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ABSTRACT
We determine the inner density profiles of massive galaxy clusters (M200 > 5 ×
1014 M�) in the Cluster-EAGLE (C-EAGLE) hydrodynamic simulations, and inves-
tigate whether the dark matter density profiles can be correctly estimated from a
combination of mock stellar kinematical and gravitational lensing data. From fitting
mock stellar kinematics and lensing data generated from the simulations, we find that
the inner density slopes of both the total and the dark matter mass distributions can
be inferred reasonably well. We compare the density slopes of C-EAGLE clusters with
those derived by Newman et al. for 7 massive galaxy clusters in the local Universe. We
find that the asymptotic best-fit inner slopes of “generalized” NFW (gNFW) profiles,
γgNFW, of the dark matter haloes of the C-EAGLE clusters are significantly steeper
than those inferred by Newman et al. However, the mean mass-weighted dark matter
density slopes, γ̄dm, are remarkably similar in the simulated and real clusters. We also
find that the estimate of γgNFW is very sensitive to the weak lensing measurements in
the outer parts of the cluster and a bias in the estimate of the scale radius, rs, inferred
from these measurements can lead to an underestimate of γgNFW.
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1 INTRODUCTION

In the ΛCDM cosmological model cold dark matter dom-
inates the matter budget of the Universe, and much of it
clusters into dark matter halos. Gas condenses at the cen-
tres of these haloes, forming stars and giving birth to galax-
ies (White & Rees 1978; White & Frenk 1991). Measuring
the distributions of dark and baryonic matter at the centres
of haloes provides a key test of ΛCDM and theories of galaxy
formation.

Over the past three decades, the evolution of pure cold
dark matter has been calculated with great precision by
means of N-body simulations (Davis et al. 1985; Navarro

? qiuhan.he@durham.ac.uk
† liran827@gmail.com

et al. 1996b, 1997; Jenkins et al. 2001; Diemand et al. 2007;
Springel et al. 2008; Gao et al. 2011) (for a review see Frenk
& White 2012). In particular, Navarro et al. (1996b, 1997,
hereafter NFW) have shown that dark matter haloes have
a universal, self-similar, spherically averaged mass profile
with asymptotic behaviour, ρ(r) ∝ r−1, at the centre, and
ρ(r) ∝ r−3 at large radii.

In reality, in a bright galaxy baryonic matter domi-
nates the mass budget at the centre of the halo (Schaller
et al. 2015a). Furthermore, the galaxy formation process
may modify the central halo density itself. The effects of
these baryonic processes are complex and even their sign
is unclear: while baryon condensation and contraction may
sharpen the density profile (Blumenthal et al. 1986; Gnedin
et al. 2004; Gustafsson et al. 2006; Duffy et al. 2010; Schaller
et al. 2015a; Peirani et al. 2017), rapid expulsion of gas due
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2 QH He et al.

to feedback process may flatten it, at least in faint galaxies
(e.g. Navarro et al. 1996a; Dehnen 2005; Read & Gilmore
2005; Mashchenko et al. 2006; Pontzen & Governato 2012).
The competition between these processes is best followed
with hydrodynamical simulations, but even then discrepan-
cies persist. For example, Gnedin et al. (2011); Schaller et al.
(2015a,b) and Lovell et al. (2018) show that the net effect
of baryonic processes in large galaxies in the field and in
clusters is to preserve the asymptotic dark matter density
profile, ρ(r) ∝ −1, but Martizzi et al. (2013) find that cores
may be generated by AGN feedback in extreme cases.

Observationally, the inner density slopes of bright galax-
ies are best constrained by combining stellar dynamics data
for the central galaxy with gravitational lensing data at large
radii (e.g. Treu & Koopmans 2002, 2004; Auger et al. 2010;
Sonnenfeld et al. 2015; Newman et al. 2013a,b, 2015; Shu
et al. 2015). In this way the total density profile of a galaxy
can be measured, from several kiloparsecs to tens of kilopar-
secs from the centre. The total mass-averaged density slope,
γ̄, within the effective radius of early type galaxies is found
to be around -2 in galaxy and group scale systems, but may
drop gradually to -1.7 in massive clusters (Treu & Koopmans
2004; Auger et al. 2010; Newman et al. 2015; Li et al. 2019).
The dark matter halo profile is not directly measurable and
can only be inferred by assuming a model to subtract the
contribution from the stellar component. Recent measure-
ments have concluded that while the halo density profile in
groups is consistent with the NFW form (Newman et al.
2015; Smith et al. 2017), in some clusters the inner slope
is around -0.5, significantly shallower than the NFW pre-
diction (Sand et al. 2004, 2008; Newman et al. 2013b; Del
Popolo et al. 2018), and in contradiction with cosmological
simulation results.

There are several possible interpretations for this dis-
crepancy. The simulations may lack the correct physics,
or treat baryonic processes improperly, or it may be that
the dark matter is not cold but perhaps made up of self-
interacting particles (e.g. Spergel & Steinhardt 2000; Vo-
gelsberger et al. 2012; Rocha et al. 2013; Kaplinghat et al.
2016; Robertson et al. 2017a,b). An alternative explanation
is that systematic effects in the analysis of the observational
data have been underestimated.

There are several potential sources of systematic un-
certainties when subtracting the stellar component in order
to infer the inner slope of the dark matter component. For
example, the shape of the stellar density profile is usually
inferred from the light profile either assuming a constant
mass-to-light ratio or a stellar population synthesis model
(e.g. Cappellari 2008; Newman et al. 2013a, 2015). A sys-
tematic overestimation of the mass-to-light ratio could re-
lieve the tension between observations and theory (Schaller
et al. 2015b). In addition, simplistic assumptions about the
symmetry of the system or the anisotropy of the velocity
distribution may also bias the inference of the inner dark
matter profile (e.g. Meneghetti et al. 2007; Li et al. 2016).

In this work we assess dark matter density reconstruc-
tion methods in galaxy clusters that combine stellar dynam-
ics with gravitational lensing. We construct mock data using
the C-EAGLE simulations, a set of high resolution zoom-
in hydrodynamical simulations of massive clusters (Barnes
et al. 2017; Bahé et al. 2017). We then perform a combined
analysis of stellar kinematics and gravitational lensing on

the mock data and explore the accuracy of the recovered
dark matter density profiles.

The structure of the paper is as follows. In Section 2 we
describe our mock data and in Section 3 our models, and
the method used to infer model parameters. In Section 4 we
present the recovery of dark matter profiles and study the
model dependence on galaxy shape and velocity anisotropy.
We summarize and discuss our results in Section 5.

2 MOCK DATA

2.1 The C-EAGLE simulations

We create mock observations using the C-EAGLE simula-
tions (Bahé et al. 2017; Barnes et al. 2017). This set of cos-
mological hydrodynamical simulations consists of 30 zoom-
in resimulated massive galaxy clusters that were selected
from a larger volume dark matter-only simulation accord-
ing to a criterion based on halo mass and isolation (Bahé
et al. 2017). The C-EAGLE simulations employ the state-
of-the-art EAGLE galaxy formation model and simulation
code (Schaye et al. 2015; Crain et al. 2015). This code is
based on a modified version of the gadget-3 smooth par-
ticle hydrodynamics (SPH) code last described in Springel
(2005), which include radiative cooling, star formation, stel-
lar and black hole feedback, etc. The parameters of the sub-
grid models used for EAGLE were calibrated so as to re-
produce a small subset of data of the z=0 field galaxy pop-
ulation(Schaye et al. 2015; Crain et al. 2015). C-EAGLE
made use of the AGNdT9 model which gives a better match
than the reference EAGLE model to the X-ray luminosi-
ties and gas fractions of low-mass galaxy groups (Schaye
et al. 2015). C-EAGLE adopted the same ΛCDM cosmo-
logical parameters as EAGLE: H0 = 67.77km s−1 Mpc−1,
ΩΛ = 0.693, ΩM = 0.307 and Ωb = 0.04825. The mass reso-
lution of C-EAGLE is the same as in EAGLE: 1.8 × 106 M�
initially for gas particles and 9.7 × 106 M� for dark mat-
ter particles. The Plummer gravitational softening length of
the high-resolution region was set to 2.66 comoving kpc for
z > 2.8, and then kept fixed at 0.70 physical kpc for z < 2.8.
The minimum smoothing length of the SPH kernel was set
to a tenth of the gravitational softening scale.

