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ABSTRACT
Reactions of molecules on metal surfaces are notoriously difficult to simulate accurately. Density functional theory can be utilized to generate
a potential energy surface, but with presently available functionals, the results are not yet accurate enough. To provide benchmark barrier
heights with a high-quality method, diffusion Monte Carlo (DMC) is applied to H2 + Al(110). Barrier heights have been computed for six
geometries. Our present goal is twofold: first, to provide accurate barrier heights for the two lowest lying transition states of the system, and
second, to assess whether density functionals are capable of describing the variation of barrier height with molecular orientation and impact
site through a comparison with DMC barriers. To this end, barrier heights computed with selected functionals at the generalized gradient
approximation (GGA) and meta-GGA levels are compared to the DMC results. The comparison shows that all selected functionals yield a
rather accurate description of the variation of barrier heights with impact site and orientation, although their absolute values may not be
accurate. RPBE-vdW-DF and BEEF-vdW were found to perform quite well even in terms of absolute numbers. Both functionals provided
barrier heights for the energetically lowest lying transition state that are within 1 kcal/mol of the DMC value.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0022919., s

I. INTRODUCTION

In order to correctly model molecular interactions on metal
surfaces, accurate barrier heights Eb for the surface reactions
are required. They are important to both the study of heteroge-
neously catalyzed processes1 and the elementary surface reactions of
which these processes consist.2,3 By tuning the energy of the rate-
controlling state, it may be possible to lower or increase the rate
of the associated elementary reaction.4 In heterogeneous catalysis,
the rate-controlling state5 is frequently a transition state of a dis-
sociative chemisorption reaction. This is the case, for example, in
steam reforming6 and ammonia production.7,8 Since, worldwide, the
greater part of chemical production involves heterogeneous catal-
ysis,9 benchmark data for dissociative chemisorption reactions are
thus of great interest.

To provide theoretical data, density functional theory (DFT)
is often employed as the main computational method. In DFT,

one often uses the generalized gradient approximation (GGA) and,
increasingly, the meta-GGA level of theory to study the interac-
tions of molecules with metal surfaces. The drawback of the cor-
responding semi-local functionals is that barrier heights computed
for molecule–metal surface systems may vary strongly depending
on the specific functional used,2 allowing for a large variation in the
predicted reactions rates of heterogeneously catalyzed reactions.

To overcome these shortcomings, a semi-empirical DFT
approach called the specific reaction parameter approach to DFT
(SRP-DFT) has been implemented and demonstrated to pro-
vide chemically accurate barrier heights Eb (accuracy better than
1 kcal/mol) for molecule–metal surface reactions.10 The SRP-DFT
approach has predictive power to the extent that an SRP functional
developed by reproducing one experiment on a particular system is
required to describe at least one other experiment on the same sys-
tem with quantitative accuracy and will usually also describe addi-
tional experiments on the same system with such accuracy.10 In
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addition, SRP density functionals developed for one specific system
have been shown to be transferable to a chemically similar system
in a number of instances.11,12 A drawback of the SRP-DFT method
is that the experimental data required to fit a SRP functional may
not be available for all systems of interest and, where such data
are available, details concerning, e.g., the velocity and internal state
distributions of the reacting molecules may be lacking,13 and/or dif-
ferent experiments may yield differing results.13,14 It is therefore also
important to develop and/or to test first principles methods that are
capable of high accuracy calculations on molecules interacting with
metals. Even if those calculations may only be achievable for one or
for a few geometries, the results may serve as benchmarks.

One such approach developed with the aim of achieving higher
accuracy for molecule–metal surface interactions is embedded cor-
related wave function (ECW) theory. Although several different
embedding schemes exist,15–19 the general idea of ECW theory is
to divide a system into a local region of interest, i.e., the cluster,
which is treated with correlated wave function theory, and its envi-
ronment, which is treated with DFT.17 ECW theory in its various
flavors has been applied already to a few interfacial systems18,20–23

and has been shown to be capable of providing an accurate descrip-
tion of systems in which charge transfer, multiconfigurational char-
acter, and excited states play an important role.24 Recently, for exam-
ple, a potential energy surface (PES) based on ECW calculations
was used successfully25 in quasi-classical trajectory calculations to
semi-quantitatively reproduce sticking probabilities for a system for
which DFT at the GGA level notoriously fails, i.e., O2 + Al(111).
Although this result25 is promising, some drawbacks of this the-
ory are that increasing the number of atoms in a cluster makes
calculations rapidly become impractical due to the computational
cost and that the error associated with incomplete convergence of
the energy with the size of the embedded cluster may be several
kcal/mol.22

Within the family of DFT itself, an interesting method that
potentially allows for higher accuracy for molecule–metal interac-
tions is the random phase approximation (RPA) or, to be more
precise, adiabatic-connection fluctuation–dissipation density func-
tional theory within the RPA.26,27 The RPA may be considered as
a rung 5 functional (the GGA and meta-GGA functionals being
rung 2 and rung 3 functionals, respectively).28 The RPA uses the
exact exchange (or the Hartree–Fock) energy as computed from
the occupied Kohn–Sham orbitals.29 The RPA correlation energy
is calculated separately, using both occupied and virtual orbitals.
The RPA has already been employed to study the adsorption of
molecules on metal surfaces,30–32 and it has even been argued that
RPA energies can serve as benchmarks for calculations on adsorp-
tion of molecules on metal surfaces.33 Several successes have been
achieved with the RPA for molecule–surface interactions, for exam-
ple, in solving the CO adsorption puzzle.34 However, given that the
performance of the method for a database of 10 chemisorption ener-
gies with a mean unsigned error of 4.8 kcal/mol fell halfway between
results obtained with the RPBE and BEEF-vdW results,33 we argue
that presently evidence is lacking that the method is accurate enough
to provide benchmark results. Improvements may be achievable by
using RPA including single excitations35 or second order screened
exchange.36 Both methods, however, tend to worsen the description
of barrier heights,37,38 and more modern solutions (e.g., Ref. 39) may
be needed to achieve an improvement.

Another interesting development is the implementation of
coupled-cluster theory for solids,40,41 for which certain tests exhibit
good agreement with experimental findings. Although these results
show promise for future development,42 the method currently has
not yet been rigorously used to benchmark the interactions of
molecules with metal surfaces.

Other promising methods come from the family of stochastic
electronic structure theories called quantum Monte Carlo (QMC).
In principle, the QMC method is exact.43–45 Additionally, many
QMC methods show a favorable scaling with system size (especially
if localized orbitals are used46), and large-scale parallelization is fea-
sible.45 Of this family of methods, Diffusion Monte Carlo (DMC)
has already been applied to a few molecule–metal surface systems.
In 2008, Pozzo and Alfè47 utilized DMC to study H2 dissociation on
the Mg(0001) surface. The study itself provided useful insights into
certain issues, such as the role of system size, but the accuracy of
the DMC results could not be verified due to the lack of experimen-
tal data for the specific system studied. In more recent work, some
of us48 used DMC to study the benchmark H2 + Cu(111) system.
After systematic corrections were applied, the DMC result agreed
within 1.6 ± 1.0 kcal/mol with a chemically accurate semi-empirical
value of the reaction barrier height. QMC has also been used to
study N2 + Cu(111),49 CO and H2O + Cu(100),50 H2 + Pt(111),51

and the site-preference of CO on Rh(111), Ir(111), Pt(111),
and Cu(111).52

Here, we use DMC to study the dissociative chemisorption of
H2 on Al(110). Unlike Cu, the electronic structure of Al does not
have electrons in d-orbitals, making the calculations less compu-
tationally expensive. As a result of the lower cost, it is possible to
study barriers associated with multiple geometries of the system and
to investigate how the variation of barrier height with geometry
compares with the variation obtained with several widely used den-
sity functionals. Unfortunately, directly benchmarking such results
against experimental values is not possible as barrier heights are
not directly accessible from experiment.2 For H2 + Al(110), how-
ever, molecular beam sticking experiments have been performed,53

ultimately allowing for a validation of the results via dynamics cal-
culations. Sticking in this system has been studied early on with
theory54,55 on the basis of the local density approximation and
the PW91 density functional,56 respectively, in both cases apply-
ing a simple dynamical model (the hole model57). Both theoretical
studies54,55 resulted in overestimation of the measured sticking prob-
abilities. While presently it should not yet be possible to develop a
PES on the basis of DMC calculations only, it may be possible to fit a
SRP density functional to the DMC results presented here. This SRP
functional may be used in dynamics calculations with an appropri-
ate dynamical model to derive sticking probabilities for comparison
with the experimental results to validate the DMC results presented
here. As this requires additional dynamical calculations, this will be
part of a future publication.

