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ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) play an important role in
chemistry both in the terrestrial setting and in the interstellar medium. Various, albeit
often inefficient, chemical mechanisms have been proposed to explain PAH
formation, but few yield polycyclic hydrocarbons cleanly. Alternative and quite
promising pathways have been suggested to address these shortcomings with key
starting reactants including resonance stabilized radicals (RSRs) and o-benzyne. Here
we report on a combined experimental and theoretical study of the reaction allyl + o-
benzyne. Indene was found to be the primary product and statistical modeling
predicts only 0.1% phenylallene and 0.1% 3-phenyl-1-propyne as side products. The
quantitative and likely barrierless formation of indene yields important insights into
the role resonance stabilized radicals play in the formation of polycyclic hydrocarbons.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous,
both terrestrially1,2 and in the interstellar medium.3 On

Earth, PAHs are formed on a large scale by natural and
anthropogenic combustion processes,4 while in space, they are
believed to be formed in outflows of carbon-rich stars.5

Breakthroughs by crossed molecular beam and pyrolysis
photoionization mass spectrometry studies have greatly
enhanced our understanding of PAH formation.6−10 However,
many of these mechanisms do not selectively produce
polycyclic species but also branched isomers, and/or are
inefficient as an entrance barrier limits the reaction rate.
Over the past decades, it has become clear that resonance

stabilized radicals (RSRs) are important precursors in PAH
formation and soot inception.11,12 In RSRs, the delocalized
unpaired electron results in resonance structures and increased
chemical stability compared to radicals without resonance
stabilization. This enhanced stability leads to longer lifetimes
and larger number densities in combustion environments.13

Several studies have shown that reactions involving RSRs, such
as propargyl (C3H3

•) and allyl (C3H5
•), are crucial in the

formation of the first (aromatic) ring.13−15 Furthermore, it was
shown that the reaction between the resonance stabilized
indenyl radical (C9H7

•) and the methyl radical (CH3
•) results

in the formation of the smallest PAH, naphthalene.16

Recent combustion studies suggest that pentagonal defects
are commonly included in the otherwise pristine hexagonal
carbon structures found in aromatic molecules.17,18 These
pentagon-bearing aromatic hydrocarbons have been shown to
play a crucial role in the buildup of larger aromatic structures
and soot.11 Since pentagons are also responsible for the
curvature of fullerenes and nanotubes, understanding their
formation is clearly crucial to appreciate their role in PAH and
soot formation.

ortho-Benzyne has captivated chemists for over 90 years,
thanks, in part, to the species having both aryne and biradical
character, which in turn affects its reactivity.19,20 Yet, its
potential to form large aromatic structures in combustion
reactions has only recently been recognized.21,22 In fact, studies
with o-benzyne are proving to be increasingly important to
investigate, as more research emerges showing the formation of
o-benzyne in both combustion23 and astrochemically relevant
environments.24 Subsequently, reactions of RSRs with o-
benzyne represent alternative pathways to polycyclic hydro-
carbons. Yet, studies of such reactions are few and far between
and limited to only computational works. Propargyl radicals
were suggested to yield the indenyl radical when reacting with
o-benzyne.25 Additionally, the cyclopentadienyl radical was
computed to yield multiple multiring species by reaction with
o-benzyne.26

Here we present a combined experimental and computa-
tional study of the allyl + o-benzyne reaction studied by double
imaging photoelectron photoion coincidence spectroscopy
(i2PEPICO) on the CRF-PEPICO endstation at the vacuum
ultraviolet (VUV) beamline of the Swiss Light Source.27,28 A
more detailed description of the experimental system is
provided in the Supporting Information. The reaction is
initiated in a microtubular SiC reactor that is resistively heated
to a temperature of ∼1000 K. Allyl (4a and 4b) and o-benzyne
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(2a and 2b) are generated by flash pyrolysis of allyl iodide (3)
and benzocyclobutenedione (1), respectively (see Schemes 1
and 2). The latter was synthesized according to the procedure
described in the Supporting Information.

Mass spectra were recorded on the basis of delayed
coincidences between electrons and ions.29 Figure 1 shows
the mass spectra of the two precursors introduced in the
microreactor alone and combined.

A detailed description of peak assignments can be found in
the Supporting Information and only peaks relevant to the o-
benzyne + allyl reaction are discussed here. Figure 1A shows a
strong signal at m/z 41, which is indicative of efficient
conversion of allyl iodide to allyl radical, while Figure 1B
contains a peak at m/z 76, corresponding to o-benzyne.
Electron kinetic energy analysis and the time-of-flight mass
analysis of the coincident photoion allow us to plot the
photoion mass-selected threshold photoelectron spectrum, ms-
TPES, which provides an isomer selective fingerprint to assign
the m/z peaks. Contributions of the cis- and trans-1,5-

hexadiyne-3-en, which are also C6H4 isomers, can thus be
fully ruled out.
Lastly, Figure 1C shows the presence of a single new peak at

m/z 116 associated with the mass corresponding to the
addition of allyl to o-benzyne followed by the loss of a
hydrogen atom according to Scheme 3.

