Supplementary Table S8). Test

Fig. 2 Brain age prediction based on 7 FreeSurfer subcortical
volumes, lateral ventricles, 34 cortical thickness and 34 surface
area measures, and total intracranial volume. The plots show the
correlation between chronological age and predicted brain age in the
tenfold cross-validation of the ridge regression in the control train
sample, the out-of-sample validation of the test samples (controls and
MDD patients) from the ENIGMA MDD working group, and gen-
eralizability to completely independent test samples (controls only)
from the ENIGMA BD working group (top to bottom). The colors
indicate scanning sites and each circle represents an individual subject.
Diagonal dashed line reflects the line of identity (x= y).

Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group



performance was most negatively affected by the pertur-
bation of thickness features (Supplementary Table S9).

Brain aging and clinical characteristics

Compared with controls, significant brain-PAD differences
in years were observed in patients with a remitted disease
status (+2.19 years, p < 0.0001, d= 0.18), with a current
depression (+1.5 years, p < 0.0001, d= 0.18), in those that
were using antidepressant medication at the time of scan-
ning (+1.4 years, p < 0.0001, d= 0.15), medication-free
depressed patients (+0.7 years, p= 0.0225, d= 0.07),

patients with a late adult-onset of depression (+1.2 years,
p= 0.01, d= 0.12), patients with an age of onset of MDD
in mid-adulthood (+0.9 years, p= 0.0005, d= 0.11),
patients with an early age of onset of depression (<26 years;
+1.0 years, p= 0.0004, d= 0.11), first-episode patients
(+1.2 years, p= 0.0002, d= 0.13) and recurrent depressed
patients (+1.0 years, p= 0.0002, d= 0.11) (Table 1).
Importantly, posthoc comparisons between the MDD sub-
groups did not show any significant differences (i.e., first vs.
recurrent episode, antidepressant medication-free vs. anti-
depressant users, remitted vs. currently depressed patients,
or early vs. adult vs. late age of onset of depression). Mean
brain-PAD was above zero in all MDD subgroups, indi-
cating that all MDD subgroups were estimated to be older
than expected based on the brain age model compared with
controls. Finally, there were no significant associations with
depression severity or current depressive symptoms (self-
reported BDI-II [b= 0.04, p= 0.06] or clinical-based
HDRS-17 [b=−0.02, p= 0.48] questionnaires) at the
time of scanning within the MDD sample.

Discussion

Using a new parsimonious multisite brain age algorithm
based on FreeSurfer ROIs from over 2800 males and 4100
females, we found subtle age-associated gray matter differ-
ences in adults with MDD. At the group level, patients had,
on average, a +1.08 years greater discrepancy between their
predicted and actual age compared with controls. Sig-
nificantly larger brain-PAD scores were observed in all
patient subgroups compared with controls (with Cohen’s d
effect sizes ranging from 0.07 to 0.18), indicating that the
higher brain-PAD in patients was not driven by specific
clinical characteristics (recurrent status, remission status,
antidepressant medication use, age of onset, or symptom

Fig. 3 Case–control differences in brain aging. Brain-PAD (pre-
dicted brain age—chronological age) in patients with major depressive
disorder (MDD) and controls. Group level analyses showed that
MDD patients exhibited significantly higher brain-PAD than controls

(b= 1.08, p < 0.0001), although large within-group variation and
between-group overlap are observed as visualized in a the density plot
and b the Engelmann–Hecker plot. The brain-PAD estimates are
adjusted for chronological age, age2, sex, and scanning site.