The goals of the present paper are thus to present DMC results
for the system H2 + Al(110) as well as to compare these with
the DFT results obtained with selected functionals for the same
system. We focus on the energies of the two lowest lying transition
states as determined with DFT and on four more reaction barrier
heights computed in reduced dimensionality. Together, these ener-
gies describe how the barrier height varies across the surface and
with molecular orientation. As noted above, a direct comparison
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with sticking experiments on H2 + Al(110) is outside the scope of
the present paper as this requires a dynamical calculation. How-
ever, an additional goal of our paper is to pave the way for such a
comparison by providing DMC benchmark results that can be used
to fit an SRP density functional, which, in turn, can be used to com-
pute a PES for the system under investigation. As noted in a recent
perspective paper,2 requirements for such a PES are that it accurately
describes not only the minimum barrier height but also the variation
of the barrier height with impact site and orientation.57

This paper is organized as follows: Section II briefly describes
the QMC methods used. Section III details the setup for the
geometries and the parameters in the DFT and QMC calculations.
Section IV discusses the DMC results and some of the associated
errors and compares with the DFT results. Section V concludes the
paper and also provides an outlook.

II. BACKGROUND OF QUANTUM MONTE CARLO (QMC)
In this section, we briefly describe the QMC methods used in

this paper, namely, the variational Monte Carlo (VMC) method and
the diffusion Monte Carlo (DMC) method.

A. Variational Monte Carlo (VMC)
The VMC58,59 method can be used to evaluate the expectation

value of the Hamiltonian H for any trial wave function ΨT by utiliz-
ing Monte Carlo integration. Mathematically, the VMC energy EVMC
can be written as follows:

EVMC = ∫ Ψ∗T(R)ĤΨT(R)dR
∫ Ψ∗T(R)ΨT(R)dR , (1)

whereR is a 3N-dimensional vector of the coordinates (r1, r2, . . ., rN)
of the N particles in the system and Ĥ is the system’s Hamiltonian.
Typical trial wave functions ΨT are obtained by multiplying a wave
function in a Slater representation ΨS by a Jastrow factor,

ΨT(R) = e J(R)ΨS(R). (2)

Ψs can be generated via standard computational chemistry meth-
ods, such as complete active space self-consistent field (CASSCF)
or DFT, prior to the VMC calculation. The Jastrow factor J can
be very useful to enhance the efficiency of a DMC calculation by
already accounting for part of the dynamic electron correlation. A
typical Jastrow factor depends explicitly on the electron–electron
and electron–nucleus separations, and it contains several parame-
ters that can be optimized by minimizing the energy expectation
value or the variance of the local energies. Details on the Slater wave
function used, the Jastrow factor, and the optimization are given
below in Sec. III E. Further details can be found in Sec. VI of the
supplementary material.

B. Diffusion Monte Carlo (DMC)
The DMC method uses the imaginary time Schrodinger equa-

tion to evolve a set of electronic configurations from ΨT toward
the ground state. A typical DMC calculation consists of two parts;
the first is an equilibration phase in order to represent the ground-
state wave function, and the second is a further propagation to

accumulate statistics for properties such as the ground-state elec-
tronic energy. Due to the fermion sign problem,44 the DMC method
makes use of the fixed-node approximation60 in which the nodes of
the wave function are fixed to those of ΨT . The DMC method then
produces the lowest-energy state possible. This value may, however,
not be exact as it contains fixed-node errors. For reviews on this
method, see Refs. 44 and 61.

III. COMPUTATIONAL SETUP
As discussed in the Introduction, the goal of the DMC cal-

culations is threefold: (a) To provide accurate values for the two
energetically lowest lying barriers and for four additional barriers in
reduced dimensionality for the dissociative chemisorption reaction
of H2 on Al(110); (b) to thereby provide benchmark data to check
DFT functionals against; and (c) to pave the way for the develop-
ment of an SRP density functional based on first principles (DMC)
calculations, which can be used to validate the DMC results by
comparing experimental sticking probabilities with the values com-
puted with dynamics calculations using a PES based on SRP-DFT
data. These three goals have mostly determined the choices that we
have made in (i) how we choose the points in the PES to include
in the investigation, and (ii) how the DMC and the DFT calcula-
tions are otherwise set up. While we present many details of the
computational setup (for example, the exact setup of the DFT calcu-
lations and the form of the Jastrow function) in the supplementary
material, we want to discuss here the main points influencing the
accuracy, reliability, and significance or meaning of the values that
we compute.

A. Choice of single-point geometries studied
Most of the choices we describe in this section follow directly

from the requirement that the DMC data resulting from this study
should allow fitting an SRP density functional or choosing an appro-
priate functional as basis for a dynamics study that will allow a
comparison of computed reaction probabilities with experiment. In
activated dissociative chemisorption, the sticking probability is gov-
erned by the entrance channel and barrier regions of the PES.62

The most important points to address with DMC therefore con-
cern reaction barrier geometries and their energies relative to that
of the molecule at asymptotic distances from the surface, and these
are what we focus on.

The H2 on Al(110) system is characterized by two similarly low
lying transition states: one above the long bridge site (denoted TS1 in
the following) and one above the short bridge site (denoted TS2).
Since the energetic difference between these two transition states is
very small (around 1 kcal/mol–2 kcal/mol, depending on the func-
tional) compared to the total barrier height (around 20 kcal/mol),
it is clearly of interest to include both transition states in our inves-
tigation: both of them will likely be dynamically important in the
dissociative chemisorption reaction. Details on how these transition
states were determined can be found in Sec. II a of the supplementary
material. Here, we only want to stress that in optimizing TS1 and
TS2 (as well as TS3–TS6 later on), the metal surface was kept fixed
at the geometry of the relaxed metal surface in vacuum. The rea-
son for this choice is simply that, in highly activated dissociation
studied in UHV, at high collision energies of interest, the surface
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FIG. 1. Schematic representation of the single-point geometries considered. Light
blue balls: first layer Al atoms; dark blue balls: second layer Al atoms; ball and stick
models: H2 molecules. TS1 (dark green) corresponds to a true transition state in
DFT using the PBE functional; TS2 (light green) is close to a transition state in
DFT based on the PBE functional. The other single points (TS3–TS6) correspond
to barrier geometries in restricted 2D cuts through the PES.

atoms do not have time to respond to the motion of the incom-
ing molecule.63 The TS geometry of interest is therefore the one in
which the metal surface corresponds to the relaxed metal surface in
vacuum.