In this paper we are interested in massive clusters com-
parable to those in the sample of Newman et al. (2013a,b)
and so we focus on clusters whose mass falls in the range
4.0 × 1014 < M200 < 2 × 1015 M� at z = 0, where M200 is the
mass enclosed within a sphere of radius r200 whose mean
density is 200 times the critical density of the universe. Al-
together our sample consists of 17 massive galaxy clusters,
denoted by CE-12 to CE-28 in the C-EAGLE simulations
(Barnes et al. 2017). Note that the redshifts of our clusters
are different from the average redshift of the clusters ana-
lyzed by Newman et al. (2013a,b), which is ∼ 0.2, but our
results are unaffected by this choice. Further properties of
our clusters may be found in the tables in the Appendix of
Barnes et al. (2017); Bahé et al. (2017).

2.2 Photometric and kinematic data

We create photometric and kinematic mock data following
a similar process to that described by Li et al. (2016). First,
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we define the central galaxy as the one lying closest to the
centre of the potential of the cluster. Using the same method
as Schaller et al. (2015c), we find that all our central galax-
ies are very close to the centre of the potential, with a mean
offset of 0.2 kpc and a maximum of 0.8 kpc. Since the off-
set is comparable to the softening length of the simulations
(0.70 kpc), the centres of the central galaxies are consistent
with the centres of the potential. Next, we construct the sur-
face stellar mass density map of the central galaxies in the
C-EAGLE clusters by projecting the galaxy’s star particles
onto the x − y plane of the simulation volume on a grid of
cellsize 0.5 × 0.5 kpc2.

To generate a brightness map, we need to assume a
M∗/L ratio for each star particle and our fiducial mock sam-
ple assumes a constant M∗/L = 5. For comparison, we also
generate a surface brightness map for each central galaxy
by calculating the mass-weighted r-band brightness in each
cell. The luminosities of individual star particles are derived
following the method of Trayford et al. (2015).

We then calculate the mean and standard deviation of
the line-of-sight velocities of stars in each cell. As Newman
et al. (2013a), we obtain kinematic data in a long slit of
width 3 kpc aligned with the major axis of the galaxy. The
bins extend from the galactic centre to 21 kpc, which is ap-
proximately 1.5 effective radii (RE ) for the galaxies in our
sample. We assume that the uncertainty in the measured
velocity dispersion is 6 percent in the inner four bins and
9 percent in the outer three bins, similar to the values in
Newman et al. (2013a). For the situation where a satellite
happens to lie along the line-of-sight, we discard the affected
bins.

In Fig. 1, we compare the line-of-sight velocity disper-
sion profiles for our sample of clusters with those from New-
man et al. (2013a). The blue points are the velocity dis-
persions of the Newman et al. (2013a) clusters and the red
points are those of our clusters. The vertical dotted line
marks the softening length and the vertical dashed line is
the 3D average Power et al. radius (Power et al. 2003), which
is usually taken to define the region where the profiles are
numerically converged. Here, we adopt the same threshold
as Schaller et al. (2015a) to derive the Power et al. radius for
our clusters. As we can see, most our clusters have higher
line-of-sight velocity dispersions than the observed clusters.
This is because at a given halo mass, the brightest clus-
ter galaxies (BCGs) in C-EAGLE contain more stellar mass
than observed BCGs by up to 0.6 dex (Bahé et al. 2017)
and this results in a greater mass concentration and thus a
larger velocity dispersion reflecting the deeper gravitational
potential.

2.3 Gravitational lensing mock data

We calculate the tangential shear of the clusters at ten
equally spaced logarithmic bins in radius ranging from
100 kpc to 2000 kpc, which is similar to the range covered by
the data of Newman et al. (2013a,b). Since the shear con-
tributed by the correlation between different haloes is much
smaller than the shear caused by the halo itself (Cacciato
et al. 2009; Li et al. 2009), for simplicity, the lensing sig-
nal is calculated only from the mass distribution in the halo
ignoring the contribution of the large-scale structure. The

Figure 1. Line-of-sight velocity dispersion profiles. Red and blue

lines represent profiles derived for our sample of BCGs and those

from derived from the observed data in Newman et al. (2013a),
respectively. The vertical dotted line marks the softening length

and the vertical dashed line the 3D average Power et al. radius
for our clusters.

tangential shear, γt , at projected radius, R, can be written
as,

γt (R)Σcrit = ∆Σ(R) = Msurf(R)/(πR2) − Σ(R), (1)

where Msurf(R) is the mass, including dark matter, stars and
gas, enclosed within projected radius, R; Σ(R) is the surface
density at R; and Σcrit is the critical surface density, which
is determined from the redshifts of the lens and the source.
We assume that the error on the tangential shear is 40%,
comparable to the average error in Fig. 5 of Newman et al.
(2013a). In this work, we do not perturb the true value, so
the centre points of our weak lensing “measurements” are
not biased.

Strong lensing is also important in constraining the
mass model of the clusters. The strong lensing constraint
in Newman et al. (2013a) comes from measurements of the
positions of multiple images, whose uncertainty is taken to
be 0.5 arcsecs. Note that the average Einstein radius, REin,
for those clusters is ∼ 10 arcsecs, and thus, for simplicity, we
assume that the total projected mass within REin (∼ 39 kpc
at z = 0.2) can be measured to a similar precision of 5%.

3 MODELS

We use two approaches to model the stellar kinematics of
the central galaxies in the C-EAGLE clusters:

(i) the spherically symmetric Jeans model (sJ) (Binney &
Tremaine 2008; Cappellari 2008)

(ii) the Jeans anisotropic model (JAM) (Emsellem et al.
1994; Cappellari 2002, 2008).

Since Newman et al. (2013a,b) mainly used sJ, when com-
paring our results with observations, we will mostly rely on
this model as well. However, for an interesting theoretical
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test, we also combine JAM with the lensing analysis to in-
vestigate if it results in significant differences.

3.1 sJ Model

For the spherically symmetric case, the Jeans equation gives
the relation between the line-of-sight velocity dispersion,
σlos, and the mass distribution, Mtot(r), as:

σlos(R) =
2G
Σ∗(R)

∫ ∞
R

ρ∗(r)Mtot(r)F(r)
r2 dr , (2)

where Σ∗ and ρ∗ are the surface density and 3D density of the
stars, respectively, Mtot(r) is the total mass enclosed within

3D radius r and, in the isotropic case, F(r) =
√

r2 − R2.
Following Newman et al. (2013a), we use a 3-parameter

dPIE model (Eĺıasdóttir et al. 2007) to describe the 3D den-
sity profile of the stellar component, where,

ρdPIE(r) =
ρ0

(1 + r2/a2)(1 + r2/s2)
; (3)

the core radius, a, the scale radius, s (s > a), and the central
density, ρ0, are free parameters. The surface density profile
of the stellar component can be analytically written as:

ΣdPIE(R) = ρ0
πa2s2

s2 − a2

(
1

√
a2 + R2

− 1
√

s2 + R2

)
. (4)

We fix the profile parameters, a and s, by fitting the dPIE
model to the mass surface density profile of the central
galaxy. Only the normalization of the density profile is al-
lowed to vary during the dynamical modeling process.

The mass distribution of the dark matter halo follows a
gNFW profile:

ρgNFW(r) = ρs
(

r
rs

)−γgNFW (
1
2
+

1
2

r
rs

)γgNFW−3
, (5)

where ρs is the characteristic density and γgNFW gives the
inner asymptotic density slope of the halo. For the NFW
profile, γgNFW = 1.

For the spherical Jeans model we therefore have the
following free parameters:

(i) the stellar mass-to-light ratio: M∗/L;
(ii) the three parameters that describe the dark matter

halo density profile: ρs, rs and γgNFW.

3.2 The JAM method

For many galaxies in the real Universe, the assumption of
spherical symmetry for the distributions of mass and veloc-
ity dispersion are not valid. In practice, assuming an axisym-
metric mass distribution often provides a better solution to
galactic dynamical modeling.

