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ABSTRACT	

One	 of	 the	 most	 important	 ways	 that	 bacteria	 compete	 for	 resources	 and	 space	 is	 by	

producing	 antibiotics	 that	 inhibit	 competitors.	 Because	 antibiotic	 production	 is	 costly,	 the	

biosynthetic	 gene	 clusters	 coordinating	 their	 synthesis	 are	 under	 strict	 regulatory	 control	

and	 often	 require	 “elicitors”	 to	 induce	 expression,	 including	 cues	 from	 competing	 strains.	

Although	 these	 cues	 are	 common,	 they	 are	 not	 produced	 by	 all	 competitors	 and	 so	 the	

phenotypes	 causing	 induction	 remain	 unknown.	 By	 studying	 interactions	 between	 24	

antibiotic-producing	Streptomyces	we	show	that	inhibition	between	competitors	is	common	

and	 occurs	 more	 frequently	 if	 strains	 are	 closely	 related.	 Next,	 we	 show	 that	 antibiotic	

production	is	more	likely	to	be	induced	by	cues	from	strains	that	are	closely	related	or	that	

share	 biosynthetic	 gene	 clusters.	 Unexpectedly,	 antibiotic	 production	 is	 less	 likely	 to	 be	

induced	 by	 antagonistic	 competitors,	 indicating	 that	 cell	 damage	 is	 not	 a	 general	 cue	 for	

induction.	In	addition	to	induction,	antibiotic	production	often	decreased	in	the	presence	of	

a	competitor,	although	this	response	was	not	associated	with	genetic	relatedness	or	overlap	

in	 biosynthetic	 gene	 clusters.	 Finally,	 we	 show	 that	 resource	 limitation	 increases	 the	

probability	 that	 antibiotic	 production	 declines.	 Our	 results	 clarify	 that	 social	 cues	 and	

resource	availability	are	crucial	determinants	of	interference	competition	in	Streptomyces.	

	

SIGNIFICANCE	STATEMENT	

Bacteria	secrete	antibiotics	to	inhibit	their	competitors,	but	the	presence	of	competitors	can	

also	determine	whether	or	not	 these	 toxins	 are	produced.	Here,	we	 study	 the	 role	of	 the	

competitive	 environment	 on	 antibiotic	 production	 in	 Streptomyces,	 a	 bacterial	 group	

renowned	for	their	production	of	clinically	useful	antibiotics.	We	show	that	Streptomyces	are	

more	likely	to	induce	antibiotic	production	when	grown	with	closely	related	competitors	or	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.24.918557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918557
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

bacteria	 that	 share	 secondary	 metabolite	 biosynthetic	 gene	 clusters,	 but	 not	 necessarily	

when	 they	 are	 threatened	 by	 competitor’s	 toxins.	 In	 addition,	 Streptomyces	 often	 reduce	

their	 output	 of	 antibiotics	 when	 grown	 with	 competitors,	 especially	 under	 nutrient	

limitation.	Our	findings	highlight	the	importance	of	the	social	and	resource	environment	 in	

the	regulation	of	antibiotic	production	in	these	medicinally	important	bacteria.	
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INTRODUCTION	

Bacteria	 live	 in	 diverse	 communities	where	 they	 compete	with	 other	microbes	 for	

resources	 and	 space.	 Competition	 between	 different	 species	 can	 be	 regulated	 by	 the	

differential	uptake	and	use	of	specific	nutrients.	It	can	also	be	driven	by	secreted	toxins,	like	

antibiotics	or	bacteriocins,	 that	 kill	 or	 inhibit	 competitors.	Antibiotics	 and	bacteriocins	 can	

allow	producing	strains	to	invade	established	habitats	or	repel	 invasion	by	other	strains	(1,	

2).	However,	these	compounds	are	expected	to	be	metabolically	expensive	to	make	and	so	

should	 only	 be	 produced	 against	 genuine	 threats	 from	 competitors.	 This	 idea,	 called	

“competition	sensing”,	argues	that	microbes	should	upregulate	toxin	production	when	they	

sense	 competitors	 through	 cell	 damage	 or	 nutrient	 limitation	 (3).	 Bacteria	 can	 also	 sense	

competitors	 by	 detecting	 secreted	 signals	 that	 are	 used	 to	 regulate	 toxin	 production	 and	

thereby	 predict	 imminent	 danger	 (3).	 Consistent	 with	 this,	 many	 microbes	 change	 their	

production	of	secondary	metabolites	in	response	to	cues	from	other	strains	when	grown	in	

co-culture	(4,	5).	However,	these	responses	are	not	universal	and	it	remains	unclear	if	they	

can	be	predicted	based	on	the	identity	or	phenotype	of	their	competitors	and	the	cues	they	

produce.	Accordingly,	at	present	we	are	unable	to	predict	why	some	competitors	alter	toxin	

production	while	others	do	not.	

We	 set	 out	 to	 address	 this	 question	 in	 the	 context	 of	 bacteria	 from	 the	 prolific	

antibiotic-producing	 family	 Streptomycetaceae	 (6).	 These	 filamentous,	 spore-forming	

bacteria	 are	 renowned	 for	 their	 production	 of	 secondary	 metabolites,	 including	 many	

clinically	 useful	 antibiotics,	 anti-helminthic	 agents	 and	 anti-cancer	 drugs	 (7).	 Antibiotic	

production	in	streptomycetes	is	associated	with	the	developmental	stage	of	the	colony	and	

typically	coincides	with	the	onset	of	sporulation	(8,	9).	We	refer	to	this	type	of	autonomous	

production	 as	 “constitutive”	 because	 it	 occurs	 in	 the	 absence	 of	 influence	 from	 other	
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species.	 In	 addition,	 the	 presence	 of	 other	 strains	 in	 co-culture	 can	 alter	 antibiotic	