Fig. 4 Structure coefficients of predicted brain age and FreeSurfer
features across control and major depressive disorder (MDD)
groups. Bivariate correlations are shown for illustrative purposes and
to provide a sense of importance of features in the brain age prediction.
The figure shows Pearson correlations between predicted brain age and
cortical thickness features (top row), cortical surface areas (middle
row), and subcortical volumes (bottom row). The negative correlation
with ICV was excluded from this figure for display purposes.
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severity). This study confirms previously observed advanced
cellular aging in MDD at the brain level of analysis; how-
ever, it is important to mention the large within-group and
small between-group variance, demonstrating that many
patients did not show advanced brain aging. We were not
able to investigate all potential clinical, biological, and other
sources that could explain the large within-group variance of
brain-PAD in MDD patients. Future studies, ideally with in-
depth clinical phenotyping and longitudinal information on
mental and somatic health outcomes (e.g., genomic variation,
omics profiles, comorbidities, duration of illness, lifestyle,
inflammation, oxidative stress, chronic diseases), are required
to further evaluate the predictive value of the brain-PAD
estimates, potentially by using our publicly available brain
age model (https://www.photon-ai.com/enigma_brainage).

Perhaps surprisingly, we found higher brain-PAD in anti-
depressant users (+1.4 years depressive disorder) compared
with controls and antidepressant-free patients (+0.7 years)
and controls, although the difference between patient groups
was not significant. Antidepressants are suggested to exert a
neuroprotective effect, for example by promoting brain-
derived neurotrophic factor (BDNF) [38]. However, patients
taking antidepressant medication at the time of scanning
likely had a more severe or chronic course of the disorder
[14, 15]. Therefore, the larger brain-PAD in antidepressant
users may be confounded by severity or course of the dis-
order. Unfortunately, the cross-sectional nature of the current
study and the lack of detailed information on lifetime use,
dosage and duration of use of antidepressants, do not allow us
to draw any conclusions regarding the direct effects of anti-
depressants on brain aging. In addition, it remains to be elu-
cidated how adaptable brain-PAD is in response to
pharmacotherapy. Randomized controlled intervention studies
are needed to develop an understanding of how reversible or
modifiable brain aging is in response to pharmacological and
nonpharmacological strategies (e.g., psychological, exercise,

and/or nutritional interventions), as seen in other biological
age indicators [21, 39].

Our brain-PAD difference (+1.1 years) is attenuated in
contrast to earlier work showing +4.0 years of brain aging in
a smaller sample of MDD patients in a study by Koutsouleris
et al. (N= 104) [23]. However, a recent study by Kaufmann
et al. found a similar effect size to ours in 211 MDD patients
(18–71 years), albeit nonsignificant [25]. Although the MAE
of our models (6.6 years in age range of 18–75 years) is
higher than in e.g,. the study by Koutsouleris et al. (4.6 years
in age range of 18–65 years), a simple calculation shows that,
when scaled to covered age range, the studies show com-
parable MAE (0.11 vs. 0.10, respectively) [40]. As the range
of possible predictions (age range) carry a strong bearing on
prediction accuracy, increasingly wider ranges of outcomes
become more challenging to predict [11]. Several methodo-
logical differences may underlie the inconsistencies or dif-
ferences in magnitude of brain age effects in MDD,
including, but not limited to (1) the use of high-dimensional
features such as whole-brain gray matter maps in the Kout-
souleris et al. study vs. a much lower number of input fea-
tures (FreeSurfer ROIs) in our study, although the Kaufmann
et al. study included multimodal parcellations and found
similar brain age effects in MDD as we observed, (2) the
composition of training and test data, including number of
scanners in both sets, with 5 scanners included in the
Koutsouleris et al. study vs. 22 in our study vs. 68 scanners
in Kaufmann et al., (3) sample sizes of training and test data
(N= 800 in training set and N= 104 in MDD test set in
Koutsouleris et al. vs. N > 950 in training set and N > 980 in
MDD test set in our current study vs. N > 16k training set and
N= 211 in MDD test set in Kaufmann et al.), and (4) het-
erogeneity of MDD and differences in patient characteristics
between the studies. The inconsistencies between brain-PAD
findings in MDD might be due to any (combination) of the
sources of variation outlined above and precludes a direct

Table 1 Clinical characteristics
and brain aging (N= 2126
controls).