To ultimately allow an accurate description of the variation of
the barrier height across the surface and with H2 orientation, four
more points on the PES (denoted TS3–TS6 in the following) were
added to TS1 and TS2. TS3–TS6 correspond to transition states in
restricted two-dimensional (2D) cuts through the PES at high sym-
metry impact points. The H2 orientations relative to the surface cho-
sen in this study are shown in Fig. 1 and listed in Table I. Details on
how the exact TS geometries were obtained can be found in Sec. II b
of the supplementary material. TS3–TS6 have strongly differing total
energies that allow us to test the performance of DFT functionals for
barrier heights over a wide range of energies.

At first sight, it may seem that, ideally, the full geometry of
the TSs in the PES should be determined self-consistently, i.e., by
optimizing the full geometry using the method in question (DMC
or DFT with a specific functional), in all calculations. While there
is something to be said for such a choice, this is (i) not possible
in DMC at the present point in time as there is no periodic DMC
code available yet that can compute forces at the DMC level using
pseudopotentials and a plane-wave (or B-spline) basis and (ii) not

desirable even in the DFT calculations for reasons discussed in the
following. Let us consider the short-bridge transition state (TS2)
as an example. Depending on the exchange–correlation functional
used in the transition state search with DFT, this transition state
will either lie parallel to the surface (as in PBE-vdW-DF64–67) or in
a slightly tilted geometry (as in PBE). Additionally, the H–H bind-
ing distance as well as the distance of the molecule to the surface will
slightly change. Comparing barrier heights for self-consistently opti-
mized transition states would allow us to compare the actual (self-
consistently optimized) DFT barrier heights, but it will not allow us
to compare the energies obtained with different functionals and/or
with QMC for one specific molecular geometry in the 6D PES of the
molecule. The latter is, however, much more desirable when trying
to choose the best functional for a subsequent molecular dynamics
calculation through a comparison with DMC. In the present paper,
we have therefore chosen a different route, sketched in Fig. 2: we
use fully self-consistent PBE-DFT transition state searches exclu-
sively to determine geometries of the molecule relative to the surface
that are likely to be dynamically relevant for dissociative chemisorp-
tion. The PBE functional was chosen because it often represents a
compromise between accuracy for the metal lattice and accuracy for
reaction barriers.68 For simplicity, TS2 was restricted to a geometry
in which H2 is parallel to the surface, as suggested by the PBE-
vdW-DF calculations. The difference between the PBE energies of
this restricted transition state TS2 and the actual PBE short-bridge
transition state was less than 0.1 kcal/mol, so this restriction should
not have a large influence on the barrier height. TS3–TS6 were
restricted to specific impact sites and H2 orientations as given by
Table I and do not necessarily correspond to true transition states;
they can be considered as barrier geometries in a reduced 2D (r, z)
space.

Having determined how to choose the molecular geometry, we
now move to the geometry of the surface. It is known that different
functionals predict different lattice constants and interlayer spac-
ings. In the case of aluminum, for example, PBE predicts a lattice
constant of a0 = 4.04 Å, RPBE-vdW-DF predicts a0 = 4.08 Å, while
the extrapolated 0 K and anharmonic zero-point vibration corrected
lattice constant extracted from experiment is a0 = 4.02 Å69 (see Sec.
I c of the supplementary material). In the DFT calculations compar-
ing to QMC, it is preferable to use the self-consistently optimized
DFT lattice parameters and interlayer distances for the slab rather
than experimental values for several reasons. First, lattice strain is
known to have a strong influence on the barrier height for small

TABLE I. Geometric parameters for the single points considered in this investigation. The meaning of ϕ, θ, rH–H , and z is
shown in Fig. 2. The adsorption sites are depicted in Fig. 1.

Transition Adsorption Azimuthal angle Polar angle
state nos. site Coverage ϕ (deg) θ (deg) rH–H (Å) Height z (Å)

TS1 Long bridge 1/4 0 90 1.334 1.118
TS2 Short bridge 1/4 90 90 1.080 1.568
TS3 Hollow 1/4 0 90 1.245 0.615
TS4 Top 1/4 90 90 1.368 1.564
TS5 Long bridge 1/4 45 90 1.361 0.786
TS6 Short bridge 1/4 0 90 1.154 1.175
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FIG. 2. Flow chart describing the construction of geometries used in this study to
compare DMC with the DFT results.

molecules reacting on metal surfaces.70–72 Transferring the exact
same geometry (including the same slab geometry) to a calculation
with a different functional may thus result in errors due to lattice
strain. Second, while the static surface approximation is often used
in describing sticking of H2 on metal surfaces, the small weight of Al
suggests that this is not sufficient when describing the dissociation
of H2 on Al(110) and that surface temperature effects (leading to
a thermally corrugated surface) may be important. These tempera-
ture effects can, however, only be captured in dynamics calculations
if one can define a 0 K slab in its relaxed geometry. To overcome
both issues, in the DFT calculations, we use the self-consistently
determined PBE molecular coordinates for each TS and, for each
functional, a slab geometry that is optimized self-consistently for the
metal surface interacting with vacuum (i.e., using the functional in
question with no molecule present). For the DMC calculations, we
cannot determine the surface structure self-consistently due to the
absence of forces in the relevant codes. However, an obvious choice
follows from the notion that DMC should, in principle, be exact. In
this case, one can use the experimental geometry of the surface in
the DMC calculations. The parameters that we used to describe the
slab in the VMC and DMC calculations (and obviously in the DFT
calculation preparing the initial wave function for the QMC calcula-
tions) are shown in Table II. These parameters are described in Sec.
I c of the supplementary material.

The molecular coordinates (see Table I) used in the QMC and
DFT calculations are thus extracted from self-consistent PBE-DFT
calculations by determining the H–H bond distance r, the molecule-
surface distance z, the impact site (top, hollow, . . .), and the orienta-
tion of the molecule relative to the surface described by the angles θ
and φ (see Fig. 3). This molecular geometry is then used in all QMC
and DFT calculations, each of which uses their own slab geometry.

TABLE II. Bulk lattice constant a0 and first, second, and bulk interlayer spacing (d1,2,
d2,3 and di,j) used for the metal slab in the DMC calculations. Values are extracted
from the experimental results obtained by low energy electron diffraction by Göbel
and van Blanckenhagen69 and are extrapolated to 0 K and corrected for zero-point
anharmonic contributions.76

Value (Å)

a0 4.0154
d1,2 1.3367
d2,3 1.4782

di,j = a0/2
√

2 1.4197

For the asymptotic geometry, we use a self-consistently optimized
geometry for the H2 molecule for all DFT calculations used in com-
paring with QMC and the experimental H2 bond distance for the
DMC calculation.

The above has consequences for what we call the TS geometries
and TS energies: only the PBE energies used to compare with QMC
are energies of (restricted) TSs in the true sense, i.e., these PBE TS
geometries and energies have been obtained for geometries that were
self-consistently computed with PBE-DFT for both the molecule and
the surface. All other TS geometries and energies computed here are
so in only an approximate sense, but they do represent an equiva-
lent geometry in the 6D PES of the molecule. In fact, the molecular
geometries used in the QMC calculations together with the DFT sur-
face geometries may be thought of as defining full geometries that
serve as “anchor points,” which we can use in subsequent SRP-DFT
calculations to “nail” the DFT PES to the “QMC PES,” by demanding
that the DFT energies are close to the QMC values for these points.

B. Slab setup and choice of number of H2
molecules added

In the present study, we consider a surface coverage of 1/4, i.e.,
one H2 molecule per 2 × 2 Al(110) surface unit cell. As shown
in Sec. III c of the supplementary material, for this cell size (i.e.,
2 × 2), we can expect the barrier heights to be converged to less
than 1 kcal/mol. In comparing DMC with DFT data, this somewhat
incomplete convergence in coverage should not have a big influence
as we compare the results obtained at the same coverage.