For a steady-state axisymmetric mass distribution, the
Jeans equations in cylindrical coordinates, (R, z, φ), can be
written as:

nv2
R
− nv2

φ

R
+
∂(nv2

R
)

∂R
+
∂(nvRvz )

∂z
= −n

∂Φtot
∂R

, (6)

nvRvz
R
+
∂(nv2

z )
∂z

+
∂(nvRvz )

∂R
= −n

∂Φtot
∂z

, (7)

where the vs denote the three components of velocity,

nvkvj ≡
∫

vkvj f d3v, (8)

f is the distribution function of the stars, Φtot the gravita-
tional potential, and n is the luminosity density.

In this work, we adopt the numerical Jeans-Anisotropic-
Modeling routine of Cappellari (2008) with the multi-
Gaussian Expansion (MGE) technique (Emsellem et al.
1994; Cappellari 2002), which is widely used in galactic dy-
namical modeling (e.g. Cappellari 2008; Cappellari et al.
2011; Newman et al. 2015; Li et al. 2016, 2017)

To determine a unique solution, the JAM routines make
two assumptions (Cappellari 2008):

(i) the velocity dispersion ellipsoid is aligned with the
cylindrical coordinate system (vRvz = 0),

(ii) the anisotropy in the meridional plane is constant, i.e.

v2
R
= bv2

z , where b is related to βz , the anisotropy parameter
in the z direction, defined as

βz ≡ 1 −
v2
z

v2
R

≡ 1 − 1
b
. (9)

If we set the boundary condition, nv2
z = 0 as z →∞, the

solution of Jeans equations can be written as

nv2
z (R, z) =

∫ ∞
z

n
∂Φtot
∂z

dz (10)

nv2
φ(R, z) = b

[
R
∂(nv2

z )
∂R

+ nv2
z

]
+ Rn

∂Φtot
∂R

. (11)

The intrinsic velocity dispersions on the left-hand side of
these equations are integrated along the line-of-sight to de-

rive the projected second velocity moment, v2
los. This can

be directly compared with the kinematical data for the stel-

lar component, i.e. the rms velocity, vrms ≡
√
v2 + σ2, where

v and σ are the stellar mass-weighted line-of-sight velocity
and velocity dispersion, respectively.

The gravitational potential, Φtot, is determined by the
total mass distribution. We consider two components: the
stars and the dark matter haloes. To speed up the cal-
culation, the JAM routines use Multi-Gaussian-Expansion
(MGE; Emsellem et al. 1994) to fit the surface brightness
distribution, Σ(x′, y′), of the central galaxies

Σ(x′, y′) =
N∑
k=1

Lk
2π∆2

k
q′2
k

exp

[
− 1

2∆2
k

(
x
′2 +

y
′2

q′2
k

)]
, (12)

where Lk is the total luminosity of the k-th Gaussian com-
ponent with dispersion, ∆k , along the major axis, and q′

k
is

the projected axial ratio in the range [0,1]. The JAM rou-
tines assume galaxies to be oblate axisymmetric. Thus, once
the inclination angle i (i = 90◦ for edge-on) is known, the
three dimensional luminosity profile in cylindrical coordi-
nates, n(R, z), is given by

n(R, z) =
N∑
k=1

Lk
(
√

2π∆k )3qk
exp

[
− 1

2∆2
k

(
R2 +

z2

q2
k

)]
. (13)

In this work we assume that the stellar mass distribu-
tion traces the luminosity. Thus, we first derive the bright-
ness profile from the mock image of the central galaxy using
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Figure 2. Difference between recovered and true surface lumi-
nosity profiles for CE-13 and CE-19. Blue lines represent the dif-

ference between the dPIE and the true profiles. Red lines show

the difference between the MGE and the true profiles. The ver-
tical yellow lines indicate the outermost radius at which kine-

matical data are available, which is 21 kpc unless affected by

satellites along the line-of-sight. The vertical dashed lines mark
the Power et al. 2003 radius and the vertical dotted lines the

softening length.

MGEs, and use this as the distribution of the stellar mass.
Only the amplitude of the stellar mass distribution is al-
lowed to vary during the modeling of the kinematical data,
i.e., a constant M∗/L is assumed at all radii. Newman et al.
(2015) conclude that the assumption of a constant M∗/L is
the main systematic uncertainty in the estimation of γ̄dm. We
will discuss the validity of this assumption in Section 4.4.1.

We compare the quality of the fits to stellar photometry
for the dPIE and MGE models in Fig. 2 for two clusters; the
panel for CE-13 illustrates a typical fit while the panel for
CE-19 is the worst fit amongst 17 clusters. Clearly, MGE
provides a much better fit than dPIE, because it has more
free parameters. MGE fits most clusters within an error of
10%, while dPIE fits most cluters within an error of 40%,
which is slightly higher than the errors estimated by New-
man et al. (2013a) from fitting the surface brightness profiles
of their clusters. Both MGE and dPIE give a bad fit to CE-
19 due to contamination from two line-of-sight satellites that
are very close to the BCG (within 15 kpc). For JAM we also
assume that the dark matter halo follows a gNFW profile
and the density distribution of the gNFW dark matter halo
is also expressed as an MGE in the JAM routines.

By requiring that the predicted vrms should be a good
match to the mock galaxy’s vrms, we can estimate the fol-
lowing six parameters:

(i) the inclination angle, i, between the line of sight and
the axis of symmetry;

(ii) the anisotropy parameter, βz , in Equation (9);
(iii) the stellar mass-to-light ratio, M∗/L;
(iv) the three parameters of the dark matter halo density

profile: ρs, rs and γ.

3.3 Model inference with the MCMC method

According to Bayes’ theorem, the posterior likelihood for a
set of parameters, p, given a set of data, d, is:

P(p|d) = P(d|p)P(p)
P(d) , (14)

where P(d|p) is the likelihood and P(p) is the prior dis-
tribution of the parameters. Combining the “observational”
data together with the models described above, we explore
the posterior distribution of the model parameters using the
Markov Chain Monte Carlo (MCMC) technique1. Assuming
the errors are independent and Gaussian, the likelihood of a

set of parameters is proportional to e−χ
2/2, with χ2 defined

as:

χ2 = χ2
K + χ

2
SL + χ

2
WL, (15)

where the constraints from kinematics, strong and weak lens-
ing are described by χ2

K , χ2
SL

and χ2
WL respectively. Here,

χ2
SL

and χ2
WL take the form

χ2
SL =

(
Σ(< RE ) − Σ

′(< RE )
σSL

)2

, (16)

and

χ2
WL =

∑
i

(
∆Σ(R) − ∆Σ′(R)

σwl(R)

)2

, (17)

respectively, where the sum is over 10 data bins. Σ(< RE ) is
the total enclosed surface mass density, including the bary-
onic , dark matter and gas components, within the Einstein
radius, and ∆Σ(R) is defined in Eq. (1); σSL = 0.05Σ′(< RE )
and σwl = 0.4∆Σ′(R) are the corresponding errors. χ2

K takes
the form

χ2
K =

∑
i

(
virms − v

′i
rms

σi
rms

)2

, (18)

where the virms is derived through JAM, σi
rms is the error and

the sum is over 7 data bins. Note that for the sJ model, χ2
K

is calculated by substituting the rms velocity, vrms, with the
line-of-sight velocity dispersion, σlos.

Throughout this paper, we use primed and unprimed
quantities to refer to quantities derived from recovered mod-
els and from the original C-EAGLE data, respectively. Priors
for the parameters are listed in Table (1). We use uniform
priors over reasonable intervals for all parameters, which are
similar to those adopted by Newman et al. (2013a). Note
that in this work the “best-fit” parameters are given by the
median values of the posterior distributions.

1 We use the “emcee” code to implement MCMC (Foreman-

Mackey et al. 2013).
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Table 1. Parameter priors. Here, U[a,b] denotes a uniform dis-

tribution over the interval [a,b] and θ is the upper boundary for

cos(i) determined from the MGE model.