production	by	increasing	or	reducing	antibiotic	output	(4,	5,	10).	These	changes	are	caused	

by	 different	 cues	 that	 indicate	 the	 presence	 of	 competitors.	 These	 can	 include	 nutrient	

stress,	 if	 competitors	 have	 overlapping	 resource	 requirements,	 or	 cues	 that	 cause	 cellular	

damage	 or	 predict	 immediate	 danger,	 e.g.	 antibiotics	 or	 quorum-dependent	 regulators	 of	

antibiotic	 production,	 like	 gamma-butyrolactones	 (3,	 11–13).	 We	 hypothesize	 that	 these	

competitive	 cues	 are	 more	 likely	 to	 be	 produced	 by	 strains	 with	 similar	 primary	 and	

secondary	metabolism	 due	 to	 shared	 resource	 requirements	 or	 mechanisms	 of	 antibiotic	

regulation	(14).	More	specifically,	because	these	traits	are	phylogenetically	conserved	(15–

18),	we	predict	that	Streptomyces	will	be	more	likely	to	respond	to	cues	from	closely	related	

species.	

To	 examine	 cues	 that	 regulate	 antibiotic	 production	 in	 streptomycetes,	we	 studied	

antagonistic	 interactions	between	24	different	strains	across	a	broad	phylogenetic	range	in	

two	 nutrient	 environments.	 First,	 in	 each	 nutrient	 environment,	 we	 tested	 all	 possible	

pairwise	interactions	between	these	strains	(24	x	24	=	576)	by	growing	them	as	colonies	and	

then	testing	if	they	could	inhibit	the	growth	of	all	other	strains	by	inoculating	these	on	top	of	

the	focal	colony	(Fig.	1).	Next,	we	tested	if	growth	in	co-culture	with	a	second	strain	altered	

the	 inhibitory	 behaviors	 we	 recorded	 during	 pairwise	 interactions.	 These	 three-way	

interactions	 (a	 total	 of	 24	 x	 24	 x	 24	 =	 13,824	 unique	 interactions	 in	 each	 nutrient	

environment)	 allowed	 us	 to	 compare	 the	 inhibitory	 capacity	 of	 strains	 during	 solitary	

growth,	 reflecting	 constitutive	 expression,	 to	 their	 behavior	 after	 interacting	 with	 a	

competitor	during	co-culture	(Fig.	1).	These	approaches	allowed	us	to	directly	test	if	altered	

antibiotic	 production	during	 	 growth	 in	 co-culture	 could	be	predicted	 as	 a	 function	of	 the	

identity	of	the	competitor.	
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RESULTS	

	

Constitutive	antagonism	

We	 first	measured	 constitutive	 antibiotic	 production	 by	 growing	 each	 strain	 on	 a	 defined	

minimal	medium	and	then	testing	if	it	could	inhibit	an	overlay	of	each	target	strain	(Fig.	1).	

These	results	formed	the	baseline	against	which	we	examined	facultative	responses.	These	

assays	revealed	that	approximately	half	of	all	possible	pairwise	interactions	were	inhibitory	

(47.7%)	(Fig.	2A).	We	next	identified	the	biosynthetic	gene	clusters	in	the	complete	genomes	

of	 these	 strains	 using	 the	 bioinformatics	 tool	 antiSMASH	 (19).	 This	 revealed	 considerable	

variability	in	the	number	of	secondary	metabolite	biosynthetic	gene	clusters	(BGCs)	encoded	

within	each	genome	(mean	=	34	+/-	1.85	(SE),	range	=	22	to	64),	suggesting	broad	diversity	in	

inhibitory	capacities	(Fig.	S1).	

The	antagonistic	behavior	of	each	strain	against	the	24	possible	targets	generated	a	

unique	 fingerprint	 of	 inhibition,	 which	 we	 designate	 the	 inhibition	 phenotype.	 As	

anticipated,	we	found	a	significant	correlation	between	inhibition	phenotype	and	phylogeny	

(Fig.	2B)	(Mantel	test,	P	<	0.001,	r	=	0.27),	suggesting	that	closely	related	strains	inhibit	the	

same	targets.	We	then	tested	if	this	was	due	to	the	possibility	that	related	strains	produce	

similar	antagonistic	compounds.	This	idea	is	supported	by	a	significant	correlation	between	

inhibition	phenotype	and	biosynthetic	gene	cluster	(BGC)	similarity	(Mantel	test,	P	<	0.001,	r	

=	0.43)	(Fig.	2C).		

Consistent	 with	 the	 idea	 that	 closely	 related	 strains	 are	 more	 likely	 competitors,	

strains	showed	a	stronger	tendency	to	inhibit	closely	related	targets	(logistic	regression,	P	<	

0.001,	 McFadden	 R2	 =	 0.02,	 N	 =	 536).	 As	 BGCs	 often	 also	 provide	 resistance	 against	 the	

product	 they	encode,	we	expected	that	strains	with	a	high	degree	of	BGC	similarity	would	
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not	 inhibit	 each	 other.	 Indeed,	 strains	 were	most	 likely	 to	 inhibit	 targets	 that	 are	 closely	

related	but	have	dissimilar	BGCs	 (logistic	 regression,	Pphylogenetic	 distance	<	0.001,	PBGC	 distance	=	

0.064,	 McFadden	 R2	 =	 0.02,	 N	 =	 536)	 (Fig.	 2D).	 In	 contrast	 to	 results	 from	 a	 study	 that	

examined	 inhibitory	 interactions	between	phylogenetically	diverse	bacteria	 (20),	we	 found	

no	 association	 between	 the	 probability	 of	 inhibition	 and	 the	 metabolic	 overlap	 between	

strains,	assessed	using	BiOLOG	plates	(Fig.	S2).	