FIG. 3. The geometric parameters used to describe the position of the molecule
above the surface. (a) Definition of the Cartesian axis system relative to the first
layer (blue balls: first layer Al atoms); (b) definition of rH–H , z, θ, and ϕ.
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Concerning the number of layers, we consider a metal slab with
10 layers. This is, considering other studies of molecules on metal
surfaces, an astonishingly high value. However, we deemed this nec-
essary as large oscillations were observed in the DFT barrier height
when increasing the number of layers for H2 on Al(110). These oscil-
lations in the barrier height as a function of the number of layers,73

which may be due to quantum size effects74 (analogous to stand-
ing waves that may or may not form in a box of a certain size or
analogous to Friedel oscillations that arise from surface inhomo-
geneities75), slowly died out to about ±1 kcal/mol when using 10
layers or more (see Sec. III c of the supplementary material). Obvi-
ously, these oscillations have a direct impact on the barrier heights
that we want to extract for TS1 and TS2. For TS3–TS6, we are mainly
interested in the energetic differences between DFT and DMC cal-
culations. As we found the oscillations in barrier height to be only
weakly influenced by changes in the lattice constant, the choice of
functional, and the specific adsorption site studied (see Sec. III c of
the supplementary material), incomplete convergence in the number
of layers should have a small effect on the comparison as all calcu-
lations are performed using the same number of layers. However,
since we are interested in absolute numbers for TS1 and TS2, 10 lay-
ers were deemed to be a good choice, as the 10-layer result in DFT
seems to coincide well with the results for very large amounts of lay-
ers. We expect possible errors in the barrier heights of TS1 and TS2
resulting from the restricted number of layers to be considerably less
than 1 kcal/mol (see Sec. III c of the supplementary material).

As the metal slabs used in our calculations contain many Al
layers, the number of layers used dominates the computational cost.
To reduce this cost in the (computationally expensive) DMC calcu-
lations, we used a trick. As discussed in more detail in Sec. II c of
the supplementary material, in our DMC calculations, it is compu-
tationally advantageous to use a setup in which the molecules are
not only placed on the top of the slab but also added at the bottom
of the slab. The molecular geometry originally extracted for on top
adsorption is thereby replicated to the bottom of the slabs used in
our DMC calculations as well as in the DFT calculations that are
used in the comparison with DMC.

C. Pseudopotentials
A well-motivated choice of pseudopotentials is essential in

order to achieve high accuracy and to allow for a good compar-
ison of DFT and DMC calculations. We use pseudopotentials in
both the plane-wave DFT and the DMC calculations. The PAW
Al_GW pseudopotential with three valence electrons treated explic-
itly, which is provided in the VASP software package, yields very
good DFT results for the lattice constant and the bulk modulus
of aluminum when compared to all electron calculations (see Sec.
IV of the supplementary material). However, it cannot be used
in the DMC calculations because it is fully non-local. Hence, sev-
eral different semi-local pseudopotentials (all with a Ne core for
Al and one electron treated explicitly in H) were tested for their
accuracy, including the Al and H pseudopotentials developed by
Burkatzki et al.,77 the Al and H pseudopotentials developed by Trail
and Needs,78,79 and the Al and H Trouiller–Martins-type fhi98PP
pseudopotentials provided on the Abinit website.80,81 The perfor-
mance of the various pseudopotentials was tested by comparing
the DFT-PBE bulk lattice constant, the bulk modulus, and the TS1

and TS2 barrier heights to all electron PBE calculations and by
comparing the AlH binding energy as computed in DMC to all-
electron results using coupled-cluster singles, doubles and pertur-
bative triples [CCSD(T)] with the AVQZ basis set. The details of
these tests are given in Sec. IV b of the supplementary material.
Our tests suggest that the Trail–Needs pseudopotentials give a very
good performance for the problem at hand (lattice constant correct
to within 0.01 Å, bulk modulus correct to within 1%, DFT barrier
heights for TS1 and TS2 as well as Al–H binding energies accu-
rate to within 0.2 kcal/mol). Similar observations hold true for the
PAW GW pseudopotentials distributed with VASP and discussed
in this paper (see Sec. IV of the supplementary material for further
specification) but not for some of the other pseudopotential com-
binations. All DMC calculations and the DFT calculations for the
trial wavefunction generation for VMC were hence performed using
the Trail–Needs pseudopotentials. All other DFT calculations were
performed using the PAW GW pseudopotentials distributed with
VASP as the use of Trail–Needs pseudopotentials is highly ineffi-
cient in plane-wave DFT calculations due to the high plane-wave
cutoff required.

D. DFT calculations
Details on the setup of the DFT calculations used in optimiz-

ing the slab geometry, in determining the various transition states,
and in performing the final DFT calculations used in the com-
parison with DMC data are given in Secs. I a, I b, and V of the
supplementary material. The choices made are motivated based on
convergence tests (see Secs. III a and III b of the supplementary
material).

E. QMC calculations
Details on the setup of the QMC calculations are given in Sec.

VI of the supplementary material. Briefly summarized, QMC calcu-
lations were performed using the CASINO43,82 package v.2.13.709
(beta), and the trial wave functions were generated using Slater
determinant wave functions from PBE-DFT calculations performed
with the QUANTUM ESPRESSO83 package. VMC was used to opti-
mize a Jastrow factor (containing up to three-body terms) for the
subsequent production runs of the DMC calculations. The optimiza-
tion was performed by minimizing the energy expectation value.84

The time step as well as the number of walkers used in the DMC
calculation was determined from convergence tests as detailed in
Sec. IV. Pseudopotentials were treated using the T-move scheme.85

Single-particle finite-size effects were minimized via twist aver-
aging. Twist averaging is a procedure in which several different k-
points are taken into account, achieving a result somewhat similar
to k-point averaging in DFT. We used 32 symmetry unique twists
in the 2 × 2 supercell and 8 unique twists in the 4 × 4 supercell
resulting from a regular 8 × 8 (4 × 4 for the 4 × 4 supercell) k-
point grid. Details on the twist angles used can be found in Sec.
VI a of the supplementary material. Many-body finite-size effects
were minimized by extrapolating the results obtained for a super-
cell containing 2 × 2 surface atoms and 4 × 4 surface atoms to
infinite system size. To keep a coverage of 1/4, we thereby consider
two H2 molecules in the 2 × 2 case (one on top and one on the bot-
tom of the slab) and eight H2 molecules for the 4 × 4 slab (4 on
top and 4 on bottom). Mathematical details on the twist averaging
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procedure as well as on the finite-size extrapolation can be found in
Sec. VII of the supplementary material. The results presented below
suggest that this procedure allows us to extract reliable energy differ-
ences (i.e., molecule–surface interaction energies) for the system at
hand.

IV. RESULTS AND DISCUSSION
A. Convergence tests for the DMC time step
and the number of walkers

Since we are interested in comparatively high accuracy
(<1 kcal/mol), we present briefly our convergence tests for the num-
ber of walkers and the time step used in the DMC imaginary-time
propagation. These convergence tests were performed for the TS1
barrier height at the Γ-point only, using a 2 × 2 supercell. Due to the
large number of twists used in the calculations and the associated
requirements in equilibrating the walkers and in obtaining reliable
error bars, we would like to limit the number of walkers to a com-
paratively small number. The results shown in Fig. 4 suggest that
using a time step of 0.06 a.u. and 2500 walkers leads to a negligi-
ble bias in the energy, and these settings were used in all subsequent
calculations.