Parameter Prior Unit

cos i U[0, θ]
β U[-0.4, 0.4]

log10 ρs U[3, 10] M�
log10 rs U[log10(50), 3] kpc
γgNFW U[-1.5, 0]

4 RESULTS

4.1 Recovered density slopes

As an example, in Fig. 3 we compare the inferred and true
density profiles for CE-13. The upper and lower panels show
the results for sJ and JAM respectively. For both models,
the recovered density profiles agree very well with the in-
put ones except for stars beyond around 100 kpc. Since our
fiducial stellar mass model assumes a constant mass-to-light
ratio and our dPIE (MGE) fit to the light distribution is re-
stricted to 100 kpc, the discrepancy beyond this radius is to
be expected. Note that although the two models give very
similar profiles for CE-13, there are still differences in the
inner dark matter profiles where sJ tends to overestimate
the mass of dark matter.

In Figs. 4 and Fig. 5 we present the posterior distribu-
tions of the model parameters for sJ + lensing and JAM +
lensing analyses, respectively, for CE-13. For both sJ and
JAM + lensing analyses, significant degeneracies among the
three parameters of the gNFW fit can be clearly seen in the
contours. To compare our best-fit gNFW profiles with the
input dark matter profiles, we also fit the latter between 1
kpc and R200 to get the “true” input values of the gNFW pa-
rameters. Different choices for the radial range in the fit and
the weighting scheme can lead to slightly different best-fit
values because of degeneracies amongst gNFW parameters.
For example, the values of γgNFW inferred from fitting to
the mass profiles are systematically smaller than those in-
ferred from fitting to the density profiles by ∼ 0.12. These
systematic differences are well below the statistical errors of
the estimates derived from kinematics + lensing analysis we
have carried out.

To compare the total inner density slope, we addition-
ally define a mass-weighted density slope in the same way
as Dutton & Treu (2014) and Newman et al. (2015):

γ̄dm ≡ −
1

M(Re)

∫ Re

0
4πr2ρ(r) d log ρ

d log r
dr = 3− 4πR3

eρ(Re)
M(Re)

, (19)

where ρ(r) and M(r) are the cluster’s total density and mass
profiles. Similarly, we define the mass-weighted dark mat-
ter density slope, γ̄dm, by using the dark matter ρ(r) and
M(r) density profiles in Eqn. 19. In the case where the dark
matter scale radius, rs � Re, the dark matter density slope
within Re follows a power-law distribution and the asymp-
totic slope γgNFW is equivalent to γ̄dm. Note that the “true”
mass-weighted slope is calculated directly from the simula-
tion data rather than derived from a fit to the profile.

In Fig. 6 we compare the true and the best-fit values of
several key parameters: γgNFW, the asymptotic density slope
of the dark matter halo; γ̄tot, the mass-weighted average den-

sity slope within Re for the total mass distribution; γ̄dm, the
mass-weighted average density slope within Re for the dark
matter distribution; Mtot, the total mass within Re; M∗, the
stellar mass within Re; fdm, the dark matter fraction within
Re, for sJ + lensing analysis (left column) and JAM + lens-
ing (right column) respectively. We denote the best-fit and
true values with superscript “R” and “T” respectively.

To illustrate clearly the trend between best-fit and true
values, the green dashed lines indicate equality; the red
dashed lines are the linear relation between best-fit and
true values. For both models, the mass-averaged dark matter
density slopes, γ̄dm, are well constrained, while the asymp-
totic dark matter slopes, γgNFW, do not show a strong trend
between input and best-fit values, especially for the JAM
model. For the total mass within Re, Mtot is overestimated
by 0.1 ∼ 0.2 dex for many clusters. Interestingly, the best-
fit total density slope, γ̄tot, behaves very differently between
the two models. JAM tends to overestimate the total den-
sity slope at small masses, while sJ systematically underes-
timates the total density slope at high masses. For the dark
matter fraction both models provide an unbiased recovery,
with sJ showing smaller variance than JAM. The parameter
values in Fig. 6 are also listed in Tables A1 and A2.

To investigate whether the recovered mass depends on
the dynamical state of the cluster, we classify the C-EAGLE
clusters as relaxed or unrelaxed using the information pro-
vided in Table A2 of Barnes et al. (2017). A cluster is defined
as relaxed if the kinetic energy of the gas is less than 10%
of the total thermal energy within R500. In Fig. 6 we use
filled squares to indicate relaxed clusters and empty squares
to indicate unrelaxed clusters. Overall, the quality of the re-
covery is independent of the dynamical state of the cluster.

4.2 Comparison with observations

In this section, we compare our C-EAGLE mocks with the
observed clusters of Newman et al. (2013a,b, 2015). Fig. 7
shows the best-fit asymptotic dark matter density slopes,
γgNFW, as a function of the cluster mass, M200, derived from
our mock cluster data and from the observations of Newman
et al. (2013b). For comparison, we also plot the input val-
ues of γgNFW, which we derived by fitting the gNFW profile
directly to the simulation data.

The true asymptotic dark matter density slopes of the
C-EAGLE clusters have values ∼ 1 at 1014.5 M� and de-
crease slowly to ∼ 0.8 at 1015 M�. These are significantly
higher than the observational results of Newman et al.
(2013b), for which the mean value is 0.50± 0.13 (with an es-
timated systematic error of 0.14). For both the sJ and JAM
+ lensing analyses the recovered values of γgNFW agree well
with the input ones, and both are systematically higher than
those inferred from the observational data. To be specific,
we use bootstrap methods to choose 7 (the same number
of clusters as in Newman et al. (2013a)) asymptotic slopes,
γgNFW, randomly from the posterior distributions of γgNFW
for all 17 clusters to derive the joint constraint on the mean
value of γrmgNFW . The method we use is different from the
method used by Newman et al. (2013b) who multiplied the
posterior distributions of γgNFW together, implicitly assum-
ing that these distributions are the same for all clusters; this
is not necessarily the case and the product can be strongly
affected by inclusion of one or two clusters with a very dif-
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Figure 3. Reconstructed density profiles (r2ρ) for halo CE-13. The upper and lower panels show the reconstructed profiles using the

sJ and JAM models respectively. The points show the true density profiles. The solid lines show 200 randomly selected reconstructed
profiles from our MCMC samples. The dark matter, stars, gas and total density profiles are plotted in red, yellow, magenta and blue

respectively. The vertical yellow line (r= 21 kpc) marks the upper bound of the dynamical data. The vertical green line marks REin. Weak

lensing data exist to the right of the vertical blue line. The vertical dashed lines mark the 3D Power et al. radius and the vertical dotted
lines the softening length.

ferent γgNFW distribution. In fact, Newman et al. (2013b)
point out that excluding the cluster with the lowest γgNFW
(A2537), the mean γgNFW would change by ∼ 40% from 0.50
to 0.69. Using the bootstrap method, we find probabilities of
3.5%, 17.1% and 49.1% for the mean value of those randomly

chosen 7 asymptotic slopes to lie within the 1σ (0.50±0.13),
2σ (0.50 ± 0.26) and 3σ (0.50 ± 0.39) ranges of the Newman
et al. (2013b) results, respectively. In this comparison, we
combine the constraints from the kinematic, strong lensing
and weak lensing data as was done by Newman et al. (2013b)
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Figure 4. Posterior distributions of model parameters for the sJ + lensing analysis. In the panels with contours, true values of the
parameters are marked with red dots. Blue, green and red lines represent 1-, 2- and 3σ regions, respectively. In the marginalized

distributions the input values are marked with vertical red solid lines and the 84% and 16% percentiles with vertical dashed blue lines.

and, like them, we use the sJ model for the dynamical anal-
ysis. We assume similar uncertainties for the kinematics and
strong lensing as in the observational study and reasonable
uncertainties for the weak lensing constraint as shown by
Fig.5 in Newman et al. (2013a). Thus, the discrepancy be-
tween the observed inner density slopes and those of the
C-EAGLE clusters is unlikely to be due entirely to system-
atics in the method itself.

Interestingly, the discrepancy between the simulation
and observational results disappears if we compare the mean
values of the mass-weighted mean density slopes within the
effective radius, γ̄dm, instead of the asymptotic γgNFW. In
Fig. 8 we show (with dashed lines) the posterior distribu-
tion of γ̄dm derived by the sJ + lensing analysis for each
C-EAGLE cluster. We also mark with a vertical solid black
line in Fig. 8 the mean value of γ̄dm. To explore the spread
in the mean, we use again a bootstrap method to draw 7
values randomly from the posterior distribution of γ̄dm. The
solid black line in the figure shows the distribution from the
bootstrap and the vertical dashed black lines its 16% and
84% percentiles. We find a mean of γ̄dm 0.99 ± 0.11. The
mean and error of the true values of γ̄dm for the C-EAGLE
clusters are shown as a cyan triangle and error bar. The es-
timated mean agrees with the true distribution within 1σ.