	

Altered	inhibition	during	co-culture	

These	results	show	that	streptomycetes	constitutively	produce	antibiotics	that	are	directed	

at	closely	 related	strains.	However,	constitutive	antibiotic	production	does	not	account	 for	

facultative	 changes	 that	 are	 caused	 by	 cues	 from	 other	 strains.	We	measured	 facultative	

responses	 by	 inoculating	 each	 strain	 next	 to	 a	 competitor	 and	 then	 assessing	 if	 it	 could	

inhibit	 the	 growth	 of	 the	 different	 target	 strains,	 as	 above.	 By	 this	 approach,	 we	 could	

directly	 compare	 differences	 in	 the	 inhibitory	 capacity	 of	 each	 strain	 in	 the	 presence	 and	

absence	of	each	competitor	(Fig.	1).	

	 The	 results	 of	 these	 assays	 confirm	 that	 facultative	 responses	 are	 extremely	

widespread.	The	inhibition	phenotype	was	affected	by	a	competitor	in	approximately	half	of	

the	 unique	 focal-competitor	 interactions	 (48%),	 meaning	 that	 the	 focal	 strain	 showed	 a	

change	in	antagonism	against	at	least	one	target	strain	in	the	presence	of	a	given	competitor	

(Fig.	3A).	There	was	considerable	variability	in	the	responsiveness	of	strains	to	competitors;	

whereas	some	strains	responded	to	none	of	the	competitors,	others	responded	to	nearly	all	

of	them	(Fig.	3B).	

Facultative	responses	fall	into	two	categories:	induction	and	suppression	(Fig.	1),	and	

both	are	common.	 Induction	occurs	when	 the	presence	of	a	competitor	causes	a	 strain	 to	
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inhibit	a	target	strain	that	it	didn’t	inhibit	during	constitutive	assays.	Suppression	constitutes	

the	opposite	scenario,	where	growth	next	to	a	competitor	suppresses	antibiotic	production.	

We	observed	induction	in	33%	of	all	tested	co-cultures	and	suppression	in	45%.	On	average	a	

strain	 was	 induced	 by	 7.4	 +/-	 1.5	 (SE)	 competitors	 and	 suppressed	 by	 9.6	 +/-	 1.7	 (SE)	

competitors,	with	considerable	variability	 in	both	values	(induced:	0-20,	suppressed:	0	-22)	

(Fig.	 3B).	Notably,	 in	many	 cases,	 a	 given	 strain	was	 both	 induced	 and	 suppressed	 by	 the	

same	competitor	against	different	targets.	Accordingly,	the	dots	in	Figure	3A	represent	the	

net	influence	of	these	two	types	of	changes,	in	some	cases	leading	to	no	net	change	in	the	

number	of	inhibited	strains,	even	though	the	inhibition	phenotype	of	the	strain	is	different.	

Competition	sensing	predicts	that	bacteria	will	change	their	behavior	in	response	to	

antagonistic	 competitors	 that	 they	 detect	 by	 sensing	 cell	 damage	 (3).	 Although	we	 found	

that	 induction	 was	 significantly	 related	 to	 the	 competitor	 being	 antagonistic	 (logistic	

regression,	P	<	0.001,	McFadden	R2	=	0.06,	N	=	354),	the	direction	of	this	result	was	counter	

to	 our	 expectations	 (Fig.	 3C).	 Unexpectedly,	 antibiotic	 production	 was	 more	 likely	 to	 be	

induced	by	competitors	that	did	not	inhibit	the	producer	strain	(probability	of	induction	0.41	

vs	 0.22),	 suggesting	 that	 cell	 damage	was	 not	 a	 strong	 cue	 for	 antibiotic	 induction.	Other	

ways	 that	 cells	 could	 sense	 competitors	 is	by	detecting	 compounds	 they	produce,	 such	as	

antibiotics	 and	 quorum	 sensing	 signals,	 or	 through	 nutrient	 stress	 due	 to	 resource	

competition.	Since	both	primary	and	secondary	metabolism	are	correlated	with	phylogeny,	

we	examined	 if	 induction	was	 correlated	with	phylogenetic	 distance.	As	 predicted,	 strains	

are	more	frequently	induced	by	a	closely	related	competitor	(logistic	regression,	P	<	0.001,	

McFadden	 R2	 =	 0.02,	 N	 =	 487)	 (Fig.	 3D).	 To	 examine	 if	 this	 effect	 was	 driven	 by	 the	

production	of	similar	secondary	metabolites,	we	tested	 if	differences	 in	 induction	could	be	

explained	 by	 BGC	 similarity.	 Indeed,	 strains	 are	 more	 likely	 induced	 by	 competitors	 with	
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which	they	share	more	BGC	clusters	(logistic	regression,	P	<	0.001,	McFadden	R2	=	0.04,	N	=	

487)	(Fig.	3E).	

In	 addition	 to	 induction,	 we	 found	 that	 antibiotic	 production	 was	 also	 commonly	

suppressed	 in	 the	 presence	 of	 competitors.	 Although	 this	 strategy	 can	 be	 beneficial	 by	

preventing	a	competitor	from	producing	a	potentially	harmful	secondary	metabolite,	it	could	

also	benefit	the	suppressed	strain	by	allowing	it	to	redirect	energy	towards	other	functions.	

However,	 we	 found	 no	 relationship	 between	 suppression	 and	 the	 competitor’s	 ability	 to	

inhibit	 the	 focal	 strain	 (logistic	 regression,	 P	 =	 0.83,	 McFadden	 R2	 =	 0.025,	 N	 =	 473).	