B. Raw DMC data and finite-size corrections
In the following, we present the raw DMC data taking TS1 as

an example to exemplify the procedure of twist averaging and finite-
size extrapolation. Together with the trends observed for the other
TS (data provided in Sec. VIII of the supplementary material), this
will allow us to demonstrate why we are confident that the finite-size

FIG. 4. Convergence tests for the time step (a) and the number of walkers (b) to
be used in DMC calculations. All tests are performed for the barrier height of TS1
at the Γ-point in a 2 × 2 supercell. In (a), the number of walkers is set to 2500. In
(b), the time step is set to 0.06 a.u.

errors are under control, i.e., they are within a fraction of a
kcal/mol.

We start with a discussion of the twist averaging procedure.
Particularly, for metallic systems, twist averaging is highly impor-
tant, very much in the same way as converging the k-point grid in
DFT calculations is. Using TS1, we demonstrate why and to what
extent we are confident that our twist averaging procedure leads to
sufficiently converged results. Figure 5 shows the raw DMC data
together with the corresponding DFT data for each twist considered
in the 2 × 2 supercell. Although the scatter in the data for differ-
ent twists is very large (more than 10 kcal/mol), the twist-averaged
DFT result is very close to the k-point converged DFT result (see
Tables III and S25–S29 in the supplementary material). The largest
difference was found for TS4 with a 1.2 kcal/mol shift (see Table S27
of the supplementary material). This shows that the amount of twists
considered is reasonable. Additionally, a clear linear trend between
the DMC and the DFT data at different twists is visible. Although
the differences between the individual DMC data and the fitted line
can be up to a few kcal/mol (and are thus clearly larger than the sta-
tistical error for each individual twist), this allows us to fit the DMC
vs DFT energy via a linear regression. The resulting slope of the fit

FIG. 5. DMC results for all twists obtained in the 2 × 2 supercell (a) and the 4 × 4
supercell (b). (c) Extrapolation to infinite cell size. Error bars shown correspond to
one σ. Orange lines show linear regressions.
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TABLE III. Twist-averaged DMC results and single-particle finite-size corrections for
TS1. All units of energy are in kcal/mol; m is dimensionless.

TS1 2 × 2 TS1 4 × 4
supercell supercell

ΔĒDMC 25.6(1) 24.8(1)
m 1.2(1) 1.0(2)
ΔEDFT

k−point conv. − ΔĒDFT
twists 0.3 0.5

Dsp−fs = m(ΔEDFT
k−point conv. − ΔĒDFT

twists) 0.4(0.2) 0.5(1)
ΔEDMC

sp−fs 26.0(1) 25.3(2)

curve is m = 1.2(1) for TS1 (see Table III). The uncertainty in m is
computed from the covariance matrix of the linear fit. Comparing
this value with the results for TS2–TS6, the slope m in TS1 actually
shows an untypically large deviation from m = 1, where m = 1 may
be viewed as “ideal” behavior.

For the calculations using the (2 × 2) cell, resulting single-
particle finite-size corrections Dsp−fs, which should correct for the
difference between twist-averaged and k-point converged result,
[see Eqs. (S1)–(S3) in the supplementary material] range from
−1.2 kcal/mol (for TS4) to 0.4 kcal/mol (for TS1). Keeping in mind
the targeted accuracy of well below 1 kcal/mol, the size of these cor-
rections may be considered large, especially when considering the
non-perfect linear fit. Fortunately, errors that remain in the energies
obtained for the 2 × 2 supercell after correction for single-particle
finite-size are not projected 1:1 to the final finite-size corrected
result. Instead, an offset of 1 kcal/mol in the 2 × 2 cell will lead to
comparatively small offsets of around 0.2 kcal/mol in the fully final
finite-size corrected results due to the scaling relation in Eq. (S4).
Possible uncertainties in the 2 × 2 supercell are thus not at all wor-
risome, and we will therefore focus on the results from the 4 × 4 cell
in the following.

The results for the 4 × 4 supercell are shown in Fig. 5(b),
again taking TS1 as an example. The spread in the DMC (and
DFT) values for different twists is strongly reduced compared to
the 2 × 2 supercell. For TS1, the spread is around 4 kcal/mol; for
TS2–TS6, the spread is often even smaller, around 2 kcal/mol (see
Figs. S6–S10 in the supplementary material). While the spread in
values is strongly decreased, this is not true for the deviation of the
DFT twist-averaged and DFT k-point converged energy difference,
ΔEDFT

k−point conv. − ΔĒDFT
twists, which still lies in the range of 0.3 kcal/mol–

0.5 kcal/mol for TS1–TS6. This may be expected since the number
of twists considered is smaller in the 4 × 4 supercell. What is sur-
prising, though, is the fact that this difference is often negative in the
2× 2 cell, while we observe it to be positive in the 4× 4 cell (Tables III
and S25–S29 in the supplementary material). Since the twists used in
the 2 × 2 cell correspond to those used in the 4 × 4 cell after k-point
unfolding, one might have expected this shift to be similar in the 2
× 2 and the 4 × 4 cell. The reason for this offset has to lie in the
fact that the twist averaging is performed canonically (i.e., constant
number of electrons at each twist), and this is, in our view, a strong
sign that supercells larger than 2 × 2 should be considered (going to
cells even larger than 4 × 4 is unfortunately not possible with present
day computational power).

The discussion above clearly shows that if sub kcal/mol accu-
racy is sought, single-particle finite-size effects should be corrected
for, even with the 4 × 4 supercell. In the 4 × 4 cells, the DMC data
typically follow the linear trend within one or two standard devia-
tions σ of the raw DMC data. Unfortunately, the relatively large error
bars (∼0.4 kcal/mol) in the results of each twist, together with the
small range of values available, make estimating m difficult. Indeed,
for the 4 × 4 supercell, we often observe m values much smaller
than 1, all associated with comparatively large error bars [e.g.,
m = 0.3(4) for TS4]. While these error bars are considered in the
error propagation, we found it interesting to investigate the limiting
case of setting m = 1. Doing so typically only lead to small shifts in
the final results for EDMC

b . The maximum deviations were observed
for TS3 and TS4, where differences between EDMC

b when using m =
1 to perform the single-particle finite-size correction differed from
those obtained using the fitted value for m by 0.30(30) kcal/mol and
0.36(30) kcal/mol, respectively. Although these shifts are consider-
ably smaller than 2σ, one may want to keep them in mind as these
shifts seem to be systematically positive (only exception: TS5). Nev-
ertheless, even when considering these shifts as possible systematic
errors, the resulting twist averaging procedure should be accurate
on a sub kcal/mol scale and the resulting barriers rather under than
overestimated. We also note that the values of m for the lowest two
transition states, i.e., TS1 and TS2, are close to one. The remaining
analysis is performed with m taken from the fitting procedure. Val-
ues obtained for m = 1 are given in Sec. IX of the supplementary
material.

The last correction to discuss is the many-body finite-size cor-
rection. As shown in Table IV, the many-body finite-size correction
resulting from the extrapolation to infinite supercell size, Dmb−fs

= EDMC
b − ΔEDMC

sp−fs (4 × 4), is small for TS1 [see Eqs. (S4)–(S6) in
the supplementary material for mathematical details]. This holds
true for all other TS as well, for which corrections of no more than
0.2 kcal/mol were observed. Interestingly, the extrapolations to infi-
nite cell size show a positive slope for all TSs except TS5 (bottom
graph of Fig. S9 in supplementary material), which has a negative
slope. This slope would actually be positive if the analysis were done
using values for ΔĒDMC

sp−fs obtained for m = 1. In any case, the small
absolute values of Dmb−fs are reassuring as small errors in the scal-
ing relation given in Eq. (S4) in the supplementary material should
hence not matter. This suggests that the use of 4 × 4 supercells
(together with extrapolation techniques) is sufficient in order to
obtain accurate data.