MDD patients vs. controls N b (PFDR value) SE Cohen’s d SE 95% CI

All MDD patients 2675 1.08 (<0.0001) 0.22 0.14 0.03 0.08–0.20

First-episode MDD 903 1.22 (0.0002) 0.30 0.13 0.04 0.05–0.21

Recurrent episode MDD 1648 0.97 (0.0002) 0.25 0.11 0.03 0.05–0.18

Current MDD 1786 1.47 (<0.0001) 0.28 0.18 0.04 0.11–0.26

Remitted MDD 298 2.19 (<0.0001) 0.53 0.18 0.06 0.06–0.31

AD medication-free 939 0.67 (0.0225) 0.29 0.07 0.04 −0.01 to 0.15

AD user 1717 1.36 (<0.0001) 0.26 0.15 0.03 0.09–0.22

Early-onset MDD 1035 0.98 (0.0004) 0.27 0.11 0.04 0.04–0.19

Middle adult-onset MDD 1218 0.91 (0.0005) 0.26 0.11 0.04 0.04–0.18

Late adult-onset MDD 259 1.21 (0.0107) 0.47 0.12 0.07 −0.01 to 0.25

Positive brain-PAD scores (predicted brain age—chronological age) were found for all subgroups of patients
with MDD compared with controls. Regression coefficient b indicates the average brain-PAD difference
between MDD patients and controls in years. P values are FDR adjusted.

AD antidepressant, FDR false discovery rate, MDD major depressive disorder.
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comparison of these studies. Unfortunately, a methodological
comparison is beyond the scope of our study and beyond our
capability given data access limitations within ENIGMA
MDD. Nevertheless, the current results are based on the
largest MDD sample to date and likely provide more precise
estimates regardless of the size of the effect [41, 42].

The current findings in MDD also show lower brain aging
than previously observed in SCZ (brain-PAD ranges from
+2.6 to +5.5 years) [23, 40], even in the early stages of first-
episode SCZ. Inconsistent findings have been reported in BD,
with “younger” brain age or no differences compared with
controls [11]. While the same sources of variation described
above in comparing our findings with previous brain aging
findings in MDD also apply here, brain abnormalities might
be subtler in MDD compared with BD or SCZ. This is in line
with previous ENIGMA studies in SCZ, BD, and MDD,
showing the largest effect sizes of structural brain alterations
in SCZ [43, 44] (highest Cohen’s d effect size −0.53), fol-
lowed by BD [45, 46] (highest Cohen’s d −0.32) and MDD
(highest Cohen’s d −0.14) [14, 15]. Conceivably more in line
with MDD pathology [47], Liang et al. showed significantly
higher brain-PAD in posttraumatic stress disorder (PTSD)
using similar ridge regression and bias correction methods to
the current paper [48]. This is consistent with similar effect
sizes of structural alterations of individual brain regions
observed across MDD and PTSD in large scale studies
(highest Cohen’s d −0.17) [49].

Inflammation may be a common biological mechanism
between MDD and brain aging [50]. Neuroimmune
mechanisms (e.g., proinflammatory cytokines) influence bio-
logical processes (e.g. synaptic plasticity), and inflammatory
biomarkers are commonly dysregulated in depression [51].
One study showed that brain-PAD was temporarily reduced
by 1.1 years due to the probable acute anti-inflammatory
effects of ibuprofen, albeit in healthy controls [52]. In MDD,
both cerebrospinal fluid and peripheral blood interleukin (IL)-
6 levels are elevated [53]. Moreover, work by Kakeda et al.
demonstrated a significant inverse relationship between IL-6
levels and surface-based cortical thickness and hippocampal
subfields in medication-free, first-episode MDD patients [54].
This accords with the current study that increased brain-PAD
was also observed in first-episode patients compared with
controls, perhaps suggesting that neuroimmune mechanisms
may be chief candidates involved in the brain morphology
alterations, even in the early stage of illness. Further, the age-
related structural alterations in MDD may also be explained
by shared underlying (epi)genetic mechanisms involved in
brain development and plasticity (thereby influencing brain
structure) and psychiatric illness. For instance, Aberg et al.
showed that a significant portion of the genes represented in
overlapping blood–brain methylome-wide association find-
ings for MDD was important for brain development, such as
induction of synaptic plasticity by BDNF [55].