Suppression	was	also	not	associated	with	phylogenetic	or	BGC	distance.	

	

Effect	of	resource	stress	on	inhibition	

To	 address	 the	 role	 of	 nutrient	 limitation	 on	 antibiotic	 production,	 we	 tested	 whether	

constitutive	 or	 facultative	 inhibition	 changed	 if	 the	 carbon	 source	 concentration	 was	

reduced	by	 10-fold	 (Fig.	 4A).	 Constitutive	 inhibition	was	only	marginally	 affected	by	 these	

conditions,	with	49.2%	vs	47.7%	of	all	pairwise	 interactions	being	 inhibitory	on	 low	versus	

high	 resource	medium.	 And	 only	 few	 pairwise	 interactions	 (6.7%)	 showed	 antagonism	 on	

one	resource	concentration	but	not	on	the	other,	indicating	that	a	10-fold	change	in	carbon	

source	concentration	has	a	minimal	effect	on	constitutive	inhibition	(McNemar’s	Χ2	=	0,	df	=	

1,	P	=	1).	Likewise,	we	found	a	strong	correlation	between	the	inhibition	phenotypes	of	the	

strains	at	both	resource	concentrations	(Mantel	test,	r	=	0.93,	P	<	0.001),	with	phylogenetic	

and	BGC	distance	both	 significantly	 correlated	with	 inhibition	phenotype	 (Mantel	 test,	P	 <	

0.001,	r	=	0.30	and	P	<	0.001,	r	=	0.39	respectively)	(Fig.	4B	and	C).	As	at	the	higher	glycerol	

concentration,	strains	are	more	 likely	to	 inhibit	closely	related	targets	with	dissimilar	BGCs	
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(logistic	 regression,	Pphylogenetic	 distance	 <	 0.001,	PBGC	 distance	 =	 0.023,	McFadden	R2	 =	0.02,	N	=	

526)	(Fig.	4D).		

We	then	tested	whether	strains	 reacted	differently	 to	a	competitor	under	 resource	

stress	 (Fig.	 5A	 and	 B).	 Competition	 sensing	 predicts	 that	 cells	 counter-attack	 when	 they	

sense	 competition	 through	 nutrient	 stress.	 As	 expected,	 streptomycetes	 responded	

differently	to	the	presence	of	a	competitor	under	varying	resource	conditions	(McNemar's	Χ2	

=	5.43,	df	=	1,	P	<	0.05),	with	a	change	in	inhibition	phenotype	in	56.1%	versus	49.1%	in	low	

versus	high	resource	conditions,	respectively	(Fig.	5C).	However,	counter	to	expectations,	we	

found	that	the	incidence	of	induction	declined	at	lower	resource	levels	(30.2%	vs	33.0%)	(Fig.	

5C).	 Just	 as	 at	 the	 higher	 resource	 level,	 strains	 were	 more	 likely	 to	 be	 induced	 by	

competitors	that	did	not	inhibit	them	(Fig.	5D)	(Logistic	regression,	P	<	0.001,	McFadden	R2	=	

0.12,	N	=	419).	In	contrast	to	the	higher	resource	conditions,	neither	phylogenetic	nor	BGC	

similarity	was	associated	with	induction	in	the	low	resource	environment.	

Suppression	dramatically	 increased	 in	the	 low	resource	environment	 from	45.0%	to	

59.1%	 (Fig.	5C).	Despite	 this	 increase,	 suppression	was	 still	 not	associated	with	any	of	 the	

factors	that	we	tested,	suggesting	that	antibiotic	suppression	may	be	a	general	reaction	to	

resource	stress	in	streptomycetes.	

	

DISCUSSION	

Microbial	populations	 in	soil	are	highly	diverse	even	at	small	spatial	scales,	suggesting	that	

competitive	 and	 social	 interactions	 between	 neighboring	 cells	 are	 common	 as	 different	

species	 vie	 for	 space	 and	 resources	 (21).	 One	 of	 the	 ways	 that	 species	 compete	 is	 by	

secreting	 toxins	 like	 antibiotics	 or	 bacteriocins.	 Typically,	 the	 production	 of	 these	

compounds	 has	 been	 studied	without	 consideration	 of	 this	 social	 context;	 however,	 both	
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theory	 and	 experiments	 have	 shown	 that	 this	 perspective	 is	 limited	 because	 it	 neglects	

crucial	 factors	 that	 induce	 or	 suppress	 toxins	 and	 also	 fails	 to	 identify	 toxins	 whose	

production	is	dependent	on	competitive	interactions	(4,	5,	22–25).	In	this	context,	the	aims	

of	our	work	were	 twofold:	 first	 to	 characterize	 the	 role	of	 social	 interactions	on	antibiotic	

production	 in	 common	 soil	 microbes	 of	 the	 Streptomycetaceae,	 and	 second	 to	 identify	

factors	that	were	predictive	of	competition-mediated	responses.	