The m/z 116 ms-TPES was recorded in the 7.6−9.2 eV
photon energy range to determine the isomeric composition of
the C9H8 product (Figure 2). The clear vibronic structure

matches the indene reference TPES recorded by West et al.30

at room temperature. The sharp resonance observed at 8.14 eV
is in excellent agreement with the indene ionization energy,
and the first electronically excited state of the ion is also clearly
visible at 8.93 eV. The early ms-TPES signal onset before the
main resonance is caused by vibrational hot and sequence
bands as pointed out by Cunha de Miranda et al.31 Ionization
energies of three isomeric products that potentially contribute,
phenylallene (8.29 eV),32 3-phenyl-1-propyne (8.99 eV), and
1-phenyl-1-propyne (8.42 eV)33 are indicated using red tick
marks and do not contribute to the ms-TPES significantly, if at
all.
The C9H9 potential energy surface (PES) was sampled by

scanning internal coordinates at the uB3LYP/6-311++G(d,p)
level of theory to yield insights into the formation mechanism
of the various C9H8 isomers. G4 calculations were
subsequently carried out for the intermediates (INT) and
transition states (TS) and a simplified summary of the PES is
shown in Figure 3. Using uB3LYP, no entrance barrier to
reaction is found, and the allyl radical readily adds to one of
the two radical centers of o-benzyne, forming INT1. From

Scheme 1. Benzocylcobutenedione (1) Pyrolysis to o-
Benzyne (2a and 2b)

Scheme 2. Allyl Iodide (3) Pyrolysis to Allyl Radical (4a and
4b)

Figure 1. Mass spectrum of (A) allyl iodide (16% in argon) taken at
9.0 eV and 1045 K, (B) benzocyclobutenedione (1% in argon) taken
at 9.5 eV and 1080 K, and (C) allyl iodide (16% in argon) and
benzocyclobutenedione (1% in argon) together at 9.0 eV and 1045 K.
Masses and structures of key species are shown in the mass spectra.

Scheme 3. o-Benzyne (2) Addition to Allyl Radical (4)
Yielding Indanyl Radical Intermediate (5) Followed by
Hydrogen Loss To Form Indene (6)

Figure 2. TPES of product at m/z 116 taken from 7.6 to 9.2 eV at 930
K compared to reference TPES of indene provided by West et al.30

The red marks indicate the ionization thresholds of three possibly
formed C9H8 isomers.
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INT1, ring closure proceeds via allyl rotation and through TS1,
which is the rate limiting transition state for the formation of
indene. A more detailed figure of the potential energy surface
can be found in the Supporting Information. In addition,
calculations on the initial reaction to form INT1 were
performed using different methods, described in detail in the
Supporting Information. From these calculations it was found
that the association reaction of allyl with benzyne is likely
barrierless, or nearly so, as a negligible barrier cannot be
completely ruled out.
Pathways leading to the other potential products, phenyl-

allene, 3-phenyl-1-propyne, and 1-phenyl-1-propyne, were also
explored and are summarized in Figure 3 and the Supporting
Information. These isomers all fall well below the energy of the
reactants and their formation is, thus, energetically allowed.
The rate-limiting transitions states are TS2, TS3, and TS4,
respectively, which are all substantially (>82 kJ/mol) higher in
energy than TS1 on the path to indene.
Rice−Ramsperger−Kassel−Marcus (RRKM) theory was

employed to estimate the branching over the various
products.34 Rate constants for crossing the rate limiting
barriers for each of the product species are calculated as a
function of energy (Figure 4) and a 99.8% indene, 0.1%
phenylallene, and 0.1% 3-phenyl-1-propyne branching is
predicted at the entrance energy (indicated by the dotted
line in Figure 4). The contributions of the fourth isomer, 1-
phenyl-1-propyne, is found to be negligible. This supports the
experimental observation that indene is the primary reaction
product.
The bimolecular reaction of o-benzyne with allyl is found to

produce bicyclic indene exclusively. The facile formation of the
five-membered ring species is intriguing in the context of
recent findings that pentagon-bearing species are important in
both the growth and destruction of PAHs.18,35,36 Furthermore,
the formation of a polycyclic species from o-benzyne + a RSR
reaction confirms the computational findings of Matsugi and
Miyoshi25 that multiring species are favored over open-chain
species in these types of reactions. While estimates of pressure
and temperature dependent rate constants are outside the

scope of this Letter, on the basis of the computations, it is clear
that the formation rate of INT1 will determine the production
of indene for a large range of energies, as the reverse reaction
of INT1 toward allyl and o-benzyne is hardly competitive. As a
result, indene formation will be governed by collision rate and
the impact factor, which while not estimated here, is expected
to be high due to o-benzyne containing two sites of attack by
either of the CH2 groups of allyl.
Such condensation reactions, i.e., those with little to no

entrance barrier, may also play an important role in the
formation of aromatic molecules in low-temperature environ-
ments, such as Titan’s atmosphere and in cold molecular
clouds.37,38 After association, the forward condensation
reaction is faster than the dissociation and is made irreversible
by the loss of the hydrogen, which also allows thermal
stabilization of the product indene. However, at high
temperatures, further hydrogen loss from indene yields the
indenyl RSR (see Supporting Information). Indenyl plays a
critical role in the formation of large aromatic species.16,39 This
suggests that reactions of o-benzyne and RSRs may play a
central role in initiating PAH formation in high temperature
environments, such as combustion engines and the outflow of
carbon-rich stars, as well.
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