The yellow star and error bar show the mass-weighted mean
dark matter slope for the sample of Newman et al. (2013a,b),
taken directly from Fig. 15 of Newman et al. (2015). Clearly,
this measure of the inner slope for the observational data is
entirely consistent with the results from the C-EAGLE sim-
ulations.

Why are the observed values of γgNFW smaller than
those from the C-EAGLE simulations, while the respective
values of γ̄dm agree so well? As we discussed before, the mass-
weighted density slope, γ̄dm ' γgNFW when rs � Re. Thus,
the significant difference between the two measures of slope
in the data of Newman et al. (2013a,b) implies that the ob-
served clusters have smaller values of rs than the C-EAGLE
clusters.

In Fig. 9 we plot the values of the gNFW scale radius,
rs, as a function of M200. For the sJ + lensing analysis, the
best-fit values of rs agree well with the true values. But, as
we can see, 4 out of the 7 clusters in Newman et al. (2013a,b)
have values of rs smaller than the smallest best-fit value in
the C-EAGLE sample, which is around 220 kpc. We also
plot the NFW values of rs as a function of M200 at redshift
0.2 and the scatter taken from Neto et al. (2007). We can
see that for the C-EAGLE clusters, the gNFW values of
rs are slightly smaller than the NFW values, while for the
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Figure 5. Posterior distributions of model parameters for the JAM + lensing analysis. In the panels with contours, the true values of
the parameters are marked with red dots. Blue, green and red lines represent 1-, 2- and 3σ regions, respectively. In the marginalized
distributions the input values are marked with vertical red solid lines and the 84% and 16% percentiles with vertical dashed blue lines.

The true value of β is not shown in the plot because it lies outside the prior range; this happens only in the case of CE-13.

clusters in Newman et al. (2013a,b) the gNFW values are
significantly smaller than the corresponding NFW values in
the mass range 1014.6M� to 1015M�.

4.3 Importance of lensing constraints

It is worth pointing out that the lensing data plays a crucial
role in constraining the mass model. Although these data
probe only the outer parts of the density profile, they set
a stringent constraint on the scale radius, rs, of the gNFW
profile, and this improves the precision of the decomposition
of the stellar and dark mass components. Poor or biased
lensing measurements may lead to the inference of incorrect
dark matter slopes.

4.3.1 Tests with kinematics alone

In Fig. 10 we show the best-fit γgNFW values for the C-
EAGLE clusters derived from kinematical data alone. For
the sJ model, the median value of the best-fit asymptotic
slope, γgNFW, is 0.54, which is significantly smaller than the
true value. The JAM model produces a slightly more accu-
rate result, γgNFW = 0.61, but this still significantly under-
estimates the true density slopes.

Why does dynamical modeling alone fail to reproduce
the input γgNFW? The reason may lie in the lack of infor-
mation about the halo profile contained by the dynamical
data, which are restricted to the inner halo. In Fig 11, we
show dynamical quantities for CE-13 inferred from the sJ
and JAM models. The blue points with error bars are the
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Figure 6. Comparison between the true and best-fit values of γ̄tot, γ̄dm, γgNFW, log(Mtot) and fdm. The left and right columns show results
for sJ and JAM respectively. The x-axis is the true value and the y-axis the best-fit value. (The best-fit and true values are denoted by
superscripts “R” and “T” respectively.) The solid squares represent relaxed and the empty squares unrelaxed clusters. The red dashed
lines are the best linear fits to the true vs best-fit values. The green dashed lines indicate equality.
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Figure 7. γgNFW as a function of M200. Blue squares show the

true values for the C-EAGLE clusters and the red circles the best-
fit values from the sJeans + lensing analysis. The observational

estimates from Newman et al. (2013b) are shown as yellow stars.

Figure 8. Marginalized posterior distributions of γ̄dm obtained

from the sJ + lensing analysis for each C-EAGLE cluster (dashed

lines). The vertical solid black line shows the mean value of γ̄dm.
The solid curve shows the joint constraint on the mean value of

γ̄dm and the vertical dashed lines the 16% and 84% percentiles.
The yellow star with an error bar is the corresponding result of
Newman et al. (2013b). The blue triangle is the true value for our

C-EAGLE sample, with the bar spanning the error in the mean.
The values given in the legend are the most probable values for

the mean value of γ̄dm.

true values and the red lines are best-fit results including the
lensing constraints. Both sJ and JAM fit most of the dynam-
ical data within the errors, with JAM providing a better fit
than sJ. Both models, however, underestimate the velocity
dispersion at x ∼ 20 kpc (even though they both accurately
recover the true total density profiles). Ignoring the lensing
constraints (cyan lines), both models overestimate the ve-
locity dispersions at large radii. This is because, confined to

Figure 9. The scale radius, rs , as a function of M200. The blue
squares are the true values of the C-EAGLE clusters, the yellow

stars with error bars the results of Newman et al. (2013b) and the

red circles the best-fit results for the C-EAGLE clusters from the
sJ + lensing analysis. The cyan line indicates the values of the

NFW rs inferred from the mass-concentration relation for relaxed

haloes at redshift 0.2 (Dutton & Macciò 2014) , with the shaded
region showing the corresponding 1-σ scatter (Neto et al. 2007).

Figure 10. Comparison between the best-fit values of γgNFW for

the C-EAGLE clusters from the sJ analysis alone (ignoring lensing
data; green circles), the observational estimates from Newman

et al. (2013b) (orange stars) and the fiducial values of C-EAGLE
clusters (blue squares).

the central parts of the cluster, the dynamical data alone,
without the lensing data, cannot constrain the gNFW pro-
file, especially the value of rs. The MCMC fitting then tends
to zero-in onto a shallower dark matter density profile slope
than the true value, which increases the velocity dispersion
in the outer regions, where it is underestimated by the full
model. This explains the bias in γgNFW seen in Fig. 10.
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Figure 11. Comparison between true and recovered dynamical
quantities for both the sJ and JAM models for CE-13. The upper

panel shows the velocity dispersion of the stars and the bottom
panel the rms velocity along the line-of-sight. The blue circles

with error bars show the true values; the red lines represent the

dispersions inferred from the full model and cyan lines those ig-
noring the lensing constraints. The vertical dotted lines mark the

softening length and the vertical dashed lines the 3D Power et al.

radius. The width of the error bars represents the size of the bins
used to derive the input kinematics.

4.3.2 Tests with biased weak lensing

In the last section we showed that the lensing measurements
serve to anchor the constraints on the total density profile.
Biased lensing measurements are therefore likely to lead to
biased estimates of γgNFW.

Interestingly, recent studies using weak lensing data of
high quality find larger values of the scale radius, rs, for
some of the clusters included in the sample of Newman et al.
(2013a). In table 2, we compare lensing measurements of rs,
obtained from NFW fits, for three clusters by Merten et al.
(2015); Umetsu et al. (2016) with the results of Newman
et al. (2013a) (see Table 8 in Newman et al. (2013a), Ta-
ble 6 in Merten et al. (2015) and Table 2 in Umetsu et al.

Table 2. Comparison amongst the different lensing measure-
ments of the NFW scale radius (in kiloparsecs) for three clusters,

MS2137, A383 and A611, obtained by Newman et al. (2013a),

Merten et al. (2015) and Umetsu et al. (2016) (denoted as N13,
M15 and U16, respectively). For convenience, we adopt h = 0.7

MS2137 A383 A611

N13 119+49
−32 260+59

−45 317+57
−47

M15 686+71
−71 471+57

−57 586+86
−86

U16 800+450
−450 310+130

−130 570+210
−210

(2016))2. For these three clusters, the values of the scale
radii measured by Newman et al. (2013a) are smaller than
the more recent measurements by the other authors by 30%
to ∼ 700%.