By	comparing	antibiotic	production	in	the	absence	and	presence	of	another	species	in	

co-culture,	 termed	 constitutive	 and	 facultative	 production,	 respectively,	 we	 found	 that	

production	 was	 induced	 in	 more	 than	 1/3	 of	 co-cultures,	 confirming	 and	 considerably	

expanding	results	from	earlier	studies	that	facultative	antibiotic	production	is	widespread	in	

these	bacteria	(4,	5).	We	also	found	that	induction	was	strongly	predicted	by	phylogeny,	as	

anticipated	if	closely	related	strains	are	likely	competitors.	However,	unexpectedly,	a	strain	

was	no	more	 likely	 to	be	 induced	during	co-culture	 if	 it	was	grown	with	a	competitor	 that	

inhibited	 it	 versus	 one	 that	 did	 not.	 In	 other	 words,	 while	 co-culture	 frequently	 altered	

antibiotic	production,	this	was	not	evidently	driven	by	cellular	damage	caused	by	the	second	

strain,	 as	 specifically	 predicted	 by	 the	 “competition	 sensing”	 hypothesis	 (3).	 Instead,	 our	

results	suggest	that	cells	are	more	likely	to	induce	antibiotic	production	in	response	to	cues	

that	 are	 strongly	 correlated	 with	 phylogeny,	 rather	 than	 direct	 harm	 itself.	 For	 example,	

strains	 that	 share	BGCs	are	more	 likely	 to	 induce	each	other,	which	 suggests	 two	possible	

sources	 for	 cues.	 First,	 antibiotic	 intermediates	 or	 antibiotics	 themselves,	 can	 serve	 as	

inducers	 of	 antibiotic	 production	 or	 resistance	 (13).	 These	 responses	 can	 prevent	

autotoxicity	or	killing	by	neighboring	clonemates	and	also	act	as	regulators	of	the	expression	

of	 their	 own	 biosynthetic	 gene	 cluster	 (24,	 26).	 Second,	 related	 strains	 that	 share	 one	 or	

more	 BGCs	 may	 be	 more	 likely	 to	 utilize	 similar	 secreted	 factors	 that	 induce	 antibiotic	
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production,	e.g.	the	quorum-dependent	gamma-butyrolactone	signals.	Streptomyces	contain	

multiple	 receptors	 for	 cognate	 and	 non-cognate	 gamma-butyrolactones,	 thereby	 allowing	

them	to	detect	these	signals	as	a	precursor	of	the	antibiotics	another	strain	might	produce	

(12,	 27,	 28).	 Similar	 eavesdropping	 of	 quorum-dependent	 signals	 has	 been	 observed	 for	

bacteriocins	 in	Streptococcus	pneumoniae,	which	 leads	 to	 cross-induction	of	 strain-specific	

antimicrobials	 (29).	 Testing	 this	 idea	 in	 Streptomyces	 using	 chemically	 synthesized	 signals	

and	reporter	strains	remains	an	important	objective	for	future	work.		

When	 we	 repeated	 our	 assays	 at	 1/10	 the	 glycerol	 concentration,	 constitutive	

expression	was	only	marginally	changed;	however,	these	lower	resource	concentrations	led	

to	 slightly	 reduced	 induction	 rates	 and	 a	 marked	 increase	 in	 suppression.	 Moreover,	 the	

associations	between	induction	and	phylogeny	and	BGC	distance	disappeared.	These	results	

indicate	that	antibiotic	regulation	integrates	information	about	the	competitive	environment	

as	well	as	environmental	resource	availability.	This	is	unsurprising,	as	links	between	nutrient	

sensing	or	carbon	catabolite	repression	and	antibiotic	production	in	streptomycetes	are	well	

established	 (30,	 31).	 Competition	 may	 exacerbate	 nutrient	 stress	 overall,	 leading	 to	 a	

general	suppressive	response	that	doesn’t	depend	on	the	particulars	of	the	competitor.	By	

this	view,	suppression	is	best	considered	a	response	to	nutrient	stress,	rather	than	the	result	

of	 a	 specific	 action	by	 the	 second	 strain.	More	 generally,	 this	 result	 indicates	 that	 further	

work	will	need	to	consider	responses	other	than	antibiotic	production	when	examining	the	

behavior	 of	 cells	 in	 co-culture.	 For	 example,	 strains	 may	 respond	 to	 nutrient	 stress	 from	

competitors	by	redirecting	energy	used	for	antagonism	towards	functions	that	help	them	to	

avoid	 competition,	 e.g.	 hyphal	 growth	 in	 the	 direction	 opposite	 the	 competing	 strain	 or	

increased	sporulation.	Whereas	the	first	possibility	would	contribute	to	an	escape	in	space,	

the	latter	would	allow	an	escape	in	time,	leaving	spores	to	germinate	when	nutrient	stress	is	
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relieved.	These	alternative	 responses	might	be	anticipated	 if	 there	are	 trade-offs	between	

antibiotic	 production	 and	 other	 aspects	 of	 development,	 although	 these	 remain	 to	 be	

verified.	

In	 summary,	 our	 results	 provide	 strong	 evidence	 that	 antibiotic	 production	 by	

streptomycetes	 is	 highly	 	 responsive	 to	 their	 social	 and	 resource	 environment.	 This	 is	

understandable	given	the	likely	costs	of	antibiotic	production	and	the	patchy	distribution	of	

these	bacteria	in	nature	(32).	In	addition	to	clarifying	the	role	of	BGC	similarity	on	antibiotic	

induction,	which	builds	on	intuitive	predictions	of	the	“competition	sensing”	hypothesis,	our	

results	 show	 that	 suppression	 and	 escape	 need	 to	 be	 more	 thoroughly	 considered	 as	 a	

response	 to	 interference	 competition.	 This	 is	 particularly	 true	 given	 the	 numerous	

mechanisms	 bacteria	 use	 to	 regulate	 inter-	 and	 intra-specific	 warfare	 (33).	 It	 will	 also	 be	

crucial	 to	 examine	 these	 responses	 in	 experiments	 that	 more	 closely	 approximate	 the	

natural	 environment,	 including	 an	 environment	 with	 increased	 spatial	 heterogeneity	 and	

decreased	 diffusion,	 and	 where	 local	 interactions	 are	 maintained	 over	 longer	 periods	 of	

time.	Similarly,	an	important	next	step	is	determine	how	these	social	interactions	influence	

competitive	 outcomes,	 as	 has	 been	 done	 for	 constitutive	 antibiotic	 production	 between	

competing	species	(1,	2,	34).	Together,	these	approaches	will	lead	to	a	fuller	understanding	

of	 the	 role	of	antibiotic	production	 in	natural	 soils	and	 the	 factors	 that	maintain	microbial	

diversity.	