C. Final DMC data
The resulting DMC values for EDMC

b (including all finite-size
corrections) are reported in Table V for TS1—TS6. Note that

TABLE IV. Breakdown of the many-body finite-size corrections for TS1. The errors
are indicated in parentheses. Energy values are given in kcal/mol.

Cell N N−5/4 TS1 barrier height Dmb−fs

ΔEDMC
sp−fs (2 × 2) 1 1 26.0(1) −0.8(2)

ΔEDMC
sp−fs (4 × 4) 4 0.177 25.3(2) −0.1(0.4)

EDMC
b ∞ 0 25.1(2)
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TABLE V. DMC barrier heights for TS1–TS6. The error bars are indicated in the parentheses. All units are in kcal/mol. Barrier
heights are reported without applying any zero-point vibrational energy corrections.

TS1 barrier TS2 barrier TS3 barrier TS4 barrier TS5 barrier TS6 barrier
Cell height height height height height height

EDMC
b 25.1(2) 26.7(2) 35.1(2) 36.6(2) 33.7(2) 47.0(2)

the error bars stated include uncertainties in the single-particle
finite-size corrections stemming from uncertainties in the slope m
[Figs. 5(a) and 5(b)] as well as uncertainties in the many-body finite-
size errors arising from the finite-size extrapolation [Fig. 5(c), see
also Sec. VII of the supplementary material for details on the error
propagation and error analysis].

Interesting to note are the barrier heights TS1 and TS2. DMC
predicts these values to be 25.1(2) kcal/mol and 26.7(2) kcal/mol,
respectively. As discussed further in Sec. III e of the supplementary
material, a crude error analysis suggests that the systematic errors
in these values should be lower than 1 kcal/mol when considering
the influence of (i) the restricted number of layers used, (ii) the high
coverage used, (iii) the restricted vacuum distance and the restricted
distance of the molecule from the surface in the asymptotic geome-
try, (iv) the accuracy in the TS geometries extracted using PBE, (v)
the transferability of pseudopotentials, (vi) time step error, and (vii)
assuming the fixed-node error in the reaction barrier height to be
+1 kcal/mol on the basis of an analysis of DMC results for gas phase
reactions (see below). Additionally, one may want to consider the
influence of time step bias and the finite-size effects in DMC dis-
cussed above and locality errors. These errors are also estimated to
lie well below 1 kcal/mol, as discussed in Secs. IV a and IV b, and
in Sec. III e of the supplementary material, respectively, and the
same should be true for the total statistical error in the final DMC
energies.

DFT predicts TS1 and TS2 to lie very close in energy, with TS1
generally lying just below TS2. This behavior is confirmed in the
DMC calculations. The energetic difference between TS1 and TS2
is 1.6(3) kcal/mol on the DMC level and is somewhat larger than
that predicted by DFT when using the PBE functional (0.4 kcal/mol).
This variation in energy will be an important parameter when judg-
ing the quality of various exchange–correlation functionals in the
following.

D. Comparison of DMC and DFT energies for selected
functionals

In the following, we compare the DMC data obtained in
Sec. IV C with the DFT results obtained for a range of com-
monly used exchange–correlation functionals. This will allow us
to assess their performance and will enable the selection of can-
didate functionals for the later development of an SRP functional.
To obtain the DFT data that we present here, the slabs are opti-
mized self-consistently for each functional, as explained above. In
the supplementary material, we present similar DFT results, but
these were obtained using experimental slab geometries throughout.
Qualitatively, the results can be considered very similar.

The main results are summarized in Fig. 6(a) and Table VI; a
more detailed view for TS1 and TS2 is shown in Fig. 7.

From Fig. 6(a) as well as from Table VI, it is immediately
striking that almost all functionals considered (with the RPBE-vdW-
DF functional being an exception) underestimate the DMC barriers
[see Fig. 6(a)]. This might seem surprising insofar as PBE and
RPBE (both significantly underestimating the DMC barrier height
here) often bracket the true barrier height extracted from SRP-
DFT calculations fitted to molecular beam experiments on disso-
ciative chemisorption on a metal surface.10,86 However, examples
where DFT calculations with the RPBE exchange–correlation func-
tional apparently underestimate barrier heights are known, such
as O2 + Al(111)22,87 and HCl + Au(111).88,89 In addition, a simi-
lar result as obtained here has been found in an earlier study on
H2 + Mg(0001) when comparing RPBE with the DMC results:
the DMC barrier (27.2 ± 0.7 kcal/mol) computed for this reaction
was higher than the RPBE value by 2.5 kcal/mol.47 A very recent
study found evidence that the RPBE functional underestimates bar-
rier heights for dissociative chemisorption on metals if (W-EA) is
smaller than ∼7 eV, where W is the work function of the metal and
EA is the electron affinity of the molecule.90 As a result of a low work
function, charge transfer to the molecule may occur in the transition
state, and this would lead to underestimation of the TS energy when
using a density functional containing semi-local exchange.91 For H2
+ Al(110), (W-EA) ≈ 6.8 eV–6.9 eV,90 so it is not surprising that the
DMC barrier height exceeds the RPBE value. In summary, the com-
parison of the QMC with the DFT barrier heights is in line with what
one might expect.

Nevertheless, it seems worthwhile to ask the question whether
errors in the DMC calculations could cause a systematic offset. Stud-
ies of gas phase reaction barrier heights suggest that there could be
a systematic error in DMC results due to fixed-node errors. Since
DMC is variational when using the T-move scheme, the DMC bar-
rier height would be overestimated if the fixed-node error is larger
for the transition state than for the asymptotic geometry. Zhou and
Wang indeed found DMC to overestimate barrier heights on aver-
age by 0.9 kcal/mol for a database of 38 hydrogen atom transfer
reactions.92 Similarly, Krongchon and co-workers93 found DMC
based on a PBE wave functions to overestimate gas phase reac-
tion barrier heights for a dataset of 38 barrier heights for non-
hydrogen-transfer reactions by about 1 kcal/mol. Analyzing their
results, Wagner et al.93 found the size of the fixed-node error to
correlate with the difference in energy between the LUMO and the
HOMO (the lowest unoccupied and the highest occupied molec-
ular orbitals, respectively). They also found the fixed-node error
to be larger in the transition states than in the product and reac-
tion states, explaining why the barrier heights (which are energy
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FIG. 6. (a) Comparison of barrier heights
Eb(TSi ) of all single points i ∈ [1, 6]
considered. (b) Similar to (a), but now
we consider the difference in the barrier
height for TSi with that of TS1 ΔEDMC

b
= EDMC

b (TSi ) − Eb(TS1), which is
indicative of the geometric corrugation
(for TS2–TS4) and/or the anisotropy
of the barrier height corrugation (for
TS5 and TS6) (c) Difference in ΔEDMC

b
between DFT and DMC. The order of the
legend read up-down and left-to-right is
in the same order as the color bars.

differences of variational calculations) are overestimated. If the lat-
ter finding also holds for molecule–metal surface reactions, fixed-
node error would be expected to contribute about +1 kcal/mol to
the overall systematic error in the barrier heights we computed for
H2 + Al(110). These conclusions are tentative as drawing conclu-
sions for molecule–surface reactions from gas phase reactions may
be dangerous. Additionally, since the fixed-node error seems to be
sensitive to bond-breaking events,92,93 one might also expect the
fixed-node error to vary somewhat for the six geometries considered
as the corresponding barriers occur at considerably different H–H
bond stretching distances and molecule–surface heights. It is thus

clear that future research of the size of fixed-node errors in barriers
for dissociative chemisorption on metal surfaces should be of high
interest.