To explore how the best-fit values of γgNFW are affected
when the lensing measurements return a profile with too
small a value of rs, we perform the following test. We first
obtain best-fit NFW profiles using unbiased weak lensing
“measurements” of the C-EAGLE clusters. Next, without
changing the value of M200, we decrease the scale radius of
the best-fit NFW profile by 50%, which is approximately
the average difference between the results of Newman et al.
(2013a) and those of Merten et al. (2015) and Umetsu et al.
(2016). We then generate weak lensing measurements using
these artificially biased NFW profiles with the same error
bars as the fiducial ones. Finally, we combine the fiducial
stellar kinematical data and strong lensing data with the
artificially biased weak lensing data to constrain the mass
models.

The best-fit values of γgNFW are shown as black points
in Fig. 12. As may be seen, these slopes, derived assuming
artificially biased weak lensing inputs, are much smaller than
the true values shown in blue. They are, in fact, quite compa-
rable to the results of Newman et al. (2013b). Of course, we
do not claim that the latter are biased but our conclusions
point to one possible way in which the discrepancy between
the results of Newman et al. (2013b) and our simulations
might be resolved.

4.4 Robustness to model assumptions

In this section we consider the effect of various model as-
sumptions on the estimates of the inner dark matter slope.

4.4.1 Mass-to-light ratio

In the preceding analysis we made use of our fiducial mock
data in which a constant mass-to-light ratio was assumed
when generating the surface brightness map of the central
galaxy. However, this may not apply in the real Universe. To
explore the sensitivity of our results to this assumption, we
built another set of mocks, this time using the r-band lumi-
nosity calculated with the photometric method of Trayford
et al. (2015). We performed the same analysis on this new

2 For consistency, we only compare parameters for spherical NFW
haloes.
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Figure 12. Comparison of the values of γgNFW inferred from bi-

ased weak lensing inputs (black points), derived by Newman et al.
(2013b) (orange stars) and the actual values for C-EAGLE clus-

ters (blue squares).

set of mocks, still assuming a constant M∗/L. The difference
between these results and those from our fiducial model re-
flects the uncertainties introduced by the simple assumption
of constant M∗/L.

In Fig. 13 we compare the joint constraints on the mean
γ̄dm from our mock data using the sJ + lensing model, as-
suming a constant M∗/L, for both, mocks constructed mak-
ing this same assumption and mocks constructed using the
photometric model of Trayford et al. (2015). The inferred
mean γ̄dm in the latter case is only about 3% smaller than
for the standard case. These results indicate that the as-
sumption of a constant M∗/L is reasonable for the analysis
of the inner dark matter density profiles in these massive
clusters.

4.4.2 Shape of the central galaxy

When modeling the central stellar dynamics by solving the
Jeans equations, we assumed the galaxy to have either a
spherical or an oblate shape. A spherical shape for the cen-
tral galaxy is assumed in the sJ model, while an oblate
shape is assumed in the fiducial JAM model. Although this
oblateness assumption is valid for most early type galaxies,
it does not apply to the most massive ones (e.g. Li et al.
2016, 2017). To be consistent with previous analyses, we
assumed oblateness in our application of the JAM. In the
upper and lower panel of Fig. 14 we show the error in the
inferred mass-weighted slope of the dark matter density pro-
file, δγ̄dm = (γ̄

′
dm − γ̄dm)/γ̄dm (where, as before, γ̄

′
dm denotes

the best-fit value and γ̄dm the true value), as a function of

the triaxiality parameter, T ≡ a2−b2

a2−c2 (Binney & Tremaine

2008) for both the sJ and JAM models.
We compute the triaxiality parameter of the galaxy us-

ing the reduced inertia tensor defined as:

Ii j,k+1 =

∑
n

Mnxi,nxj,n/r2
n,k∑

n
Mn

, (20)

Figure 13. Comparison of the joint constraints on the mean γ̄dm
from mock data constructed either assuming a constant M∗/L
(red) or assuming the photometric model of Trayford et al. (2015)

(blue). Results are shown for sJ + lensing modelling, assuming in

both cases that M∗/L is constant. The yellow symbol and error
bar show the observational result of Newman et al. (2013b), while

the cyan symbol and error bar correspond to the true C-EAGLE
result. The values quoted in the legend are the most probable

values of the mean γ̄dm derived from the corresponding test.

where i, j ∈ {x, y, z} and the summation is over the stars
within 25 kpc, (which is slightly larger than the region with
kinematical data and around 2 Re for our sample. Here, rn,k
is defined as the k-th iteration value of the radius,

rn,k =
√

x2
n + y2

n/q2 + z2
n/s2 , (21)

where q = b/a and s = c/a (assuming the lengths of the
three major axes are a, b, c and a ≥ b ≥ c) are the square
root of the ratios of the reduced inertia tensor eigenvalues.
We iteratively calculate the reduced inertia tensor and the
values of q and s, deriving the triaxiality parameter from
the stable q and s values.

If s ≥ 0.9, then the galaxy is close to spherical and, if
s ≤ 0.9, we can classify the shape into three categories: oblate
for T ≤ 0.3, prolate for T ≥ 0.7 and triaxial in between. All
of our clusters have s ≤ 0.9. From Fig. 14, we find that
most of the cluster central galaxies have a prolate shape.
Interestingly, although the shapes are not consistent with
the assumption of the JAM or the sJ model, we do not find
a correlation between the accuracy of the estimate of γ̄dm
and the triaxiality parameter.

To explore further the model dependence on the galaxy
shape, we rotate all of our galaxies in three different di-
rections, so that the line-of-sight direction is aligned with
the major, intermediate and minor axes respectively, and re-
peat the kinematics + lensing analysis. We show the best-fit
γgNFW in different directions as a function of M200 in Fig. 15.
We see that for both models looking along intermediate and
minor axes gives similar γgNFW distributions, while looking
along the longest axis gives larger best-fit values of γgNFW
than for the two other directions. The probability of drawing
7 asymptotic slope values from their posterior distributions
with mean value lying within the 1σ range of the observa-
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Figure 14. δγ̄dm as a function of the triaxiality parameter. The
solid squares show relaxed clusters and the empty squares unre-

laxed clusters.

tional result (0.50 ± 0.13) are 17.3%, 5.7% and 1.5% when
viewing along minor, intermediate and major axes, respec-
tively.

4.4.3 Velocity anisotropy

We also test the dependence of the model on the velocity
anisotropy. Schaller et al. (2015b) suggested that the dis-
crepancy between the dark matter density profile slopes in
the observed clusters and in the EAGLE simulations might
be due to incorrect assumptions for the velocity anisotropy
parameters. In the sJ modeling, the velocity anisotropy is as-
sumed to be zero, while in JAM it is assumed to be constant
in the z cylindrical coordinate.

In Fig. 16 we plot the error in the estimates of γ̄dm as
a function of the anisotropy parameter, β, of the C-EAGLE
clusters for both the sJ and JAM cases. The anisotropy in

Figure 15. Values of γgNFW for C-EAGLE clusters viewed from

different directions. The upper, middle and lower panels show

results when viewing the central galaxies along the minor, inter-
mediate and major axis, respectively. Blue squares are the true

C-EAGLE values and the yellow stars the measured values of

Newman et al. (2013b). Red and green circles are results from
the JAM and sJ model respectively.
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Figure 16. δγ̄dm as a function of the anisotropy parameter, β.
The solid squares show relaxed clusters and the empty squares

unrelaxed clusters.

cylindrical coordinates, βJAM (βz), is computed as

βJAM = 1 −
v2
z

v2
R

, (22)

where the z-axis is aligned with the minor axis of the galaxy.
The anisotropy parameter for the spherical Jeans model is
computed as:

βsJ = 1 −
v2
θ

v2
r

, (23)

where v2
θ
= v2

φ. There is significant galaxy to galaxy scat-

ter in the anisotropy parameter value but we do not find a
significant trend of δγ̄dm with β.

5 SUMMARY AND DISCUSSION

We have investigated the accuracy of techniques for inferring
the inner density profiles of massive galaxy clusters from a

combination of stellar kinematics and gravitational lensing
data. We constructed mock datasets from 17 clusters in the
C-EAGLE hydrodynamical simulations (Barnes et al. 2017;
Bahé et al. 2017), whose masses are comparable to those of
the seven clusters studied by Newman et al. (2013a) (with a
mean M200 ∼ 1×1015 M�). We performed a stellar dynamical
and lensing analysis on the mock datasets. For the former
we used two different methods: the spherical Jeans model,
which was the method used by Newman et al. (2013a,b), and
the Jeans anistropic model. Our findings can be summarized
as follows:

• The values of the inner asymptotic slope of a “general-
ized” NFW density profile, γgNFW, estimated using the kine-
matics + lensing analysis on the mock data agree reasonably
well with the input values indicating that, in principle, the
method is accurate and unbiased.