In terms of individual FreeSurfer measures that contributed
most to the brain age prediction, we particularly found
widespread negative correlations between predicted brain age
and average cortical thickness and subcortical volume, and
comparably weaker correlations with surface area features
(Fig. 4). We visualized these associations separately for
controls and MDD patients, but findings were similar and
suggest comparable structure coefficients in both groups
(Supplementary Fig. S8). Notably, we did not include a
spatial weight map of our brain age model, as the weights
(although linear) are obtained from a multivariable model, and
do not allow for a straightforward interpretation of the
importance of the brain regions contributing to the aging
pattern. Instead, exploratory analyses pointed out that our
model relied most on the cortical thickness features in order to
make good predictions. This is consistent with existing lit-
erature that supports the importance and sensitivity of cortical
thickness towards aging, different from surface areas [56].
However, models including the largest feature set demon-
strated the best performance (Supplementary Tables S8–10).

Limitations and future directions

While our results are generally consistent with the existing
literature on advanced or premature biological aging and
major depression using other biological indicators, we also
have to acknowledge some limitations. First, limited
information was available on clinical characterization due to
the lack of harmonization of data collection across partici-
pating cohorts. However, we provided all participating sites
with their brain-PAD estimates, and encourage them to
characterize brain-PAD determinants in more detail (e.g.,
using more in-depth phenotyping or examining associations
with longitudinal outcomes). Second, we did not have
access to raw individual level data and future studies could
include higher-dimensional gray matter features or addi-
tional modalities such as white matter volumes, hyper-
intensities, and/or microstructure, or functional imaging
data to examine whether model fit can be improved.
However, we must also appreciate a pragmatic approach for
collating data from such a large number of scanning sites.
Here, we developed a parsimonious model based on Free-
Surfer features collected with standardized ENIGMA
extraction scripts to promote model sharing. While pooling
harmonized data from many sites increases (clinical) het-
erogeneity, it also makes predictive models less susceptible
to overfitting and more generalizable to other populations
[57], even though this might have come at the cost of lower
accuracy [58]. Finally, the large within-group variance
regarding the brain-PAD outcome in both controls and
MDD (Fig. 3), compared with the small between-group
variance, renders the use of this brain aging indicator for
discriminating patients and controls at the individual level

L. K. M. Han et al.



difficult. As many of the MDD patients do not show
advanced brain aging compared with controls, the clinical
significance of the observed higher brain-PAD in MDD
patients may be limited. Aberrant brain aging is not specific
to MDD [11, 13, 22, 25], and it remains to be elucidated
whether age-related brain atrophy is a consequence or cause
of MDD. While currently brain age certainly would not
constitute a viable biomarker for the diagnosis of depression
based on our findings, it could potentially be used to
identify those MDD patients at greater risk of poorer brain-
or general health outcomes, given previous associations of
older-appearing brains relating to cognitive decline,
dementia, and death [59–62]. Future longitudinal studies
examining the association between brain-PAD and mental,
neurological, or general health outcomes specifically in
individuals with MDD are required to determine whether
brain-PAD could provide a clinically useful biomarker.

Conclusions

In conclusion, compared with controls, both male and
female MDD patients show advanced brain aging of around
1 year. This significant but subtle sign of advanced aging is
consistent with other studies of biological aging indicators
in MDD at cellular and molecular levels of analysis (i.e.,
telomere length and epigenetic age). The deviation of brain
metrics from normative aging trajectories in MDD may
contribute to increased risk for mortality and aging-related
diseases commonly seen in MDD. However, the substantial
within-group variance and overlap between groups signify
that more (longitudinal) work including in-depth clinical
characterization and more precise biological age predictor
systems are needed to elucidate whether brain age indicators
can be clinically useful in MDD. Nevertheless, our work
contributes to the maturation of brain age models in terms
of generalizability, deployability, and shareability, in
pursuance of a canonical brain age algorithm. Other
research groups with other available information on long-
itudinal mental and somatic health outcomes, other aging
indicators, and incidence and/or prevalence of chronic dis-
eases may use our model to promote the continued growth
of knowledge in pursuit of useful clinical applications.
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