	

Methods	

Strains	 and	 culturing	 conditions	 The	 panel	 of	 24	 Streptomycetaceae	 strains	 used	 in	 this	

study	 (Table	 S1)	 included	 21	 strains	 isolated	 from	 a	 single	 soil	 sample	 from	 the	Himalaya	

Mountains	collected	at	5000	m	near	a	hot	water	spring	(35).	These	21	strains	were	selected	
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due	to	their	consistent	phenotypes	and	the	ability	to	sporulate	in	our	lab	growth	conditions.	

The	 remaining	 three	 strains	 were	 well-characterized	 lab	 strains,	 Streptomyces	 coelicolor	

A3(2)	M145,	Streptomyces	griseus	IFO13350	and	Streptomyces	venezuelae	ATCC	10712.	

High	density	spore	stocks	were	generated	by	culturing	on	Soy	Flour	Mannitol	Agar	(SFM)	(20	

g	Soy	Flour,	20	g	Mannitol,	20	g	Agar	per	liter)	or	on	R5	Agar	(103	g	sucrose,	0.42	g	K2SO4,	

10.1	g	MgCl2,	50	g	glucose,	0.1	g	CAS	amino	acids,	5	g	yeast	extract,	5,7	g	TES,	2	ml	R5	trace	

element	solution	and	22	g	agar	per	 liter).	After	3-4	days	of	growth,	spores	were	harvested	

with	a	cotton	disc	soaked	in	3	ml	20%	glycerol,	and	spores	were	extracted	from	the	cotton	

by	passing	the	liquid	through	an	18g	syringe	to	remove	the	vegetative	mycelium.	Resulting	

spore	stocks	were	titred	and	stored	at	-20	°C.	

Multi-well	masterplates	were	prepared	by	diluting	the	high	density	spore	stocks	to	1	x	106	sp	

ml-1	 in	deionized	water	and	these	plates	were	stored	at	 -20	°C.	The	glycerol	concentration	

after	the	dilution	of	stocks	was	always	lower	than	the	concentration	of	glycerol	added	as	a	

carbon	source	to	the	medium.	

To	perform	the	interaction	assays	approximately	1	μl	of	the	focal	strain,	and	when	indicated	

1	 μl	 of	 the	 competitor	 strain,	was	 replicated	 on	 a	 25	 grid	 plate	 (Thermo	 Fisher	 Scientific,	

Newport,	 UK)	 using	 a	 custom	 built	 multi-pin	 replicator	 (EnzyScreen	 BV,	 Heemstede,	 The	

Netherlands)	 from	 a	 frozen	 masterplate.	 Each	 well	 of	 the	 25	 grid	 plate	 contained	 2	 ml	

Minimal	Medium	 (MM)	 (500	mg	 L-Asparagine	 (Duchefa	 Biochemie,	 The	Netherlands),	 500	

mg	 KH2PO4	 (Duchefa	 Biochemie,	 The	 Netherlands),	 200	 mg	 MgSO4.7H2O	 (Duchefa	

Biochemie,	The	Netherlands),	10	mg	Fe2SO4.7H2O	 (Sigma	Aldrich,	MO,	USA)	and	20	g	agar	

(Company)	per	litre,	pH	7.2	supplemented	with	either	0.05%	or	0.5%	glycerol).	After	4	days	

of	growth	at	30	°C	a	1	ml	overlay	(0.8%	agar	MM)	containing	1.6	x	105	sp/ml	was	added	on	

top.	After	24	to	48	hours	of	 incubation	at	30	°C	(depending	on	the	growth	speed	of	target	
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strain)	1	ml	of	the	dye	resazurin	(Cayman	Chemical	Company,	Michigan,	USA)	was	added	to	

each	well	at	a	concentration	of	50	mg	L-1	and	incubated	for	half	an	hour	before	the	surplus	

was	removed.		Change	in	colour	of	this	redox	dye	from	blue	to	pink	was	used	as	a	measure	

of	 growth	 of	 the	 target	 strain,	 as	 resazurin	 (blue)	 is	 changed	 to	 resorufin	 (pink)	 by	

metabolically	active	cells.	Pictures	were	taken	of	every	plate	and	these	were	scored	for	the	

presence	or	absence	of	 inhibition	zones	around	the	colony/colonies.	Every	 interaction	was	

assessed	 in	 duplicate.	 When	 the	 results	 of	 assays	 were	 inconsistent,	 the	 particular	

interaction	was	repeated	a	third	time.	

	

Whole	 genome	 sequencing	Whole	 genome	 sequencing	 was	 performed	 for	 all	 strains	 for	

which	 a	 full	 genome	 sequence	 was	 not	 yet	 available	 to	 perform	 genome	 mining	 and	 to	

generate	a	phylogenetic	tree.	As	described	before	(36)	strains	were	grown	in	liquid	culture	

containing	50%	YEME/50%	TSBS	with	5mM	MgCl2	and	0.5%	glycine	at	30	°C,	250	rpm	for	2	

days.	 After	 centrifugation	 the	 pellet	 was	 resuspended	 in	 TEG-buffer	 with	 1.5	 mg	 ml-1	

lysozyme	and	after	 1	 hour	of	 incubation	 at	 30	 °C	 the	 reaction	was	 stopped	by	 adding	0.5	

volume	 of	 2M	 NaCl.	 DNA	 was	 extracted	 using	 a	 standard	 phenol/chloroform	 extraction,	

followed	by	DNA	precipitation	and	washing	in	isopropanol	and	96%	ethanol.	Dried	DNA	was	

resuspended	in	MQ	water	and	then	treated	with	50	ug	ml-1	of	RNase	and	incubated	at	37	°C	

for	1	hour.	Following	RNase	treatment,	the	mixture	was	purified	and	cleaned	as	above,	after	

which	 the	 purified	 DNA	 was	 washed	 with	 70%	 ethanol	 and	 resuspended	 in	 MQ	 water.	