Apart from the fixed-node error, possible deficiencies in the
finite-size corrections are a possible source of error. However, as dis-
cussed in the analysis of finite-size corrections, we expect that apply-
ing these corrections leads to underestimated DMC barrier heights
rather than overestimated values due to the uncertainty in the slope
m of the fit of DMC vs DFT values for each twist. Based on Refs. 92
and 93 and on the discussion above, we thus believe that the system-
atic underestimation of the barrier heights by most DFT functionals

TABLE VI. Comparison of DFT and DMC results.ΔEDMC
b is the difference between the DFT barrier height and the DMC value,

with a negative value indicating that DFT underestimates the barrier height. RMSD: root mean square deviation between DFT
and DMC results; MSD: mean signed deviation between DFT and DMC results; MAD: mean absolute deviation between DFT
and DMC. Using the DMC data as reference values, the dark gray background marks the best functional with respect to
RMSD; the light gray is the second best (and best for the barrier height of TS1). All values are in kcal/mol.

Functional ΔEb(TS1) ΔEb(TS2) RMSD MSD MAD RMSD of energetic corrug.

SCAN94 −5.9 −6.6 7.0 −7.0 7.0 1.3
PBE64 −6.0 −7.2 7.3 −7.2 7.2 1.6
PBE-vdW-DF64,65 −5.1 −5.9 4.5 −4.4 4.4 1.2
revTPSS68 −4.4 −2.7 3.9 −3.7 3.7 1.4
MS-B86bl97 −2.4 −3.5 2.8 −2.7 2.7 0.7
RPBE98 −1.4 −3.3 2.5 −2.4 2.4 1.3
RPBE-vdW-DF65,98 −0.7 −2.1 1.4 0.2 1.1 1.8
BEEF-vdW99 −0.8 −1.7 0.9 −0.8 0.8 0.6
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FIG. 7. The offset of the DFT relative to the DMC barrier height, ΔEb = EDFT
b

−EDMC
b , is plotted for TS1 (x axis) and TS2 (y axis). The dashed line corresponds

to a 45○ line through the origin, i.e., symbols falling on this line imply equal offsets
for TS1 and TS2. The dotted line is shifted by 1.2 kcal/mol downward. An “ideal”
exchange–correlation function would hit (0, 0), i.e., reproduce the DMC results.

when compared to DMC values is in large part not an artifact, but
real, and speculate that this finding may be related to the low work
function of Al surfaces. In the following, we will thus consider the
DMC values as reference values.

Using the DMC values as reference values, we can compute
different statistical observables [the root-mean square deviation
(RMSD), the mean signed deviation (MSD), and the mean absolute
deviation (MAD)] that are indicative of the discrepancies between
DFT and DMC energies of TS1–TS6 for the functionals consid-
ered. The result of this analysis is summarized in Table VI. Clearly,
the error measures depend strongly on the functional, as is already
clear from Fig. 6, where an approximate downward trend in the
barrier heights is visible for all TS considered (note that we sorted
the functionals in Fig. 6 to show this trend, while trying to keep
“sister”-functionals, such as PBE and PBE-vdW-DF, next to each
other).

The poor performance in terms of RMSD of the strongly con-
strained SCAN94 functional for H2 + Al(110) (RMSD = 7.0 kcal/mol)
is in line with its poor performance on adsorption and chemisorp-
tion of molecules on metal surfaces95,96 and on the dissociative
chemisorption of H2 on Cu(111).97 However, in our particular
case, PBE, which is one of the workhorses in surface studies, does
even worse (RMSD = 7.3 kcal/mol). Barrier heights calculated with
RPBE,98 the often used meta-GGA functional revTPSS,68 and the
recently derived meta-GGA functional MS-B86bl97 show a clear
improvement relative to PBE64 and SCAN. However, with an RMSD
of 2.5 kcal/mol, 3.9 kcal/mol, and 2.8 kcal/mol, respectively, these
functionals are still far from being chemically accurate for the DMC
barrier heights. In particular, revTPSS still severely underestimates
the dynamically relevant lowest lying reaction barrier heights, TS1
and TS2 (see Table VI). According to the RMSD, the BEEF-vdW99

barrier heights (RMDS = 0.9 kcal/mol) are consistently better than
those obtained with the other functionals. The good performance
of the BEEF-vdW functional for H2 + Al(110) is in line with other

theoretical investigations for surface processes and is probably due
to the fact that BEEF-vdW has been semi-empirically fitted to
both gas phase reaction barrier heights and adsorption energies
of molecules on transition metal surfaces. The good performance
of BEEF-vdW is, however, quite closely matched by RPBE-vdW-
DF65,98 (RMSD = 1.4 kcal/mol), albeit with the disadvantage that the
energetic corrugation seems to be described worse in RPBE-vdW-
DF (see below). The finding that BEEF-vdW and the RPBE-vdW-DF
functional yield barrier heights in quite good agreement with
the DMC values is encouraging: it suggests that an SRP-DF for
H2 + Al(110) may be found that is based on GGA exchange and a
van der Waals correlation functional.

Figure 6(a) shows a distinct trend for the functionals tested for
all barrier heights: functionals that strongly underestimate TS1 also
tend to underestimate TS2–TS6 very strongly. This indicates that the
energetic corrugation (i.e., the variation of the barrier height with
impact sites—tested in TS1–TS4) and the anisotropy of the barrier
height (i.e., how the barrier height varies with orientation—tested by
the comparison of TS1 with TS5 and of TS2 with TS6) may be cap-
tured quite well by all functionals tested. This is further supported by
Figs. 6(b) and 6(c), where we show measures indicative of the ener-
getic corrugation and anisotropy. As shown in Fig. 6(b), all func-
tionals seem to describe the change in barrier height from TS1 to the
other TSs quite well [note the different scale on the y axis between
Figs. 6(a) and 6(b)]. As a matter of fact, nearly all errors observed in
the energetic corrugation and anisotropy are below 2 kcal/mol [see
Fig. 6(c)]. The results also indicate that, interestingly, the offset does
not scale with barrier height. This is an important observation since
many physical observables, such as the width of the sticking proba-
bility vs collision energy curve, depend sensitively on the energetic
corrugation and the anisotropy of the barrier height,100 as suggested
also by application of the hole model.57 This effect (i.e., that barrier
heights are shifted by nearly constant values when using different
functionals) has been observed earlier [e.g., for H2 + Cu(111)100].
Based on Bayesian statistics, Ref. 101 suggested this to be a general
feature of GGA functionals for the energetic corrugation of molecu-
lar adsorption. The essential contribution of the present work is that
this effect can also be found when comparing with first principles
theory, i.e., with DMC.

Interestingly, functionals that do better in terms of RMSD for
the barrier heights do not necessarily perform better for the RMSD
of the energetic corrugation (see, for example, Table VI for RPBE-
vdW-DF) and the other way round. BEEF-vdW, however, seems
to perform well with respect to both measures, i.e., the RMSD in
the barrier heights and the RMSD in the energetic corrugation. The
main drawback of this functional for the system at hand thus seems
to be the fact that it underestimates TS1 and TS2 by 0.8 kcal/mol
and 1.7 kcal/mol, respectively, which is more than would be desir-
able when quantitatively modeling molecular beam experiments.
However, none of the other functionals tested performed any
better.