• The dark matter asymptotic density slopes, γgNFW, of
massive C-EAGLE clusters are steeper than those inferred
by Newman et al. (2013a,b) for the observed clusters. The
C-EAGLE clusters have γgNFW ∼ 1, whereas Newman et al.
(2013b) find γgNFW ∼ 0.5 for their clusters, as shown in
Fig. 7.

• The inner density profile can also be characterized by
the mean mass-weighted dark matter density slope, γ̄dm,
averaged within the effective optical radius of the central
galaxy. This measure of slope for the C-EAGLE clusters is
in remarkably good agreement with the estimates for the
observed clusters (see Fig. 8).

• The discrepant conclusions reached when using the two
different measures of inner dark matter density profile slope
can be traced back to different values of the characteris-
tic halo radius, rs, in the C-EAGLE and observed clusters.
The values of rs for the Newman et al. (2013a) sample are
significantly smaller than the values for the clusters in the
simulations (see Fig. 9). The smaller the rs, the faster the
dark matter density slope varies within the effective radius
and thus the larger the difference between the asymptotic
and mass-weighted values.

• We find that there is a strong degeneracy between the
asymptotic gNFW slope, γgNFW, and the scale radius, rs (or,
equivalently, the scale density, ρs; see Figs. 4 and 5). For the
type of analysis performed by Newman et al. (2013a), the
value of rs is largely determined by the gravitational lensing
data which probe the halo mass distribution at large dis-
tances. To assess the importance of lensing data, we repeated
our analysis of the C-EAGLE clusters in two ways. Firstly,
we ignored lensing and used only stellar kinematical data.
We found that, in this case, the dark matter density slopes
are significantly underestimated (see Fig. 10). This is prob-
ably because, as shown in Fig. 11, not including constraints
from lensing loses the anchor point in the outer regions of
the cluster and a nearly constant density dark matter core
is then preferred to account for the steeply raising observed
stellar velocity dispersion profile (which otherwise the stel-
lar dynamical models considered here would have difficulty
matching).

Secondly, we kept the stellar kinematical and strong lens-
ing mock data unchanged, but artificially biased the weak
lensing mock data to correspond to a profile with a 50%
smaller value of rs. We found that in this case the best-fit
γgNFW values are significantly underestimated and are, in
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fact, quite comparable with the results of Newman et al.
(2013a,b). We noted that for three clusters the NFW scale
radii measured by Newman et al. (2013a) are much smaller
than the more recent measurements carried out by Merten
et al. (2015) and Umetsu et al. (2016). If the stellar kine-
matical data are combined with lensing measurements from
the more recent observations, the discrepancy between the
observed dark matter density slopes and the theoretical pre-
dictions is alleviated.
• We also applied our sJ + lensing and JAM + lensing

analyses to clusters viewed from their minor, intermediate
and major axes. We found that the best-fit γgNFW tends to
be larger than the true value when the cluster is viewed
from the direction of the major axis. If the observed sample
were biased in this way, the discrepancy with the C-EAGLE
clusters would be even larger.
• We tested the robustness of the method to the assump-

tions of a constant stellar mass-to-light ratio and an isotropic
velocity anisotropy and found the method to be fairly insen-
sitive to these assumptions.

In summary, while for one measurement (the mean inner
slope of the dark matter density profile), the observational
data are consistent with the simulations, for another mea-
surement (the asymptotic slope) they are not. These two
measures differ in the way they weight different regions of
the mass distribution in the cluster. The asymptotic slopes
are extrapolations that rely on the innermost data points
whereas the mean slopes may be more robust. The inferred
asymptotic slopes are degenerate with the scale radius of the
halo which is largely determined by the lensing data; a poor
or biased measurement of the lensing constraints can lead
to significantly smaller asymptotic slopes. Thus, although
some tension between the simulations and the data remains,
this may not necessarily imply a fatal inconsistency between
the two.

ACKNOWLEDGEMENTS

We thank Mathilde Jauzac and Andrew Robertson for help-
ful suggestions. We acknowledge National Natural Science
Foundation of China (Nos. 11773032), and National Key
Program for Science and Technology Research and Devel-
opment of China (2017YFB0203300). RL is supported by
NAOC Nebula Talents Program.

This work was supported by the CSF’s European Re-
search Council (ERC) Advanced Investigator grant DMI-
DAS (GA 786910) and the Consolidated Grant for As-
tronomy at Durham (ST/L00075X/1). It used the DiRAC
Data Centric system at Durham University, operated
by the Institute for Computational Cosmology on be-
half of the STFC DiRAC HPC Facility (www.dirac.ac.
uk). This equipment was funded by BIS National E-
infrastructure capital grant ST/K00042X/1, STFC capital
grants ST/H008519/1 and ST/K00087X/1, STFC DiRAC
Operations grant ST/K003267/1 and Durham University.
DiRAC is part of the National E-Infrastructure. MS is
supported by VENI grant 639.041.749. YMB acknowledges
funding from the EU Horizon 2020 research and innova-
tion programme under Marie Sk lodowska-Curie grant agree-
ment 747645 (ClusterGal) and the Netherlands Organisa-
tion for Scientific Research (NWO) through VENI grant
016.183.011. The C-EAGLE simulations were in part per-

formed on the German federal maximum performance com-
puter “HazelHen” at the maximum performance computing
centre Stuttgart (HLRS), under project GCS-HYDA / ID
44067 financed through the large-scale project “Hydrangea”
of the Gauss Center for Supercomputing. Further simula-
tions were performed at the Max Planck Computing and
Data Facility in Garching, Germany. CDV acknowledges
financial support from the Spanish Ministry of Economy
and Competitiveness (MINECO) through grants AYA2014-
58308 and RYC-2015-1807.

REFERENCES

Auger M. W., Treu T., Bolton A. S., Gavazzi R., Koopmans

L. V. E., Marshall P. J., Moustakas L. A., Burles S., 2010,
ApJ, 724, 511
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Table A1. Comparison between true and best-fit parameters obtained from sJ plus lensing analysis. The best-fit and true values are
denoted with superscript ”R” and ”T” respectively. γ̄tot and γ̄dm are the mass-weighted slope of total density profiles and dark matter

density profiles and γgNFW is the asymptotic dark matter density slope. M∗ and Mtot are the stellar and total mass enclosed within the

stellar effective radius, Re. The unit of mass is M�. fdm is the dark matter mass fraction witnin Re. Errors are calculated as 84 and 16
percentiles.