Paired-end	 sequence	 reads	 were	 generated	 using	 the	 Illumina	 HiSeq2500	 system	 at	

BaseClear.	De	novo	 assembly	was	 performed	using	 the	 “De	novo	 assembly”	 option	of	 the	

CLC	Genomics	Workbench	version	9.5.1	and	the	genome	was	annotated	using	the	BaseClear	
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annotation	pipeline	based	on	 the	Prokka	Prokaryotic	Genome	Annotation	 System	 (version	

1.6).	

Using	 the	 complete	 genomes,	multilocus	 sequence	 typing	was	 performed	 as	 described	 by	

(37).	For	this	purpose	we	used	the	sequences	of	six	housekeeping	genes,	atpD,	gyrB,	recA,	

rpoB,	trpB	and	16S	rRNA	that	were	shown	to	give	good	resolution	for	the	S.	griseus	glade.	

For	the	already	available	sequenced	genomes,	the	sequences	for	S.	coelicolor	(strain	V)	were	

downloaded	 from	 StrepDB	 (http://strepdb.streptomyces.org.uk)	 and	 used	 to	 blast	 against	

the	genome	sequences	of	S.	venezuelae	ATCC	10712	(txid	54571)	(strain	W),	S.	griseus	supsp.	

griseus	 NBRC	 13350	 (txid	 455632)	 and	 MBT66	 (strain	 P)	 on	 the	 NCBI	 database.	 For	 all	

sequenced	genomes	the	genes	of	interest	were	located	from	the	annotated	genome	or	were	

searched	 in	 a	 database	 constructed	with	 the	 genomes	 in	Geneious	 (Geneious	 9.1.4).	 Each	

gene	was	aligned	and	trimmed	before	the	six	sequences	for	each	strain	were	concatenated	

in	frame	and	used	to	construct	a	neighbourjoining	tree.	

	

Analysis	of	biosynthetic	gene	clusters	Biosynthetic	gene	clusters	were	identified	within	each	

genome	 with	 antiSMASH	 version	 4.0	 (19).	 BiG-SCAPE	 was	 used	 to	 calculate	 the	 pairwise	

distances	 between	 all	 BGCs,	 using	 a	 cutoff	 of	 0.5	 as	 a	 threshold	 for	 similarity	 (38).	 This	

generated	 a	 BGC	 presence/absence	 matrix	 that	 we	 used	 to	 calculate	 a	 Jaccard	 distance	

between	each	pair	of	genomes	to	define	the	BGC	distance	between	the	strains.	

	

Resource	use	Carbon	source	utilization	of	each	strain	was	tested	using	BiOLOG	SFP2	plates	

(Biolog,	Hayward,	CA,	USA)	on	which	growth	on	95	carbon	sources	can	be	assessed.	Plates	

were	inoculated	as	described	by	(39).	Briefly,	strains	were	grown	on	MM	with	0.5%	glycerol	

for	7	days	before	 spores	were	 swabbed	 into	a	0.2%	carrageenan	 solution	and	adjusted	 to	
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OD590	of	0.2	–	0.24.	This	solution	was	diluted	10	times	in	0.2%	carrageenan	and	100	ul	of	this	

dilution	 was	 added	 to	 each	 well.	 Plates	 were	 incubated	 at	 30	 °C	 for	 3	 days	 before	 the	

absorbance	of	each	well	at	590	nm	was	measured	using	a	Spark	10M	plate	reader	 (Tecan,	

Switzerland).	All	 strains	were	assessed	 in	 triplicate.	For	 the	analysis	 the	absorbance	of	 the	

water	control	was	subtracted	for	each	well	and	the	average	was	taken.	 If	 the	average	was	

not	 significantly	 different	 from	 0	 (one	 sample	 T-test),	 the	 value	 was	 adjusted	 to	 0.	 The	

Pearson	correlation	coefficient	was	calculated	between	all	possible	pairwise	combinations	of	

the	strains	and	the	metabolic	distance	was	calculated	as	1	–	correlation	coefficient.	Strain	P	

showed	extremely	poor	growth	on	the	BiOLOG	plates	and	was	therefore	excluded.	

	

Statistics	 All	 statistics	 were	 performed	 in	 R.	 Correlation	 between	 phylogenetic	 distance,	

metabolic	 dissimilarity,	 secondary	 metabolite	 distance	 and	 inhibition	 and	 resistance	

phenotype	 was	 determined	 using	 Mantel	 tests.	 To	 establish	 whether	 antagonism	 and	

inhibition,	 induction	 and	 suppression	 are	 dependent,	 logistic	 regressions	were	 performed.	