Although the energetic corrugation is overall well described by
all functionals considered, Fig. 7 points to another interesting fact:
except for revTPSS, which breaks the trend, all functionals consid-
ered seem to lie more or less on one line when plotting the dif-
ference between the DFT and DMC barrier height for TS1 vs that
for TS2. This is strongly in line with the previous observation that
all functionals seem to capture the energetic corrugation. A striking
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observation, however, is that all functionals seem to underestimate
TS2 by ∼1 kcal/mol more than they underestimate TS1. The statisti-
cal uncertainty in the DMC results for TS1 and TS2 is too small to
explain such a large offset. We therefore analyze the possible reasons
for this effect:

(i) TS2 might have a larger fixed-node error than TS1, thus
increasing the barrier height of TS2 compared to that of TS1.
Considering that TS2 lies further away from the surface in a
geometry more reminiscent of the asymptotic geometry, this
seems unlikely although further tests would be necessary to
rule out this option, as suggested in Sec. V.

(ii) Either TS1 or TS2 could be influenced more strongly by
the lattice constant (which is considerably smaller in experi-
ment than predicted by DFT). A similar (and even stronger)
trend is, however, observed when comparing the DFT results
obtained with the experimental slab geometry (see Sec. X of
the supplementary material). Hence, this seems an unlikely
explanation.

(iii) There could be a structural deficiency present in most
exchange–correlation functionals used in the present work.
Indeed, the vdW functionals typically follow the energetic
corrugation for TS1 vs TS2 better than the non-vdW func-
tionals (compare PBE vs PBE-vdW-DF and RPBE vs RPBE-
vdW-DF in Fig. 6). Additionally, BEEF-vdW, which is based
on DF2, which typically shows a stronger van der Waals well
than functionals based on DF1, does particularly well with
respect to the energetic corrugation between TS1 and TS2.
This is therefore a plausible explanation.

Although it may be interesting to investigate the van der Waals well
of the system in a future investigation, the question why TS2 is less
well estimated with DFT (or whether this may be a deficiency in the
DMC calculations) will have to remain unanswered for the moment
as studying the van der Waals well with DMC would put extreme
demands on the error bars in DMC due to the fact that the well is so
shallow (0.932 kcal/mol).102 Such a study thus seems out of reach for
the moment.

V. CONCLUSION AND OUTLOOK
We have presented DMC barrier height calculations for six sin-

gle points corresponding to barrier geometries in the PES of H2 on
Al(110).

Four of the single-points correspond to transition states in
restricted space for the dissociative chemisorption of H2 on Al(110),
while two of the single-points correspond to a good degree of accu-
racy to “real” transition states for the system. The corresponding
barrier heights of the latter two were found to be 25.1(2) kcal/mol
and 26.7(2) kcal/mol. Systematic errors of these barrier heights
obtained with a simplified analysis were somewhat smaller than
1 kcal/mol and mainly arise from incomplete convergence of the
energies with the number of layers and the supercell size and from
the value of the fixed-node error that was estimated on the basis of
results for gas phase reactions.

Using the DMC values as reference values, the performance of
several DFT functionals was investigated. It was found that most
functionals underestimate the reaction barrier heights, but they

correctly capture the energetic corrugation. None of the six func-
tionals for which results are presented here yield barrier heights
agreeing with the DMC results to within chemical accuracy for all
six barriers investigated. BEEF-vdW performed well with a maxi-
mum deviation of 1.7 kcal/mol, closely followed by RPBE-vdW-DF
with a maximum deviation of 2.1 kcal/mol.

In the future, more functionals will be tested in order to derive
an SRP functional. This functional should ideally show chemical
accuracy for the energetically most relevant barriers, TS1 and TS2,
and preferably also describe TS3–TS6 with high accuracy. Finding
such a functional will allow for a PES to be generated such that
dynamics calculations can be performed. This allows for sticking
probabilities to be computed and compared to experiment. Such
an analysis will give insight into the extent to which DMC at the
present state of the art can be useful as benchmark to model the
detailed dynamics of dissociative chemisorption reactions on simple
metals. Specifically, if the fit of the DFT results to the DMC bar-
rier energies is good with the functional selected, such a comparison
with experiment will also allow one to assess the accuracy of DMC
in describing molecule–metal surface interactions. In this case, the
SRP-DFT-QMC procedure described may also provide a handle on
the size of the fixed-node error as well as other systematic errors in
the calculations.

From a more fundamental point of view, several open ques-
tions remain in this paper that can hopefully be addressed in the
near future. First and foremost, we did not yet attempt to assess
the fixed-node error in the DMC results. Reasons for this choice
include computational expense and our hope to get a better handle
on the actual accuracy of the DMC calculations from a compar-
ison with experimental molecular beam data, as discussed above.
Nevertheless, such an assessment would be of interest, particularly
as the fixed-node error is known to often affect the description of
strong interactions103–105 such as bond-breaking and bond-making.
The fixed-node error could thus influence, for example, the observed
energy difference between TS1 and TS2, as discussed in the paper. A
possible approach to assess this error (at least qualitatively) would
be to use various trial wave functions resulting from different den-
sity functionals. Here, we suggest the use of a meta-GGA functional,
such as MS-B86bl,97 which should be capable of simultaneously
describing the metal lattice as well as the molecule-metal surface
interaction accurately. Possible methods to actually reduce the fixed-
node error would be to apply backflow transformations106 or to try
to reoptimize the orbitals84,107 at the VMC stage, which, however,
would likely necessitate a switch to an atom centered basis set, and
this may come with problems of its own. Second, obtaining more
DMC datapoints would be of interest. For example, it would be
interesting to add geometries in which H2 is dissociatively adsorbed
to the surface, i.e., in the product state, thereby studying adsorption.
Another example would be to address the van der Waals well of H2
on Al(110). The relevance thereof was discussed in Sec. IV D. Third,
it would be interesting to compare the DMC results to the results
of other correlated electronic structure methods, some of which are
under active development, such as periodic CCSD(T), but also full
CI QMC. Finally, it would be interesting to assess the accuracy of
the transition state geometries used in our analysis. DMC forces
are already available for molecular systems,108 but so far, to our
knowledge, an implementation for periodic systems with pseudo-
potentials is not yet available. Access to forces would not only allow
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determining whether TS2 has a flat or a tilted geometry but it would
also allow us to obtain more accurate values for the energies and
coordinates of TS1 and TS2.

SUPPLEMENTARY MATERIAL

The following information can be found in the supplementary
material: I. Computational details concerning the generation of the
slab geometries. a. Bulk lattice constants for DFT calculations. b.
Interlayer spacing for DFT calculations. c. Setup of the metal slab
for the DMC calculations according to experimental data. II. Details
concerning the determination of single-point geometries consid-
ered. a. Transition state searches for TS1 and TS2. b. Restricted
transition state searches for TS3 to TS6. c. Notes on why we replicate
our molecule to top and bottom. d. The asymptotic geometry. III.
Convergence tests: plane-wave cutoff, k-points, and barrier heights
of TS1 and TS2. a. plane-wave cutoff. b. k-point grid. c. coverage,
#layers, vacuum distance. d. Investigation of possible influences of
the transfer of molecular geometry on the barrier heights of TS1 and
TS2. e. Overall expected systematic errors in TS1 and TS2. IV. Pseu-
dopotential tests. a. Bulk lattice constant, bulk modulus, and TS1
and TS2 barrier heights. b. Binding energy of AlH. V. Setup of the
DFT calculations performed to compare to the DMC calculations.
VI. Setup of the QMC calculations. a. Trial wavefunction generation:
The slater part. b. Trial wavefunction generation: The Jastrow func-
tion and the VMC optimization. VII. Finite-size corrections applied
to the DMC data. VIII. Raw DMC data for TS2–TS6. IX. Finite-size
extrapolated values, when using m = 1 in the correction of single-
particle finite-size effects. X. Comparison with DFT results using the
experimental geometries.
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