γ̄T
tot γ̄R

tot γ̄T
dm γ̄R

dm γT
gNFW γR

gNFW log10 M∗T log10 M∗R log10 MT
tot log10 MR

tot fT
dm fR

dm

CE-12 1.79 1.63+0.05
−0.05 1.15 1.09+0.21

−0.33 1.07 1.03+0.24
−0.42 11.62 11.76+0.09

−0.13 11.91 12.07+0.03
−0.04 0.49 0.50+0.13

−0.13

CE-13 1.69 1.65+0.06
−0.06 0.98 1.09+0.20

−0.31 0.92 1.01+0.24
−0.41 11.63 11.69+0.10

−0.13 11.91 12.01+0.02
−0.03 0.48 0.52+0.13

−0.14

CE-14 1.80 1.76+0.06
−0.05 0.97 1.18+0.15

−0.27 1.25 1.15+0.16
−0.32 11.58 11.59+0.08

−0.10 11.81 11.83+0.02
−0.03 0.41 0.42+0.12

−0.12

CE-15 2.05 1.86+0.05
−0.05 1.17 1.32+0.14

−0.30 1.37 1.28+0.16
−0.38 11.56 11.57+0.09

−0.09 11.73 11.79+0.03
−0.03 0.32 0.41+0.10

−0.13

CE-16 1.76 1.78+0.09
−0.08 1.07 1.10+0.24

−0.37 0.88 1.04+0.26
−0.45 11.69 11.99+0.11

−0.15 11.94 12.21+0.03
−0.04 0.44 0.40+0.17

−0.15

CE-17 1.75 1.63+0.07
−0.07 1.22 1.26+0.13

−0.17 1.25 1.07+0.23
−0.27 11.63 11.72+0.11

−0.12 11.95 12.16+0.02
−0.02 0.53 0.64+0.09

−0.10

CE-18 1.65 1.58+0.06
−0.06 1.05 0.96+0.26

−0.35 0.90 0.85+0.32
−0.49 11.73 11.83+0.09

−0.14 12.02 12.11+0.02
−0.02 0.47 0.48+0.15

−0.13

CE-19 1.95 1.54+0.08
−0.07 1.12 0.63+0.31

−0.26 0.99 0.50+0.38
−0.35 11.65 11.71+0.06

−0.08 11.92 11.94+0.04
−0.04 0.47 0.41+0.13

−0.10

CE-20 1.90 1.71+0.05
−0.05 1.14 1.23+0.16

−0.31 1.03 1.18+0.19
−0.43 11.72 11.88+0.10

−0.14 12.01 12.22+0.02
−0.02 0.48 0.54+0.12

−0.13

CE-21 1.88 1.79+0.06
−0.05 1.10 1.16+0.20

−0.32 1.10 1.10+0.23
−0.43 11.86 11.97+0.08

−0.11 12.08 12.21+0.02
−0.02 0.40 0.42+0.13

−0.12

CE-22 1.56 1.55+0.06
−0.06 0.87 0.81+0.27

−0.33 0.92 0.74+0.30
−0.44 11.81 11.87+0.07

−0.10 12.10 12.11+0.03
−0.03 0.48 0.41+0.14

−0.11

CE-23 1.47 1.48+0.07
−0.06 0.73 0.83+0.18

−0.25 0.96 0.77+0.20
−0.29 11.62 11.73+0.07

−0.10 11.93 12.01+0.04
−0.04 0.51 0.47+0.13

−0.11

CE-24 1.63 1.60+0.06
−0.06 1.04 1.01+0.17

−0.25 0.84 0.97+0.18
−0.31 11.76 11.90+0.08

−0.12 12.08 12.17+0.02
−0.03 0.52 0.46+0.13

−0.12

CE-25 1.74 1.64+0.05
−0.05 1.12 1.07+0.17

−0.32 1.15 1.01+0.20
−0.44 11.85 11.89+0.08

−0.11 12.11 12.14+0.02
−0.02 0.45 0.44+0.12

−0.12

CE-26 1.63 1.51+0.07
−0.07 0.82 0.73+0.26

−0.28 0.82 0.62+0.33
−0.38 11.90 11.89+0.07

−0.10 12.18 12.15+0.03
−0.03 0.47 0.44+0.12

−0.10

CE-27 1.40 1.45+0.06
−0.07 0.90 1.03+0.20

−0.32 0.81 0.96+0.24
−0.42 11.56 11.81+0.15

−0.23 12.01 12.20+0.02
−0.03 0.64 0.59+0.17

−0.17

CE-28 1.53 1.41+0.06
−0.07 0.90 0.94+0.19

−0.28 0.81 0.85+0.23
−0.38 11.81 11.96+0.09

−0.11 12.16 12.36+0.03
−0.03 0.55 0.60+0.10

−0.11
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Table A2. Comparison between true and best-fit parameters obtained from JAM plus lensing analysis. Notations are the same as Table
A1.

γ̄T
tot γ̄R

tot γ̄T
dm γ̄R

dm γT
gNFW γR

gNFW log10 M∗T log10 M∗R log10 MT
tot log10 MR

tot fT
dm fR

dm

CE-12 1.79 1.70+0.06
−0.06 1.15 1.18+0.15

−0.23 1.07 1.13+0.17
−0.30 11.62 11.65+0.08

−0.10 11.91 12.01+0.03
−0.04 0.49 0.56+0.11

−0.11

CE-13 1.69 1.74+0.08
−0.07 0.98 0.98+0.25

−0.32 0.92 0.90+0.31
−0.42 11.63 11.68+0.07

−0.10 11.91 11.94+0.04
−0.04 0.48 0.45+0.14

−0.12

CE-14 1.80 1.98+0.08
−0.08 0.97 0.75+0.25

−0.31 1.25 0.69+0.31
−0.40 11.58 11.61+0.04

−0.05 11.81 11.73+0.03
−0.03 0.41 0.23+0.09

−0.07

CE-15 2.05 2.02+0.09
−0.08 1.17 1.08+0.24

−0.40 1.37 1.03+0.26
−0.46 11.56 11.54+0.07

−0.08 11.73 11.69+0.03
−0.04 0.32 0.28+0.13

−0.11

CE-16 1.76 1.76+0.14
−0.10 1.07 1.11+0.17

−0.31 0.88 1.07+0.20
−0.36 11.69 11.77+0.14

−0.15 11.94 12.07+0.04
−0.04 0.44 0.50+0.14

−0.18

CE-17 1.75 1.71+0.05
−0.05 1.22 1.43+0.07

−0.13 1.25 1.39+0.08
−0.16 11.63 11.62+0.11

−0.12 11.95 12.09+0.02
−0.02 0.53 0.67+0.08

−0.10

CE-18 1.65 1.76+0.10
−0.09 1.05 1.04+0.25

−0.41 0.90 0.98+0.29
−0.53 11.73 11.84+0.09

−0.16 12.02 12.10+0.03
−0.03 0.47 0.44+0.18

−0.16

CE-19 1.95 1.69+0.10
−0.09 1.12 0.67+0.28

−0.27 0.99 0.55+0.34
−0.34 11.65 11.67+0.06

−0.07 11.92 11.91+0.05
−0.05 0.47 0.42+0.12

−0.10

CE-20 1.90 1.79+0.08
−0.07 1.14 1.20+0.17

−0.28 1.03 1.16+0.18
−0.34 11.72 11.84+0.08

−0.11 12.01 12.15+0.04
−0.04 0.48 0.52+0.13

−0.13

CE-21 1.88 1.84+0.07
−0.06 1.10 1.22+0.16

−0.24 1.10 1.18+0.18
−0.30 11.86 11.88+0.07

−0.09 12.08 12.15+0.04
−0.04 0.40 0.46+0.12

−0.11

CE-22 1.56 1.77+0.08
−0.08 0.87 0.72+0.27

−0.31 0.92 0.63+0.31
−0.40 11.81 11.96+0.04

−0.06 12.10 12.12+0.03
−0.03 0.48 0.29+0.12

−0.09

CE-23 1.47 1.66+0.09
−0.09 0.73 0.70+0.24

−0.29 0.96 0.64+0.26
−0.36 11.62 11.79+0.05

−0.06 11.93 11.99+0.05
−0.05 0.51 0.35+0.13

−0.10

CE-24 1.63 1.68+0.07
−0.06 1.04 1.12+0.13

−0.17 0.84 1.09+0.14
−0.20 11.76 11.79+0.07

−0.10 12.08 12.13+0.03
−0.03 0.52 0.54+0.11

−0.11

CE-25 1.74 1.89+0.08
−0.08 1.12 0.82+0.21

−0.31 1.15 0.76+0.24
−0.40 11.85 11.96+0.05

−0.06 12.11 12.09+0.02
−0.03 0.45 0.26+0.09

−0.08

CE-26 1.63 1.70+0.10
−0.09 0.82 0.80+0.26

−0.31 0.82 0.71+0.30
−0.40 11.90 11.89+0.06

−0.09 12.18 12.14+0.03
−0.03 0.47 0.43+0.13

−0.11

CE-27 1.40 1.71+0.09
−0.11 0.90 1.05+0.19

−0.28 0.81 1.01+0.21
−0.34 11.56 11.94+0.08

−0.17 12.01 12.21+0.03
−0.03 0.64 0.47+0.17

−0.13

CE-28 1.53 1.46+0.05
−0.07 0.90 1.01+0.15

−0.22 0.81 0.95+0.17
−0.29 11.81 11.91+0.08

−0.09 12.16 12.33+0.03
−0.04 0.55 0.62+0.09

−0.09
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