Logistic	 regression	 was	 also	 used	 to	 test	 for	 association	 between	 inhibition,	 induction	 or	

suppression	and	phylogenetic	distance,	metabolic	distance	or	BGC	distance.	For	the	logistic	

regressions	we	excluded	all	self-self	 interactions,	as	these	confound	the	analyses	by	having	

zero	distance	between	the	strains	or	test	for	self-inhibition.	
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FIGURES	

	

	

Fig.	 1.	 Schematic	 of	 constitutive	 and	 facultative	 inhibition	 assays.	 Focal	 strains	 (orange)	

were	 tested	 for	 their	 capacity	 to	 inhibit	 each	 target	 strain	 (grey)	 inoculated	on	 top	of	 the	

focal	 colony	 in	 a	 soft	 agar	 overlay.	 Inhibition	 was	 detected	 as	 a	 zone	 of	 clearance	

surrounding	the	colony.	All	24	strains	were	tested	as	both	focal	and	target	strains,	leading	to	

576	possible	assays	for	constitutive	antibiotic	production.	For	the	facultative	assays	a	second	

colony	 was	 inoculated	 one	 centimeter	 away,	 designated	 as	 the	 competitor,	 that	 could	

interact	with	the	focal	strain	through	diffusible	molecules.	All	24	strains	were	tested	as	the	

focal,	competitor	and	target	strain,	resulting	in	24	x	24	x	24	=	13,824	assays.	Comparing	the	

ability	 of	 the	 focal	 strain	 to	 inhibit	 the	 target	 in	 the	 constitutive	 and	 facultative	 assays	

revealed	whether	antibiotic	production	was	induced,	suppressed	or	unchanged.	
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Fig.	2.	Constitutive	antagonism.	(A)	Interaction	matrix	sorted	by	MLST	relatedness.	Squares	

indicate	whether	a	target	strain	showed	growth	(white)	or	was	inhibited	(black)	by	the	focal	

strain.	Self-inhibition	 is	denoted	by	an	X	and	missing	data	 is	shown	 in	grey.	 (B)	Correlation	

between	inhibition	phenotype	(Euclidian	distance)	and	phylogenetic	distance	(Mantel	test,	P	

<	0.001,	r	=	0.27	N	=	552)	or	(C)	biosynthetic	gene	cluster	(BGC)	distance	(Mantel	test,	P	<	

0.001,	 r	=	0.43,	N	=	552).	 (D)	 Logistic	 regression	between	 the	probability	of	 inhibition	and	

phylogenetic	 and	 biosynthetic	 gene	 cluster	 (BGC)	 distance	 (Pphylogenetic	 distance	 <	 0.001,	 PBGC	

distance	=	0.064,	McFadden	R2	=	0.02,	N	=	536).	
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Fig.	3.	Altered	antagonism	during	 co-culture.	 (A)	Grey	bars	 indicate	 the	number	of	 target	

strains	 inhibited	by	 the	 focal	 strain	when	 grown	alone.	 Black	dots	 indicate	 the	number	of	

target	strains	inhibited	by	the	same	focal	strain	when	co-cultured	with	one	of	the	24	possible	

competitors.	 (B)	 Number	 of	 competitors	 that	 change,	 induce	 or	 suppress	 secondary	

metabolite	expression	for	each	focal	strain.	Cases	where	suppression	is	not	possible	due	to	

the	 absence	 of	 constitutive	 inhibition	 are	 denoted	 as	 NA.	 (C)	 The	 probability	 of	 the	 focal	

strain	 showing	 induction	 is	 lower	 when	 the	 competitor	 is	 antagonistic	 to	 the	 focal	 strain	

(Logistic	 regression,	 P	 <	 0.001,	 McFadden	 R2	 =	 0.06,	 N	 =	 354).	 (D)	 Logistic	 regressions	

between	the	probability	of	induction	and	phylogenetic	(P	<	0.001,	McFadden	R2	=	0.02,	N	=	

487)	or	(E)	BGC	distance	(P	<	0.001,	McFadden	R2	=	0.04,	N	=	487).	Ribbons	indicate	SE.	
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Fig.	 4.	 Constitutive	 antagonism	 under	 low	 resource	 conditions	 (1/10	 glycerol	

concentration).	 (A)	 Interaction	 matrix	 showing	 constitutive	 inhibition	 sorted	 by	 MLST	

relatedness.	 Shading	 is	 as	 in	 Figure	 2.	 (B)	 Correlation	 between	 inhibition	 phenotype	 and	

phylogenetic	 distance	 (Mantel	 test,	P	 <	 0.001,	 r	 =	 0.30,	N	 =	 552)	 or	 (C)	 biosynthetic	 gene	

cluster	 (BGC)	 distance	 (Mantel	 test,	 P	 <	 0.001,	 r	 =	 0.39,	 N	 =	 552).	 (D)	 Logistic	 regression	

between	the	probability	of	 inhibition	and	phylogenetic	and	biosynthetic	gene	cluster	(BGC)	

distance	(P	phylogenetic	distance	<	0.001,	P	BGC	distance	<	0.001,	McFadden	R2	=	0.02,	N	=	526).	
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Fig.	5.	Altered	antagonism	during	co-culture	under	low	resource	conditions	(1/10	glycerol	

concentration).	 (A)	 Grey	 bars	 indicate	 the	 number	 of	 strains	 inhibited	 by	 the	 focal	 strain	

when	grown	alone.	Black	dots	 indicate	 the	number	of	 target	strains	 inhibited	by	 the	same	

focal	 strain	when	 co-cultured	with	 one	of	 the	 24	possible	modifier	 strains.	 (B)	Number	 of	

modifiers	 that	 change,	 induce	or	 suppress	 secondary	metabolite	 expression	 for	 each	 focal	

strain.	Cases	where	suppression	is	not	possible	due	to	the	absence	of	constitutive	inhibition	

are	denoted	as	NA.	 (C)	Comparison	of	 the	 total	 amount	of	 inhibition,	 change	 in	 inhibition	

due	 to	competition,	 induction	and	suppression	 found	 in	 low	and	high	 resource	conditions.	

(D)	 The	 probability	 of	 the	 focal	 strain	 showing	 induction	 is	 lower	when	 the	 competitor	 is	

antagonistic	to	the	focal	strain	(Logistic	regression,	P	<	0.001,	McFadden	R2	=	0.12,	N	=	419).	
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